1
|
Mastenbroek LJM, Kooistra SM, Eggen BJL, Prins JR. The role of microglia in early neurodevelopment and the effects of maternal immune activation. Semin Immunopathol 2024; 46:1. [PMID: 38990389 PMCID: PMC11239780 DOI: 10.1007/s00281-024-01017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Activation of the maternal immune system during gestation has been associated with an increased risk for neurodevelopmental disorders in the offspring, particularly schizophrenia and autism spectrum disorder. Microglia, the tissue-resident macrophages of the central nervous system, are implicated as potential mediators of this increased risk. Early in development, microglia start populating the embryonic central nervous system and in addition to their traditional role as immune responders under homeostatic conditions, microglia are also intricately involved in various early neurodevelopmental processes. The timing of immune activation may interfere with microglia functioning during early neurodevelopment, potentially leading to long-term consequences in postnatal life. In this review we will discuss the involvement of microglia in brain development during the prenatal and early postnatal stages of life, while also examining the effects of maternal immune activation on microglia and neurodevelopmental processes. Additionally, we discuss recent single cell RNA-sequencing studies focusing on microglia during prenatal development, and hypothesize how early life microglial priming, potentially through epigenetic reprogramming, may be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- L J M Mastenbroek
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - S M Kooistra
- Department of BioMedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - B J L Eggen
- Department of BioMedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J R Prins
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Meller SJ, Hernandez L, Martin-Lopez E, Kloos ZA, Liberia T, Greer CA. Microglia Maintain Homeostatic Conditions in the Developing Rostral Migratory Stream. eNeuro 2023; 10:ENEURO.0197-22.2023. [PMID: 36697258 PMCID: PMC9910579 DOI: 10.1523/eneuro.0197-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/03/2023] [Accepted: 01/14/2023] [Indexed: 01/27/2023] Open
Abstract
Microglia invade the neuroblast migratory corridor of the rostral migratory stream (RMS) early in development. The early postnatal RMS does not yet have the dense astrocyte and vascular scaffold that helps propel forward migrating neuroblasts, which led us to consider whether microglia help regulate conditions permissive to neuroblast migration in the RMS. GFP-labeled microglia in CX3CR-1GFP/+ mice assemble primarily along the outer borders of the RMS during the first postnatal week, where they exhibit predominantly an ameboid morphology and associate with migrating neuroblasts. Microglia ablation for 3 d postnatally does not impact the density of pulse labeled BrdU+ neuroblasts nor the distance migrated by tdTomato electroporated neuroblasts in the RMS. However, microglia wrap DsRed-labeled neuroblasts in the RMS of P7 CX3CR-1GFP/+;DCXDsRed/+ mice and express the markers CD68, CLEC7A, MERTK, and IGF-1, suggesting active regulation in the developing RMS. Microglia depletion for 14 d postnatally further induced an accumulation of CC3+ DCX+ apoptotic neuroblasts in the RMS, a wider RMS and extended patency of the lateral ventricle extension in the olfactory bulb. These findings illustrate the importance of microglia in maintaining a healthy neuroblast population and an environment permissive to neuroblast migration in the early postnatal RMS.
Collapse
Affiliation(s)
- Sarah J Meller
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, CT 06520
| | - Lexie Hernandez
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
| | - Eduardo Martin-Lopez
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
| | - Zachary A Kloos
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520
| | - Teresa Liberia
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
| | - Charles A Greer
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
3
|
Muñoz EM. Microglia in Circumventricular Organs: The Pineal Gland Example. ASN Neuro 2022; 14:17590914221135697. [PMID: 36317305 PMCID: PMC9629557 DOI: 10.1177/17590914221135697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The circumventricular organs (CVOs) are unique areas within the central nervous system. They serve as a portal for the rest of the body and, as such, lack a blood-brain barrier. Microglia are the primary resident immune cells of the brain parenchyma. Within the CVOs, microglial cells find themselves continuously challenged and stimulated by local and systemic stimuli, even under steady-state conditions. Therefore, CVO microglia in their typical state often resemble the activated microglial forms found elsewhere in the brain as they are responding to pathological conditions or other stressors. In this review, I focus on the dynamics of CVO microglia, using the pineal gland as a specific CVO example. Data related to microglia heterogeneity in both homeostatic and unhealthy environments are presented and discussed, including those recently generated by using advanced single-cell and single-nucleus technology. Finally, perspectives in the CVO microglia field are also included.Summary StatementMicroglia in circumventricular organs (CVOs) continuously adapt to react differentially to the diverse challenges they face. Herein, I discuss microglia heterogeneity in CVOs, including pineal gland. Further studies are needed to better understand microglia dynamics in these unique brain areas. .
