1
|
da Cunha Menezes E, de Abreu FF, Davis JB, Maurer SV, Roshko VC, Richardson A, Dowell J, Cassella SN, Stevens HE. Effects of gestational hypothyroidism on mouse brain development: Gabaergic systems and oxidative stress. Dev Biol 2024; 515:112-120. [PMID: 39048051 PMCID: PMC11330572 DOI: 10.1016/j.ydbio.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Hormonal imbalance during pregnancy is a risk factor for neuropsychiatric impairment in the offspring. It has been suggested that hypothyroidism leads to dysfunction of cortical GABAergic interneurons and inhibitory system development that in turn underlies impairment of the central nervous system. Here we investigated how gestational hypothyroidism affected offspring GABAergic system development as well as redox regulation parameters, because of previous links identified between the two. Experimental Gestational Hypothyroidism (EGH) was induced in CD-1 mice with 0.02% methimazole (MMI) in drinking water from embryonic day 9 (E9) until tissue collection at embryonic day 14 (E14) or E18. We examined GABAergic cell distribution and inhibitory system development gene expression as well as redox relevant gene expression and direct measures across all embryos regardless of sex. Intrauterine restriction of maternal thyroid hormones significantly impacted both of these outcomes in brain, as well as altering redox regulation in the placenta. GAD67+ neuronal migration was reduced, accompanied by a disruption in gene expression influencing GABAergic cell migration and cortical inhibitory neural system development. EGH also altered embryonic brain gene expression of Gpx1, Nfe2l2, Cat levels in the dorsal E14 brains. Additionally, EGH resulted in elevated TBARS, Gpx1 and Nfe2l2 in the ventral E18 brains. Furthermore, EGH downregulated placental Gpx1 gene expression at E14 and increased protein oxidation at E18. These findings support the hypothesis that sufficient maternal thyroid hormone supply to the fetus influences central nervous system development, including processes of GABAergic system development and redox equilibrium.
Collapse
Affiliation(s)
- Edênia da Cunha Menezes
- Psychiatry Department, Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Psychiatry Department, Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Fabiula Francisca de Abreu
- Departamento de Fisiologia, Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Jada B Davis
- Psychiatry Department, Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Sara V Maurer
- Psychiatry Department, Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Venezia C Roshko
- Psychiatry Department, Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | | | - Jonathan Dowell
- Psychiatry Department, Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Sarah N Cassella
- Neuroscience Department, Loras College, Dubuque, IA, United States
| | - Hanna E Stevens
- Psychiatry Department, Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
2
|
Cattaneo A, Begni V, Zonca V, Riva MA. Early life adversities, psychopathologies and novel pharmacological strategies. Pharmacol Ther 2024; 260:108686. [PMID: 38969307 DOI: 10.1016/j.pharmthera.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Exposure to adversities during early life stages (early life adversities - ELA), ranging from pregnancy to adolescence, represents a major risk factor for the vulnerability to mental disorders. Hence, it is important to understand the molecular and functional underpinning of such relationship, in order to develop strategies aimed at reducing the psychopathologic burden associated with ELA, which may eventually lead to a significant improvement in clinical practice. In this review, we will initially recapitulate clinical and preclinical evidence supporting the link between ELA and psychopathology and we will primarily discuss the main biological mechanisms that have been described as potential mediators of the effects of ELA on the psychopathologic risk, including the role for genetic factors as well as sex differences. The knowledge emerging from these studies may be instrumental for the development of novel therapeutic strategies aimed not only at correcting the deficits that emerge from ELA exposure, but also in preventing the manifestation of a full-blown psychopathologic condition. With this respect, we will specifically focus on adolescence as a key time frame for disease onset as well as for early therapeutic intervention. We believe that incorporating clinical and preclinical research data in the context of early life adversities can be instrumental to elucidate the mechanisms contributing to the risk for psychopathology or that may promote resilience. This will ultimately allow the identification of 'at risk' individuals who may benefit from specific forms of interventions that, by interfering with disease trajectories, could result in more benign clinical outcomes.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Valentina Zonca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
