1
|
Hosseini Fin NS, Yip A, Scott JT, Teo L, Homman-Ludiye J, Bourne JA. Developmental dynamics of marmoset prefrontal cortical SST and PV interneuron networks highlight primate-specific features. Development 2025; 152:dev204254. [PMID: 40292611 DOI: 10.1242/dev.204254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The primate prefrontal cortex (PFC) undergoes protracted postnatal development, crucial for the emergence of cognitive control and executive function. Central to this maturation are inhibitory interneurons (INs), particularly parvalbumin-expressing (PV+) and somatostatin-expressing (SST+) subtypes, which regulate cortical circuit timing and plasticity. While rodent models have provided foundational insights into IN development, the trajectory of postmigratory maturation in primates remains largely uncharted. In this study, we characterized the expression of PV, SST, the chloride transporter KCC2, and the ion channels Kv3.1b and Nav1.1 across six PFC regions (areas 8aD, 8aV, 9, 46, 11 and 47L) in the postnatal marmoset. We report a prolonged maturation of PV+ INs into adolescence, accompanied by progressive upregulation of ion channels that support high-frequency firing. In contrast, SST+ INs show a postnatal decline in density, diverging from rodent developmental patterns. These findings reveal distinct, cell type-specific maturation dynamics in the primate PFC and offer a developmental framework for understanding how inhibitory circuit refinement may underlie vulnerability to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nafiseh S Hosseini Fin
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton, VIC 3800, Australia
| | - Adrian Yip
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton, VIC 3800, Australia
| | - Jack T Scott
- Section on Cellular and Cognitive Neurodevelopment, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Leon Teo
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton, VIC 3800, Australia
| | - Jihane Homman-Ludiye
- Monash MicroImaging, 15 Innovation Walk, Monash University, Clayton, VIC 3800, Australia
| | - James A Bourne
- Section on Cellular and Cognitive Neurodevelopment, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Córdoba-Claros MA, Rubio-Garrido P, de Lima RRM, Morais PLAG, do Nascimento ES, Cavalcante JS, Clascá F. Projection Motifs and Wiring Logic of Medial Pulvinar Thalamocortical Axons in the Marmoset Monkey. J Neurosci 2025; 45:e1837242025. [PMID: 39919832 PMCID: PMC11984104 DOI: 10.1523/jneurosci.1837-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 02/09/2025] Open
Abstract
The medial pulvinar thalamic nucleus (MPu) is an evolutionary novelty of the primate thalamus, prominently expanded in humans. Piecemeal data from studies in various monkey species indicate that MPu axons reach prefrontal, inferior parietal, cingulate, insular, or temporal areas; however, the precise wiring and functional logic of such brain-wide connections remain obscure. In marmoset monkeys (Callithrix jacchus) of both sexes, we visualized the axons originated from specific pulvinar domains by means of biotinylated dextran amine microinjections and compared them across multiple cases. In addition, by injecting retrograde tracers in the cortical areas targeted by the pulvinar axons, we investigated the organization of projection cells within MPu and the existence of long-range branched axons. Specific projection motifs reveal a caudal MPu subnucleus that innervates inferior and ventral temporal areas and a rostral MPu subnucleus that innervates temporal, ventral prefrontal, premotor, inferior posterior parietal, and cingulate areas. We demonstrate numerous MPu neurons that innervate through branched axons prefrontal and parietal or prefrontal and temporal areas; other cells with different projection patterns are closely intermingled with them. Our findings support the notion that MPu is a hub of the brain-wide networks that support complex visual and social cognition, sensory-guided reaching, working memory, and attention. Moreover, the finding of long-range branching MPu axons and dense terminal arborizations suggest that MPu cells may regulate functional connectivity among high-level cortical areas at different spatial scales. Besides, the anatomical "ground truth" provided by our study is relevant for functional imaging and distributed network modeling studies.
Collapse
Affiliation(s)
- María Angélica Córdoba-Claros
- Department of Anatomy & Graduate Program in Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Pablo Rubio-Garrido
- Department of Anatomy & Graduate Program in Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Ruthnaldo R M de Lima
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Paulo Leonardo A G Morais
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Expedito S do Nascimento
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Jeferson S Cavalcante
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Francisco Clascá
- Department of Anatomy & Graduate Program in Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
| |
Collapse
|
3
|
Bilderbeek JA, Gregg NM, Yanez-Ramos MG, Huang H, Montoya M, Brunner P, Willie JT, Van Gompel JJ, Worrell GA, Miller KJ, Hermes D. Human pulvinar stimulation engages select cortical pathways in epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642694. [PMID: 40161625 PMCID: PMC11952373 DOI: 10.1101/2025.03.11.642694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The pulvinar has been proposed as an effective neuromodulation target for patients with posterior quadrant and temporal epilepsies. However, the pulvinar has a large tissue volume, multiple subnuclei, and widespread cortical connections. It remains unknown whether electrical stimulation of distinct pulvinar subregions affects the temporal, occipital, and parietal areas differently. To address this gap, we delivered single-pulse electrical stimulation to the pulvinar and measured the resulting brain stimulation evoked potentials in twelve patients undergoing stereotactic EEG for drug-resistant epilepsy. Brain stimulation evoked potentials were parameterized across the occipital, temporal and parietal cortex. Stimulation of the lateral pulvinar elicited significant brain stimulation evoked potentials in striate and extrastriate areas that diminish as stimulation shifts towards the medial pulvinar. Conversely, stimulation of the ventral aspect of the medial pulvinar produced significant lateral temporal evoked potentials, which diminish with lateral pulvinar stimulation. We also found that stimulation of the dorsomedial pulvinar evoked significant parietal responses with limited striate/extrastriate and lateral temporal responses. These results demonstrate that electrical stimulation of specific pulvinar subregions influences distinct occipital, parietal and lateral temporal areas. Selective targeting of pulvinar subregions to maximize seizure network engagement may be essential for individualized treatment of posterior quadrant and temporal epilepsies.
