1
|
Stoll FM, Rudebeck PH. Dissociable Representations of Decision Variables within Subdivisions of the Macaque Orbital and Ventrolateral Frontal Cortex. J Neurosci 2024; 44:e0464242024. [PMID: 38991790 PMCID: PMC11358530 DOI: 10.1523/jneurosci.0464-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
The ventral frontal cortex (VFC) in macaques is involved in many affective and cognitive processes and has a key role in flexibly guiding reward-based decision-making. VFC is composed of a set of anatomically distinct subdivisions that are within the orbitofrontal cortex, ventrolateral prefrontal cortex, and anterior insula. In part, because prior studies have lacked the resolution to test for differences, it is unclear if neural representations related to decision-making are dissociable across these subdivisions. Here we recorded the activity of thousands of neurons within eight anatomically defined subdivisions of VFC in male macaque monkeys performing a two-choice probabilistic task for different fruit juice outcomes. We found substantial variation in the encoding of decision variables across these eight subdivisions. Notably, ventrolateral Area 12l was unique relative to the other areas that we recorded from as the activity of single neurons integrated multiple attributes when monkeys evaluated the different choice options. Activity within Area 12o, in contrast, more closely represented reward probability and whether reward was received on a given trial. Orbitofrontal Area 11m/l contained more specific representations of the quality of the outcome that could be earned later on. We also found that reward delivery encoding was highly distributed across all VFC subdivisions, while the properties of the reward, such as its flavor, were more strongly represented in Areas 11m/l and 13m. Taken together, our work reveals the diversity of encoding within the various anatomically distinct subdivisions of VFC in primates.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
2
|
Lockwood PL, Cutler J, Drew D, Abdurahman A, Jeyaretna DS, Apps MAJ, Husain M, Manohar SG. Human ventromedial prefrontal cortex is necessary for prosocial motivation. Nat Hum Behav 2024; 8:1403-1416. [PMID: 38802539 PMCID: PMC11272586 DOI: 10.1038/s41562-024-01899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Ventromedial prefrontal cortex (vmPFC) is vital for decision-making. Functional neuroimaging links vmPFC to processing rewards and effort, while parallel work suggests vmPFC involvement in prosocial behaviour. However, the necessity of vmPFC for these functions is unknown. Patients with rare focal vmPFC lesions (n = 25), patients with lesions elsewhere (n = 15) and healthy controls (n = 40) chose between rest and exerting effort to earn rewards for themselves or another person. vmPFC damage decreased prosociality across behavioural and computational measures. vmPFC patients earned less, discounted rewards by effort more, and exerted less force when another person benefited, compared to both control groups. Voxel-based lesion mapping revealed dissociations between vmPFC subregions. While medial damage led to antisocial behaviour, lateral damage increased prosocial behaviour relative to patients with damage elsewhere. vmPFC patients also showed reduced effort sensitivity overall, but reward sensitivity was limited to specific subregions. These results reveal multiple causal contributions of vmPFC to prosocial behaviour, effort and reward.
Collapse
Affiliation(s)
- Patricia L Lockwood
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Jo Cutler
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Daniel Drew
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ayat Abdurahman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Deva Sanjeeva Jeyaretna
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| | - Matthew A J Apps
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
3
|
Grohn J, Khalighinejad N, Jahn CI, Bongioanni A, Schüffelgen U, Sallet J, Rushworth MFS, Kolling N. General mechanisms of task engagement in the primate frontal cortex. Nat Commun 2024; 15:4802. [PMID: 38839745 PMCID: PMC11153620 DOI: 10.1038/s41467-024-49128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Staying engaged is necessary to maintain goal-directed behaviors. Despite this, engagement exhibits continuous, intrinsic fluctuations. Even in experimental settings, animals, unlike most humans, repeatedly and spontaneously move between periods of complete task engagement and disengagement. We, therefore, looked at behavior in male macaques (macaca mulatta) in four tasks while recording fMRI signals. We identified consistent autocorrelation in task disengagement. This made it possible to build models capturing task-independent engagement. We identified task general patterns of neural activity linked to impending sudden task disengagement in mid-cingulate gyrus. By contrast, activity centered in perigenual anterior cingulate cortex (pgACC) was associated with maintenance of performance across tasks. Importantly, we carefully controlled for task-specific factors such as the reward history and other motivational effects, such as response vigor, in our analyses. Moreover, we showed pgACC activity had a causal link to task engagement: transcranial ultrasound stimulation of pgACC changed task engagement patterns.
