1
|
Van Braeckel E, Bosteels C. Growing from common ground: nontuberculous mycobacteria and bronchiectasis. Eur Respir Rev 2024; 33:240058. [PMID: 38960614 PMCID: PMC11220627 DOI: 10.1183/16000617.0058-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis and nontuberculous mycobacteria (NTM) are intricately intertwined, with NTM capable of being both a cause and consequence of bronchiectatic disease. This narrative review focuses on the common ground of bronchiectasis and NTM pulmonary disease (NTM-PD) in terms of diagnostic approach, underlying risk factors and treatment strategies. NTM-PD diagnosis relies on a combination of clinical, radiological and microbiological criteria. Although their epidemiology is complicated by detection and reporting biases, the prevalence and pathogenicity of NTM species vary geographically, with Mycobacterium avium complex and Mycobacterium abscessus subspecies most frequently isolated in bronchiectasis-associated NTM-PD. Diagnosis of nodular bronchiectatic NTM-PD should prompt investigation of host factors, including disorders of mucociliary clearance, connective tissue diseases and immunodeficiencies, either genetic or acquired. Treatment of NTM-PD in bronchiectasis involves a multidisciplinary approach and considers the (sub)species involved, disease severity and comorbidities. Current guideline-based antimicrobial treatment of NTM-PD is considered long, cumbersome and unsatisfying in terms of outcomes. Novel treatment regimens and strategies are being explored, including rifampicin-free regimens and inclusion of clofazimine and inhaled antibiotics. Host-directed therapies, such as immunomodulators and cytokine-based therapies, might enhance antimycobacterial immune responses. Optimising supportive care, as well as pathogen- and host-directed strategies, is crucial, highlighting the need for personalised approaches tailored to individual patient needs. Further research is warranted to elucidate the complex interplay between host and mycobacterial factors, informing more effective management strategies.
Collapse
Affiliation(s)
- Eva Van Braeckel
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- European Reference Network on rare respiratory diseases (ERN-LUNG)
| | - Cédric Bosteels
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- European Reference Network on rare respiratory diseases (ERN-LUNG)
| |
Collapse
|
2
|
Baker AW, Nick SE, Jia F, Graves AM, Warren BG, Zavala S, Stout JE, Lee MJ, Alexander BD, Davidson RM, Anderson DJ. Mycobacterium immunogenum acquisition from hospital tap water: a genomic and epidemiologic analysis. J Clin Microbiol 2024; 62:e0014924. [PMID: 38690881 PMCID: PMC11237794 DOI: 10.1128/jcm.00149-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/06/2024] [Indexed: 05/03/2024] Open
Abstract
We identified 23 cases of Mycobacterium immunogenum respiratory acquisition linked to a colonized plumbing system at a new hospital addition. We conducted a genomic and epidemiologic investigation to assess for clonal acquisition of M. immunogenum from hospital water sources and improve understanding of genetic distances between M. immunogenum isolates. We performed whole-genome sequencing on 28 M. immunogenum isolates obtained from August 2013 to July 2021 from patients and water sources on four intensive care and intermediate units at an academic hospital. Study hospital isolates were recovered from 23 patients who experienced de novo respiratory isolation of M. immunogenum and from biofilms obtained from five tap water outlets. We also analyzed 10 M. immunogenum genomes from previously sequenced clinical (n = 7) and environmental (n = 3) external control isolates. The 38-isolate cohort clustered into three clades with pairwise single-nucleotide polymorphism (SNP) distances ranging from 0 to 106,697 SNPs. We identified two clusters of study hospital isolates in Clade 1 and one cluster in Clade 2 for which clinical and environmental isolates differed by fewer than 10 SNPs and had less than 0.5% accessory genome variation. A less restrictive combined threshold of 40 SNPs and 5% accessory genes reliably captured additional isolates that met clinical criteria for hospital acquisition, but 12 (4%) of 310 epidemiologically unrelated isolate pairs also met this threshold. Core and accessory genome analyses confirmed respiratory acquisition of multiple clones of M. immunogenum from hospital water sources to patients. When combined with epidemiologic investigation, genomic thresholds accurately distinguished hospital acquisition.