Collapse
Affiliation(s)
| | | | | | - Harvey Huang
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN
| | - Morgan Montoya
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester MN
| | - Peter Brunner
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO
- National Center for Adaptive Neurotechnologies, St. Louis, MO
| | - Jon T. Willie
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO
- National Center for Adaptive Neurotechnologies, St. Louis, MO
| | | | | | - Kai J. Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester MN
| |
Collapse
|
4
|
Ayzenberg V, Song C, Arcaro MJ. An intrinsic hierarchical, retinotopic organization of visual pulvinar connectivity in the human neonate. Curr Biol 2025; 35:300-314.e5. [PMID: 39709961 DOI: 10.1016/j.cub.2024.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The thalamus plays a crucial role in the development of the neocortex, with the pulvinar being particularly important for visual development due to its involvement in various functions that emerge early in infancy. The development of connections between the pulvinar and the cortex constrains its role in infant visual processing and the maturation of associated cortical networks. However, the extent to which adult-like pulvino-cortical pathways are present at birth remains largely unknown, limiting our understanding of how the thalamus may support early vision. To address this gap, we investigated the organization of pulvino-cortical connections in human neonates using probabilistic tractography analyses on diffusion imaging data. Our analyses identified white matter pathways between the pulvinar and areas across occipital, ventral, lateral, and dorsal visual cortices at birth. These pathways exhibited specificity in their connections within the pulvinar, reflecting both an intra-areal retinotopic organization and a hierarchical structure across areas of visual cortical pathways. This organization suggests that even at birth, the pulvinar could facilitate detailed processing of sensory information and communication between distinct processing pathways. Comparative analyses revealed that while the large-scale organization of pulvino-cortical connectivity in neonates mirrored that of adults, connectivity with the ventral visual cortex was less mature than other cortical pathways, consistent with the protracted development of the visual recognition pathway. These findings advance our understanding of the developmental trajectory of thalamocortical connections and provide a framework for how subcortical structures may support early perceptual abilities and scaffold the development of cortex.
Collapse
Affiliation(s)
- Vladislav Ayzenberg
- Temple University, Department of Psychology and Neuroscience, North 13th Street, Philadelphia, PA 19122, USA; University of Pennsylvania, Department of Psychology, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Chenjie Song
- University of Pennsylvania, Department of Psychology, Hamilton Walk, Philadelphia, PA 19104, USA
| | - Michael J Arcaro
- University of Pennsylvania, Department of Psychology, Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Fin NSH, Yip A, Teo L, Homman-Ludiye J, Bourne JA. Developmental dynamics of the prefrontal cortical SST and PV interneuron networks: Insights from the monkey highlight human-specific features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602904. [PMID: 39026896 PMCID: PMC11257587 DOI: 10.1101/2024.07.10.602904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The primate prefrontal cortex (PFC) is a quintessential hub of cognitive functions. Amidst its intricate neural architecture, the interplay of distinct neuronal subtypes, notably parvalbumin (PV) and somatostatin (SST) interneurons (INs), emerge as a cornerstone in sculpting cortical circuitry and governing cognitive processes. While considerable strides have been made in elucidating the developmental trajectory of these neurons in rodent models, our understanding of their postmigration developmental dynamics in primates still needs to be studied. Disruptions to this developmental trajectory can compromise IN function, impairing signal gating and circuit modulation within cortical networks. This study examined the expression patterns of PV and SST, ion transporter KCC2, and ion channel subtypes Kv3.1b, and Nav1.1 - associated with morphophysiological stages of development in the postnatal marmoset monkey in different frontal cortical regions (granular areas 8aD, 8aV, 9, 46; agranular areas 11, 47L). Our results demonstrate that the maturation of PV+ INs extends into adolescence, characterized by discrete epochs associated with specific expression dynamics of ion channel subtypes. Interestingly, we observed a postnatal decrease in SST interneurons, contrasting with studies in rodents. This endeavor broadens our comprehension of primate cortical development and furnishes invaluable insights into the etiology and pathophysiology of neurodevelopmental disorders characterized by perturbations in PV and SST IN function.
Collapse
Affiliation(s)
- Nafiseh S Hosseini Fin
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton Vic., 3800, Australia
| | - Adrian Yip
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton Vic., 3800, Australia
| | - Leon Teo
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton Vic., 3800, Australia
| | - Jihane Homman-Ludiye
- Monash MicroImaging, 15 Innovation Walk, Monash University, Clayton, VIC, 3800, Australia
| | - James A Bourne
- Section on Cellular and Cognitive Neurodevelopment, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD, 20892, USA
| |
Collapse
|
6
|
Froesel M, Gacoin M, Clavagnier S, Hauser M, Goudard Q, Ben Hamed S. Macaque claustrum, pulvinar and putative dorsolateral amygdala support the cross-modal association of social audio-visual stimuli based on meaning. Eur J Neurosci 2024; 59:3203-3223. [PMID: 38637993 DOI: 10.1111/ejn.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/20/2024]
Abstract
Social communication draws on several cognitive functions such as perception, emotion recognition and attention. The association of audio-visual information is essential to the processing of species-specific communication signals. In this study, we use functional magnetic resonance imaging in order to identify the subcortical areas involved in the cross-modal association of visual and auditory information based on their common social meaning. We identified three subcortical regions involved in audio-visual processing of species-specific communicative signals: the dorsolateral amygdala, the claustrum and the pulvinar. These regions responded to visual, auditory congruent and audio-visual stimulations. However, none of them was significantly activated when the auditory stimuli were semantically incongruent with the visual context, thus showing an influence of visual context on auditory processing. For example, positive vocalization (coos) activated the three subcortical regions when presented in the context of positive facial expression (lipsmacks) but not when presented in the context of negative facial expression (aggressive faces). In addition, the medial pulvinar and the amygdala presented multisensory integration such that audiovisual stimuli resulted in activations that were significantly higher than those observed for the highest unimodal response. Last, the pulvinar responded in a task-dependent manner, along a specific spatial sensory gradient. We propose that the dorsolateral amygdala, the claustrum and the pulvinar belong to a multisensory network that modulates the perception of visual socioemotional information and vocalizations as a function of the relevance of the stimuli in the social context. SIGNIFICANCE STATEMENT: Understanding and correctly associating socioemotional information across sensory modalities, such that happy faces predict laughter and escape scenes predict screams, is essential when living in complex social groups. With the use of functional magnetic imaging in the awake macaque, we identify three subcortical structures-dorsolateral amygdala, claustrum and pulvinar-that only respond to auditory information that matches the ongoing visual socioemotional context, such as hearing positively valenced coo calls and seeing positively valenced mutual grooming monkeys. We additionally describe task-dependent activations in the pulvinar, organizing along a specific spatial sensory gradient, supporting its role as a network regulator.