Collapse
Affiliation(s)
- Estela M. Muñoz
- Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos (IHEM), Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina,Estela M. Muñoz, IHEM-UNCuyo-CONICET, Parque General San Martin, Ciudad de Mendoza, M5502JMA, Mendoza, Argentina.
or
| |
Collapse
|
4
|
Otero AM, Antonson AM. At the crux of maternal immune activation: Viruses, microglia, microbes, and IL-17A. Immunol Rev 2022; 311:205-223. [PMID: 35979731 PMCID: PMC9804202 DOI: 10.1111/imr.13125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammation during prenatal development can be detrimental to neurodevelopmental processes, increasing the risk of neuropsychiatric disorders. Prenatal exposure to maternal viral infection during pregnancy is a leading environmental risk factor for manifestation of these disorders. Preclinical animal models of maternal immune activation (MIA), established to investigate this link, have revealed common immune and microbial signaling pathways that link mother and fetus and set the tone for prenatal neurodevelopment. In particular, maternal intestinal T helper 17 cells, educated by endogenous microbes, appear to be key drivers of effector IL-17A signals capable of reaching the fetal brain and causing neuropathologies. Fetal microglial cells are particularly sensitive to maternally derived inflammatory and microbial signals, and they shift their functional phenotype in response to MIA. Resulting cortical malformations and miswired interneuron circuits cause aberrant offspring behaviors that recapitulate core symptoms of human neurodevelopmental disorders. Still, the popular use of "sterile" immunostimulants to initiate MIA has limited translation to the clinic, as these stimulants fail to capture biologically relevant innate and adaptive inflammatory sequelae induced by live pathogen infection. Thus, there is a need for more translatable MIA models, with a focus on relevant pathogens like seasonal influenza viruses.
Collapse
Affiliation(s)
- Ashley M. Otero
- Neuroscience ProgramUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Adrienne M. Antonson
- Department of Animal SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
5
|
Ryan AM, Bauman MD. Primate Models as a Translational Tool for Understanding Prenatal Origins of Neurodevelopmental Disorders Associated With Maternal Infection. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:510-523. [PMID: 35276404 PMCID: PMC8902899 DOI: 10.1016/j.bpsc.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023]
Abstract
Pregnant women represent a uniquely vulnerable population during an infectious disease outbreak, such as the COVID-19 pandemic. Although we are at the early stages of understanding the specific impact of SARS-CoV-2 exposure during pregnancy, mounting epidemiological evidence strongly supports a link between exposure to a variety of maternal infections and an increased risk for offspring neurodevelopmental disorders. Inflammatory biomarkers identified from archived or prospectively collected maternal biospecimens suggest that the maternal immune response is the critical link between infection during pregnancy and altered offspring neurodevelopment. This maternal immune activation (MIA) hypothesis has been tested in animal models by artificially activating the immune system during pregnancy and evaluating the neurodevelopmental consequences in MIA-exposed offspring. Although the vast majority of MIA model research is carried out in rodents, the nonhuman primate model has emerged in recent years as an important translational tool. In this review, we briefly summarize human epidemiological studies that have prompted the development of translationally relevant MIA models. We then highlight notable similarities between humans and nonhuman primates, including placental structure, pregnancy physiology, gestational timelines, and offspring neurodevelopmental stages, that provide an opportunity to explore the MIA hypothesis in species more closely related to humans. Finally, we provide a comprehensive review of neurodevelopmental alterations reported in current nonhuman primate models of maternal infection and discuss future directions for this promising area of research.
Collapse
Affiliation(s)
- Amy M Ryan
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California.
| |
Collapse
|
6
|
Tarantal AF, Hartigan-O'Connor DJ, Noctor SC. Translational Utility of the Nonhuman Primate Model. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:491-497. [PMID: 35283343 PMCID: PMC9576492 DOI: 10.1016/j.bpsc.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/15/2022]
Abstract
Nonhuman primates are essential for the study of human disease and to explore the safety of new diagnostics and therapies proposed for human use. They share similar genetic, physiologic, immunologic, reproductive, and developmental features with humans and thus have proven crucial for the study of embryonic/fetal development, organ system ontogeny, and the role of the maternal-placental-fetal interface in health and disease. The fetus may be exposed to a variety of inflammatory stimuli including infectious microbes as well as maternal inflammation, which can result from infections, obesity, or environmental exposures. Growing evidence supports that inflammation is a mediator of fetal programming and that the maternal immune system is tightly integrated with fetal-placental immune responses that may set a postnatal path for future health or disease. This review addresses some of the unique features of the nonhuman primate model system, specifically the rhesus monkey (Macaca mulatta), and importance of the species for studies focused on organ system ontogeny and the impact of viral teratogens in relation to development and congenital disorders.
Collapse
Affiliation(s)
- Alice F Tarantal
- Department of Pediatrics, School of Medicine, University of California Davis, Davis, California; Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California.
| | - Dennis J Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Davis, California; Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis, Davis, California
| |
Collapse
|
7
|
Abstract
Nonhuman primates are critically important animal models in which to study complex human diseases, understand biological functions, and address the safety of new diagnostics and therapies proposed for human use. They have genetic, physiologic, immunologic, and developmental similarities when compared to humans and therefore provide important preclinical models of human health and disease. This review highlights select research areas that demonstrate the importance of nonhuman primates in translational research. These include pregnancy and developmental disorders, infectious diseases, gene therapy, somatic cell genome editing, and applications of in vivo imaging. The power of the immune system and our increasing understanding of the role it plays in acute and chronic illnesses are being leveraged to produce new treatments for a range of medical conditions. Given the importance of the human immune system in health and disease, detailed study of the immune system of nonhuman primates is essential to advance preclinical translational research. The need for nonhuman primates continues to remain a high priority, which has been acutely evident during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global pandemic. Nonhuman primates will continue to address key questions and provide predictive models to identify the safety and efficiency of new diagnostics and therapies for human use across the lifespan.