3
|
Dong Y, Weng J, Zhu Y, Sun D, He W, Chen Q, Cheng J, Zhu Y, Jiang Y. Transcriptomic profiling of the developing brain revealed cell-type and brain-region specificity in a mouse model of prenatal stress. BMC Genomics 2023; 24:86. [PMID: 36829105 PMCID: PMC9951484 DOI: 10.1186/s12864-023-09186-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Prenatal stress (PS) is considered as a risk factor for many mental disorders. PS-induced transcriptomic alterations may contribute to the functional dysregulation during brain development. Here, we used RNA-seq to explore changes of gene expression in the mouse fetal brain after prenatal exposure to chronic unpredictable mild stress (CUMS). RESULTS We compared the stressed brains to the controls and identified groups of significantly differentially expressed genes (DEGs). GO analysis on up-regulated DEGs revealed enrichment for the cell cycle pathways, while down-regulated DEGs were mostly enriched in the neuronal pathways related to synaptic transmission. We further performed cell-type enrichment analysis using published scRNA-seq data from the fetal mouse brain and revealed cell-type-specificity for up- and down-regulated DEGs, respectively. The up-regulated DEGs were highly enriched in the radial glia, while down-regulated DEGs were enriched in different types of neurons. Cell deconvolution analysis further showed altered cell fractions in the stressed brain, indicating accumulation of neuroblast and impaired neurogenesis. Moreover, we also observed distinct brain-region expression pattern when mapping DEGs onto the developing Allen brain atlas. The up-regulated DEGs were primarily enriched in the dorsal forebrain regions including the cortical plate and hippocampal formation. Surprisingly, down-regulated DEGs were found excluded from the cortical region, but highly expressed on various regions in the ventral forebrain, midbrain and hindbrain. CONCLUSION Taken together, we provided an unbiased data source for transcriptomic alterations of the whole fetal brain after chronic PS, and reported differential cell-type and brain-region vulnerability of the developing brain in response to environmental insults during the pregnancy.
Collapse
Affiliation(s)
- Yuhao Dong
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Jie Weng
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Yueyan Zhu
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Daijing Sun
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Wei He
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Qi Chen
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Jin Cheng
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Ying Zhu
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Yan Jiang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
4
|
Lopes NA, Ambeskovic M, King SE, Faraji J, Soltanpour N, Falkenberg EA, Scheidl T, Patel M, Fang X, Metz GAS, Olson DM. Environmental Enrichment Promotes Transgenerational Programming of Uterine Inflammatory and Stress Markers Comparable to Gestational Chronic Variable Stress. Int J Mol Sci 2023; 24:ijms24043734. [PMID: 36835144 PMCID: PMC9962069 DOI: 10.3390/ijms24043734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Prenatal maternal stress is linked to adverse pregnancy and infant outcomes, including shortened gestation lengths, low birth weights, cardio-metabolic dysfunction, and cognitive and behavioural problems. Stress disrupts the homeostatic milieu of pregnancy by altering inflammatory and neuroendocrine mediators. These stress-induced phenotypic changes can be passed on to the offspring epigenetically. We investigated the effects of gestational chronic variable stress (CVS) in rats using restraint and social isolation stress in the parental F0 generation and its transgenerational transmission across three generations of female offspring (F1-F3). A subset of F1 rats was housed in an enriched environment (EE) to mitigate the adverse effects of CVS. We found that CVS is transmitted across generations and induces inflammatory changes in the uterus. CVS did not alter any gestational lengths or birth weights. However, inflammatory and endocrine markers changed in the uterine tissues of stressed mothers and their offspring, suggesting that stress is transgenerationally transmitted. The F2 offspring reared in EE had increased birth weights, but their uterine gene expression patterns remained comparable to those of stressed animals. Thus, ancestral CVS induced changes transgenerationally in fetal programming of uterine stress markers over three generations of offspring, and EE housing did not mitigate these effects.
