1
|
Arif Y, Son JJ, Okelberry HJ, Johnson HJ, Willett MP, Wiesman AI, Wilson TW. Modulation of movement-related oscillatory signatures by cognitive interference in healthy aging. GeroScience 2024; 46:3021-3034. [PMID: 38175521 PMCID: PMC11009213 DOI: 10.1007/s11357-023-01057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Age-related changes in the neurophysiology underlying motor control are well documented, but whether these changes are specific to motor function or more broadly reflect age-related alterations in fronto-parietal circuitry serving attention and other higher-level processes remains unknown. Herein, we collected high-density magnetoencephalography (MEG) in 72 healthy adults (age 28-63 years) as they completed an adapted version of the multi-source interference task that involved two subtypes of cognitive interference (i.e., flanker and Simon) and their integration (i.e., multi-source). All MEG data were examined for age-related changes in neural oscillatory activity using a whole-brain beamforming approach. Our primary findings indicated robust behavioral differences in task performance based on the type of interference, as well as stronger beta oscillations with increasing age in the right dorsolateral prefrontal cortices (flanker and multi-source conditions), left parietal (flanker and Simon), and medial parietal regions (multi-source). Overall, these data indicate that healthy aging is associated with alterations in higher-order association cortices that are critical for attention and motor control in the context of cognitive interference.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA.
| | - Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
2
|
Son JJ, Arif Y, Oludipe D, Weyrich L, Killanin AD, Wiesman AI, Okelberry HJ, Willett MP, Johnson HJ, Wilson TW. Multispectral brain connectivity during visual attention distinguishes controlled from uncontrolled hypertension. J Physiol 2024; 602:1775-1790. [PMID: 38516712 PMCID: PMC11150863 DOI: 10.1113/jp285568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Hypertension-related changes in brain function place individuals at higher risk for cognitive impairment and Alzheimer's disease. The existing functional neuroimaging literature has identified important neural and behavioural differences between normotensive and hypertensive individuals. However, previously-used methods (i.e. magnetic resonance imaging, functional near-infrared spectroscopy) rely on neurovascular coupling, which is a useful but indirect measure of neuronal activity. Furthermore, most studies fail to distinguish between controlled and uncontrolled hypertensive individuals, who exhibit significant behavioural and clinical differences. To partially remedy this gap in the literature, we used magnetoencephalography (MEG) to directly examine neuronal activity that is invariant to neurovascular coupling changes induced by hypertension. Our study included 52 participants (19 healthy controls, 15 controlled hypertensives, 18 uncontrolled hypertensives) who completed a modified flanker attention task during MEG. We identified significant oscillatory neural responses in two frequencies (alpha: 8-14 Hz, gamma: 48-60 Hz) for imaging and used grand-averaged images to determine seeds for whole-brain connectivity analysis. We then conducted Fisher-z tests for each pair of groups, using the relationship between the neural connectivity and behavioural attention effects. This highlighted a distributed network of regions associated with cognitive control and selective attention, including frontal-occipital and interhemispheric occipital connections. Importantly, the inferior frontal cortex exhibited a unique neurobehavioural relationship that distinguished the uncontrolled hypertensive group from the controlled hypertensive and normotensive groups. This is the first investigation of hypertension using MEG and identifies critical whole-brain connectivity differences based on hypertension profiles. KEY POINTS: Structural and functional changes in brain circuitry scale with hypertension severity and increase the risk of cognitive impairment and Alzheimer's disease. We harness the excellent spatiotemporal precision of magnetoencephalography (MEG) to directly quantify dynamic functional connectivity in healthy control, controlled hypertensive and uncontrolled hypertensive groups during a flanker task. In the first MEG study of hypertension, we show that there are neurobehavioural relationships that distinguish the uncontrolled hypertensive group from healthy and controlled hypertensive group in the prefrontal cortex. These results provide novel insights into the differential impact of hypertension on brain dynamics underlying selective attention.
