1
|
Wang C, Jiang ZY, Chai JY, Chen HS, Liu LX, Dang T, Meng XM. Mouse auditory cortex sub-fields receive neuronal projections from MGB subdivisions independently. Sci Rep 2024; 14:7078. [PMID: 38528192 DOI: 10.1038/s41598-024-57815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Mouse auditory cortex is composed of six sub-fields: primary auditory field (AI), secondary auditory field (AII), anterior auditory field (AAF), insular auditory field (IAF), ultrasonic field (UF) and dorsoposterior field (DP). Previous studies have examined thalamo-cortical connections in the mice auditory system and learned that AI, AAF, and IAF receive inputs from the ventral division of the medial geniculate body (MGB). However, the functional and thalamo-cortical connections between nonprimary auditory cortex (AII, UF, and DP) is unclear. In this study, we examined the locations of neurons projecting to these three cortical sub-fields in the MGB, and addressed the question whether these cortical sub-fields receive inputs from different subsets of MGB neurons or common. To examine the distributions of projecting neurons in the MGB, retrograde tracers were injected into the AII, UF, DP, after identifying these areas by the method of Optical Imaging. Our results indicated that neuron cells which in ventral part of dorsal MGB (MGd) and that of ventral MGB (MGv) projecting to UF and AII with less overlap. And DP only received neuron projecting from MGd. Interestingly, these three cortical areas received input from distinct part of MGd and MGv in an independent manner. Based on our foundings these three auditory cortical sub-fields in mice may independently process auditory information.
Collapse
Affiliation(s)
- Chi Wang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Zhen-Yu Jiang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Jian-Yuan Chai
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Hong-Suo Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Li-Xia Liu
- Department of Scientific Research, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Tong Dang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Xian-Mei Meng
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Baotou, China.
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Baotou Medical College, Baotou, China.
| |
Collapse
|
2
|
Calhoun G, Chen CT, Kanold PO. Bilateral widefield calcium imaging reveals circuit asymmetries and lateralized functional activation of the mouse auditory cortex. Proc Natl Acad Sci U S A 2023; 120:e2219340120. [PMID: 37459544 PMCID: PMC10372568 DOI: 10.1073/pnas.2219340120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/29/2023] [Indexed: 07/20/2023] Open
Abstract
Coordinated functioning of the two cortical hemispheres is crucial for perception. The human auditory cortex (ACx) shows functional lateralization with the left hemisphere specialized for processing speech, whereas the right analyzes spectral content. In mice, virgin females demonstrate a left-hemisphere response bias to pup vocalizations that strengthens with motherhood. However, how this lateralized function is established is unclear. We developed a widefield imaging microscope to simultaneously image both hemispheres of mice to bilaterally monitor functional responses. We found that global ACx topography is symmetrical and stereotyped. In both male and virgin female mice, the secondary auditory cortex (A2) in the left hemisphere shows larger responses than right to high-frequency tones and adult vocalizations; however, only virgin female mice show a left-hemisphere bias in A2 in response to adult pain calls. These results indicate hemispheric bias with both sex-independent and -dependent aspects. Analyzing cross-hemispheric functional correlations showed that asymmetries exist in the strength of correlations between DM-AAF and A2-AAF, while other ACx areas showed smaller differences. We found that A2 showed lower cross-hemisphere correlation than other cortical areas, consistent with the lateralized functional activation of A2. Cross-hemispheric activity correlations are lower in deaf, otoferlin knockout (OTOF-/-) mice, indicating that the development of functional cross-hemispheric connections is experience dependent. Together, our results reveal that ACx is topographically symmetric at the macroscopic scale but that higher-order A2 shows sex-dependent and independent lateralized responses due to asymmetric intercortical functional connections. Moreover, our results suggest that sensory experience is required to establish functional cross-hemispheric connectivity.