Collapse
Affiliation(s)
- Mathilda Froesel
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Maëva Gacoin
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Simon Clavagnier
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Marc Hauser
- Risk-Eraser, West Falmouth, Massachusetts, USA
| | - Quentin Goudard
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| |
Collapse
|
7
|
Schneider L, Dominguez-Vargas AU, Gibson L, Wilke M, Kagan I. Visual, delay, and oculomotor timing and tuning in macaque dorsal pulvinar during instructed and free choice memory saccades. Cereb Cortex 2023; 33:10877-10900. [PMID: 37724430 DOI: 10.1093/cercor/bhad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/16/2023] [Accepted: 08/16/2023] [Indexed: 09/20/2023] Open
Abstract
Causal perturbations suggest that primate dorsal pulvinar plays a crucial role in target selection and saccade planning, though its basic neuronal properties remain unclear. Some functional aspects of dorsal pulvinar and interconnected frontoparietal areas-e.g. ipsilesional choice bias after inactivation-are similar. But it is unknown if dorsal pulvinar shares oculomotor properties of cortical circuitry, in particular delay and choice-related activity. We investigated such properties in macaque dorsal pulvinar during instructed and free-choice memory saccades. Most recorded units showed visual (12%), saccade-related (30%), or both types of responses (22%). Visual responses were primarily contralateral; diverse saccade-related responses were predominantly post-saccadic with a weak contralateral bias. Memory delay and pre-saccadic enhancement was infrequent (11-9%)-instead, activity was often suppressed during saccade planning (25%) and further during execution (15%). Surprisingly, only few units exhibited classical visuomotor patterns combining cue and continuous delay activity or pre-saccadic ramping; moreover, most spatially-selective neurons did not encode the upcoming decision during free-choice delay. Thus, in absence of a visible goal, the dorsal pulvinar has a limited role in prospective saccade planning, with patterns partially complementing its frontoparietal partners. Conversely, prevalent visual and post-saccadic responses imply its participation in integrating spatial goals with processing across saccades.
Collapse
Affiliation(s)
- Lukas Schneider
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
- Department of Cognitive Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, Goettingen 37075, Germany
| | - Adan-Ulises Dominguez-Vargas
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, QC H3C 3J7, Canada
| | - Lydia Gibson
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
- Department of Cognitive Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, Goettingen 37075, Germany
| | - Melanie Wilke
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
- Department of Cognitive Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, Goettingen 37075, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Robert-Koch-Str. 40, Göttingen 37075, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, Goettingen 37077, Germany
| | - Igor Kagan
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, Goettingen 37077, Germany
| |
Collapse
|
8
|
Choi I, Demir I, Oh S, Lee SH. Multisensory integration in the mammalian brain: diversity and flexibility in health and disease. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220338. [PMID: 37545309 PMCID: PMC10404930 DOI: 10.1098/rstb.2022.0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/30/2023] [Indexed: 08/08/2023] Open
Abstract
Multisensory integration (MSI) occurs in a variety of brain areas, spanning cortical and subcortical regions. In traditional studies on sensory processing, the sensory cortices have been considered for processing sensory information in a modality-specific manner. The sensory cortices, however, send the information to other cortical and subcortical areas, including the higher association cortices and the other sensory cortices, where the multiple modality inputs converge and integrate to generate a meaningful percept. This integration process is neither simple nor fixed because these brain areas interact with each other via complicated circuits, which can be modulated by numerous internal and external conditions. As a result, dynamic MSI makes multisensory decisions flexible and adaptive in behaving animals. Impairments in MSI occur in many psychiatric disorders, which may result in an altered perception of the multisensory stimuli and an abnormal reaction to them. This review discusses the diversity and flexibility of MSI in mammals, including humans, primates and rodents, as well as the brain areas involved. It further explains how such flexibility influences perceptual experiences in behaving animals in both health and disease. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Ilsong Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Ilayda Demir
- Department of biological sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Seungmi Oh
- Department of biological sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Seung-Hee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of biological sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Zheng B, Liu DD, Theyel BB, Abdulrazeq H, Kimata AR, Lauro PM, Asaad WF. Thalamic neuromodulation in epilepsy: A primer for emerging circuit-based therapies. Expert Rev Neurother 2023; 23:123-140. [PMID: 36731858 DOI: 10.1080/14737175.2023.2176752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Epilepsy is a common, often debilitating disease of hyperexcitable neural networks. While medically intractable cases may benefit from surgery, there may be no single, well-localized focus for resection or ablation. In such cases, approaching the disease from a network-based perspective may be beneficial. AREAS COVERED Herein, the authors provide a narrative review of normal thalamic anatomy and physiology and propose general strategies for preventing and/or aborting seizures by modulating this structure. Additionally, they make specific recommendations for targeting the thalamus within different contexts, motivated by a more detailed discussion of its distinct nuclei and their respective connectivity. By describing important principles governing thalamic function and its involvement in seizure networks, the authors aim to provide a primer for those now entering this fast-growing field of thalamic neuromodulation for epilepsy. EXPERT OPINION The thalamus is critically involved with the function of many cortical and subcortical areas, suggesting it may serve as a compelling node for preventing or aborting seizures, and so it has increasingly been targeted for the surgical treatment of epilepsy. As various thalamic neuromodulation strategies for seizure control are developed, there is a need to ground such interventions in a mechanistic, circuit-based framework.