Collapse
Affiliation(s)
- Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, California, USA;
- California National Primate Research Center, University of California, Davis, California, USA
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, California, USA;
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center, University of California, Davis, California, USA
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, USA;
| |
Collapse
|
8
|
Vlasova RM, Iosif AM, Ryan AM, Funk LH, Murai T, Chen S, Lesh TA, Rowland DJ, Bennett J, Hogrefe CE, Maddock RJ, Gandal MJ, Geschwind DH, Schumann CM, Van de Water J, McAllister AK, Carter CS, Styner MA, Amaral DG, Bauman MD. Maternal Immune Activation during Pregnancy Alters Postnatal Brain Growth and Cognitive Development in Nonhuman Primate Offspring. J Neurosci 2021; 41:9971-9987. [PMID: 34607967 PMCID: PMC8638691 DOI: 10.1523/jneurosci.0378-21.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Human epidemiological studies implicate exposure to infection during gestation in the etiology of neurodevelopmental disorders. Animal models of maternal immune activation (MIA) have identified the maternal immune response as the critical link between maternal infection and aberrant offspring brain and behavior development. Here we evaluate neurodevelopment of male rhesus monkeys (Macaca mulatta) born to MIA-treated dams (n = 14) injected with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the same gestational time points (n = 10) or were untreated (n = 4). MIA-treated dams exhibited a strong immune response as indexed by transient increases in sickness behavior, temperature, and inflammatory cytokines. Although offspring born to control or MIA-treated dams did not differ on measures of physical growth and early developmental milestones, the MIA-treated animals exhibited subtle changes in cognitive development and deviated from species-typical brain growth trajectories. Longitudinal MRI revealed significant gray matter volume reductions in the prefrontal and frontal cortices of MIA-treated offspring at 6 months that persisted through the final time point at 45 months along with smaller frontal white matter volumes in MIA-treated animals at 36 and 45 months. These findings provide the first evidence of early postnatal changes in brain development in MIA-exposed nonhuman primates and establish a translationally relevant model system to explore the neurodevelopmental trajectory of risk associated with prenatal immune challenge from birth through late adolescence.SIGNIFICANCE STATEMENT Women exposed to infection during pregnancy have an increased risk of giving birth to a child who will later be diagnosed with a neurodevelopmental disorder. Preclinical maternal immune activation (MIA) models have demonstrated that the effects of maternal infection on fetal brain development are mediated by maternal immune response. Since the majority of MIA models are conducted in rodents, the nonhuman primate provides a unique system to evaluate the MIA hypothesis in a species closely related to humans. Here we report the first longitudinal study conducted in a nonhuman primate MIA model. MIA-exposed offspring demonstrate subtle changes in cognitive development paired with marked reductions in frontal gray and white matter, further supporting the association between prenatal immune challenge and alterations in offspring neurodevelopment.
Collapse
Affiliation(s)
- Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, 27514
| | - Ana-Maria Iosif
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Amy M Ryan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Lucy H Funk
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Takeshi Murai
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Shuai Chen
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Douglas J Rowland
- Center for Genomic and Molecular Imaging, University of California, Davis, California, 95616
| | - Jeffrey Bennett
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Casey E Hogrefe
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Michael J Gandal
- Neurogenetics Program, Department of Neurology, University of California, Los Angeles, California, 90095
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, University of California, Los Angeles, California, 90095
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Judy Van de Water
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - A Kimberley McAllister
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- Center for Neuroscience, University of California, Davis, California, 95618
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, 27514
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- California National Primate Research Center, University of California, Davis, California, 95616
| |
Collapse
|
9
|
Sobierajski E, Lauer G, Aktas M, Beemelmans C, Beemelmans C, Meyer G, Wahle P. Development of microglia in fetal and postnatal neocortex of the pig, the European wild boar (Sus scrofa). J Comp Neurol 2021; 530:1341-1362. [PMID: 34817865 DOI: 10.1002/cne.25280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023]
Abstract
Knowledge on cortical development is based mainly on rodents besides primates and carnivores, all being altricial. Here, we analyzed a precocial animal, the pig, looking at dorsoparietal cortex from E45 to P90. At E45, most ionized calcium-binding adapter molecule 1-positive (Iba1+) cells had a macrophage-like morphology and resided in meninges and choroid plexus. Only a few cells were scattered in the ventricular and subventricular zone (VZ and SVZ). At E60/E70, all laminar compartments displayed microglia cells at a low-to-moderate density, being highest in VZ and SVZ followed by intermediate zone/white matter (IZ/WM). The cortical plate and marginal zone displayed only a few Iba1+ cells. Cells were intensely labeled, but still had poorly arborized somata and many resembled ameboid, macrophage-like microglia. Concurrent with a massive increase in cortical volume, microglia cell density increased until E85, and further until E100/E110 (birth at E114) to densities that resemble those seen postnatally. A fraction of microglia colabeled with Ki67 suggesting proliferation in all laminar compartments. Cell-to-cell distance decreased substantially during this time, and the fraction of microglia to all nuclei and to neurons increases in the laminar compartments. Eventually, of all cortical DAPI+ nuclei 7-12% were Iba1+ microglia. From E70 onwards, more and more cells with ramified processes were present in MZ down to IZ/WM, showing, for instance, a close association with NeuN+, NPY+, and GAD65/67+ somata and axon initial segments. These results suggested that the development of microglia cell density and morphology proceeds rapidly from mid-gestation onwards reaching near-adult status already before birth.