Collapse
Affiliation(s)
- Arthur W. Baker
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, USA
| | - Sophie E. Nick
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Fan Jia
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Amanda M. Graves
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, USA
| | - Bobby G. Warren
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, USA
| | - Sofia Zavala
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jason E. Stout
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mark J. Lee
- Department of Pathology and Clinical Microbiology Laboratory, Duke University School of Medicine, Durham, North Carolina, USA
| | - Barbara D. Alexander
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pathology and Clinical Microbiology Laboratory, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rebecca M. Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Deverick J. Anderson
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, USA
| |
Collapse
|
3
|
Zweijpfenning SMH, Aarnoutse R, Boeree MJ, Magis-Escurra C, Stemkens R, Geurts B, van Ingen J, Hoefsloot W. Safety and Efficacy of Clofazimine as an Alternative for Rifampicin in Mycobacterium avium Complex Pulmonary Disease Treatment: Outcomes of a Randomized Trial. Chest 2024; 165:1082-1092. [PMID: 38040054 DOI: 10.1016/j.chest.2023.11.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Results of retrospective studies have suggested clofazimine as an alternative for rifampicin in the treatment of Mycobacterium avium complex pulmonary disease (MAC-PD). RESEARCH QUESTION Is a treatment regimen consisting of clofazimine-ethambutol-macrolide noninferior to the standard treatment regimen (rifampicin-ethambutol-macrolide) in the treatment of MAC-PD? STUDY DESIGN AND METHODS In this single-center, nonanonymized clinical trial, adult patients with MAC-PD were randomly assigned in a 1:1 ratio to receive rifampicin or clofazimine as adjuncts to an ethambutol-macrolide regimen. The primary outcome was sputum culture conversion following 6 months of treatment. RESULTS Forty patients were assigned to receive either rifampicin (n = 19) or clofazimine (n = 21) in addition to ethambutol and a macrolide. Following 6 months of treatment, both arms showed similar percentages of sputum culture conversion based on an intention-to-treat analysis: 58% (11 of 19) for rifampicin and 62% (13 of 21) for clofazimine. Study discontinuation, mainly due to adverse events, was equal in both arms (26% vs 33%). Based on an on-treatment analysis, sputum culture conversion following 6 months of treatment was 79% in both groups. In the clofazimine arm, diarrhea was more prevalent (76% vs 37%; P = .012), while arthralgia was more frequent in the rifampicin arm (37% vs 5%; P = .011). No difference in the frequency of corrected QT interval prolongation was seen between groups. INTERPRETATION A clofazimine-ethambutol-macrolide regimen showed similar results to the standard rifampicin-ethambutol-macrolide regimen and should be considered in the treatment of MAC-PD. The frequency of adverse events was similar in both arms, but their nature was different. Individual patient characteristics and possible drug-drug interactions should be taken into consideration when choosing an antibiotic regimen for MAC-PD. CLINICAL TRIAL REGISTRATION EudraCT; No.: 2015-003786-28; URL: https://eudract.ema.europa.eu.
Collapse
Affiliation(s)
- Sanne M H Zweijpfenning
- Department of Pulmonary Diseases, TB Expert Center, Research Institute for Medical Innovation, Radboud University Medical Center, Radboudumc Center for Infectious Diseases, Nijmegen, The Netherlands.