Collapse
Affiliation(s)
- Bryan Zheng
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - David D Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Brian B Theyel
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Hael Abdulrazeq
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Anna R Kimata
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Peter M Lauro
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Wael F Asaad
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA.,The Carney Institute for Brain Science, Brown University, Providence, RI, USA.,The Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
10
|
Giarrocco F, Averbeck BB. Anatomical organization of forebrain circuits in the primate. Brain Struct Funct 2023; 228:393-411. [PMID: 36271258 PMCID: PMC9944689 DOI: 10.1007/s00429-022-02586-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022]
Abstract
The primate forebrain is a complex structure. Thousands of connections have been identified between cortical areas, and between cortical and sub-cortical areas. Previous work, however, has suggested that a number of principles can be used to reduce this complexity. Here, we integrate four principles that have been put forth previously, including a nested model of neocortical connectivity, gradients of connectivity between frontal cortical areas and the striatum and thalamus, shared patterns of sub-cortical connectivity between connected posterior and frontal cortical areas, and topographic organization of cortical-striatal-pallidal-thalamocortical circuits. We integrate these principles into a single model that accounts for a substantial amount of connectivity in the forebrain. We then suggest that studies in evolution and development can account for these four principles, by assuming that the ancestral vertebrate pallium was dominated by medial, hippocampal and ventral-lateral, pyriform areas, and at most a small dorsal pallium. The small dorsal pallium expanded massively in the lineage leading to primates. During this expansion, topological, adjacency relationships were maintained between pallial and sub-pallial areas. This maintained topology led to the connectivity gradients seen between cortex, striatum, pallidum, and thalamus.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Building 49 Room 1B80, 49 Convent Drive MSC 4415, Bethesda, MD, 20892-4415, USA
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Building 49 Room 1B80, 49 Convent Drive MSC 4415, Bethesda, MD, 20892-4415, USA.
| |
Collapse
|
11
|
Velioglu HA, Ayyildiz B, Ayyildiz S, Sutcubasi B, Hanoglu L, Bayraktaroglu Z, Yulug B. A structural and resting-state functional connectivity investigation of the pulvinar in elderly individuals and Alzheimer's disease patients. Alzheimers Dement 2022. [PMID: 36576157 DOI: 10.1002/alz.12850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 12/29/2022]
Abstract
In Alzheimer's disease (AD), structural and functional changes in the brain may give rise to disruption of specific cognitive functions. The aim of this study is to investigate the functional connectivity alterations in the pulvinar's subdivisions and total pulvinar voxel-based morphometry (VBM) changes in individuals with AD and healthy controls. A seed-based functional connectivity analysis was applied to the anterior, inferior, lateral, and medial pulvinar in each hemisphere. Furthermore, VBM analysis was carried out to compare gray matter (GM) volume differences in the pulvinar and thalamus between the two groups. Connectivity analysis revealed that the pulvinar subdivisions had decreased connectivity in individuals with AD. In addition, the pulvinar and thalamus in each hemisphere were significantly smaller in the AD group. The pulvinar may have a role in AD-related cognitive impairments and the intrinsic connectivity network changes and GM loss in pulvinar subdivisions suggest the cognitive deterioration occurring in those with AD. HIGHLIGHTS: The pulvinar may play a role in pathophysiology of cognitive impairments in those with Alzheimer's disease (AD). Decreased structural volume and functional connectivity were found in patients with AD. The inferior pulvinar is functionally the most affected subdivision by AD compared to the others.
Collapse
Affiliation(s)
- Halil Aziz Velioglu
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.,Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Behcet Ayyildiz
- Anatomy PhD Program, Graduate School of Health Sciences, Kocaeli University, Kocaeli, Turkey.,Department of Anatomy, School of Medicine, Istinye University, Istanbul, Turkey
| | - Sevilay Ayyildiz
- Anatomy PhD Program, Graduate School of Health Sciences, Kocaeli University, Kocaeli, Turkey.,Department of Anatomy, School of Medicine, Istinye University, Istanbul, Turkey
| | - Bernis Sutcubasi
- Department of Psychology, Faculty of Arts and Sciences, Acibadem University, Istanbul, Turkey
| | - Lutfu Hanoglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey.,Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Zubeyir Bayraktaroglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey.,Department of Physiology, Istanbul Medipol University, International School of Medicine, Istanbul, Turkey
| | - Burak Yulug
- Alanya Alaaddin Keykubat University, School of Medicine, Alanya/Antalya, Turkey
| |
Collapse
|
12
|
Vittek AL, Juan C, Nowak LG, Girard P, Cappe C. Multisensory integration in neurons of the medial pulvinar of macaque monkey. Cereb Cortex 2022; 33:4202-4215. [PMID: 36068947 PMCID: PMC10110443 DOI: 10.1093/cercor/bhac337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/14/2022] Open
Abstract
The pulvinar is a heterogeneous thalamic nucleus, which is well developed in primates. One of its subdivisions, the medial pulvinar, is connected to many cortical areas, including the visual, auditory, and somatosensory cortices, as well as with multisensory areas and premotor areas. However, except for the visual modality, little is known about its sensory functions. A hypothesis is that, as a region of convergence of information from different sensory modalities, the medial pulvinar plays a role in multisensory integration. To test this hypothesis, 2 macaque monkeys were trained to a fixation task and the responses of single-units to visual, auditory, and auditory-visual stimuli were examined. Analysis revealed auditory, visual, and multisensory neurons in the medial pulvinar. It also revealed multisensory integration in this structure, mainly suppressive (the audiovisual response is less than the strongest unisensory response) and subadditive (the audiovisual response is less than the sum of the auditory and the visual responses). These findings suggest that the medial pulvinar is involved in multisensory integration.