Collapse
Affiliation(s)
- Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Davina Oludipe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Lucas Weyrich
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
3
|
Son JJ, Killanin AD, Arif Y, Johnson HJ, Okelberry HJ, Weyrich L, Wang YP, Calhoun VD, Stephen JM, Taylor BK, Wilson TW. Developmentally sensitive multispectral cortical connectivity profiles serving visual selective attention. Dev Cogn Neurosci 2024; 66:101371. [PMID: 38582064 PMCID: PMC11004069 DOI: 10.1016/j.dcn.2024.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 12/01/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
Throughout childhood and adolescence, the brain undergoes significant structural and functional changes that contribute to the maturation of multiple cognitive domains, including selective attention. Selective attention is crucial for healthy executive functioning and while key brain regions serving selective attention have been identified, their age-related changes in neural oscillatory dynamics and connectivity remain largely unknown. We examined the developmental sensitivity of selective attention circuitry in 91 typically developing youth aged 6 - 13 years old. Participants completed a number-based Simon task while undergoing magnetoencephalography (MEG) and the resulting data were preprocessed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and task-related peak voxels in the occipital, parietal, and cerebellar cortices were used as seeds for subsequent whole-brain connectivity analyses in the alpha and gamma range. Our key findings revealed developmentally sensitive connectivity profiles in multiple regions crucial for selective attention, including the temporoparietal junction (alpha) and prefrontal cortex (gamma). Overall, these findings suggest that brain regions serving selective attention are highly sensitive to developmental changes during the pubertal transition period.
Collapse
Affiliation(s)
- Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Lucas Weyrich
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, GA, USA
| | | | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
4
|
Schantell M, Taylor BK, Mansouri A, Arif Y, Coutant AT, Rice DL, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Theta oscillatory dynamics serving cognitive control index psychosocial distress in youth. Neurobiol Stress 2024; 29:100599. [PMID: 38213830 PMCID: PMC10776433 DOI: 10.1016/j.ynstr.2023.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/09/2023] [Accepted: 12/10/2023] [Indexed: 01/13/2024] Open
Abstract
Background Psychosocial distress among youth is a major public health issue characterized by disruptions in cognitive control processing. Using the National Institute of Mental Health's Research Domain Criteria (RDoC) framework, we quantified multidimensional neural oscillatory markers of psychosocial distress serving cognitive control in youth. Methods The sample consisted of 39 peri-adolescent participants who completed the NIH Toolbox Emotion Battery (NIHTB-EB) and the Eriksen flanker task during magnetoencephalography (MEG). A psychosocial distress index was computed with exploratory factor analysis using assessments from the NIHTB-EB. MEG data were analyzed in the time-frequency domain and peak voxels from oscillatory maps depicting the neural cognitive interference effect were extracted for voxel time series analyses to identify spontaneous and oscillatory aberrations in dynamics serving cognitive control as a function of psychosocial distress. Further, we quantified the relationship between psychosocial distress and dynamic functional connectivity between regions supporting cognitive control. Results The continuous psychosocial distress index was strongly associated with validated measures of pediatric psychopathology. Theta-band neural cognitive interference was identified in the left dorsolateral prefrontal cortex (dlPFC) and middle cingulate cortex (MCC). Time series analyses of these regions indicated that greater psychosocial distress was associated with elevated spontaneous activity in both the dlPFC and MCC and blunted theta oscillations in the MCC. Finally, we found that stronger phase coherence between the dlPFC and MCC was associated with greater psychosocial distress. Conclusions Greater psychosocial distress was marked by alterations in spontaneous and oscillatory theta activity serving cognitive control, along with hyperconnectivity between the dlPFC and MCC.
Collapse
Affiliation(s)
- Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Brittany K. Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Amirsalar Mansouri
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T. Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Danielle L. Rice
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging & Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
5
|
Wojciechowski J, Jurewicz K, Dzianok P, Antonova I, Paluch K, Wolak T, Kublik E. Common and distinct BOLD correlates of Simon and flanker conflicts which can(not) be reduced to time-on-task effects. Hum Brain Mapp 2024; 45:e26549. [PMID: 38224538 PMCID: PMC10777776 DOI: 10.1002/hbm.26549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/25/2023] [Accepted: 11/16/2023] [Indexed: 01/17/2024] Open
Abstract
The ability to identify and resolve conflicts between standard, well-trained behaviors and behaviors required by the current context is an essential feature of cognitive control. To date, no consensus has been reached on the brain mechanisms involved in exerting such control: while some studies identified diverse patterns of activity across different conflicts, other studies reported common resources across conflict tasks or even across simple tasks devoid of the conflict component. The latter reports attributed the entire activity observed in the presence of conflict to longer time spent on the task (i.e., to the so-called time-on-task effects). Here, we used an extended Multi-Source Interference Task (MSIT) which combines Simon and flanker types of interference to determine shared and conflict-specific mechanisms of conflict resolution in fMRI and their separability from the time-on-task effects. Large portions of the activity in the dorsal attention network and decreases of activity in the default mode network were shared across the tasks and scaled in parallel with increasing reaction times. Importantly, the activity in the sensory and sensorimotor cortices, as well as in the posterior medial frontal cortex (pMFC) - a key region implicated in conflict processing - could not be exhaustively explained by the time-on-task effects.