Collapse
Affiliation(s)
- Eric Sobierajski
- Department of Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - German Lauer
- Department of Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Meriyem Aktas
- Department of Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | | | - Gundela Meyer
- Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Petra Wahle
- Department of Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Penna E, Cunningham CL, Saylor S, Kreutz A, Tarantal AF, Martínez-Cerdeño V, Noctor SC. Greater Number of Microglia in Telencephalic Proliferative Zones of Human and Nonhuman Primate Compared with Other Vertebrate Species. Cereb Cortex Commun 2021; 2:tgab053. [PMID: 34647030 PMCID: PMC8501267 DOI: 10.1093/texcom/tgab053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
Microglial cells, the innate immune cells of the brain, are derived from yolk sac precursor cells, begin to colonize the telencephalon at the onset of cortical neurogenesis, and occupy specific layers including the telencephalic proliferative zones. Microglia are an intrinsic component of cortical germinal zones, establish extensive contacts with neural precursor cells (NPCs) and developing cortical vessels, and regulate the size of the NPC pool through mechanisms that include phagocytosis. Microglia exhibit notable differences in number and distribution in the prenatal neocortex between rat and old world nonhuman primate telencephalon, suggesting that microglia possess distinct properties across vertebrate species. To begin addressing this subject, we quantified the number of microglia and NPCs in proliferative zones of the fetal human, rhesus monkey, ferret, and rat, and the prehatch chick and turtle telencephalon. We show that the ratio of NPCs to microglia varies significantly across species. Few microglia populate the prehatch chick telencephalon, but the number of microglia approaches that of NPCs in fetal human and nonhuman primate telencephalon. These data demonstrate that microglia are in a position to perform important functions in a number of vertebrate species but more heavily colonize proliferative zones of fetal human and rhesus monkey telencephalon.
Collapse
Affiliation(s)
- Elisa Penna
- MIND Institute, School of Medicine, UC Davis, Sacramento, CA 95817, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Christopher L Cunningham
- Neuroscience Graduate Program, UC Davis, Davis, CA 95616, USA
- Current Affiliation: Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephanie Saylor
- Department of Psychiatry and Behavioral Sciences, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Anna Kreutz
- Neuroscience Graduate Program, UC Davis, Davis, CA 95616, USA
| | - Alice F Tarantal
- Department of Pediatrics, School of Medicine, University of California at Davis, Davis, CA 95616, USA
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California at Davis, Davis, CA 95616, USA
- California National Primate Research Center, University of California at Davis, Davis, CA 95616, USA
| | - Verónica Martínez-Cerdeño
- MIND Institute, School of Medicine, UC Davis, Sacramento, CA 95817, USA
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
- Shriners Hospital, Sacramento, CA 95817, USA
| | - Stephen C Noctor
- MIND Institute, School of Medicine, UC Davis, Sacramento, CA 95817, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, UC Davis, Sacramento, CA 95817, USA
- Neuroscience Graduate Program, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
11
|
Tarantal AF, Hartigan-O’Connor DJ, Penna E, Kreutz A, Martinez ML, Noctor SC. Fetal Rhesus Monkey First Trimester Zika Virus Infection Impacts Cortical Development in the Second and Third Trimesters. Cereb Cortex 2021; 31:2309-2321. [PMID: 33341889 PMCID: PMC8023859 DOI: 10.1093/cercor/bhaa336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 12/28/2022] Open
Abstract
Zika virus is a teratogen similar to other neurotropic viruses, notably cytomegalovirus and rubella. The goal of these studies was to address the direct impact of Zika virus on fetal development by inoculating early gestation fetal rhesus monkeys using an ultrasound-guided approach (intraperitoneal vs. intraventricular). Growth and development were monitored across gestation, maternal samples collected, and fetal tissues obtained in the second trimester or near term. Although normal growth and anatomical development were observed, significant morphologic changes were noted in the cerebral cortex at 3-weeks post-Zika virus inoculation including massive alterations in the distribution, density, number, and morphology of microglial cells in proliferative regions of the fetal cerebral cortex; an altered distribution of Tbr2+ neural precursor cells; increased diameter and volume of blood vessels in the cortical proliferative zones; and a thinner cortical plate. At 3-months postinoculation, alterations in morphology, distribution, and density of microglial cells were also observed with an increase in blood vessel volume; and a thinner cortical plate. Only transient maternal viremia was observed but sustained maternal immune activation was detected. Overall, these studies suggest persistent changes in cortical structure result from early gestation Zika virus exposure with durable effects on microglial cells.