Collapse
Affiliation(s)
- Anne-Laure Vittek
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS UMR 5549, Université de Toulouse, UPS, Toulouse, France
| | - Cécile Juan
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS UMR 5549, Université de Toulouse, UPS, Toulouse, France
| | - Lionel G Nowak
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS UMR 5549, Université de Toulouse, UPS, Toulouse, France
| | - Pascal Girard
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS UMR 5549, Université de Toulouse, UPS, Toulouse, France.,INSERM, CHU Purpan - BP 3028 - 31024 Toulouse Cedex 3, France
| | - Céline Cappe
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS UMR 5549, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
13
|
Leow YN, Zhou B, Sullivan HA, Barlowe AR, Wickersham IR, Sur M. Brain-wide mapping of inputs to the mouse lateral posterior (LP/Pulvinar) thalamus-anterior cingulate cortex network. J Comp Neurol 2022; 530:1992-2013. [PMID: 35383929 PMCID: PMC9167239 DOI: 10.1002/cne.25317] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 01/29/2023]
Abstract
The rodent homolog of the primate pulvinar, the lateral posterior (LP) thalamus, is extensively interconnected with multiple cortical areas. While these cortical interactions can span the entire LP, subdivisions of the LP are characterized by differential connections with specific cortical regions. In particular, the medial LP has reciprocal connections with frontoparietal cortical areas, including the anterior cingulate cortex (ACC). The ACC plays an integral role in top‐down sensory processing and attentional regulation, likely exerting some of these functions via the LP. However, little is known about how ACC and LP interact, and about the information potentially integrated in this reciprocal network. Here, we address this gap by employing a projection‐specific monosynaptic rabies tracing strategy to delineate brain‐wide inputs to bottom‐up LP→ACC and top‐down ACC→LP neurons. We find that LP→ACC neurons receive inputs from widespread cortical regions, including primary and higher order sensory and motor cortical areas. LP→ACC neurons also receive extensive subcortical inputs, particularly from the intermediate and deep layers of the superior colliculus (SC). Sensory inputs to ACC→LP neurons largely arise from visual cortical areas. In addition, ACC→LP neurons integrate cross‐hemispheric prefrontal cortex inputs as well as inputs from higher order medial cortex. Our brain‐wide anatomical mapping of inputs to the reciprocal LP‐ACC pathways provides a roadmap for understanding how LP and ACC communicate different sources of information to mediate attentional control and visuomotor functions.
Collapse
Affiliation(s)
- Yi Ning Leow
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Blake Zhou
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Heather A Sullivan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alexandria R Barlowe
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Cosgrove KT, Kerr KL, Ratliff EL, Moore AJ, Misaki M, DeVille DC, Aupperle RL, Simmons WK, Bodurka J, Morris AS. Effects of Parent Emotion Socialization on the Neurobiology Underlying Adolescent Emotion Processing: A Multimethod fMRI Study. Res Child Adolesc Psychopathol 2022; 50:149-161. [PMID: 35113308 PMCID: PMC9262419 DOI: 10.1007/s10802-020-00736-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 02/03/2023]
Abstract
Parents' emotion socialization (ES) practices impact socioemotional development throughout adolescence. Little is known, however, regarding the neurobiology underlying these effects. This study used functional magnetic resonance imaging (fMRI) to examine how parent ES practices relate to adolescent brain function during emotion processing. Thirty-three adolescents (ages 14-16) reported on ES practices of a focal parent (primarily mothers) using the Emotions as a Child (EAC) Scale. Adolescents also completed a conflict discussion task with this parent, and parents' statements were coded for emotional valence. Adolescents performed two fMRI tasks: a standard emotion processing (EP) task (n = 32) and the Testing Emotional Attunement and Mutuality (TEAM) task (n = 27). The EP task consisted of viewing emotional pictures and either reacting naturally or using cognitive reappraisal to regulate emotional responses. The TEAM task was performed with the parent and included trials during which adolescents were shown that their parent made an error, costing the dyad $5. Parent negative verbalizations during the conflict discussion were associated with greater activity in the thalamus during the emotion reactivity condition of the EP task and in the thalamus, superior medial and superior frontal gyri, anterior insula, and dorsolateral prefrontal cortex during the costly error condition of the TEAM task. Unsupportive ES was associated with greater activity in the supplementary motor area and less activity in the paracentral gyrus and amygdala during the costly error condition of the TEAM task. This study supports the premise that ES influences adolescents' emotion-related neural processing, particularly when using ecologically valid tasks in social contexts.
Collapse
Affiliation(s)
- Kelly T Cosgrove
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA.