Collapse
Affiliation(s)
- Jakub Wojciechowski
- Neurobiology of Emotions LaboratoryNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
- Bioimaging Research CenterInstitute of Physiology and Pathology of HearingWarsawPoland
| | - Katarzyna Jurewicz
- Neurobiology of Emotions LaboratoryNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
- Department of PhysiologyFaculty of Medicine and Health Sciences, McGill UniversityMontrealQuebecCanada
| | - Patrycja Dzianok
- Neurobiology of Emotions LaboratoryNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Ingrida Antonova
- Neurobiology of Emotions LaboratoryNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
- Laboratory of NeuroinformaticsNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Katarzyna Paluch
- Neurobiology of Emotions LaboratoryNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
- Laboratory of Neurophysiology of MindCenter of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Tomasz Wolak
- Bioimaging Research CenterInstitute of Physiology and Pathology of HearingWarsawPoland
| | - Ewa Kublik
- Neurobiology of Emotions LaboratoryNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| |
Collapse
|
6
|
Pscherer C, Wendiggensen P, Mückschel M, Bluschke A, Beste C. Alpha and theta band activity share information relevant to proactive and reactive control during conflict-modulated response inhibition. Hum Brain Mapp 2023; 44:5936-5952. [PMID: 37728249 PMCID: PMC10619371 DOI: 10.1002/hbm.26486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Response inhibition is an important instance of cognitive control and can be complicated by perceptual conflict. The neurophysiological mechanisms underlying these processes are still not understood. Especially the relationship between neural processes directly preceding cognitive control (proactive control) and processes underlying cognitive control (reactive control) has not been examined although there should be close links. In the current study, we investigate these aspects in a sample of N = 50 healthy adults. Time-frequency and beamforming approaches were applied to analyze the interrelation of brain states before (pre-trial) and during (within-trial) cognitive control. The behavioral data replicate a perceptual conflict-dependent modulation of response inhibition. During the pre-trial period, insular, inferior frontal, superior temporal, and precentral alpha activity was positively correlated with theta activity in the same regions and the superior frontal gyrus. Additionally, participants with a stronger pre-trial alpha activity in the primary motor cortex showed a stronger (within-trial) conflict effect in the theta band in the primary motor cortex. This theta conflict effect was further related to a stronger theta conflict effect in the midcingulate cortex until the end of the trial. The temporal cascade of these processes suggests that successful proactive preparation (anticipatory information gating) entails a stronger reactive processing of the conflicting stimulus information likely resulting in a realization of the need to adapt the current action plan. The results indicate that theta and alpha band activity share and transfer aspects of information when it comes to the interrelationship between proactive and reactive control during conflict-modulated motor inhibition.
Collapse
Affiliation(s)
- Charlotte Pscherer
- Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
- University Neuropsychology CenterFaculty of Medicine, TU DresdenDresdenGermany
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
- University Neuropsychology CenterFaculty of Medicine, TU DresdenDresdenGermany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
- University Neuropsychology CenterFaculty of Medicine, TU DresdenDresdenGermany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
- University Neuropsychology CenterFaculty of Medicine, TU DresdenDresdenGermany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
- University Neuropsychology CenterFaculty of Medicine, TU DresdenDresdenGermany
| |
Collapse
|
7
|
Arif Y, Wiesman AI, Christopher-Hayes N, Okelberry HJ, Johnson HJ, Willett MP, Wilson TW. Altered age-related alpha and gamma prefrontal-occipital connectivity serving distinct cognitive interference variants. Neuroimage 2023; 280:120351. [PMID: 37659656 PMCID: PMC10545948 DOI: 10.1016/j.neuroimage.2023.120351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
The presence of conflicting stimuli adversely affects behavioral outcomes, which could either be at the level of stimulus (Flanker), response (Simon), or both (Multisource). Briefly, flanker interference involves conflicting stimuli requiring selective attention, Simon interference is caused by an incongruity between the spatial location of the task-relevant stimulus and prepotent motor mapping, and multisource is combination of both. Irrespective of the variant, interference resolution necessitates cognitive control to filter irrelevant information and allocate neural resources to task-related goals. Though previously studied in healthy young adults, the direct quantification of changes in oscillatory activity serving such cognitive control and associated inter-regional interactions in healthy aging are poorly understood. Herein, we used an adapted version of the multisource interference task and magnetoencephalography to investigate age-related alterations in the neural dynamics governing both divergent and convergent cognitive interference in 78 healthy participants (age range: 20-66 years). We identified weaker alpha connectivity between bilateral visual and right dorsolateral prefrontal cortices (DLPFC) and left dorsomedial prefrontal cortices (dmPFC), as well as weaker gamma connectivity between bilateral occipital regions and the right dmPFC during flanker interference with advancing age. Further, an age-related decrease in gamma power was observed in the left cerebellum and parietal region for Simon and differential interference effects (i.e., flanker-Simon), respectively. Moreover, the superadditivity model showed decreased gamma power in the right temporoparietal junction (TPJ) with increasing age. Overall, our findings suggest age-related declines in the engagement of top-down attentional control secondary to reduced alpha and gamma coupling between prefrontal and occipital cortices.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA.