Collapse
Affiliation(s)
- Nayara A. Lopes
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mirela Ambeskovic
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Stephanie E. King
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Jamshid Faraji
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Nasrin Soltanpour
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Erin A. Falkenberg
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Taylor Scheidl
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mansi Patel
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Xin Fang
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Gerlinde A. S. Metz
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Correspondence: (G.A.S.M.); (D.M.O.); Tel.: +1-403-394-3992 (G.A.S.M.); +1-780-492-8559 (D.M.O.)
| | - David M. Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: (G.A.S.M.); (D.M.O.); Tel.: +1-403-394-3992 (G.A.S.M.); +1-780-492-8559 (D.M.O.)
| |
Collapse
|
5
|
Musillo C, Berry A, Cirulli F. Prenatal psychological or metabolic stress increases the risk for psychiatric disorders: the "funnel effect" model. Neurosci Biobehav Rev 2022; 136:104624. [PMID: 35304226 DOI: 10.1016/j.neubiorev.2022.104624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
Abstract
Adverse stressful experiences in utero can redirect fetal brain development, ultimately leading to increased risk for psychiatric disorders. Obesity during pregnancy can have similar effects as maternal stress, affecting mental health in the offspring. In order to explain how similar outcomes may originate from different prenatal conditions, we propose a "funnel effect" model whereby maternal psychological or metabolic stress triggers the same evolutionarily conserved response pathways, increasing vulnerability for psychopathology. In this context, the placenta, which is the main mother-fetus interface, appears to facilitate such convergence, re-directing "stress" signals to the fetus. Characterizing converging pathways activated by different adverse environmental conditions is fundamental to assess the emergence of risk signatures of major psychiatric disorders, which might enable preventive measures in risk populations, and open up new diagnostics, and potentially therapeutic approaches for disease prevention and health promotion already during pregnancy.
Collapse
Affiliation(s)
- Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; PhD Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
6
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
7
|
Davis JLB, O’Connor M, Erlbacher H, Schlichte SL, Stevens HE. The Impact of Maternal Antioxidants on Prenatal Stress Effects on Offspring Neurobiology and Behavior. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:87-104. [PMID: 35370489 PMCID: PMC8961714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prenatal stress is a neuropsychiatric risk factor, and effects may be mediated by prenatal oxidative stress. Cell types in the brain sensitive to oxidative stress-cortical microglia and cortical and hippocampal interneurons-may be altered by oxidative stress generated during prenatal stress and may be neurobiological substrates for altered behavior. Our objective was to determine the critical nature of oxidative stress in prenatal stress effects by manipulating prenatal antioxidants. CD1 mouse dams underwent restraint embryonic day 12 to 18 three times daily or no stress and received intraperitoneal injections before each stress period of vehicle, N-acetylcysteine (200 mg/kg daily), or astaxanthin (30 mg/kg before first daily stress, 10 mg/kg before second/third stresses). Adult male and female offspring behavior, microglia, and interneurons were assessed. Results supported the hypothesis that prenatal stress-induced oxidative stress affects microglia; microglia ramification increased after prenatal stress, and both antioxidants prevented these effects. In addition, N-acetylcysteine or astaxanthin was effective in preventing distinct male and female interneuron changes; decreased female medial frontal cortical parvalbumin interneurons was prevented by either antioxidant; increased male medial frontal cortical parvalbumin interneurons was prevented by N-acetylcysteine and decreased male hippocampal GAD67GFP+ cells prevented by astaxanthin. Prenatal stress-induced increased anxiety-like behavior and decreased sociability were not prevented by prenatal antioxidants. Sensorimotor gating deficits in males was partially prevented by prenatal astaxanthin. This study demonstrates the importance of oxidative stress for persistent impacts on offspring cortical microglia and interneurons, but did not link these changes with anxiety-like, social, and sensorimotor gating behaviors.