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| | - Kara L Kerr
- Department of Psychology, Oklahoma State University, Stillwater, OK, USA.
| | - Erin L Ratliff
- Department of Human Development and Family Science, Oklahoma State University, Tulsa, OK, USA
| | - Andrew J Moore
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Masaya Misaki
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Danielle C DeVille
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, OK, USA
- School of Community Medicine, The University of Tulsa, Tulsa, OK, USA
| | - W Kyle Simmons
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, USA
| | - Amanda Sheffield Morris
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Human Development and Family Science, Oklahoma State University, Tulsa, OK, USA
| |
Collapse
|
15
|
Preuss TM, Wise SP. Evolution of prefrontal cortex. Neuropsychopharmacology 2022; 47:3-19. [PMID: 34363014 PMCID: PMC8617185 DOI: 10.1038/s41386-021-01076-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Subdivisions of the prefrontal cortex (PFC) evolved at different times. Agranular parts of the PFC emerged in early mammals, and rodents, primates, and other modern mammals share them by inheritance. These are limbic areas and include the agranular orbital cortex and agranular medial frontal cortex (areas 24, 32, and 25). Rodent research provides valuable insights into the structure, functions, and development of these shared areas, but it contributes less to parts of the PFC that are specific to primates, namely, the granular, isocortical PFC that dominates the frontal lobe in humans. The first granular PFC areas evolved either in early primates or in the last common ancestor of primates and tree shrews. Additional granular PFC areas emerged in the primate stem lineage, as represented by modern strepsirrhines. Other granular PFC areas evolved in simians, the group that includes apes, humans, and monkeys. In general, PFC accreted new areas along a roughly posterior to anterior trajectory during primate evolution. A major expansion of the granular PFC occurred in humans in concert with other association areas, with modifications of corticocortical connectivity and gene expression, although current evidence does not support the addition of a large number of new, human-specific PFC areas.
Collapse
Affiliation(s)
- Todd M Preuss
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.
| | - Steven P Wise
- Olschefskie Institute for the Neurobiology of Knowledge, Bethesda, MD, 20814, USA
| |
Collapse
|
16
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
17
|
Volume reduction without neuronal loss in the primate pulvinar complex following striate cortex lesions. Brain Struct Funct 2021; 226:2417-2430. [PMID: 34324075 DOI: 10.1007/s00429-021-02345-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Lesions in the primary visual cortex (V1) cause extensive retrograde degeneration in the lateral geniculate nucleus, but it remains unclear whether they also trigger any neuronal loss in other subcortical visual centers. The inferior (IPul) and lateral (LPul) pulvinar nuclei have been regarded as part of the pathways that convey visual information to both V1 and extrastriate cortex. Here, we apply stereological analysis techniques to NeuN-stained sections of marmoset brain, in order to investigate whether the volume of these nuclei, and the number of neurons they comprise, change following unilateral long-term V1 lesions. For comparison, the medial pulvinar nucleus (MPul), which has no connections with V1, was also studied. Compared to control animals, animals with lesions incurred either 6 weeks after birth or in adulthood showed significant LPul volume loss following long (> 11 months) survival times. However, no obvious areas of neuronal degeneration were observed. In addition, estimates of neuronal density in lesioned hemispheres were similar to those in the non-lesioned hemispheres of same animals. Our results support the view that, in marked contrast with the geniculocortical projection, the pulvinar pathway is largely spared from the most severe long-term effects of V1 lesions, whether incurred in early postnatal or adult life. This difference can be linked to the more divergent pattern of pulvinar connectivity to the visual cortex, including strong reciprocal connections with extrastriate areas. The results also caution against interpretation of volume loss in brain structures as a marker for neuronal degeneration.
Collapse
|
18
|
Kagan I, Gibson L, Spanou E, Wilke M. Effective connectivity and spatial selectivity-dependent fMRI changes elicited by microstimulation of pulvinar and LIP. Neuroimage 2021; 240:118283. [PMID: 34147628 DOI: 10.1016/j.neuroimage.2021.118283] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022] Open
Abstract
The thalamic pulvinar and the lateral intraparietal area (LIP) share reciprocal anatomical connections and are part of an extensive cortical and subcortical network involved in spatial attention and oculomotor processing. The goal of this study was to compare the effective connectivity of dorsal pulvinar (dPul) and LIP and to probe the dependency of microstimulation effects on task demands and spatial tuning properties of a given brain region. To this end, we applied unilateral electrical microstimulation in the dPul (mainly medial pulvinar) and LIP in combination with event-related BOLD fMRI in monkeys performing fixation and memory-guided saccade tasks. Microstimulation in both dPul and LIP enhanced task-related activity in monosynaptically-connected fronto-parietal cortex and along the superior temporal sulcus (STS) including putative face patch locations, as well as in extrastriate cortex. LIP microstimulation elicited strong activity in the opposite homotopic LIP while no homotopic activation was found with dPul stimulation. Both dPul and LIP stimulation also elicited activity in several heterotopic cortical areas in the opposite hemisphere, implying polysynaptic propagation of excitation. Despite extensive activation along the intraparietal sulcus evoked by LIP stimulation, there was a difference in frontal and occipital connectivity elicited by posterior and anterior LIP stimulation sites. Comparison of dPul stimulation with the adjacent but functionally dissimilar ventral pulvinar also showed distinct connectivity. On the level of single trial timecourses within each region of interest (ROI), most ROIs did not show task-dependence of stimulation-elicited response modulation. Across ROIs, however, there was an interaction between task and stimulation, and task-specific correlations between the initial spatial selectivity and the magnitude of stimulation effect were observed. Consequently, stimulation-elicited modulation of task-related activity was best fitted by an additive model scaled down by the initial response amplitude. In summary, we identified overlapping and distinct patterns of thalamocortical and corticocortical connectivity of pulvinar and LIP, highlighting the dorsal bank and fundus of STS as a prominent node of shared circuitry. Spatial task-specific and partly polysynaptic modulations of cue and saccade planning delay period activity in both hemispheres exerted by unilateral pulvinar and parietal stimulation provide insight into the distributed interhemispheric processing underlying spatial behavior.