| | - Rob Aarnoutse
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Radboudumc Center for Infectious Diseases, Nijmegen, The Netherlands
| | - Martin J Boeree
- Department of Pulmonary Diseases, TB Expert Center, Research Institute for Medical Innovation, Radboud University Medical Center, Radboudumc Center for Infectious Diseases, Nijmegen, The Netherlands
| | - Cecile Magis-Escurra
- Department of Pulmonary Diseases, TB Expert Center, Research Institute for Medical Innovation, Radboud University Medical Center, Radboudumc Center for Infectious Diseases, Nijmegen, The Netherlands
| | - Ralf Stemkens
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Radboudumc Center for Infectious Diseases, Nijmegen, The Netherlands
| | - Bram Geurts
- Department of Radiology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Department of Medical Microbiology, Research Institute for Medical Innovation, Radboud University Medical Center, Radboudumc Center for Infectious Diseases, Nijmegen, The Netherlands
| | - Wouter Hoefsloot
- Department of Pulmonary Diseases, TB Expert Center, Research Institute for Medical Innovation, Radboud University Medical Center, Radboudumc Center for Infectious Diseases, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Salillas S, Raaijmakers J, Aarnoutse RE, Svensson EM, Asouit K, van den Hombergh E, te Brake L, Stemkens R, Wertheim HFL, Hoefsloot W, van Ingen J. Clofazimine as a substitute for rifampicin improves efficacy of Mycobacterium avium pulmonary disease treatment in the hollow-fiber model. Antimicrob Agents Chemother 2024; 68:e0115723. [PMID: 38259101 PMCID: PMC10916390 DOI: 10.1128/aac.01157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Mycobacterium avium complex pulmonary disease is treated with an azithromycin, ethambutol, and rifampicin regimen, with limited efficacy. The role of rifampicin is controversial due to inactivity, adverse effects, and drug interactions. Here, we evaluated the efficacy of clofazimine as a substitute for rifampicin in an intracellular hollow-fiber infection model. THP-1 cells, which are monocytes isolated from peripheral blood from an acute monocytic leukemia patient, were infected with M. avium ATCC 700898 and exposed to a regimen of azithromycin and ethambutol with either rifampicin or clofazimine. Intrapulmonary pharmacokinetic profiles of azithromycin, ethambutol, and rifampicin were simulated. For clofazimine, a steady-state average concentration was targeted. Drug concentrations and bacterial densities were monitored over 21 days. Exposures to azithromycin and ethambutol were 20%-40% lower than targeted but within clinically observed ranges. Clofazimine exposures were 1.7 times higher than targeted. Until day 7, both regimens were able to maintain stasis. Thereafter, regrowth was observed for the rifampicin-containing regimen, while the clofazimine-containing regimen yielded a 2 Log10 colony forming unit (CFU) per mL decrease in bacterial load. The clofazimine regimen also successfully suppressed the emergence of macrolide tolerance. In summary, substitution of rifampicin with clofazimine in the hollow-fiber model improved the antimycobacterial activity of the regimen. Clofazimine-containing regimens merit investigation in clinical trials.
Collapse
Affiliation(s)
- Sandra Salillas
- Department of Microbiology, Pediatrics, Radiology and Public Health, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
- Radboudumc Community for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jelmer Raaijmakers
- Radboudumc Community for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rob E. Aarnoutse
- Radboudumc Community for Infectious Diseases, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elin M. Svensson
- Radboudumc Community for Infectious Diseases, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Khalid Asouit
- Radboudumc Community for Infectious Diseases, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erik van den Hombergh
- Radboudumc Community for Infectious Diseases, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lindsey te Brake
- Radboudumc Community for Infectious Diseases, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ralf Stemkens
- Radboudumc Community for Infectious Diseases, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heiman F. L. Wertheim
- Radboudumc Community for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wouter Hoefsloot
- Radboudumc Community for Infectious Diseases, Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jakko van Ingen
- Radboudumc Community for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Nguyen MVH, Daley CL. Treatment of Mycobacterium avium Complex Pulmonary Disease: When Should I Treat and What Therapy Should I Start? Clin Chest Med 2023; 44:771-783. [PMID: 37890915 DOI: 10.1016/j.ccm.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Treatment of M avium pulmonary disease requires a three-drug, macrolide-based regimen that is administered for 12 months beyond culture conversion. The regimen can be administered 3 days a week in non-cavitary, nodular bronchiectatic disease but should be given daily when cavitary disease is present. For treatment refractory disease, amikacin liposome inhalation suspension is added to the regimen. Parenteral amikacin or streptomycin should be administered in the setting of extensive radiographic involvement or macrolide resistance. Recurrence of disease is common and often due to reinfection. Novel and repurposed agents are being evaluated in clinical trials.