Collapse
Affiliation(s)
- Jada L-B Davis
- Department of Psychiatry, University of Iowa, Iowa
City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience,
University of Iowa, Iowa City, IA, USA
| | - Mara O’Connor
- Department of Psychiatry, University of Iowa, Iowa
City, IA, USA
| | - Hannah Erlbacher
- Department of Psychiatry, University of Iowa, Iowa
City, IA, USA
| | | | - Hanna E. Stevens
- Department of Psychiatry, University of Iowa, Iowa
City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience,
University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Li L, Xia Y, Yang Y, Zhang W, Yan H, Yin P, Li K, Chen Y, Lu L, Tong G. CDC26 is a key factor in human oocyte aging. Hum Reprod 2021; 36:3095-3107. [PMID: 34590680 DOI: 10.1093/humrep/deab217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 08/01/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Is CDC26 a key factor in human oocyte aging? SUMMARY ANSWER The lack of CDC26 disrupts the oocytes maturation process, leading to oocyte aging, but these defects could be partially rescued by overexpression of the CDC26 protein. WHAT IS KNOWN ALREADY Age-related oocyte aging is the main cause of female fertility decline. In mammalian oocytes, aberrant meiosis can cause chromosomal abnormalities that might lead to infertility and developmental disorders. CDC26 participates in the meiosis process. STUDY DESIGN, SIZE, DURATION Differential gene expression in young and old women oocytes were screened by single-cell RNA-seq technology, and the functions of differentially genes were verified on mouse oocytes. Finally, transfection technology was used to evaluate the effect of a differentially expressed gene in rescuing human oocyte from aging. PARTICIPANTS/MATERIALS, SETTING, METHODS Discarded human oocytes were collected for single-cell RNA-seq, q-PCR and immunocytochemical analyses to screen for and identify differential gene expression. Female KM mice oocytes were collected for IVM of oocytes, q-PCR and immunocytochemical analyses to delineate the relationships between oocyte aging and differential gene expression. Additionally, recombinant lentiviral vectors encoding CDC26 were transfected into the germinal vesicle oocytes of older women, to investigate the effects of the CDC26 gene expression on oocyte development. MAIN RESULTS AND THE ROLE OF CHANCE Many genes were found to be differentially expressed in the oocytes of young versus old patients via RNA-seq technology. CDC26 mRNA and protein levels in aged oocytes were severely decreased, when compared with the levels observed in young oocytes. Moreover, aged oocytes lacking CDC26 were more prone to aneuploidy. These defects in aged oocytes could be partially rescued by overexpression of the CDC26 protein. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Our study delineated key steps in the oocyte aging process by identifying the key role of CDC26 in the progression of oocyte maturation. Future studies are required to address whether other signaling pathways play a role in regulating oocyte maturation via CDC26 and which genes are the direct molecular targets of CDC26. WIDER IMPLICATIONS OF THE FINDINGS Our results using in vitro systems for both mouse and human oocyte maturation provide a proof of principle that CDC26 may represent a novel therapeutic approach against maternal aging-related spindle and chromosomal abnormalities. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from the National Natural Science Foundation of China (81571442 and 81170571), the outstanding Talent Project of Shanghai Municipal Commission of Health (XBR2011067) and Clinical Research and Cultivation Project in Shanghai Municipal Hospitals (SHDC12019X32). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Li Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Xia
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Yang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wuwen Zhang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Yan
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Yin
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Chen
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoqing Tong
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Schrier MS, Zhang Y, Trivedi MS, Deth RC. Decreased cortical Nrf2 gene expression in autism and its relationship to thiol and cobalamin status. Biochimie 2021; 192:1-12. [PMID: 34517051 DOI: 10.1016/j.biochi.2021.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) promotes expression of a large number of antioxidant genes and multiple studies have described oxidative stress and impaired methylation in autism spectrum disorder (ASD), including decreased brain levels of methylcobalamin(III) (MeCbl). Here we report decreased expression of the Nrf2 gene (NFE2L2) in frontal cortex of ASD subjects, as well as differences in other genes involved in redox homeostasis. In pooled control and ASD correlation analyses, hydroxocobalamin(III) (OHCbl) was inversely correlated with NFE2L2 expression, while MeCbl and total cobalamin abundance were positively correlated with NFE2L2 expression. Levels of methionine, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and cystathionine were positively correlated with NFE2L2 expression, while homocysteine (HCY) was negatively correlated. The relationship between Nrf2 activity and cobalamin was further supported by a bioinformatics-based comparison of cobalamin levels in different tissues with expression of a panel of 40 Nrf2-regulated genes, which yielded a strong correlation. Lastly, Nrf2-regulated gene expression was also correlated with expression of intracellular cobalamin trafficking and processing genes, such as MMADHC and MTRR. These findings highlight a previously unrecognized relationship between the antioxidant-promoting role of Nrf2 and cobalamin status, which is dysfunctional in ASD.