Collapse
Affiliation(s)
- Georgia Calhoun
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21205
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD21205
| | - Chih-Ting Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21205
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD21205
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21205
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
3
|
Kline AM, Aponte DA, Kato HK. Distinct nonlinear spectrotemporal integration in primary and secondary auditory cortices. Sci Rep 2023; 13:7658. [PMID: 37169827 PMCID: PMC10175507 DOI: 10.1038/s41598-023-34731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Animals sense sounds through hierarchical neural pathways that ultimately reach higher-order cortices to extract complex acoustic features, such as vocalizations. Elucidating how spectrotemporal integration varies along the hierarchy from primary to higher-order auditory cortices is a crucial step in understanding this elaborate sensory computation. Here we used two-photon calcium imaging and two-tone stimuli with various frequency-timing combinations to compare spectrotemporal integration between primary (A1) and secondary (A2) auditory cortices in mice. Individual neurons showed mixed supralinear and sublinear integration in a frequency-timing combination-specific manner, and we found unique integration patterns in these two areas. Temporally asymmetric spectrotemporal integration in A1 neurons suggested their roles in discriminating frequency-modulated sweep directions. In contrast, temporally symmetric and coincidence-preferring integration in A2 neurons made them ideal spectral integrators of concurrent multifrequency sounds. Moreover, the ensemble neural activity in A2 was sensitive to two-tone timings, and coincident two-tones evoked distinct ensemble activity patterns from the linear sum of component tones. Together, these results demonstrate distinct roles of A1 and A2 in encoding complex acoustic features, potentially suggesting parallel rather than sequential information extraction between these regions.
Collapse
Affiliation(s)
- Amber M Kline
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Destinee A Aponte
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hiroyuki K Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Narayanan DP, Tsukano H, Kline AM, Onodera K, Kato HK. Biological constraints on stereotaxic targeting of functionally-defined cortical areas. Cereb Cortex 2023; 33:3293-3310. [PMID: 35834935 PMCID: PMC10016058 DOI: 10.1093/cercor/bhac275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/14/2022] Open
Abstract
Understanding computational principles in hierarchically organized sensory systems requires functional parcellation of brain structures and their precise targeting for manipulations. Although brain atlases are widely used to infer area locations in the mouse neocortex, it has been unclear whether stereotaxic coordinates based on standardized brain morphology accurately represent functional domains in individual animals. Here, we used intrinsic signal imaging to evaluate the accuracy of area delineation in the atlas by mapping functionally-identified auditory cortices onto bregma-based stereotaxic coordinates. We found that auditory cortices in the brain atlas correlated poorly with the true complexity of functional area boundaries. Inter-animal variability in functional area locations predicted surprisingly high error rates in stereotaxic targeting with atlas coordinates. This variability was not simply attributed to brain sizes or suture irregularities but instead reflected differences in cortical geography across animals. Our data thus indicate that functional mapping in individual animals is essential for dissecting cortical area-specific roles with high precision.
Collapse
Affiliation(s)
| | - Hiroaki Tsukano
- Corresponding authors: Hiroyuki Kato, Neuroscience Center, University of North Carolina at Chapel Hill, 116 Manning Dr., Mary Ellen Jones Building, Rm. 6212B, Chapel Hill, NC, 27599-7250, United States. ; Hiroaki Tsukano, Neuroscience Center, University of North Carolina at Chapel Hill, 116 Manning Dr., Mary Ellen Jones Building, Rm. 6212B, Chapel Hill, NC, 27599-7250, United States.
| | | | | | - Hiroyuki K Kato
- Corresponding authors: Hiroyuki Kato, Neuroscience Center, University of North Carolina at Chapel Hill, 116 Manning Dr., Mary Ellen Jones Building, Rm. 6212B, Chapel Hill, NC, 27599-7250, United States. ; Hiroaki Tsukano, Neuroscience Center, University of North Carolina at Chapel Hill, 116 Manning Dr., Mary Ellen Jones Building, Rm. 6212B, Chapel Hill, NC, 27599-7250, United States.