Collapse
Affiliation(s)
- Jan Grohn
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Nima Khalighinejad
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Caroline I Jahn
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA
| | - Alessandro Bongioanni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif/Yvette, France
| | - Urs Schüffelgen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 18 Avenue Doyen Lepine, 69500, Bron, France
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Nils Kolling
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 18 Avenue Doyen Lepine, 69500, Bron, France
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Psychiatry, University of Oxford, Oxford, UK
- Centre Hospitalier Le Vinatier, Pôle EST, Bron, France
| |
Collapse
|
4
|
Khalighinejad N, Garrett N, Priestley L, Lockwood P, Rushworth MFS. A habenula-insular circuit encodes the willingness to act. Nat Commun 2021; 12:6329. [PMID: 34732720 PMCID: PMC8566457 DOI: 10.1038/s41467-021-26569-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/07/2021] [Indexed: 11/08/2022] Open
Abstract
The decision that it is worth doing something rather than nothing is a core yet understudied feature of voluntary behaviour. Here we study "willingness to act", the probability of making a response given the context. Human volunteers encountered opportunities to make effortful actions in order to receive rewards, while watching a movie inside a 7 T MRI scanner. Reward and other context features determined willingness-to-act. Activity in the habenula tracked trial-by-trial variation in participants' willingness-to-act. The anterior insula encoded individual environment features that determined this willingness. We identify a multi-layered network in which contextual information is encoded in the anterior insula, converges on the habenula, and is then transmitted to the supplementary motor area, where the decision is made to either act or refrain from acting via the nigrostriatal pathway.
Collapse
Affiliation(s)
- Nima Khalighinejad
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK.
| | - Neil Garrett
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
- School of Psychology, University of East Anglia, Norwich, UK
| | - Luke Priestley
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
| | - Patricia Lockwood
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
| |
Collapse
|
5
|
Müller T, Klein-Flügge MC, Manohar SG, Husain M, Apps MAJ. Neural and computational mechanisms of momentary fatigue and persistence in effort-based choice. Nat Commun 2021; 12:4593. [PMID: 34321478 PMCID: PMC8319292 DOI: 10.1038/s41467-021-24927-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2021] [Indexed: 11/09/2022] Open
Abstract
From a gym workout, to deciding whether to persevere at work, many activities require us to persist in deciding that rewards are ‘worth the effort’ even as we become fatigued. However, studies examining effort-based decisions typically assume that the willingness to work is static. Here, we use computational modelling on two effort-based tasks, one behavioural and one during fMRI. We show that two hidden states of fatigue fluctuate on a moment-to-moment basis on different timescales but both reduce the willingness to exert effort for reward. The value of one state increases after effort but is ‘recoverable’ by rests, whereas a second ‘unrecoverable’ state gradually increases with work. The BOLD response in separate medial and lateral frontal sub-regions covaried with these states when making effort-based decisions, while a distinct fronto-striatal system integrated fatigue with value. These results provide a computational framework for understanding the brain mechanisms of persistence and momentary fatigue. The willingness to exert effort into demanding tasks often declines over time through fatigue. Here the authors provide a computational account of the moment-to-moment dynamics of fatigue and its impact on effort-based choices, and reveal the neural mechanisms that underlie such computations.