Collapse
Affiliation(s)
- Matthew Scott Schrier
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yiting Zhang
- Biologics, Bristol Myers Squibb, Devens, MA, USA
| | - Malav Suchin Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Richard Carlton Deth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
10
|
Schroeder R, Sridharan P, Nguyen L, Loren A, Williams NS, Kettimuthu KP, Cintrón-Pérez CJ, Vázquez-Rosa E, Pieper AA, Stevens HE. Maternal P7C3-A20 Treatment Protects Offspring from Neuropsychiatric Sequelae of Prenatal Stress. Antioxid Redox Signal 2021; 35:511-530. [PMID: 33501899 PMCID: PMC8388250 DOI: 10.1089/ars.2020.8227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Impaired embryonic cortical interneuron development from prenatal stress is linked to adult neuropsychiatric impairment, stemming in part from excessive generation of reactive oxygen species in the developing embryo. Unfortunately, there are no preventive medicines that mitigate the risk of prenatal stress to the embryo, as the underlying pathophysiologic mechanisms are poorly understood. Our goal was to interrogate the molecular basis of prenatal stress-mediated damage to the embryonic brain to identify a neuroprotective strategy. Results: Chronic prenatal stress in mice dysregulated nicotinamide adenine dinucleotide (NAD+) synthesis enzymes and cortical interneuron development in the embryonic brain, leading to axonal degeneration in the hippocampus, cognitive deficits, and depression-like behavior in adulthood. Offspring were protected from these deleterious effects by concurrent maternal administration of the NAD+-modulating agent P7C3-A20, which crossed the placenta to access the embryonic brain. Prenatal stress also produced axonal degeneration in the adult corpus callosum, which was not prevented by maternal P7C3-A20. Innovation: Prenatal stress dysregulates gene expression of NAD+-synthesis machinery and GABAergic interneuron development in the embryonic brain, which is associated with adult cognitive impairment and depression-like behavior. We establish a maternally directed treatment that protects offspring from these effects of prenatal stress. Conclusion: NAD+-synthesis machinery and GABAergic interneuron development are critical to proper embryonic brain development underlying postnatal neuropsychiatric functioning, and these systems are highly susceptible to prenatal stress. Pharmacologic stabilization of NAD+ in the stressed embryonic brain may provide a neuroprotective strategy that preserves normal embryonic development and protects offspring from neuropsychiatric impairment. Antioxid. Redox Signal. 35, 511-530.
Collapse
Affiliation(s)
- Rachel Schroeder
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| | - Preethy Sridharan
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA.,Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lynn Nguyen
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Alexandra Loren
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kavitha P Kettimuthu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Coral J Cintrón-Pérez
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA.,Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA.,Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
11
|
Luft C, Haute GV, Wearick-Silva LE, Antunes KH, da Costa MS, de Oliveira JR, Donadio MVF. Prenatal stress and KCl-induced depolarization modulate cell death, hypothalamic-pituitary-adrenal axis genes, oxidative and inflammatory response in primary cortical neurons. Neurochem Int 2021; 147:105053. [PMID: 33961947 DOI: 10.1016/j.neuint.2021.105053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022]
Abstract
Maternal stress has been described as an important component in the offspring's cerebral development, altering the susceptibility to diseases in later life. Moreover, the postnatal period is essential for the development and integration of several peripheral and central systems related to the control of homeostasis. Thus, this study aimed to evaluate the effects of prenatal stress on the activation of cortical neurons, by performing experiments both under basal conditions and after KCl-induced depolarization. Female mice were divided in two groups: control and prenatal restraint stress. Cortical neurons from the offspring were obtained at gestational day 18. The effects of prenatal stress and KCl stimulations on cellular mortality, autophagy, gene expression, oxidative stress, and inflammation were evaluated. We found that neurons from PNS mice have decreased necrosis and autophagy after depolarization. Moreover, prenatal stress modulated the HPA axis, as observed by the increased GR and decreased 5HTr1 mRNA expression. The BDNF is an important factor for neuronal function and results demonstrated that KCl-induced depolarization increased the gene expression of BDNF I, BDNF IV, and TRκB. Furthermore, prenatal stress and KCl treatment induced significant alterations in oxidative and inflammatory markers. In conclusion, prenatal stress and stimulation with KCl may influence several markers related to neurodevelopment in cortical neurons from neonate mice, supporting the well-known long-term effects of maternal stress.