| |
Collapse
|
5
|
Kang H, Kanold PO. Auditory memory of complex sounds in sparsely distributed, highly correlated neurons in the auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526903. [PMID: 36778416 PMCID: PMC9915716 DOI: 10.1101/2023.02.02.526903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Listening in complex sound environments requires rapid segregation of different sound sources e.g., speakers from each other, speakers from other sounds, or different instruments in an orchestra, and also adjust auditory processing on the prevailing sound conditions. Thus, fast encoding of inputs and identifying and adapting to reoccurring sounds are necessary for efficient and agile sound perception. This adaptation process represents an early phase of developing implicit learning of sound statistics and thus represents a form of auditory memory. The auditory cortex (ACtx) is known to play a key role in this encoding process but the underlying circuits and if hierarchical processing exists are not known. To identify ACtx regions and cells involved in this process, we simultaneously imaged population of neurons in different ACtx subfields using in vivo 2-photon imaging in awake mice. We used an experimental stimulus paradigm adapted from human studies that triggers rapid and robust implicit learning to passively present complex sounds and imaged A1 Layer 4 (L4), A1 L2/3, and A2 L2/3. In this paradigm, a frozen spectro-temporally complex 'Target' sound would be randomly re-occurring within a stream of random other complex sounds. We find distinct groups of cells that are specifically responsive to complex acoustic sequences across all subregions indicating that even the initial thalamocortical input layers (A1 L4) respond to complex sounds. Cells in all imaged regions showed decreased response amplitude for reoccurring Target sounds indicating that a memory signature is present even in the thalamocortical input layers. On the population level we find increased synchronized activity across cells to the Target sound and that this synchronized activity was more consistent across cells regardless of the duration of frozen token within Target sounds in A2, compared to A1. These findings suggest that ACtx and its input layers play a role in auditory memory for complex sounds and suggest a hierarchical structure of processes for auditory memory.
Collapse
Affiliation(s)
- HiJee Kang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20215
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20215
| |
Collapse
|
6
|
Kline AM, Aponte DA, Kato HK. Distinct nonlinear spectrotemporal integration in primary and secondary auditory cortices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525588. [PMID: 36747812 PMCID: PMC9900815 DOI: 10.1101/2023.01.25.525588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Animals sense sounds through hierarchical neural pathways that ultimately reach higher-order cortices to extract complex acoustic features, such as vocalizations. Elucidating how spectrotemporal integration varies along the hierarchy from primary to higher-order auditory cortices is a crucial step in understanding this elaborate sensory computation. Here we used two-photon calcium imaging and two-tone stimuli with various frequency-timing combinations to compare spectrotemporal integration between primary (A1) and secondary (A2) auditory cortices in mice. Individual neurons showed mixed supralinear and sublinear integration in a frequency-timing combination-specific manner, and we found unique integration patterns in these two areas. Temporally asymmetric spectrotemporal integration in A1 neurons enabled their discrimination of frequency-modulated sweep directions. In contrast, temporally symmetric and coincidence-preferring integration in A2 neurons made them ideal spectral integrators of concurrent multifrequency sounds. Moreover, the ensemble neural activity in A2 was sensitive to two-tone timings, and coincident two-tones evoked distinct ensemble activity patterns from the linear sum of component tones. Together, these results demonstrate distinct roles of A1 and A2 in encoding complex acoustic features, potentially suggesting parallel rather than sequential information extraction between these regions.
Collapse
Affiliation(s)
- Amber M. Kline
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,These authors contributed equally
| | - Destinee A. Aponte
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,These authors contributed equally
| | - Hiroyuki K. Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Correspondence: Hiroyuki Kato, Mary Ellen Jones Building, Rm. 6212B, 116 Manning Dr., Chapel Hill, NC 27599-7250, USA, , 919-843-8764
| |
Collapse
|
7
|
Abram SV, Hua JPY, Ford JM. Consider the pons: bridging the gap on sensory prediction abnormalities in schizophrenia. Trends Neurosci 2022; 45:798-808. [PMID: 36123224 PMCID: PMC9588719 DOI: 10.1016/j.tins.2022.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
A shared mechanism across species heralds the arrival of self-generated sensations, helping the brain to anticipate, and therefore distinguish, self-generated from externally generated sensations. In mammals, this sensory prediction mechanism is supported by communication within a cortico-ponto-cerebellar-thalamo-cortical loop. Schizophrenia is associated with impaired sensory prediction as well as abnormal structural and functional connections between nodes in this circuit. Despite the pons' principal role in relaying and processing sensory information passed from the cortex to cerebellum, few studies have examined pons connectivity in schizophrenia. Here, we first briefly describe how the pons contributes to sensory prediction. We then summarize schizophrenia-related abnormalities in the cortico-ponto-cerebellar-thalamo-cortical loop, emphasizing the dearth of research on the pons relative to thalamic and cerebellar connections. We conclude with recommendations for advancing our understanding of how the pons relates to sensory prediction failures in schizophrenia.