Collapse
Affiliation(s)
- Minh-Vu H Nguyen
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, CO 80206, USA
| | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
6
|
Schildkraut JA, Raaijmakers J, Aarnoutse R, Hoefsloot W, Wertheim HFL, van Ingen J. The role of rifampicin within the treatment of Mycobacterium avium pulmonary disease. Antimicrob Agents Chemother 2023; 67:e0087423. [PMID: 37877693 PMCID: PMC10649009 DOI: 10.1128/aac.00874-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 10/26/2023] Open
Abstract
Rifampicin is recommended for the treatment of Mycobacterium avium complex pulmonary disease alongside azithromycin and ethambutol. We evaluated the azithromycin-ethambutol backbone with and without rifampicin in an intracellular hollow fiber model and performed RNA sequencing to study the differences in adaptation. In an in vitro hollow fiber experiment, we simulated epithelial lining fluid pharmacokinetic profiles of the recommended 3-drug (rifampicin, ethambutol, and azithromycin) or a 2-drug (ethambutol and azithromycin) treatment. THP-1 cells infected with M. avium ATCC700898 were exposed to these regimens for 21 days. We determined intra- and extra-cellular bacterial load- and THP-1 cell densities on days 0, 3, 7, 14, and 21, alongside RNA sequencing. The emergence of macrolide resistance was studied by inoculating intra- and extra-cellular fractions of azithromycin-containing Middlebrook 7H10 agar plates. Complete pharmacokinetic profiles were determined at days 0 and 21. Both therapies maintained stasis of both intra- and extra-cellular bacterial populations for 3 days, whilst regrowth coinciding with the emergence of a macrolide-resistant subpopulation was seen after 7 days. THP-1 cell density remained static. Similar transcriptional profiles were observed for both therapies that were minimally influenced by exposure duration. Transcriptional response was slightly larger during 2-drug treatment. Rifampicin did not add to the antimycobacterial effect to the 2-drug therapy or suppression of emergence resistance. RNA transcription was not greatly altered by the addition of rifampicin, which may be due to strong transcriptional influence of azithromycin and host cells. This questions the role of rifampicin in the currently recommended therapy. These findings should be confirmed in clinical trials.
Collapse
Affiliation(s)
- Jodie A. Schildkraut
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jelmer Raaijmakers
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob Aarnoutse
- Department of Pharmacy, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Hoefsloot
- Department of Pulmonary Diseases, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heiman F. L. Wertheim
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Hamed KA, Tillotson G. A narrative review of nontuberculous mycobacterial pulmonary disease: microbiology, epidemiology, diagnosis, and management challenges. Expert Rev Respir Med 2023; 17:973-988. [PMID: 37962332 DOI: 10.1080/17476348.2023.2283135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
INTRODUCTION Nontuberculous mycobacteria (NTM) are a diverse group of mycobacterial species that are ubiquitous in the environment. They are opportunistic pathogens that can cause a range of diseases, especially in individuals with underlying structural lung disease or compromised immune systems. AREAS COVERED This paper provides an in-depth analysis of NTM infections, including microbiology, environmental sources and transmission pathways, risk factors for disease, epidemiology, clinical manifestations and diagnostic approaches, guideline-based treatment recommendations, drugs under development, and management challenges. EXPERT OPINION Future approaches to the management of NTM pulmonary disease will require therapies that are well tolerated, can be taken for a shorter time period and perhaps less frequently, have few drug-drug interactions, and are active against the various strains of pathogens. As the numbers of infections increase, such therapies will be welcomed by clinicians and patients.
Collapse
|
8
|
Hoefsloot W, Dacheva E, van der Laan R, Krol M, van Ingen J, Obradovic M, Liu X. Real-world treatment patterns in patients with nontuberculous mycobacterial lung disease in the Netherlands based on medication dispensing data. BMC Pulm Med 2023; 23:218. [PMID: 37340431 PMCID: PMC10283180 DOI: 10.1186/s12890-023-02460-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/28/2023] [Indexed: 06/22/2023] Open
Abstract
PURPOSE Real-world data on antibiotic management of nontuberculous mycobacterial lung disease (NTM-LD) is limited for many countries. This study aimed to evaluate real-world treatment practices of NTM-LD in the Netherlands using medication dispensing data. METHODS A retrospective longitudinal real-world study was conducted using IQVIA's Dutch pharmaceutical dispensing database. The data are collected monthly and include approximately 70% of all outpatient prescriptions in the Netherlands. Patients initiated on specific NTM-LD treatment regimens between October 2015 and September 2020 were included. The main areas of investigation were initial treatment regimens, persistence on treatment, treatment switching, treatment compliance in terms of medication possession rate (MPR) and restarts of treatment. RESULTS The database included 465 unique patients initiated on triple- or dual-drug regimens for the treatment of NTM-LD. Treatment switches were common and occurred approximately 1.6 per quarter throughout the treatment period. The average MPR of patients initiated on triple-drug therapy was 90%. The median time on therapy for these patients was 119 days; after six months and one year, 47% and 20% of the patients, respectively, were still on antibiotic therapy. Of 187 patients initiated on triple-drug therapy, 33 (18%) patients restarted antibiotic therapy after the initial treatment had been stopped. CONCLUSION When on therapy, patients were compliant with the NTM-LD treatment; however, many patients stopped their therapy prematurely, treatment switches often occurred, and part of patients had to restart their therapy after a longer treatment gap. NTM-LD management should be improved through greater guideline adherence and appropriate involvement of expert centers.