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
8
|
Springer SD, Erker TD, Schantell M, Johnson HJ, Willett MP, Okelberry HJ, Rempe MP, Wilson TW. Disturbances in primary visual processing as a function of healthy aging. Neuroimage 2023; 271:120020. [PMID: 36914104 PMCID: PMC10123380 DOI: 10.1016/j.neuroimage.2023.120020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
For decades, visual entrainment paradigms have been widely used to investigate basic visual processing in healthy individuals and those with neurological disorders. While healthy aging is known to be associated with alterations in visual processing, whether this extends to visual entrainment responses and the precise cortical regions involved is not fully understood. Such knowledge is imperative given the recent surge in interest surrounding the use of flicker stimulation and entrainment in the context of identifying and treating Alzheimer's disease (AD). In the current study, we examined visual entrainment in eighty healthy aging adults using magnetoencephalography (MEG) and a 15 Hz entrainment paradigm, while controlling for age-related cortical thinning. MEG data were imaged using a time-frequency resolved beamformer and peak voxel time series were extracted to quantify the oscillatory dynamics underlying the processing of the visual flicker stimuli. We found that, as age increased, the mean amplitude of entrainment responses decreased and the latency of these responses increased. However, there was no effect of age on the trial-to-trial consistency in phase (i.e., inter-trial phase locking) nor amplitude (i.e., coefficient of variation) of these visual responses. Importantly, we discovered that the relationship between age and response amplitude was fully mediated by the latency of visual processing. These results indicate that aging is associated with robust changes in the latency and amplitude of visual entrainment responses within regions surrounding the calcarine fissure, which should be considered in studies examining neurological disorders such as AD and other conditions associated with increased age.
Collapse
Affiliation(s)
- Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tara D Erker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Engineering, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
9
|
Son JJ, Arif Y, Schantell M, Willett MP, Johnson HJ, Okelberry HJ, Embury CM, Wilson TW. Oscillatory dynamics serving visual selective attention during a Simon task. Brain Commun 2023; 5:fcad131. [PMID: 37151223 PMCID: PMC10162684 DOI: 10.1093/braincomms/fcad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/08/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023] Open
Abstract
Selective attention is an important component of cognitive control and is essential for day-to-day functioning. The Simon task is a common test of visual selective attention that has been widely used to probe response selection, inhibition and cognitive control. However, to date, there is a dearth of literature that has focused on the oscillatory dynamics serving task performance in the selective attention component of this task. In this study, 32 healthy adults (mean age: 33.09 years, SD: 7.27 years) successfully completed a modified version of the Simon task during magnetoencephalography. All magnetoencephalographic data were pre-processed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and peak task-related neural activity was extracted to examine the temporal dynamics. Across both congruent and Simon conditions, our results indicated robust decreases in alpha (8-12 Hz) activity in the bilateral occipital regions and cuneus during task performance, while increases in theta (3-6 Hz) oscillatory activity were detected in regions of the dorsal frontoparietal attention network, including the dorsolateral prefrontal cortex, frontal eye fields and insula. Lastly, whole-brain condition-wise analyses showed Simon interference effects in the theta range in the superior parietal region and the alpha range in the posterior cingulate and inferior frontal cortices. These findings provide network-specific insights into the oscillatory dynamics serving visual selective attention.