Collapse
Affiliation(s)
- Carolina Luft
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gabriela Viegas Haute
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luís Eduardo Wearick-Silva
- Exercise, Behavior and Cognition Research Group, Psychology Department, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Krist Helen Antunes
- Laboratory of Clinical and Experimental Immunology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mariana Severo da Costa
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| |
Collapse
|
12
|
Elser BA, Kayali K, Dhakal R, O'Hare B, Wang K, Lehmler HJ, Stevens HE. Combined Maternal Exposure to Cypermethrin and Stress Affect Embryonic Brain and Placental Outcomes in Mice. Toxicol Sci 2021; 175:182-196. [PMID: 32191333 DOI: 10.1093/toxsci/kfaa040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prenatal exposure to cypermethrin is a risk factor for adverse neurodevelopmental outcomes in children. In addition, maternal psychological stress during pregnancy has significant effects on fetal neurodevelopment and may influence end-stage toxicity to offspring by altering maternal xenobiotic metabolism. As such, this study examined effects of maternal exposure to alpha-cypermethrin and stress, alone and in combination, on offspring development, with a focus on fetal neurotoxicity. CD1 mouse dams were administered 10 mg/kg alpha-cypermethrin or corn oil vehicle via oral gavage from embryonic day 11 (E11) to E14. In addition, dams from each treatment were subjected to a standard model of restraint stress from E12 to E14. Cypermethrin treatment impaired fetal growth, reduced fetal forebrain volume, and increased ventral forebrain proliferative zone volume, the latter effects driven by combined exposure with stress. Cypermethrin also impaired migration of GABAergic progenitors, with different transcriptional changes alone and in combination with stress. Stress and cypermethrin also interacted in effects on embryonic microglia morphology. In addition, levels of cypermethrin were elevated in the serum of stressed dams, which was accompanied by interacting effects of cypermethrin and stress on hepatic expression of cytochrome P450 enzymes. Levels of cypermethrin in amniotic fluid were below the limit of quantification, suggesting minimal transfer to fetal circulation. Despite this, cypermethrin increased placental malondialdehyde levels and increased placental expression of genes responsive to oxidative stress, effects significantly modified by stress exposure. These findings suggest a role for interaction between maternal exposures to cypermethrin and stress on offspring neurodevelopment, involving indirect mechanisms in the placenta and maternal liver.
Collapse
Affiliation(s)
- Benjamin A Elser
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College.,Department of Psychiatry, Carver College of Medicine
| | - Khaled Kayali
- Department of Psychiatry, Carver College of Medicine
| | - Ram Dhakal
- Department of Occupational and Environmental Health
| | - Bailey O'Hare
- Department of Psychiatry, Carver College of Medicine
| | - Kai Wang
- Department of Biostatistics, College of Public Health, The University of Iowa, Iowa City, Iowa 52242
| | - Hans-Joachim Lehmler
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College.,Department of Occupational and Environmental Health
| | - Hanna E Stevens
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College.,Department of Psychiatry, Carver College of Medicine
| |
Collapse
|
13
|
Vasistha NA, Khodosevich K. The impact of (ab)normal maternal environment on cortical development. Prog Neurobiol 2021; 202:102054. [PMID: 33905709 DOI: 10.1016/j.pneurobio.2021.102054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
The cortex in the mammalian brain is the most complex brain region that integrates sensory information and coordinates motor and cognitive processes. To perform such functions, the cortex contains multiple subtypes of neurons that are generated during embryogenesis. Newly born neurons migrate to their proper location in the cortex, grow axons and dendrites, and form neuronal circuits. These developmental processes in the fetal brain are regulated to a large extent by a great variety of factors derived from the mother - starting from simple nutrients as building blocks and ending with hormones. Thus, when the normal maternal environment is disturbed due to maternal infection, stress, malnutrition, or toxic substances, it might have a profound impact on cortical development and the offspring can develop a variety of neurodevelopmental disorders. Here we first describe the major developmental processes which generate neuronal diversity in the cortex. We then review our knowledge of how most common maternal insults affect cortical development, perturb neuronal circuits, and lead to neurodevelopmental disorders. We further present a concept of selective vulnerability of cortical neuronal subtypes to maternal-derived insults, where the vulnerability of cortical neurons and their progenitors to an insult depends on the time (developmental period), place (location in the developing brain), and type (unique features of a cell type and an insult). Finally, we provide evidence for the existence of selective vulnerability during cortical development and identify the most vulnerable neuronal types, stages of differentiation, and developmental time for major maternal-derived insults.