Collapse
Affiliation(s)
- Alice F Tarantal
- Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, CA 95616, USA
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Dennis J Hartigan-O’Connor
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Elisa Penna
- Department of Psychiatry and Behavioral Science, School of Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Anna Kreutz
- Department of Psychiatry and Behavioral Science, School of Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Michele L Martinez
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Science, School of Medicine, University of California, Davis, Davis, CA 95817, USA
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA 95817, USA
| |
Collapse
|
12
|
Penna E, Mangum JM, Shepherd H, Martínez-Cerdeño V, Noctor SC. Development of the Neuro-Immune-Vascular Plexus in the Ventricular Zone of the Prenatal Rat Neocortex. Cereb Cortex 2021; 31:2139-2155. [PMID: 33279961 PMCID: PMC7945018 DOI: 10.1093/cercor/bhaa351] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
Microglial cells make extensive contacts with neural precursor cells (NPCs) and affiliate with vasculature in the developing cerebral cortex. But how vasculature contributes to cortical histogenesis is not yet fully understood. To better understand functional roles of developing vasculature in the embryonic rat cerebral cortex, we investigated the temporal and spatial relationships between vessels, microglia, and NPCs in the ventricular zone. Our results show that endothelial cells in developing cortical vessels extend numerous fine processes that directly contact mitotic NPCs and microglia; that these processes protrude from vessel walls and are distinct from tip cell processes; and that microglia, NPCs, and vessels are highly interconnected near the ventricle. These findings demonstrate the complex environment in which NPCs are embedded in cortical proliferative zones and suggest that developing vasculature represents a source of signaling with the potential to broadly influence cortical development. In summary, cortical histogenesis arises from the interplay among NPCs, microglia, and developing vasculature. Thus, factors that impinge on any single component have the potential to change the trajectory of cortical development and increase susceptibility for altered neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Elisa Penna
- MIND Institute, School of Medicine, UC Davis, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, UC Davis, Sacramento, CA, USA
| | - Jon M Mangum
- MIND Institute, School of Medicine, UC Davis, Sacramento, CA, USA
- Brigham Young University, Rexburg, Idaho, USA
| | - Hunter Shepherd
- MIND Institute, School of Medicine, UC Davis, Sacramento, CA, USA
- Brigham Young University, Rexburg, Idaho, USA
| | - Veronica Martínez-Cerdeño
- MIND Institute, School of Medicine, UC Davis, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, School of Medicine, UC Davis, Sacramento, CA, USA
- Shriners Hospital, Sacramento, CA, USA
| | - Stephen C Noctor
- MIND Institute, School of Medicine, UC Davis, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, UC Davis, Sacramento, CA, USA
| |
Collapse
|
13
|
Embryonic Microglia Interact with Hypothalamic Radial Glia during Development and Upregulate the TAM Receptors MERTK and AXL following an Insult. Cell Rep 2021; 34:108587. [PMID: 33406432 DOI: 10.1016/j.celrep.2020.108587] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/23/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Despite a growing appreciation for microglial influences on the developing brain, the responsiveness of microglia to insults during gestation remains less well characterized, especially in the embryo when microglia themselves are still maturing. Here, we asked if fetal microglia could coordinate an innate immune response to an exogenous insult. Using time-lapse imaging, we showed that hypothalamic microglia actively surveyed their environment by near-constant "touching" of radial glia projections. However, following an insult (i.e., IUE or AAV transduction), this seemingly passive touching became more intimate and long lasting, ultimately resulting in the retraction of radial glial projections and degeneration into small pieces. Mechanistically, the TAM receptors MERTK and AXL were upregulated in microglia following the insult, and Annexin V treatment inhibited radial glia breakage and engulfment by microglia. These data demonstrate a remarkable responsiveness of embryonic microglia to insults during gestation, a critical window for neurodevelopment.
Collapse
|
14
|
Chounchay S, Noctor SC, Chutabhakdikul N. Microglia enhances proliferation of neural progenitor cells in an in vitro model of hypoxic-ischemic injury. EXCLI JOURNAL 2020; 19:950-961. [PMID: 32788909 PMCID: PMC7415932 DOI: 10.17179/excli2020-2249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
Microglial cells are the primary immune cells in the central nervous system. In the mature brain, microglia perform functions that include eliminating pathogens and clearing dead/dying cells and cellular debris through phagocytosis. In the immature brain, microglia perform functions that include synapse development and the regulation of cell production through extensive contact with and phagocytosis of neural progenitor cells (NPCs). However, the functional role of microglia in the proliferation and differentiation of NPCs under hypoxic-ischemic (HI) injury is not clear. Here, we tested the hypothesis that microglia enhance NPCs proliferation following HI insult. Primary NPCs cultures were divided into four treatment groups: 1) normoxic NPCs (NN); 2) normoxic NPCs cocultured with microglia (NN+M); 3) hypoxic NPCs (HN); and 4) hypoxic NPCs cocultured with microglia (HN+M). Hypoxic-ischemic injury was induced by pretreatment of the cell cultures with 100 µM deferoxamine mesylate (DFO). NPCs treated with 100 µM DFO (HN groups) for 24 hours had significantly increased expression of hypoxia-inducible factor 1 alpha (HIF-1α), a marker of hypoxic cells. Cell number, protein expression, mitosis, and cell cycle phase were examined, and the data were compared between the four groups. We found that the number of cells expressing the NPCs marker Sox2 increased significantly in the HN+M group and that the number of PH3-positive cells increased in the HN+M group; flow cytometry analysis showed a significant increase in the percentage of cells in the G2/M phase in the HN+M group. In summary, these results support the concept that microglia enhance the survival of NPCs under HI injury by increasing NPCs proliferation, survival, and differentiation. These results further suggest that microglia may induce neuroprotective effects after hypoxic injury that can be explored to develop novel therapeutic strategies for the treatment of HI injury in the immature brain.