Collapse
Affiliation(s)
- Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (IGPBS), College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (IGPBS), College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (IGPBS), College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
10
|
Duprez J, Tabbal J, Hassan M, Modolo J, Kabbara A, Mheich A, Drapier S, Vérin M, Sauleau P, Wendling F, Benquet P, Houvenaghel JF. Spatio-temporal dynamics of large-scale electrophysiological networks during cognitive action control in healthy controls and Parkinson's disease patients. Neuroimage 2022; 258:119331. [PMID: 35660459 DOI: 10.1016/j.neuroimage.2022.119331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022] Open
Abstract
Among the cognitive symptoms that are associated with Parkinson's disease (PD), alterations in cognitive action control (CAC) are commonly reported in patients. CAC enables the suppression of an automatic action, in favor of a goal-directed one. The implementation of CAC is time-resolved and arguably associated with dynamic changes in functional brain networks. However, the electrophysiological functional networks involved, their dynamic changes, and how these changes are affected by PD, still remain unknown. In this study, to address this gap of knowledge, 10 PD patients and 10 healthy controls (HC) underwent a Simon task while high-density electroencephalography (HD-EEG) was recorded. Source-level dynamic connectivity matrices were estimated using the phase-locking value in the beta (12-25 Hz) and gamma (30-45 Hz) frequency bands. Temporal independent component analyses were used as a dimension reduction tool to isolate the task-related brain network states. Typical microstate metrics were quantified to investigate the presence of these states at the subject-level. Our results first confirmed that PD patients experienced difficulties in inhibiting automatic responses during the task. At the group-level, we found three functional network states in the beta band that involved fronto-temporal, temporo-cingulate and fronto-frontal connections with typical CAC-related prefrontal and cingulate nodes (e.g., inferior frontal cortex). The presence of these networks did not differ between PD patients and HC when analyzing microstates metrics, and no robust correlations with behavior were found. In the gamma band, five networks were found, including one fronto-temporal network that was identical to the one found in the beta band. These networks also included CAC-related nodes previously identified in different neuroimaging modalities. Similarly to the beta networks, no subject-level differences were found between PD patients and HC. Interestingly, in both frequency bands, the dominant network at the subject-level was never the one that was the most durably modulated by the task. Altogether, this study identified the dynamic functional brain networks observed during CAC, but did not highlight PD-related changes in these networks that might explain behavioral changes. Although other new methods might be needed to investigate the presence of task-related networks at the subject-level, this study still highlights that task-based dynamic functional connectivity is a promising approach in understanding the cognitive dysfunctions observed in PD and beyond.
Collapse
Key Words
- Cognitive control
- DIFFIT, Difference in data fitting
- DLPFC, Dorso-lateral prefrontal cortex
- EEG, Electroencephalography
- FC, Functional connectivity
- Functional connectivity
- HC, Healthy controls
- HD-EEG, High-density EEG
- ICA, Independent component analysis
- IFC, Inferior frontal cortex
- MEG, Magnetoencephalography
- Networks, Dynamics
- PD, Parkinson's disease
- PLV, Phase locking value
- Parkinson's disease Abbreviations CAC, Cognitive action control
- ROIS, Regions of interest
- RT, Reaction time
- Simon task
- dBNS, Dynamic brain network state
- dFC, Dynamic functional connectivity
- fMRI, Functional magnetic resonance imaging
- high density EEG
- pre-SMA, Pre-supplementary motor area
- tICA, Temporal ICA
Collapse
Affiliation(s)
- Joan Duprez
- Univ Rennes, LTSI - U1099, F-35000 Rennes, France
| | - Judie Tabbal
- Univ Rennes, LTSI - U1099, F-35000 Rennes, France; Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Mahmoud Hassan
- MINDig, F-35000 Rennes, France; School of Engineering, Reykjavik University, Iceland
| | | | | | | | - Sophie Drapier
- CIC INSERM 1414, Rennes, France; Neurology Department, Pontchaillou Hospital, Rennes University Hospital, France
| | - Marc Vérin
- Neurology Department, Pontchaillou Hospital, Rennes University Hospital, France; Behavioral and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, France
| | - Paul Sauleau
- Behavioral and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, France; Neurophysiology department, Rennes University Hospital, France
| | | | | | - Jean-François Houvenaghel
- Neurology Department, Pontchaillou Hospital, Rennes University Hospital, France; Behavioral and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, France
| |
Collapse
|
11
|