Collapse
Affiliation(s)
- Tanja Müller
- Department of Experimental Psychology, University of Oxford, Oxford, UK. .,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Miriam C Klein-Flügge
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Matthew A J Apps
- Department of Experimental Psychology, University of Oxford, Oxford, UK. .,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK. .,Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK. .,Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK.
| |
Collapse
|
6
|
Silva C, Porter BS, Hillman KL. Stimulation in the Rat Anterior Insula and Anterior Cingulate During an Effortful Weightlifting Task. Front Neurosci 2021; 15:643384. [PMID: 33716659 PMCID: PMC7952617 DOI: 10.3389/fnins.2021.643384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
When performing tasks, animals must continually assess how much effort is being expended, and gage this against ever-changing physiological states. As effort costs mount, persisting in the task may be unwise. The anterior cingulate cortex (ACC) and the anterior insular cortex are implicated in this process of cost-benefit decision-making, yet their precise contributions toward driving effortful persistence are not well understood. Here we investigated whether electrical stimulation of the ACC or insular cortex would alter effortful persistence in a novel weightlifting task (WLT). In the WLT an animal is challenged to pull a rope 30 cm to trigger food reward dispensing. To make the action increasingly effortful, 45 g of weight is progressively added to the rope after every 10 successful pulls. The animal can quit the task at any point - with the rope weight at the time of quitting taken as the "break weight." Ten male Sprague-Dawley rats were implanted with stimulating electrodes in either the ACC [cingulate cortex area 1 (Cg1) in rodent] or anterior insula and then assessed in the WLT during stimulation. Low-frequency (10 Hz), high-frequency (130 Hz), and sham stimulations were performed. We predicted that low-frequency stimulation (LFS) of Cg1 in particular would increase persistence in the WLT. Contrary to our predictions, LFS of Cg1 resulted in shorter session duration, lower break weights, and fewer attempts on the break weight. High-frequency stimulation of Cg1 led to an increase in time spent off-task. LFS of the anterior insula was associated with a marginal increase in attempts on the break weight. Taken together our data suggest that stimulation of the rodent Cg1 during an effortful task alters certain aspects of effortful behavior, while insula stimulation has little effect.
Collapse
Affiliation(s)
| | | | - Kristin L. Hillman
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Bliss-Moreau E, Rudebeck PH. Animal models of human mood. Neurosci Biobehav Rev 2021; 120:574-582. [PMID: 33007355 PMCID: PMC10474843 DOI: 10.1016/j.neubiorev.2020.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/28/2022]
Abstract
Humans' everyday experience of the world is influenced by our moods. Moods are consciously accessible affective states that extend over time that are characterized by their valence and arousal. They also likely have a long evolutionary heritage and serve as an important adaptive affective mechanism. When they become maladaptive or overly biased, pathological affective states such as depression can emerge. Despite the importance of moods for human experience, little is known about their causal neurobiological mechanisms. In humans, limitations related to methods and interpretations of the data prevent causal investigations into the origins of mood, highlighting the importance of animal models. Nonhuman primates that share key neuroanatomical, affective, and social features with humans will be essential to uncovering their foundation. Identifying and validating mood-like states in animals is, however, challenging not least because mood is a human construct requiring verbal communication. Here we outline a theoretical framework for animal models of human mood, drawing upon established psychological literature where it exists before reviewing the extant studies of non-human primate models of mood-like states.
Collapse
Affiliation(s)
- Eliza Bliss-Moreau
- Department of Psychology, California National Primate Research Center, University of California, Davis, CA, 95616, USA.