Collapse
Affiliation(s)
- Igor Kagan
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany; Department of Cognitive Neurology, University of Goettingen, Robert-Koch-Str. 40, Goettingen 37075, Germany; Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, Goettingen 37077, Germany.
| | - Lydia Gibson
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany; Department of Cognitive Neurology, University of Goettingen, Robert-Koch-Str. 40, Goettingen 37075, Germany
| | - Elena Spanou
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
| | - Melanie Wilke
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany; Department of Cognitive Neurology, University of Goettingen, Robert-Koch-Str. 40, Goettingen 37075, Germany; Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, Goettingen 37077, Germany
| |
Collapse
|
19
|
Kita Y, Nishibe H, Wang Y, Hashikawa T, Kikuchi SS, U M, Yoshida AC, Yoshida C, Kawase T, Ishii S, Skibbe H, Shimogori T. Cellular-resolution gene expression profiling in the neonatal marmoset brain reveals dynamic species- and region-specific differences. Proc Natl Acad Sci U S A 2021; 118:e2020125118. [PMID: 33903237 PMCID: PMC8106353 DOI: 10.1073/pnas.2020125118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Precise spatiotemporal control of gene expression in the developing brain is critical for neural circuit formation, and comprehensive expression mapping in the developing primate brain is crucial to understand brain function in health and disease. Here, we developed an unbiased, automated, large-scale, cellular-resolution in situ hybridization (ISH)-based gene expression profiling system (GePS) and companion analysis to reveal gene expression patterns in the neonatal New World marmoset cortex, thalamus, and striatum that are distinct from those in mice. Gene-ontology analysis of marmoset-specific genes revealed associations with catalytic activity in the visual cortex and neuropsychiatric disorders in the thalamus. Cortically expressed genes with clear area boundaries were used in a three-dimensional cortical surface mapping algorithm to delineate higher-order cortical areas not evident in two-dimensional ISH data. GePS provides a powerful platform to elucidate the molecular mechanisms underlying primate neurobiology and developmental psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Yoshiaki Kita
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science, RIKEN, Saitama 351-0198, Japan
| | - Hirozumi Nishibe
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science, RIKEN, Saitama 351-0198, Japan
| | - Yan Wang
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science, RIKEN, Saitama 351-0198, Japan
| | - Tsutomu Hashikawa
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science, RIKEN, Saitama 351-0198, Japan
| | - Satomi S Kikuchi
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science, RIKEN, Saitama 351-0198, Japan
| | - Mami U
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science, RIKEN, Saitama 351-0198, Japan
| | - Aya C Yoshida
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science, RIKEN, Saitama 351-0198, Japan
| | - Chihiro Yoshida
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science, RIKEN, Saitama 351-0198, Japan
| | - Takashi Kawase
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Shin Ishii
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Henrik Skibbe
- Brain Image Analysis Unit, Center for Brain Science, RIKEN, Saitama 351-0198, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science, RIKEN, Saitama 351-0198, Japan;
| |
Collapse
|
20
|
Worden R, Bennett MS, Neacsu V. The Thalamus as a Blackboard for Perception and Planning. Front Behav Neurosci 2021; 15:633872. [PMID: 33732119 PMCID: PMC7956969 DOI: 10.3389/fnbeh.2021.633872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
It has been suggested that the thalamus acts as a blackboard, on which the computations of different cortical modules are composed, coordinated, and integrated. This article asks what blackboard role the thalamus might play, and whether that role is consistent with the neuroanatomy of the thalamus. It does so in a context of Bayesian belief updating, expressed as a Free Energy Principle. We suggest that the thalamus-as-a-blackboard offers important questions for research in spatial cognition. Several prominent features of the thalamus-including its lack of olfactory relay function, its lack of internal excitatory connections, its regular and conserved shape, its inhibitory interneurons, triadic synapses, and diffuse cortical connectivity-are consistent with a blackboard role.Different thalamic nuclei may play different blackboard roles: (1) the Pulvinar, through its reciprocal connections to posterior cortical regions, coordinates perceptual inference about "what is where" from multi-sense-data. (2) The Mediodorsal (MD) nucleus, through its connections to the prefrontal cortex, and the other thalamic nuclei linked to the motor cortex, uses the same generative model for planning and learning novel spatial movements. (3) The paraventricular nucleus may compute risk-reward trade-offs. We also propose that as any new movement is practiced a few times, cortico-thalamocortical (CTC) links entrain the corresponding cortico-cortical links, through a process akin to supervised learning. Subsequently, the movement becomes a fast unconscious habit, not requiring the MD nucleus or other thalamic nuclei, and bypassing the thalamic bottleneck.
Collapse
Affiliation(s)
- Robert Worden
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Max S. Bennett
- Independent Researcher, New York, NY, United States
- Bluecore, New York, NY, United States
| | - Victorita Neacsu
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
21
|
Homman-Ludiye J, Bourne JA. The Marmoset: The Next Frontier in Understanding the Development of the Human Brain. ILAR J 2021; 61:248-259. [PMID: 33620074 DOI: 10.1093/ilar/ilaa028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
Rodent models, particularly mice, have dominated the field of developmental neuroscience for decades, like they have in most fields of biomedicine research. However, with 80 million years since rodents and primates last shared a common ancestor, the use of mice to model the development of the human brain is not without many shortcomings. The human brain diverges from the mouse brain in many aspects and is comprised of novel structures as well as diversified cellular subtypes. While these newly evolved features have no equivalent in rodents, they are observed in nonhuman primates. Therefore, elucidating the cellular mechanisms underlying the development and maturation of the healthy and diseased human brain can be achieved using less complex nonhuman primates. Historically, macaques were the preferred nonhuman primate model. However, over the past decade, the New World marmoset monkey (Callithrix jacchus) has gained more importance, particularly in the field of neurodevelopment. With its small size, twin or triplet birth, and prosocial behavior, the marmoset is an ideal model to study normal brain development as well as neurodevelopmental disorders, which are often associated with abnormal social behaviors. The growing interest in the marmoset has prompted many comparative studies, all demonstrating that the marmoset brain closely resembles that of the human and is perfectly suited to model human brain development. The marmoset is thus poised to extend its influence in the field of neurodevelopment and will hopefully fill the gaps that the mouse has left in our understanding of how our brain forms and how neurodevelopmental disorders originate.