Heinrichs-Graham E, Wiesman AI, Embury CM, Schantell M, Joe TR, Eastman JA, Wilson TW. Differential impact of movement on the alpha and gamma dynamics serving visual processing. J Neurophysiol 2022; 127:928-937. [PMID: 35264002 PMCID: PMC8977134 DOI: 10.1152/jn.00380.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022] Open
Abstract
Visual processing is widely understood to be served by a decrease in alpha activity in occipital cortices, largely concurrent with an increase in gamma activity. Although the characteristics of these oscillations are well documented in response to a range of complex visual stimuli, little is known about how these dynamics are impacted by concurrent motor responses, which is problematic as many common visual tasks involve such responses. Thus, in the current study, we used magnetoencephalography (MEG) and modified a well-established visual paradigm to explore the impact of motor responses on visual oscillatory activity. Thirty-four healthy adults viewed a moving gabor (grating) stimulus that was known to elicit robust alpha and gamma oscillations in occipital cortices. Frequency and power characteristics were assessed statistically for differences as a function of movement condition. Our results indicated that occipital alpha significantly increased in power during movement relative to no movement trials. No differences in peak frequency or power were found for gamma responses between the two movement conditions. These results provide valuable evidence of visuomotor integration and underscore the importance of careful task design and interpretation, especially in the context of complex visual processing, and suggest that even basic motor responses alter occipital visual oscillations in healthy adults.NEW & NOTEWORTHY Processing of visual stimuli is served by occipital alpha and gamma activity. Many studies have investigated the impact of visual stimuli on motor cortical responses, but few studies have systematically investigated the impact of motor responses on visual oscillations. We found that when participants are asked to move in response to a visual stimulus, occipital alpha power was modulated whereas gamma responses were unaffected. This suggests that these responses have dissociable roles in visuomotor integration.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska
- College of Medicine, Creighton University, Omaha, Nebraska
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Alex I Wiesman
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska
- Department of Psychology, University of Nebraska at Omaha, Nebraska
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy R Joe
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Psychology, University of Nebraska at Omaha, Nebraska
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska
- College of Medicine, Creighton University, Omaha, Nebraska
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
12
|
Dzianok P, Antonova I, Wojciechowski J, Dreszer J, Kublik E. The Nencki-Symfonia electroencephalography/event-related potential dataset: Multiple cognitive tasks and resting-state data collected in a sample of healthy adults. Gigascience 2022; 11:giac015. [PMID: 35254424 PMCID: PMC8900497 DOI: 10.1093/gigascience/giac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/22/2021] [Accepted: 01/27/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND One of the goals of neuropsychology is to understand the brain mechanisms underlying aspects of attention and cognitive control. Several tasks have been developed as a part of this body of research, however their results are not always consistent. A reliable comparison of the data and a synthesis of study conclusions has been precluded by multiple methodological differences. Here, we describe a publicly available, high-density electroencephalography (EEG) dataset obtained from 42 healthy young adults while they performed 3 cognitive tasks: (i) an extended multi-source interference task; (ii) a 3-stimuli oddball task; (iii) a control, simple reaction task; and (iv) a resting-state protocol. Demographic and psychometric information are included within the dataset. DATASET VALIDATION First, data validation confirmed acceptable quality of the obtained EEG signals. Typical event-related potential (ERP) waveforms were obtained, as expected for attention and cognitive control tasks (i.e., N200, P300, N450). Behavioral results showed the expected progression of reaction times and error rates, which confirmed the effectiveness of the applied paradigms. CONCLUSIONS This dataset is well suited for neuropsychological research regarding common and distinct mechanisms involved in different cognitive tasks. Using this dataset, researchers can compare a wide range of classical EEG/ERP features across tasks for any selected subset of electrodes. At the same time, 128-channel EEG recording allows for source localization and detailed connectivity studies. Neurophysiological measures can be correlated with additional psychometric data obtained from the same participants. This dataset can also be used to develop and verify novel analytical and classification approaches that can advance the field of deep/machine learning algorithms, recognition of single-trial ERP responses to different task conditions, and detection of EEG/ERP features for use in brain-computer interface applications.