Collapse
Affiliation(s)
- Samantha V Abram
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Jessica P Y Hua
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA; Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, The University of California, San Francisco, CA, USA
| | - Judith M Ford
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA.
| |
Collapse
|
8
|
Nakanishi M, Nemoto M, Kawai HD. Cortical nicotinic enhancement of tone-evoked heightened activities and subcortical nicotinic enlargement of activated areas in mouse auditory cortex. Neurosci Res 2022; 181:55-65. [DOI: 10.1016/j.neures.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/19/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
|
9
|
Sparse Coding in Temporal Association Cortex Improves Complex Sound Discriminability. J Neurosci 2021; 41:7048-7064. [PMID: 34244361 DOI: 10.1523/jneurosci.3167-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/05/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
The mouse auditory cortex is comprised of several auditory fields spanning the dorsoventral axis of the temporal lobe. The ventral most auditory field is the temporal association cortex (TeA), which remains largely unstudied. Using Neuropixels probes, we simultaneously recorded from primary auditory cortex (AUDp), secondary auditory cortex (AUDv), and TeA, characterizing neuronal responses to pure tones and frequency modulated (FM) sweeps in awake head-restrained female mice. As compared with AUDp and AUDv, single-unit (SU) responses to pure tones in TeA were sparser, delayed, and prolonged. Responses to FMs were also sparser. Population analysis showed that the sparser responses in TeA render it less sensitive to pure tones, yet more sensitive to FMs. When characterizing responses to pure tones under anesthesia, the distinct signature of TeA was changed considerably as compared with that in awake mice, implying that responses in TeA are strongly modulated by non-feedforward connections. Together, these findings provide a basic electrophysiological description of TeA as an integral part of sound processing along the cortical hierarchy.SIGNIFICANCE STATEMENT This is the first comprehensive characterization of the auditory responses in the awake mouse auditory temporal association cortex (TeA). The study provides the foundations for further investigation of TeA and its involvement in auditory learning, plasticity, auditory driven behaviors etc. The study was conducted using state of the art data collection tools, allowing for simultaneous recording from multiple cortical regions and numerous neurons.
Collapse
|
10
|
Kline AM, Aponte DA, Tsukano H, Giovannucci A, Kato HK. Inhibitory gating of coincidence-dependent sensory binding in secondary auditory cortex. Nat Commun 2021; 12:4610. [PMID: 34326331 PMCID: PMC8322099 DOI: 10.1038/s41467-021-24758-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
Integration of multi-frequency sounds into a unified perceptual object is critical for recognizing syllables in speech. This "feature binding" relies on the precise synchrony of each component's onset timing, but little is known regarding its neural correlates. We find that multi-frequency sounds prevalent in vocalizations, specifically harmonics, preferentially activate the mouse secondary auditory cortex (A2), whose response deteriorates with shifts in component onset timings. The temporal window for harmonics integration in A2 was broadened by inactivation of somatostatin-expressing interneurons (SOM cells), but not parvalbumin-expressing interneurons (PV cells). Importantly, A2 has functionally connected subnetworks of neurons preferentially encoding harmonic over inharmonic sounds. These subnetworks are stable across days and exist prior to experimental harmonics exposure, suggesting their formation during development. Furthermore, A2 inactivation impairs performance in a discrimination task for coincident harmonics. Together, we propose A2 as a locus for multi-frequency integration, which may form the circuit basis for vocal processing.