Collapse
Affiliation(s)
- Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
22
|
Kastner S, Fiebelkorn IC, Eradath MK. Dynamic pulvino-cortical interactions in the primate attention network. Curr Opin Neurobiol 2020; 65:10-19. [PMID: 32942125 PMCID: PMC7770054 DOI: 10.1016/j.conb.2020.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
While research in previous decades demonstrated a link between the pulvinar nucleus of the thalamus and visual selective attention, the pulvinar's specific functional role has remained elusive. However, methodological advances in electrophysiological recordings in non-human primates, including simultaneous recordings in multiple brain regions, have recently begun to reveal the pulvinar's functional contributions to selective attention. These new findings suggest that the pulvinar is critical for the efficient transmission of sensory information within and between cortical regions, both synchronizing cortical activity across brain regions and controlling cortical excitability. These new findings further suggest that the pulvinar's influence on cortical processing is embedded in a dynamic selection process that balances sensory and motor functions within the large-scale network that directs selective attention.
Collapse
Affiliation(s)
- Sabine Kastner
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, United States.
| | - Ian C Fiebelkorn
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, United States
| | - Manoj K Eradath
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, United States
| |
Collapse
|
23
|
O'Connell MN, Barczak A, McGinnis T, Mackin K, Mowery T, Schroeder CE, Lakatos P. The Role of Motor and Environmental Visual Rhythms in Structuring Auditory Cortical Excitability. iScience 2020; 23:101374. [PMID: 32738615 PMCID: PMC7394914 DOI: 10.1016/j.isci.2020.101374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/14/2020] [Accepted: 07/13/2020] [Indexed: 10/26/2022] Open
Abstract
Previous studies indicate that motor sampling patterns modulate neuronal excitability in sensory brain regions by entraining brain rhythms, a process termed motor-initiated entrainment. In addition, rhythms of the external environment are also capable of entraining brain rhythms. Our first goal was to investigate the properties of motor-initiated entrainment in the auditory system using a prominent visual motor sampling pattern in primates, saccades. Second, we wanted to determine whether/how motor-initiated entrainment interacts with visual environmental entrainment. We examined laminar profiles of neuronal ensemble activity in primary auditory cortex and found that whereas motor-initiated entrainment has a suppressive effect, visual environmental entrainment has an enhancive effect. We also found that these processes are temporally coupled, and their temporal relationship ensures that their effect on excitability is complementary rather than interfering. Altogether, our results demonstrate that motor and sensory systems continuously interact in orchestrating the brain's context for the optimal sampling of our multisensory environment.
Collapse
Affiliation(s)
- Monica N O'Connell
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Annamaria Barczak
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Tammy McGinnis
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Kieran Mackin
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Todd Mowery
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Charles E Schroeder
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Departments of Neurological Surgery and Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Peter Lakatos
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
24
|
Mancini V, Zöller D, Schneider M, Schaer M, Eliez S. Abnormal Development and Dysconnectivity of Distinct Thalamic Nuclei in Patients With 22q11.2 Deletion Syndrome Experiencing Auditory Hallucinations. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:875-890. [PMID: 32620531 DOI: 10.1016/j.bpsc.2020.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Several studies in patients with schizophrenia have demonstrated an abnormal thalamic volume and thalamocortical connectivity. Specifically, hyperconnectivity with somatosensory areas has been related to the presence of auditory hallucinations (AHs). The 22q11.2 deletion syndrome is a neurogenetic disorder conferring proneness to develop schizophrenia, and deletion carriers (22qdel carriers) experience hallucinations to a greater extent than the general population. METHODS We acquired 442 consecutive magnetic resonance imaging scans from 120 22qdel carriers and 110 control subjects every 3 years (age range: 8-35 years). The volume of thalamic nuclei was obtained with FreeSurfer and was compared between 22qdel carriers and control subjects and between 22qdel carriers with and without AHs. In a subgroup of 76 22qdel carriers, we evaluated the functional connectivity between thalamic nuclei affected in patients experiencing AHs and cortical regions. RESULTS As compared with control subjects, 22qdel carriers had lower and higher volumes of nuclei involved in sensory processing and cognitive functions, respectively. 22qdel carriers with AHs had a smaller volume of the medial geniculate nucleus, with deviant trajectories showing a steeper volume decrease from childhood with respect to those without AHs. Moreover, we showed an aberrant development of nuclei intercalated between the prefrontal cortex and hippocampus (the anteroventral and medioventral reuniens nuclei) and hyperconnectivity of the medial geniculate nucleus and anteroventral nucleus with the auditory cortex and Wernicke's area. CONCLUSIONS The increased connectivity of the medial geniculate nucleus and anteroventral nucleus to the auditory cortex might be interpreted as a lack of maturation of thalamocortical connectivity. Overall, our findings point toward an aberrant development of thalamic nuclei and an immature pattern of connectivity with temporal regions in relation to AHs.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Daniela Zöller
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Clinical Psychology Unit for Developmental and Intellectual Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Department of Neuroscience, Center for Contextual Psychiatry, Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Marie Schaer
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|