Collapse
Affiliation(s)
- Navneet A Vasistha
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
14
|
Fitzgerald E, Parent C, Kee MZL, Meaney MJ. Maternal Distress and Offspring Neurodevelopment: Challenges and Opportunities for Pre-clinical Research Models. Front Hum Neurosci 2021; 15:635304. [PMID: 33643013 PMCID: PMC7907173 DOI: 10.3389/fnhum.2021.635304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pre-natal exposure to acute maternal trauma or chronic maternal distress can confer increased risk for psychiatric disorders in later life. Acute maternal trauma is the result of unforeseen environmental or personal catastrophes, while chronic maternal distress is associated with anxiety or depression. Animal studies investigating the effects of pre-natal stress have largely used brief stress exposures during pregnancy to identify critical periods of fetal vulnerability, a paradigm which holds face validity to acute maternal trauma in humans. While understanding these effects is undoubtably important, the literature suggests maternal stress in humans is typically chronic and persistent from pre-conception through gestation. In this review, we provide evidence to this effect and suggest a realignment of current animal models to recapitulate this chronicity. We also consider candidate mediators, moderators and mechanisms of maternal distress, and suggest a wider breadth of research is needed, along with the incorporation of advanced -omics technologies, in order to understand the neurodevelopmental etiology of psychiatric risk.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Carine Parent
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Michelle Z. L. Kee
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Michael J. Meaney
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Abstract
![]()
The
methionine–iodine reaction was reinvestigated spectrophotometrically
in detail monitoring the absorbance belonging to the isosbestic point
of iodine at 468 nm, at T = 25.0 ± 0.1 °C,
and at 0.5 M ionic strength in buffered acidic medium. The stoichiometric
ratio of the reactants was determined to be 1:1 producing methionine
sulfoxide as the lone sulfur-containing product. The direct reaction
between methionine and iodine was found to be relatively rapid in
the absence of initially added iodide ion, and it can conveniently
be followed by the stopped-flow technique. Reduction of iodine eventually
leads to the formation of iodide ion that inhibits the reaction making
the whole system autoinhibitory with respect to the halide ion. We
have also shown that this inhibitory effect appears quite prominently,
and addition of iodide ion in the millimole concentration range may
result in a rate law where the formal kinetic order of this species
becomes −2. In contrast to this, hydrogen ion has just a mildly
inhibitory effect giving rise to the fact that iodine is the kinetically
active species in the system but not hypoiodous acid. The surprisingly
complex kinetics of this simple reaction may readily be interpreted
via the initiating rapidly established iodonium-transfer process between
the reactants followed by the subsequent hydrolytic decomposition
of the short-lived iodinated methionine. A seven-step kinetic model
to be able to describe the most important characteristics of the measured
kinetic curves is established and discussed in detail.
Collapse
Affiliation(s)
- Li Xu
- Department of Chemical Engineering and Technology, School of Chemistry, Biology and Material of Science, East China University of Technology, Nanchang 330013, Jiangxi Province People's Republic of China
| | - György Csekő
- Department of Inorganic Chemistry, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pécs, Hungary, H-7624
| | - Attila K Horváth
- Department of Inorganic Chemistry, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pécs, Hungary, H-7624
| |
Collapse
|
16
|
Gumusoglu SB, Chilukuri ASS, Santillan DA, Santillan MK, Stevens HE. Neurodevelopmental Outcomes of Prenatal Preeclampsia Exposure. Trends Neurosci 2020; 43:253-268. [PMID: 32209456 DOI: 10.1016/j.tins.2020.02.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 01/06/2023]
Abstract
Preeclampsia is a dangerous hypertensive disorder of pregnancy with known links to negative child health outcomes. Here, we review epidemiological and basic neuroscience work from the past several decades linking prenatal preeclampsia to altered neurodevelopment. This work demonstrates increased rates of neuropsychiatric disorders [e.g., increased autism spectrum disorder, attention deficit hyperactivity disorder (ADHD)] in children of preeclamptic pregnancies, as well as increased rates of cognitive impairments [e.g., decreased intelligence quotient (IQ), academic performance] and neurological disease (e.g., stroke and epilepsy). We also review findings from multiple animal models of preeclampsia. Manipulation of key clinical preeclampsia processes in these models (e.g., placental hypoxia, immune dysfunction, angiogenesis, oxidative stress) causes various disruptions in offspring, including ones in white matter/glia, glucocorticoid receptors, neuroimmune outcomes, cerebrovascular structure, and cognition/behavior. This animal work implicates potentially high-yield targets that may be leveraged in the future for clinical application.