Collapse
Affiliation(s)
- W Hoefsloot
- Radboudumc Center for Infectious Diseases, Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, Netherlands.
| | | | | | - M Krol
- IQVIA, Amsterdam, Netherlands
| | - J van Ingen
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - M Obradovic
- Insmed Germany GmbH, Frankfurt am Main, Germany
| | | |
Collapse
|
9
|
Rais M, Abdelaal H, Reese VA, Ferede D, Larsen SE, Pecor T, Erasmus JH, Archer J, Khandhar AP, Cooper SK, Podell BK, Reed SG, Coler RN, Baldwin SL. Immunogenicity and protection against Mycobacterium avium with a heterologous RNA prime and protein boost vaccine regimen. Tuberculosis (Edinb) 2023; 138:102302. [PMID: 36586154 PMCID: PMC10361416 DOI: 10.1016/j.tube.2022.102302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Prophylactic efficacy of two different delivery platforms for vaccination against Mycobacterium avium (M. avium) were tested in this study; a subunit and an RNA-based vaccine. The vaccine antigen, ID91, includes four mycobacterial antigens: Rv3619, Rv2389, Rv3478, and Rv1886. We have shown that ID91+GLA-SE is effective against a clinical NTM isolate, M. avium 2-151 smt. Here, we extend these results and show that a heterologous prime/boost strategy with a repRNA-ID91 (replicon RNA) followed by protein ID91+GLA-SE boost is superior to the subunit protein vaccine given as a homologous prime/boost regimen. The repRNA-ID91/ID91+GLA-SE heterologous regimen elicited a higher polyfunctional CD4+ TH1 immune response when compared to the homologous protein prime/boost regimen. More significantly, among all the vaccine regimens tested only repRNA-ID91/ID91+GLA-SE induced IFN-γ and TNF-secreting CD8+ T cells. Furthermore, the repRNA-ID91/ID91+GLA-SE vaccine strategy elicited high systemic proinflammatory cytokine responses and induced strong ID91 and an Ag85B-specific humoral antibody response a pre- and post-challenge with M. avium 2-151 smt. Finally, while all prophylactic prime/boost vaccine regimens elicited a degree of protection in beige mice, the heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen provided greater pulmonary protection than the homologous protein prime/boost regimen. These data indicate that a prophylactic heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen augments immunogenicity and confers protection against M. avium.
Collapse
Affiliation(s)
- Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Hazem Abdelaal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Valerie A Reese
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Debora Ferede
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Tiffany Pecor
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | | | | | - Sarah K Cooper
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Brendan K Podell
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA; Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Susan L Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA.
| |
Collapse
|
10
|
Outcomes of Short-Term Tigecycline-Containing Regimens for Mycobacterium abscessus Pulmonary Disease. Antimicrob Agents Chemother 2022; 66:e0077422. [PMID: 36165626 PMCID: PMC9578423 DOI: 10.1128/aac.00774-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Short-term intravenous tigecycline therapy during a 1-month initial phase may improve early microbiological response in patients with Mycobacterium abscessus pulmonary disease (PD). However, short-term use of tigecycline did not improve the long-term culture conversion rate of M. abscessus PD. Further studies on the efficacy of prolonged intravenous tigecycline-containing regimens are needed.