Collapse
Affiliation(s)
- Amber M Kline
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Destinee A Aponte
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hiroaki Tsukano
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrea Giovannucci
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Hiroyuki K Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Romero S, Hight AE, Clayton KK, Resnik J, Williamson RS, Hancock KE, Polley DB. Cellular and Widefield Imaging of Sound Frequency Organization in Primary and Higher Order Fields of the Mouse Auditory Cortex. Cereb Cortex 2021; 30:1603-1622. [PMID: 31667491 DOI: 10.1093/cercor/bhz190] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mouse auditory cortex (ACtx) contains two core fields-primary auditory cortex (A1) and anterior auditory field (AAF)-arranged in a mirror reversal tonotopic gradient. The best frequency (BF) organization and naming scheme for additional higher order fields remain a matter of debate, as does the correspondence between smoothly varying global tonotopy and heterogeneity in local cellular tuning. Here, we performed chronic widefield and two-photon calcium imaging from the ACtx of awake Thy1-GCaMP6s reporter mice. Data-driven parcellation of widefield maps identified five fields, including a previously unidentified area at the ventral posterior extreme of the ACtx (VPAF) and a tonotopically organized suprarhinal auditory field (SRAF) that extended laterally as far as ectorhinal cortex. Widefield maps were stable over time, where single pixel BFs fluctuated by less than 0.5 octaves throughout a 1-month imaging period. After accounting for neuropil signal and frequency tuning strength, BF organization in neighboring layer 2/3 neurons was intermediate to the heterogeneous salt and pepper organization and the highly precise local organization that have each been described in prior studies. Multiscale imaging data suggest there is no ultrasonic field or secondary auditory cortex in the mouse. Instead, VPAF and a dorsal posterior (DP) field emerged as the strongest candidates for higher order auditory areas.
Collapse
Affiliation(s)
- Sandra Romero
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ariel E Hight
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Kameron K Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Jennifer Resnik
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Ross S Williamson
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
12
|
Srivastava HK, Bandyopadhyay S. Parallel Lemniscal and Non-Lemniscal Sources Control Auditory Responses in the Orbitofrontal Cortex (OFC). eNeuro 2020; 7:ENEURO.0121-20.2020. [PMID: 32753369 PMCID: PMC7545433 DOI: 10.1523/eneuro.0121-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 12/14/2022] Open
Abstract
The orbitofrontal cortex (OFC) controls flexible behavior through stimulus value updating based on stimulus outcome associations, allowing seamless navigation in dynamic sensory environments with changing contingencies. Sensory cue driven responses, primarily studied through behavior, exist in the OFC. However, OFC neurons' sensory response properties, particularly auditory, are unknown in the mouse, a genetically tractable animal. We show that mouse OFC single neurons have unique auditory response properties showing pure oddball detection and long timescales of adaptation resulting in stimulus-history dependence. Further, we show that OFC auditory responses are shaped by two parallel sources in the auditory thalamus, lemniscal and non-lemniscal. The latter underlies a large component of the observed oddball detection and additionally controls persistent activity in the OFC through the amygdala. The deviant selectivity can serve as a signal for important changes in the auditory environment. Such signals, if coupled with persistent activity, obtained by disinhibitory control from the non-lemniscal auditory thalamus or amygdala, will allow for associations with a delayed outcome related signal, like reward prediction error, and potentially forms the basis of updating stimulus outcome associations in the OFC. Thus, the baseline sensory responses allow the behavioral requirement-based response modification through relevant inputs from other structures related to reward, punishment, or memory. Thus, alterations in these responses in neurologic disorders can lead to behavioral deficits.
Collapse
Affiliation(s)
- Hemant K Srivastava
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sharba Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
13
|
Xie H, Wu D, Gao X, Wang N, Xiao Z. Auditory Fear Conditioning Alters Sensitivity of the Medial Prefrontal Cortex but this is not based on Frequency-dependent Integration. Neuroscience 2020; 442:237-252. [PMID: 32505746 DOI: 10.1016/j.neuroscience.2020.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 11/27/2022]
Abstract
Although many studies have shown that the prelimbic (PL) cortex of the mPFC is involved in the formation of conditioned freezing behavior, few have considered the acoustic response characteristics of PL cortex. Importantly, the change in auditory response characteristics of the PL cortex after conditional fear learning is largely unknown. Here we used in vivo cell-attached recordings targeting the mPFC during the waking state. We confirmed that the mPFC of adult C57 mice have neurons that respond to noise and tone in the waking state, especially in the PL cortex. Interestingly, the data also confirmed that these neurons responded well to the intensity of sound but did not have frequency topological distribution characteristics. Furthermore, we found that the number of c-fos positive neurons in the PL cortex increased significantly after auditory fear conditioning. The auditory-induced local field potential recordings and in vivo cell-attached recordings demonstrated that the PL cortex was more sensitive to the auditory conditioned stimulus after the acquisition of conditioned fear. The proportion of neurons responding to noise was significantly increased, and the signal to noise ratio of the spikes were also increased. These data reveal that PL neurons themselves responded to the main information (sound intensity), while the secondary information (frequency) response was almost negligible after auditory fear conditioning. This phenomenon may be the functional basis for handling this type of emotional memory, and this response characteristic is thought to be emotional sensitization but does not change the nature of this response.