Collapse
Affiliation(s)
- Supanee Chounchay
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, 73170, Thailand.,Faculty of Physical Therapy, Huachiew Chalermprakiet University, Samut Prakan, 10540, Thailand
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, 95817, USA.,MIND Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Nuanchan Chutabhakdikul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, 73170, Thailand
| |
Collapse
|
15
|
Hattori Y, Naito Y, Tsugawa Y, Nonaka S, Wake H, Nagasawa T, Kawaguchi A, Miyata T. Transient microglial absence assists postmigratory cortical neurons in proper differentiation. Nat Commun 2020; 11:1631. [PMID: 32242005 PMCID: PMC7118101 DOI: 10.1038/s41467-020-15409-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
In the developing cortex, postmigratory neurons accumulate in the cortical plate (CP) to properly differentiate consolidating subtype identities. Microglia, despite their extensive surveying activity, temporarily disappear from the midembryonic CP. However, the mechanism and significance of this absence are unknown. Here, we show that microglia bidirectionally migrate via attraction by CXCL12 released from the meninges and subventricular zone and thereby exit the midembryonic CP. Upon nonphysiological excessive exposure to microglia in vivo or in vitro, young postmigratory and in vitro-grown CP neurons showed abnormal differentiation with disturbed expression of the subtype-associated transcription factors and genes implicated in functional neuronal maturation. Notably, this effect is primarily attributed to interleukin 6 and type I interferon secreted by microglia. These results suggest that “sanctuarization” from microglia in the midembryonic CP is required for neurons to appropriately fine-tune the expression of molecules needed for proper differentiation, thus securing the establishment of functional cortical circuit. Microglia temporarily disappear from the cortical plate in the midembryonic stage. This study demonstrated that microglial transient absence from the cortical plate is required for postmigratory neurons to appropriately fine-tune the expression of molecules needed for their proper differentiation.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan. .,Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Yu Naito
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yoji Tsugawa
- Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Japan.,Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Drug Discovery Research, iBody Inc., Nagoya, Japan
| | - Shigenori Nonaka
- Spatiotemporal Regulations Group, Exploratory Research Center on Life and Living Systems, Okazaki, Japan.,Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki, Japan
| | - Hiroaki Wake
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate School for Advanced Study, Okazaki, Japan.,Division of System Neuroscience, Graduate School of Medicine, Kobe University, Kobe, Japan.,Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| |
Collapse
|
16
|
The fundamental building blocks of cortical development are established in human exencephaly. Pediatr Res 2020; 87:868-871. [PMID: 31783397 DOI: 10.1038/s41390-019-0687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND The presence and status of progenitor/stem cells in excencephalic brain have not been previously examined. METHODS Brain sections of excencephalic 17-week fetus were stained for specific stem and mature cell markers. RESULTS The ventricles were open, the developing cerebral cortex was thin in the radial dimension, and the ventricular surface was undulated. There was a decreased ratio of subventricular/ventricular zone radial glia precursor cells (RGCs; PAX6+ and HOPX+ cells), a decreased number of intermediate progenitor cells (IPCs; TBR2+), a decreased number of neurons (MAP2+), and an increased number of astrocytes (S100b+), compared to the control. MAP2+ neurons, S100b+ astrocytes, and OLIG2+ oligodendrocytes were present within the subventricular zone. CONCLUSIONS This indicates that the underlying condition did not initially preclude radial glial cells from undergoing asymmetric divisions that produce IPCs but halted the developmental progression. RGC and IPC presence in the developing cerebral cortex demonstrates that the fundamental building blocks of cortical formation had been established and that a normal sequence of developmental steps had been initiated in this case of exencephaly. These data expand our understanding of exencephaly etiology and highlight the status of cortical progenitor cells that may be linked to the disorder.
Collapse
|
17
|
Abstract
The neocortex is the largest part of the mammalian brain and is the seat of our higher cognitive functions. This outstanding neural structure increased massively in size and complexity during evolution in a process recapitulated today during the development of extant mammals. Accordingly, defects in neocortical development commonly result in severe intellectual and social deficits. Thus, understanding the development of the neocortex benefits from understanding its evolution and disease and also informs about their underlying mechanisms. Here, I briefly summarize the most recent and outstanding advances in our understanding of neocortical development and focus particularly on dorsal progenitors and excitatory neurons. I place special emphasis on the specification of neural stem cells in distinct classes and their proliferation and production of neurons and then discuss recent findings on neuronal migration. Recent discoveries on the genetic evolution of neocortical development are presented with a particular focus on primates. Progress on all these fronts is being accelerated by high-throughput gene expression analyses and particularly single-cell transcriptomics. I end with novel insights into the involvement of microglia in embryonic brain development and how improvements in cultured cerebral organoids are gradually consolidating them as faithful models of neocortex development in humans.