Collapse
Affiliation(s)
- Patrycja Dzianok
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland
| | - Ingrida Antonova
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland
| | - Jakub Wojciechowski
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw,
Poland
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, 02-042, Warsaw, Poland
| | - Joanna Dreszer
- Institute of Psychology, Faculty of Philosophy and Social Sciences, Nicolaus Copernicus University in Toruń, 87-100, Toruń, Poland
| | - Ewa Kublik
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw,
Poland
| |
Collapse
|
13
|
Santaniello G, Ferré P, Sanchez-Carmona A, Huete-Pérez D, Albert J, Hinojosa JA. Gamma Oscillations in the Temporal Pole Reflect the Contribution of Approach and Avoidance Motivational Systems to the Processing of Fear and Anger Words. Front Psychol 2022; 12:802290. [PMID: 35140664 PMCID: PMC8820231 DOI: 10.3389/fpsyg.2021.802290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Prior reports suggest that affective effects in visual word processing cannot be fully explained by a dimensional perspective of emotions based on valence and arousal. In the current study, we focused on the contribution of approach and avoidance motivational systems that are related to different action components to the processing of emotional words. To this aim, we compared frontal alpha asymmetries and brain oscillations elicited by anger words associated with approach (fighting) motivational tendencies, and fear words that may trigger either avoidance (escaping), approach (fighting) or no (freezing) action tendencies. The participants’ task was to make decisions about approaching or distancing from the concepts represented by words. The results of cluster-based and beamforming analyses revealed increased gamma power band synchronization for fear words relative to anger words between 725 and 750 ms, with an estimated neural origin in the temporal pole. These findings were interpreted to reflect a conflict between different action tendencies underlying the representation of fear words in semantic and emotional memories, when trying to achieve task requirements. These results are in line with the predictions made by the fear-hinders-action hypothesis. Additionally, current data highlights the contribution of motivational features to the representation and processing of emotional words.
Collapse
Affiliation(s)
- Gerardo Santaniello
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Ferré
- Universitat Rovira i Virgili, Department of Psychology, Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
| | | | - Daniel Huete-Pérez
- Universitat Rovira i Virgili, Department of Psychology, Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
| | - Jacobo Albert
- Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - José A Hinojosa
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Nebrija en Cognición (CINC), Universidad Nebrija, Madrid, Spain
| |
Collapse
|
14
|
Meehan CE, Wiesman AI, Spooner RK, Schantell M, Eastman JA, Wilson TW. Differences in Rhythmic Neural Activity Supporting the Temporal and Spatial Cueing of Attention. Cereb Cortex 2021; 31:4933-4944. [PMID: 34226925 DOI: 10.1093/cercor/bhab132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022] Open
Abstract
The neural processes serving the orienting of attention toward goal-relevant stimuli are generally examined with informative cues that direct visual attention to a spatial location. However, cues predicting the temporal emergence of an object are also known to be effective in attentional orienting but are implemented less often. Differences in the neural oscillatory dynamics supporting these divergent types of attentional orienting have only rarely been examined. In this study, we utilized magnetoencephalography and an adapted Posner cueing task to investigate the spectral specificity of neural oscillations underlying these different types of attentional orienting (i.e., spatial vs. temporal). We found a spectral dissociation of attentional cueing, such that alpha (10-16 Hz) oscillations were central to spatial orienting and theta (3-6 Hz) oscillations were critical to temporal orienting. Specifically, we observed robust decreases in alpha power during spatial orienting in key attention areas (i.e., lateral occipital, posterior cingulate, and hippocampus), along with strong theta increases during temporal orienting in the primary visual cortex. These results suggest that the oscillatory dynamics supporting attentional orienting are spectrally and anatomically specific, such that spatial orienting is served by stronger alpha oscillations in attention regions, whereas temporal orienting is associated with stronger theta responses in visual sensory regions.
Collapse
Affiliation(s)
- Chloe E Meehan
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA.,Department of Psychology, University of Nebraska, Omaha, NE 68182, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA.,Department of Psychology, University of Nebraska, Omaha, NE 68182, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
15
|
Midfrontal theta as moderator between beta oscillations and precision control. Neuroimage 2021; 235:118022. [PMID: 33836271 DOI: 10.1016/j.neuroimage.2021.118022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Control of movements using visual information is crucial for many daily activities, and such visuomotor control has been revealed to be supported by alpha and beta cortical oscillations. However, it has been remained to be unclear how midfrontal theta and occipital gamma oscillations, which are associated with high-level cognitive functions, would be involved in this process to facilitate performance. Here we addressed this fundamental open question in healthy young adults by measuring high-density cortical activity during a precision force-matching task. We manipulated the amount of error by changing visual feedback gain (low, medium, and high visual gains) and analyzed event-related spectral perturbations. Increasing the visual feedback gain resulted in a decrease in force error and variability. There was an increase in theta synchronization in the midfrontal area and also in beta desynchronization in the sensorimotor and posterior parietal areas with higher visual feedback gains. Gamma de/synchronization was not evident during the task. In addition, we found a moderation effect of midfrontal theta on the positive relationship between the beta oscillations and force error. Subsequent simple slope analysis indicated that the effect of beta oscillations on force error was weaker when midfrontal theta was high. Our findings suggest that the midfrontal area signals the increased need of cognitive control to refine behavior by modulating the visuomotor processing at theta frequencies.