Collapse
Affiliation(s)
- Haiting Xie
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Duobin Wu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiaoya Gao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Ningqian Wang
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
14
|
Reciprocal connectivity between secondary auditory cortical field and amygdala in mice. Sci Rep 2019; 9:19610. [PMID: 31873139 PMCID: PMC6928164 DOI: 10.1038/s41598-019-56092-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/06/2019] [Indexed: 01/01/2023] Open
Abstract
Recent studies have examined the feedback pathway from the amygdala to the auditory cortex in conjunction with the feedforward pathway from the auditory cortex to the amygdala. However, these connections have not been fully characterized. Here, to visualize the comprehensive connectivity between the auditory cortex and amygdala, we injected cholera toxin subunit b (CTB), a bidirectional tracer, into multiple subfields in the mouse auditory cortex after identifying the location of these subfields using flavoprotein fluorescence imaging. After injecting CTB into the secondary auditory field (A2), we found densely innervated CTB-positive axon terminals that were mainly located in the lateral amygdala (La), and slight innervations in other divisions such as the basal amygdala. Moreover, we found a large number of retrogradely-stained CTB-positive neurons in La after injecting CTB into A2. When injecting CTB into the primary auditory cortex (A1), a small number of CTB-positive neurons and axons were visualized in the amygdala. Finally, we found a near complete absence of connections between the other auditory cortical fields and the amygdala. These data suggest that reciprocal connections between A2 and La are main conduits for communication between the auditory cortex and amygdala in mice.
Collapse
|
15
|
Ogi M, Yamagishi T, Tsukano H, Nishio N, Hishida R, Takahashi K, Horii A, Shibuki K. Associative responses to visual shape stimuli in the mouse auditory cortex. PLoS One 2019; 14:e0223242. [PMID: 31581242 PMCID: PMC6776301 DOI: 10.1371/journal.pone.0223242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022] Open
Abstract
Humans can recall various aspects of a characteristic sound as a whole when they see a visual shape stimulus that has been intimately associated with the sound. In subjects with audio-visual associative memory, auditory responses that code the associated sound may be induced in the auditory cortex in response to presentation of the associated visual shape stimulus. To test this possibility, mice were pre-exposed to a combination of an artificial sound mimicking a cat’s “meow” and a visual shape stimulus of concentric circles or stars for more than two weeks, since such passive exposure is known to be sufficient for inducing audio-visual associative memory in mice. After the exposure, we anesthetized the mice, and presented them with the associated visual shape stimulus. We found that associative responses in the auditory cortex were induced in response to the visual stimulus. The associative auditory responses were observed when complex sounds such as “meow” were used for formation of audio-visual associative memory, but not when a pure tone was used. These results suggest that associative auditory responses in the auditory cortex represent the characteristics of the complex sound stimulus as a whole.