Collapse
Affiliation(s)
- Victor Borrell
- Institute of Neuroscience, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Miguel Hernández, Ramon y Cajal s/n, 03550 San Juan de Alicante, Spain
| |
Collapse
|
18
|
Neckles VN, Morton MC, Holmberg JC, Sokolov AM, Nottoli T, Liu D, Feliciano DM. A transgenic inducible GFP extracellular-vesicle reporter (TIGER) mouse illuminates neonatal cortical astrocytes as a source of immunomodulatory extracellular vesicles. Sci Rep 2019; 9:3094. [PMID: 30816224 PMCID: PMC6395689 DOI: 10.1038/s41598-019-39679-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles (EVs) are cellular derived particles found throughout the body in nearly all tissues and bodily fluids. EVs contain biological molecules including small RNAs and protein. EVs are proposed to be transferred between cells, notably, cells of the immune system. Tools that allow for in vivo EV labeling while retaining the ability to resolve cellular sources and timing of release are required for a full understanding of EV functions. Fluorescent EV fusion proteins are useful for the study of EV biogenesis, release, and identification of EV cellular recipients. Among the most plentiful and frequently identified EV proteins is CD9, a tetraspanin protein. A transgenic mouse containing a CRE-recombinase inducible CAG promoter driven CD9 protein fused to Turbo-GFP derived from the copepod Pontellina plumata was generated as an EV reporter. The transgenic inducible GFP EV reporter (TIGER) mouse was electroporated with CAG-CRE plasmids or crossed with tamoxifen inducible CAG-CRE-ERT2 or nestin-CRE-ERT2 mice. CD9-GFP labeled cells included glutamine synthetase and glial fibrillary acidic protein positive astrocytes. Cortical astrocytes released ~136 nm EVs that contained CD9. Intraventricular injected EVs were taken up by CD11b/IBA1 positive microglia surrounding the lateral ventricles. Neonatal electroporation and shRNA mediated knockdown of Rab27a in dorsal subventricular zone NSCs and astrocytes increased the number of CD11b/IBA1 positive rounded microglia. Neonatal astrocyte EVs had a unique small RNA signature comprised of morphogenic miRNAs that induce microglia cytokine release. The results from this study demonstrate that inducible CD9-GFP mice will provide the EV community with a tool that allows for EV labeling in a cell-type specific manner while simultaneously allowing in vivo experimentation and provides evidence that EVs are required immunomodulators of the developing nervous system.
Collapse
Affiliation(s)
- Victoria N Neckles
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634-0314, USA
| | - Mary C Morton
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634-0314, USA
| | - Jennie C Holmberg
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634-0314, USA
| | - Aidan M Sokolov
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634-0314, USA
| | - Timothy Nottoli
- Yale Genome Editing Center, Department of Comparative Medicine, Yale School of Medicine, PO Box 208016, New Haven, CT, 06520-8016, USA
| | - Don Liu
- Charles River Laboratories, 261 Ballardvale Street, Wilmington, MA, 01887, USA
| | - David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634-0314, USA.
| |
Collapse
|
19
|
Noctor SC, Penna E, Shepherd H, Chelson C, Barger N, Martínez-Cerdeño V, Tarantal AF. Periventricular microglial cells interact with dividing precursor cells in the nonhuman primate and rodent prenatal cerebral cortex. J Comp Neurol 2019; 527:1598-1609. [PMID: 30552670 DOI: 10.1002/cne.24604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022]
Abstract
Cortical proliferative zones have been studied for over 100 years, yet recent data have revealed that microglial cells constitute a sizeable proportion of ventricular zone cells during late stages of cortical neurogenesis. Microglia begin colonizing the forebrain after neural tube closure and during later stages of neurogenesis populate regions of the developing cortex that include the proliferative zones. We previously showed that microglia regulate the production of cortical cells by phagocytosing neural precursor cells (NPCs), but how microglia interact with NPCs remains poorly understood. Here we report on a distinct subset of microglial cells, which we term periventricular microglia, that are located near the lateral ventricle in the prenatal neocortex. Periventricular microglia exhibit a set of similar characteristics in embryonic rat and fetal rhesus monkey cortex. In both species, these cells occupy ~60 μm of the ventricular zone in the tangential axis and make contact with the soma and processes of NPCs dividing at the ventricle for over 50 μm along the radial axis. Periventricular microglia exhibit notable differences across species, including distinct morphological features such as terminal bouton-like structures that contact mitotic NPCs in the fetal rhesus monkey but not in rat. These morphological distinctions suggest differential functions of periventricular microglia in rat and rhesus monkey, yet are consistent with the concept that microglia regulate NPC function in the developing cerebral cortex of mammalian species.