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
8
|
Louail M. Feeding strategies and associated cognitive capacities among Plio-Pleistocene hominins: toward new perspectives using the ventromedial prefrontal cortex. REVUE DE PRIMATOLOGIE 2020. [DOI: 10.4000/primatologie.7157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Jahn CI, Varazzani C, Sallet J, Walton ME, Bouret S. Noradrenergic But Not Dopaminergic Neurons Signal Task State Changes and Predict Reengagement After a Failure. Cereb Cortex 2020; 30:4979-4994. [PMID: 32390051 DOI: 10.1093/cercor/bhaa089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
The two catecholamines, noradrenaline and dopamine, have been shown to play comparable roles in behavior. Both noradrenergic and dopaminergic neurons respond to cues predicting reward availability and novelty. However, even though both are thought to be involved in motivating actions, their roles in motivation have seldom been directly compared. We therefore examined the activity of putative noradrenergic neurons in the locus coeruleus and putative midbrain dopaminergic neurons in monkeys cued to perform effortful actions for rewards. The activity in both regions correlated with engagement with a presented option. By contrast, only noradrenaline neurons were also (i) predictive of engagement in a subsequent trial following a failure to engage and (ii) more strongly activated in nonrepeated trials, when cues indicated a new task condition. This suggests that while both catecholaminergic neurons are involved in promoting action, noradrenergic neurons are sensitive to task state changes, and their influence on behavior extends beyond the immediately rewarded action.
Collapse
Affiliation(s)
- Caroline I Jahn
- Motivation, Brain and Behavior Team, Institut du Cerveau et de la Moelle Épinière, 75013 Paris, France.,Sorbonne Paris Cité universités, Université Paris Descartes, Frontières du Vivant, 75005 Paris, France.,Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX13SR, UK
| | - Chiara Varazzani
- Motivation, Brain and Behavior Team, Institut du Cerveau et de la Moelle Épinière, 75013 Paris, France.,Sorbonne Paris Cité universités, Université Paris Descartes, Frontières du Vivant, 75005 Paris, France
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX13SR, UK.,Inserm, Stem Cell and Brain Research Institute U1208, Université Lyon, Université Lyon 1, 69500 Bron, France
| | - Mark E Walton
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX13SR, UK
| | - Sébastien Bouret
- Motivation, Brain and Behavior Team, Institut du Cerveau et de la Moelle Épinière, 75013 Paris, France
| |
Collapse
|
10
|
Khalighinejad N, Bongioanni A, Verhagen L, Folloni D, Attali D, Aubry JF, Sallet J, Rushworth MFS. A Basal Forebrain-Cingulate Circuit in Macaques Decides It Is Time to Act. Neuron 2019; 105:370-384.e8. [PMID: 31813653 PMCID: PMC6975166 DOI: 10.1016/j.neuron.2019.10.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/02/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
The medial frontal cortex has been linked to voluntary action, but an explanation of why decisions to act emerge at particular points in time has been lacking. We show that, in macaques, decisions about whether and when to act are predicted by a set of features defining the animal’s current and past context; for example, respectively, cues indicating the current average rate of reward and recent previous voluntary action decisions. We show that activity in two brain areas—the anterior cingulate cortex and basal forebrain—tracks these contextual factors and mediates their effects on behavior in distinct ways. We use focused transcranial ultrasound to selectively and effectively stimulate deep in the brain, even as deep as the basal forebrain, and demonstrate that alteration of activity in the two areas changes decisions about when to act. Likelihood and timing of voluntary action in macaques can be partially predicted Recent experience and present context influence when voluntary action occurs A basal forebrain-cingulate circuit mediated effects of these factors on behavior Stimulation of this circuit by ultrasound changed decisions about when to act
Collapse
Affiliation(s)
- Nima Khalighinejad
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK.