Collapse
Affiliation(s)
- Manabu Ogi
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Tatsuya Yamagishi
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Nana Nishio
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Kuniyuki Takahashi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Arata Horii
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
- * E-mail:
| |
Collapse
|
16
|
Mihai PG, Moerel M, de Martino F, Trampel R, Kiebel S, von Kriegstein K. Modulation of tonotopic ventral medial geniculate body is behaviorally relevant for speech recognition. eLife 2019; 8:e44837. [PMID: 31453811 PMCID: PMC6711666 DOI: 10.7554/elife.44837] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/19/2019] [Indexed: 01/24/2023] Open
Abstract
Sensory thalami are central sensory pathway stations for information processing. Their role for human cognition and perception, however, remains unclear. Recent evidence suggests an involvement of the sensory thalami in speech recognition. In particular, the auditory thalamus (medial geniculate body, MGB) response is modulated by speech recognition tasks and the amount of this task-dependent modulation is associated with speech recognition abilities. Here, we tested the specific hypothesis that this behaviorally relevant modulation is present in the MGB subsection that corresponds to the primary auditory pathway (i.e., the ventral MGB [vMGB]). We used ultra-high field 7T fMRI to identify the vMGB, and found a significant positive correlation between the amount of task-dependent modulation and the speech recognition performance across participants within left vMGB, but not within the other MGB subsections. These results imply that modulation of thalamic driving input to the auditory cortex facilitates speech recognition.
Collapse
Affiliation(s)
- Paul Glad Mihai
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Chair of Cognitive and Clinical Neuroscience, Faculty of PsychologyTechnische Universität DresdenDresdenGermany
| | - Michelle Moerel
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtNetherlands
- Maastricht Brain Imaging Center (MBIC)MaastrichtNetherlands
- Maastricht Centre for Systems Biology (MaCSBio)Maastricht UniversityMaastrichtNetherlands
| | - Federico de Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtNetherlands
- Maastricht Brain Imaging Center (MBIC)MaastrichtNetherlands
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisUnited States
| | - Robert Trampel
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Stefan Kiebel
- Chair of Cognitive and Clinical Neuroscience, Faculty of PsychologyTechnische Universität DresdenDresdenGermany
| | - Katharina von Kriegstein
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Chair of Cognitive and Clinical Neuroscience, Faculty of PsychologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
17
|
Takasu K, Tateno T. In vivo transcranial flavoprotein autofluorescence imaging of tonotopic map reorganization in the mouse auditory cortex with impaired auditory periphery. Hear Res 2019; 377:208-223. [PMID: 30981948 DOI: 10.1016/j.heares.2019.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/22/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022]
Abstract
Ototoxic-drug-induced hearing disturbances in the auditory periphery are associated with tonotopic map reorganization and neural activity modulation, as well as changes in neural correlates in the central auditory pathway, including the auditory cortex (AC). Previous studies have reported that peripheral auditory impairment induces AC plasticity that involves changes in the balance of excitatory vs. inhibitory synapses, within existing and newly forming patterns of connectivity. Although we know that such plastic changes modulate sound-evoked neural responses and the organization of tonotopic maps in the primary AC (A1), little is known about the effects of peripheral impairment on other frequency-organized AC subfields, such as the anterior auditory field (AAF) and the secondary auditory cortex (A2). Therefore, to examine ototoxic-drug-induced spatiotemporal effects on AC subfields, we measured sound-evoked neural activity in mice before and after the administration of kanamycin sulfate (1 mg/g body weight) and bumetanide (0.05 mg/g body weight), using in vivo transcranial flavoprotein autofluorescence imaging over a 4-week period. At first, ototoxic treatment gradually reduced responses driven by tone bursts with lower- (≤8 kHz) and middle- (e.g., 16 kHz) range frequencies in all AC subfields. Subsequently, response intensities in the A1 recovered to more than 78% of the pre-drug condition; however, in the AAF and A2, they remained significantly lower and were unchanged over 3 weeks. Furthermore, after drug administration, the best frequency (BF) areas of the lower (4 and 8 kHz) and higher (25 and 32 kHz) ranges in all subfields were reduced and shifted to those of a middle range (centered around 16 kHz) during the 3 weeks following drug administration. Our results also indicated that, compared with A1, BF distributions in the AAF and A2 were sharper around 16 kHz 3 weeks after drug administration. These results indicate that the ototoxic-damage-induced tonotopic map reorganizations that occurred in each of the three AC subfields were similar, but that there were subfield-dependent differences in the extent of response intensities and in the activated areas that were responsive to tone bursts with specific frequencies. Thus, by examining cortical reorganization induced by ototoxic drugs, we may contribute to the understanding of how this reorganization can be caused by peripheral damage.
Collapse
Affiliation(s)
- Kengo Takasu
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, Japan.
| | - Takashi Tateno
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, Japan.
| |
Collapse
|