Collapse
Affiliation(s)
- Stephen C Noctor
- MIND Institute, School of Medicine, UC Davis, Sacramento, California.,Department of Psychiatry and Behavioral Sciences, School of Medicine, UC Davis, Sacramento, California
| | - Elisa Penna
- Department of Psychiatry and Behavioral Sciences, School of Medicine, UC Davis, Sacramento, California
| | - Hunter Shepherd
- MIND Institute, School of Medicine, UC Davis, Sacramento, California.,Brigham Young University - Idaho, Rexburg, Idaho
| | - Christian Chelson
- MIND Institute, School of Medicine, UC Davis, Sacramento, California.,Brigham Young University - Idaho, Rexburg, Idaho
| | - Nicole Barger
- Department of Psychiatry and Behavioral Sciences, School of Medicine, UC Davis, Sacramento, California
| | - Verónica Martínez-Cerdeño
- MIND Institute, School of Medicine, UC Davis, Sacramento, California.,Department of Pathology and Laboratory Medicine, School of Medicine, UC Davis, Davis, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospital, Sacramento, California
| | - Alice F Tarantal
- Department of Pediatrics, School of Medicine, UC Davis, Davis, California.,Department of Cell Biology and Human Anatomy, School of Medicine, UC Davis, Davis, California.,Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases, UC Davis, Davis, California.,California National Primate Research Center, UC Davis, Davis, California
| |
Collapse
|
20
|
Savage JC, Carrier M, Tremblay MÈ. Morphology of Microglia Across Contexts of Health and Disease. Methods Mol Biol 2019; 2034:13-26. [PMID: 31392674 DOI: 10.1007/978-1-4939-9658-2_2] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microglia, the brain's resident macrophages, are incredibly plastic and dynamic cells. In this chapter, we aim to describe and classify the many morphological changes they can display in normal development, aging, and disease. Although microglia in healthy adult brain tissue are often ramified with small somas, they can undergo massive and rapid morphological shifts in response to stimuli, becoming amoeboid or hypertrophic. Older animals occasionally contain dystrophic, senescent, and gitter cell-like microglia, and brain injury can be accompanied by an increase in rod cells. By a careful study of microglial morphology, coupled with ultrastructural insights gleaned using electron microscopy, insights can be provided into the functions performed by these various morphological phenotypes.
Collapse
Affiliation(s)
- Julie C Savage
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada. .,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
21
|
Embryonic Neocortical Microglia Express Toll-Like Receptor 9 and Respond to Plasmid DNA Injected into the Ventricle: Technical Considerations Regarding Microglial Distribution in Electroporated Brain Walls. eNeuro 2018; 5:eN-MNT-0312-18. [PMID: 30627652 PMCID: PMC6325556 DOI: 10.1523/eneuro.0312-18.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 12/25/2022] Open
Abstract
Microglia, the resident immune cells in the CNS, play multiple roles during development. In the embryonic cerebral wall, microglia modulate the functions of neural stem/progenitor cells through their distribution in regions undergoing cell proliferation and/or differentiation. Previous studies using CX3CR1-GFP transgenic mice demonstrated that microglia extensively survey these regions. To simultaneously visualize microglia and neural-lineage cells that interact with each other, we applied the in utero electroporation (IUE) technique, which has been widely used for gene-transfer in neurodevelopmental studies, to CX3CR1-GFP mice (males and females). However, we unexpectedly faced a technical problem: although microglia are normally distributed homogeneously throughout the mid-embryonic cortical wall with only limited luminal entry, the intraventricular presence of exogenously derived plasmid DNAs induced microglia to accumulate along the apical surface of the cortex and aggregate in the choroid plexus. This effect was independent of capillary needle puncture of the brain wall or application of electrical pulses. The microglial response occurred at plasmid DNA concentrations lower than those routinely used for IUE, and was mediated by activation of Toll-like receptor 9 (TLR9), an innate immune sensor that recognizes unmethylated cytosine-phosphate guanosine motifs abundant in microbial DNA. Administration of plasmid DNA together with oligonucleotide 2088, the antagonist of TLR9, partially restored the dispersed intramural localization of microglia and significantly decreased luminal accumulation of these cells. Thus, via TLR9, intraventricular plasmid DNA administration causes aberrant distribution of embryonic microglia, suggesting that the behavior of microglia in brain primordia subjected to IUE should be carefully interpreted.
Collapse
|
22
|
Hattori Y, Miyata T. Microglia extensively survey the developing cortex via the CXCL12/CXCR4 system to help neural progenitors to acquire differentiated properties. Genes Cells 2018; 23:915-922. [PMID: 30144249 DOI: 10.1111/gtc.12632] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 02/04/2023]
Abstract
Neocortical development proceeds through the formation of new zones in which neural-lineage cells are organized based on their differentiation status. Although microglia initially distribute homogeneously throughout the growing cerebral wall, they accumulate in the inner cytogenic zone, the ventricular zone (VZ) and the subventricular zone (SVZ) in the mid-embryonic stage. However, the roles of these cells remain to be elucidated. In this study, we found that microglia, despite being only a minor population of the cells that constitute the cerebral wall, promote the differentiation of neural progenitor cells by frequently moving throughout the cortex; their migration is mediated by the CXCL12/CXCR4 system. Pulse-chase experiments confirmed that microglia help Pax6+ stem-like cells to differentiate into Tbr2+ intermediate progenitors. Further, monitoring of microglia by live imaging showed that administration of AMD3100, an antagonist of CXCR4, dampened microglial movement and decreased microglial surveillance throughout the cortex. In particular, arrest of microglial motion led to a prominent decrease in the abundance of Tbr2+ cells in the SVZ. Based on our findings, we propose that extensive surveillance by microglia contributes to the efficient functioning of these cells, thereby regulating the differentiation of neural stem-like cells.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|