| | - Alessandro Bongioanni
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen 6525 XZ, the Netherlands
| | - Davide Folloni
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| | - David Attali
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris 75012, France; Pathophysiology of Psychiatric Disorders Laboratory, Inserm U1266, Institute of Psychiatry and Neuroscience of Paris, Paris Descartes University, Paris University, Paris 75014, France; Service Hospitalo-Universitaire, Sainte-Anne Hospital, UGH Paris Psychiatry and Neurosciences, Paris 75014, France
| | - Jean-Francois Aubry
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris 75012, France
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| |
Collapse
|
11
|
Westbrook A, Lamichhane B, Braver T. The Subjective Value of Cognitive Effort is Encoded by a Domain-General Valuation Network. J Neurosci 2019; 39:3934-3947. [PMID: 30850512 PMCID: PMC6520500 DOI: 10.1523/jneurosci.3071-18.2019] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 11/21/2022] Open
Abstract
Cognitive control is necessary for goal-directed behavior, yet people treat cognitive control demand as a cost, which discounts the value of rewards in a similar manner as other costs, such as delay or risk. It is unclear, however, whether the subjective value (SV) of cognitive effort is encoded in the same putatively domain-general brain valuation network implicated in other cost domains, or instead engages a distinct frontoparietal network, as implied by recent studies. Here, we provide rigorous evidence that the valuation network, with core foci in the ventromedial prefrontal cortex and ventral striatum, also encodes SV during cognitive effort-based decision-making in healthy, male and female adult humans. We doubly dissociate this network from frontoparietal regions that are instead recruited as a function of decision difficulty. We show that the domain-general valuation network jointly and independently encodes both reward benefits and cognitive effort costs. We also demonstrate that cognitive effort SV signals predict choice and are influenced by state and trait motivation, including sensitivity to reward and anticipated task performance. These findings unify cognitive effort with other cost domains, and suggest candidate neural mechanisms underlying state and trait variation in willingness to expend cognitive effort.SIGNIFICANCE STATEMENT Subjective effort costs are increasingly understood to diminish cognitive control over task performance and can thus undermine functioning across health and disease. Yet, we are only beginning to understand how decisions about cognitive effort are made. A key question is how subjective values are computed. Recent work suggests that the value of cognitive effort might be computed by networks that are distinct from those involved in other domains like intertemporal and risky decision-making, implying distinct mechanisms. Here we demonstrate that the domain-general network also encodes effort-discounted value, linking cognitive effort closely with other domains. Our results thus elucidate key mechanisms supporting decisions about cognitive effort, and point to candidate neural targets for intervention in disorders involving impaired cognitive motivation.
Collapse
Affiliation(s)
- Andrew Westbrook
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands,
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Cognitive, Linguistics, and Psychological Sciences, Brown University, Providence, Rhode Island 02912
| | - Bidhan Lamichhane
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Todd Braver
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
- Departments of Radiology, and
- Neuroscience, Washington University in St. Louis, School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
12
|
Louail M, Gilissen E, Prat S, Garcia C, Bouret S. Refining the ecological brain: Strong relation between the ventromedial prefrontal cortex and feeding ecology in five primate species. Cortex 2019; 118:262-274. [PMID: 31030897 DOI: 10.1016/j.cortex.2019.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 12/21/2018] [Accepted: 03/22/2019] [Indexed: 01/04/2023]
Abstract
To survive in complex and seasonal environments, primates are thought to rely upon cognitive capacities such as decision-making and episodic memory, which enable them to plan their daily foraging path. According to the Ecological Brain hypothesis, feeding ecology has driven the expansion of the brain to support the corresponding development of cognitive skills. Recent works in cognitive neurosciences indicate that cognitive operations such as decision-making or subjective evaluation (which are contextual and dependent upon episodic memory), relied critically upon a small part of the frontal lobe, often referred to as the ventromedial prefrontal cortex (VMPFC). Several authors suggested that this area might be important for foraging, but this has never been tested. In the present study, we quantified the relation between the size of the VMPFC (along with other cerebral measures: the whole brain, the gyrus rectus and the somatosensory cortex) and key socio-ecological variables in five primate species (Macaca mulatta, Macaca fuscata, Gorilla gorilla, Pan troglodytes and Homo sapiens). We hypothesized that the size of the VMPFC would be greater in primates with a large dietary spectrum and complex foraging strategies. We also hypothesized that the impact of feeding ecology would be stronger on this specific region than on other regions (somatosensory cortex) or on more global cerebral measures (e.g., whole brain). In line with these hypotheses, we found that all cerebral measures were more strongly related to feeding ecology than group size, a proxy for social complexity. As expected, the VMPFC volume is more precisely related to feeding ecology than the whole brain, and appears to be critically related to dietary quality. Thus, combining a comparative approach with predictions coming both from behavioral ecology and cognitive neurosciences, our study provides evidence that feeding ecology played a key role in the development of specific cognitive skills, which rely upon the expansion of a specific cortical area.