Collapse
|
16
|
Wiesman AI, Christopher-Hayes NJ, Eastman JA, Heinrichs-Graham E, Wilson TW. Response certainty during bimanual movements reduces gamma oscillations in primary motor cortex. Neuroimage 2020; 224:117448. [PMID: 33059048 PMCID: PMC7994913 DOI: 10.1016/j.neuroimage.2020.117448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 11/15/2022] Open
Abstract
Even when movement outputs are identical, the neural responses supporting them might differ substantially in order to adapt to changing environmental contexts. Despite the essential nature of this adaptive capacity of the human motor system, little is known regarding the effects of contextual response (un)certainty on the neural dynamics known to serve motor processing. In this study, we use a novel bimanual motor task and neuroimaging with magnetoencephalography (MEG) to examine the effects of contextual response certainty on the dynamic neural responses that are important for proper movement. Significant neural responses were identified in the time-frequency domain at the sensor-level and imaged to the cortex using a spectrally resolved beamformer. Combined frequentist and Bayesian statistical testing between neural motor responses under certain and uncertain conditions indicated evidence for no conditional effect on the peri-movement beta desynchronization (18 - 28 Hz; -100 to 300 ms). In contrast, the movement-related gamma synchronization (MRGS; 66 - 86 Hz; -50 to 150 ms) exhibited a robust effect of motor certainty, such that increased contextual response certainty reduced the amplitude of this response. Interestingly, the peak frequency of the MRGS was unaffected by response certainty. These findings both advance our understanding of the neural processes required to adapt our movements under altered environmental contexts, and support the growing conceptualization of the MRGS as being reflective of ongoing higher cognitive processes during movement execution.
Collapse
Affiliation(s)
- Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, 988422 Nebraska Medical Center, Omaha, NE 68198-8422, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, UNMC, Omaha, NE, USA.
| | - Nicholas J Christopher-Hayes
- Department of Neurological Sciences, University of Nebraska Medical Center, 988422 Nebraska Medical Center, Omaha, NE 68198-8422, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, UNMC, Omaha, NE, USA
| | - Jacob A Eastman
- Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, UNMC, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center, 988422 Nebraska Medical Center, Omaha, NE 68198-8422, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, UNMC, Omaha, NE, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, 988422 Nebraska Medical Center, Omaha, NE 68198-8422, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, UNMC, Omaha, NE, USA
| |
Collapse
|
17
|
Wiesman AI, Koshy SM, Heinrichs-Graham E, Wilson TW. Beta and gamma oscillations index cognitive interference effects across a distributed motor network. Neuroimage 2020; 213:116747. [PMID: 32179103 DOI: 10.1016/j.neuroimage.2020.116747] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022] Open
Abstract
The planning and execution of an efficient motor plan is essential to everyday cognitive function, and relies on oscillatory neural responses in both the beta (14-30 Hz) and gamma (>30 Hz) bands. Such motor control requires not only the integration of salient information from the environment, but also the inhibition of irrelevant or distracting inputs that often manifest as forms of cognitive interference. While the effects of cognitive interference on motor neural dynamics has been an area of increasing interest recently, it remains unclear whether different subtypes of interference differentially impact these dynamics. We address this issue using magnetoencephalography and a novel adaptation of the Multi-Source Interference Task, wherein two common subtypes of cognitive interference are each presented in isolation, as well as simultaneously. We find evidence for the subtype-invariant indexing of cognitive interference across a widely distributed set of motor regions oscillating in the beta range, including the bilateral primary motor and posterior parietal cortices. Further, we find that superadditive effects of cognitive interference subtypes on behavior are paralleled by gamma oscillations in the contralateral premotor cortex, and determine that these gamma oscillations also predict the superadditive effects on behavior.
Collapse
Affiliation(s)
- Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| | - Sam M Koshy
- Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Department of Biology, Creighton University, Omaha, NE, USA
| | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA.
| |
Collapse
|