Collapse
Affiliation(s)
- Serena B Gumusoglu
- Department of Psychiatry, University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| | - Akanksha S S Chilukuri
- Department of Psychiatry, University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| | - Donna A Santillan
- University of Iowa Carver College of Medicine, Department of Obstetrics and Gynecology, Iowa City, IA, USA
| | - Mark K Santillan
- University of Iowa Carver College of Medicine, Department of Obstetrics and Gynecology, Iowa City, IA, USA
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA.
| |
Collapse
|
17
|
Dowell J, Elser BA, Schroeder RE, Stevens HE. Cellular stress mechanisms of prenatal maternal stress: Heat shock factors and oxidative stress. Neurosci Lett 2019; 709:134368. [PMID: 31299286 DOI: 10.1016/j.neulet.2019.134368] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022]
Abstract
Development of the brain prenatally is affected by maternal experience and exposure. Prenatal maternal psychological stress changes brain development and results in increased risk for neuropsychiatric disorders. In this review, multiple levels of prenatal stress mechanisms (offspring brain, placenta, and maternal physiology) are discussed and their intersection with cellular stress mechanisms explicated. Heat shock factors and oxidative stress are closely related to each other and converge with the inflammation, hormones, and cellular development that have been more deeply explored as the basis of prenatal stress risk. Increasing evidence implicates cellular stress mechanisms in neuropsychiatric disorders associated with prenatal stress including affective disorders, schizophrenia, and child-onset psychiatric disorders. Heat shock factors and oxidative stress also have links with the mechanisms involved in other kinds of prenatal stress including external exposures such as environmental toxicants and internal disruptions such as preeclampsia. Integrative understanding of developmental neurobiology with these cellular and physiological mechanisms is necessary to reduce risks and promote healthy brain development.
Collapse
Affiliation(s)
- Jonathan Dowell
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Benjamin A Elser
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA.
| | - Rachel E Schroeder
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA.
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, Iowa City, IA, USA.
| |
Collapse
|
18
|
Beversdorf DQ, Stevens HE, Margolis KG, Van de Water J. Prenatal Stress and Maternal Immune Dysregulation in Autism Spectrum Disorders: Potential Points for Intervention. Curr Pharm Des 2019; 25:4331-4343. [PMID: 31742491 PMCID: PMC7100710 DOI: 10.2174/1381612825666191119093335] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetics is a major etiological contributor to autism spectrum disorder (ASD). Environmental factors, however, also appear to contribute. ASD pathophysiology due to gene x environment is also beginning to be explored. One reason to focus on environmental factors is that they may allow opportunities for intervention or prevention. METHODS AND RESULTS Herein, we review two such factors that have been associated with a significant proportion of ASD risk, prenatal stress exposure and maternal immune dysregulation. Maternal stress susceptibility appears to interact with prenatal stress exposure to affect offspring neurodevelopment. We also explore how maternal stress may interact with the microbiome in the neurodevelopmental setting. Additionally, understanding of the impact of maternal immune dysfunction on ASD has recently been advanced by recognition of specific fetal brain proteins targeted by maternal autoantibodies, and identification of unique mid-gestational maternal immune profiles. This might also be interrelated with maternal stress exposure. Animal models have been developed to explore pathophysiology targeting each of these factors. CONCLUSION We are beginning to understand the behavioral, pharmacopathological, and epigenetic effects related to these interactions, and we are beginning to explore potential mitigating factors. Continued growth in understanding of these mechanisms may ultimately allow for the identification of multiple potential targets for prevention or intervention for this subset of environmental-associated ASD cases.
Collapse
Affiliation(s)
- David Q. Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, and The Thompson Center for Neurodevelopmental Disorders, University of Missouri, William and Nancy Thompson Endowed Chair in Radiology
| | - Hanna E. Stevens
- Departments of Psychiatry and Pediatrics, Iowa Neuroscience Institute, University of Iowa
| | - Kara Gross Margolis
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Morgan Stanley Children’s Hospital, Columbia University Medical Center
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, And the MIND Institute, University of California, Davis
| |
Collapse
|