Collapse
Affiliation(s)
- Margot Louail
- Team Motivation Brain & Behavior, ICM - Institut du Cerveau et de la Moelle épinière, CNRS UMR 7225 - INSERM U1127 - UPMC UMR S 1127, Hôpital Pitié-Salpêtrière, Paris, France; UMR 7194 (HNHP), MNHN/CNRS/UPVD, Alliance Sorbonne Université, Musée de l'Homme, Paris, France
| | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium; Université Libre de Bruxelles, Laboratory of Histology and Neuropathology, Brussels, Belgium
| | - Sandrine Prat
- UMR 7194 (HNHP), MNHN/CNRS/UPVD, Alliance Sorbonne Université, Musée de l'Homme, Paris, France
| | - Cécile Garcia
- UMR 7206 Eco-anthropologie et Ethnobiologie, CNRS - MNHN - Paris Diderot, Alliance Sorbonne Université, Musée de l'Homme, Paris, France
| | - Sébastien Bouret
- Team Motivation Brain & Behavior, ICM - Institut du Cerveau et de la Moelle épinière, CNRS UMR 7225 - INSERM U1127 - UPMC UMR S 1127, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
13
|
What Is the Relationship between Dopamine and Effort? Trends Neurosci 2018; 42:79-91. [PMID: 30391016 PMCID: PMC6352317 DOI: 10.1016/j.tins.2018.10.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/18/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
The trade-off between reward and effort is at the heart of most behavioral theories, from ecology to economics. Compared to reward, however, effort remains poorly understood, both at the behavioral and neurophysiological levels. This is important because unwillingness to overcome effort to gain reward is a common feature of many neuropsychiatric and neurological disorders. A recent surge in interest in the neurobiological basis of effort has led to seemingly conflicting results regarding the role of dopamine. We argue here that, upon closer examination, there is actually striking consensus across studies: dopamine primarily codes for future reward but is less sensitive to anticipated effort cost. This strong association between dopamine and the incentive effects of rewards places dopamine in a key position to promote reward-directed action.
Collapse
|
14
|
Padoa-Schioppa C, Conen KE. Orbitofrontal Cortex: A Neural Circuit for Economic Decisions. Neuron 2017; 96:736-754. [PMID: 29144973 PMCID: PMC5726577 DOI: 10.1016/j.neuron.2017.09.031] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 11/24/2022]
Abstract
Economic choice behavior entails the computation and comparison of subjective values. A central contribution of neuroeconomics has been to show that subjective values are represented explicitly at the neuronal level. With this result at hand, the field has increasingly focused on the difficult question of where in the brain and how exactly subjective values are compared to make a decision. Here, we review a broad range of experimental and theoretical results suggesting that good-based decisions are generated in a neural circuit within the orbitofrontal cortex (OFC). The main lines of evidence supporting this proposal include the fact that goal-directed behavior is specifically disrupted by OFC lesions, the fact that different groups of neurons in this area encode the input and the output of the decision process, the fact that activity fluctuations in each of these cell groups correlate with choice variability, and the fact that these groups of neurons are computationally sufficient to generate decisions. Results from other brain regions are consistent with the idea that good-based decisions take place in OFC and indicate that value signals inform a variety of mental functions. We also contrast the present proposal with other leading models for the neural mechanisms of economic decisions. Finally, we indicate open questions and suggest possible directions for future research.
Collapse
Affiliation(s)
- Camillo Padoa-Schioppa
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Economics, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Katherine E Conen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|