Collapse
|
11
|
Antibiotic Maintenance and Redevelopment of Nontuberculous Mycobacteria Pulmonary Disease after Treatment of Mycobacterium avium Complex Pulmonary Disease. Microbiol Spectr 2022; 10:e0108822. [PMID: 35950873 PMCID: PMC9431257 DOI: 10.1128/spectrum.01088-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Limited data are available regarding the impact of the antibiotic maintenance period on the redevelopment of nontuberculous mycobacteria-pulmonary disease (NTM-PD) after microbiological cure of Mycobacterium avium complex (MAC)-PD. This retrospective study included 631 MAC-PD patients who achieved microbiological cure between 1994 and 2021. Data on the antibiotic maintenance period, defined as the time between culture conversion and treatment completion, were collected. Redevelopment, the subsequent diagnosis of NTM-PD regardless of causative organism after microbiological cure, was investigated. Factors associated with redevelopment were analyzed after adjusting for disease severity using the body mass index, age, cavity, erythrocyte sedimentation rate, and sex (BACES) scoring system. In total, 205 (33%) patients experienced redevelopment, with a median maintenance period after culture conversion of 15.0 months (interquartile range, 13.0 to 22.0 months). A greater proportion of patients with the nodular bronchiectatic form of MAC-PD (87% versus 80%, P = 0.033) and a longer maintenance period (median 15.0 versus 14.0 months, P < 0.001) were noted in the redevelopment group compared with the nonredevelopment group. The cumulative rate of redevelopment according to the maintenance period did not differ between the >12-month and ≤12-month groups in the total patient population or the subgroups sorted according to BACES severity. No association between a maintenance period >12 months and redevelopment was identified in multivariate models. Extending the antibiotic maintenance period more than 12 months did not reduce the redevelopment rate even with adjustment for disease severity, suggesting the need to further optimize the duration of the antibiotic maintenance period. IMPORTANCE Limited data are available regarding the impact of the antibiotic maintenance period on the redevelopment of Mycobacterium avium complex-pulmonary (MAC-PD) disease after microbiological cure. To improve treatment outcomes and reduce the recurrence rate, current guidelines recommend maintenance of antibiotics for a minimum of 12 months after achievement of negative culture conversion. However, the optimal duration of antibiotic therapy for MAC-PD is not currently known. Moreover, in real-world clinical practice, total antibiotic duration is mainly impacted by the length of the maintenance period; however, it is unknown whether extending the maintenance period is beneficial for preventing redevelopment of NTM-PD. Our study may help to address concerns regarding the antibiotic maintenance period after achievement of negative culture conversion in patients with MAC-PD.
Collapse
|
12
|
Kumar K, Daley CL, Griffith DE, Loebinger MR. Management of Mycobacterium avium complex and Mycobacterium abscessus pulmonary disease: therapeutic advances and emerging treatments. Eur Respir Rev 2022; 31:210212. [PMID: 35140106 PMCID: PMC9488909 DOI: 10.1183/16000617.0212-2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022] Open
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) remains a challenging condition to diagnose and treat effectively. Treatment of NTM-PD is prolonged, frequently associated with adverse effects and has variable success. In this review, we consider the factors influencing clinicians when treating NTM-PD and discuss outcomes from key studies on the pharmacological management of Mycobacterium avium complex pulmonary disease and M. abscessus pulmonary disease. We highlight issues relating to treatment-related toxicity and provide an overview of repurposed and emerging therapies for NTM-PD.
Collapse
Affiliation(s)
- Kartik Kumar
- National Heart and Lung Institute, Imperial College London, London, UK
- Host Defence Unit, Dept of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, Dept of Medicine, National Jewish Health, Denver, CO, USA
- School of Medicine, University of Colorado, Aurora, CO, USA
| | - David E Griffith
- Division of Mycobacterial and Respiratory Infections, Dept of Medicine, National Jewish Health, Denver, CO, USA
| | - Michael R Loebinger
- National Heart and Lung Institute, Imperial College London, London, UK
- Host Defence Unit, Dept of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Treatment outcomes of Mycobacterium avium complex pulmonary disease according to disease severity. Sci Rep 2022; 12:1970. [PMID: 35121809 PMCID: PMC8816953 DOI: 10.1038/s41598-022-06022-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/21/2022] [Indexed: 11/08/2022] Open
Abstract
Mycobacterium avium complex pulmonary disease (MAC-PD) requires long-term treatment. We analyzed the outcomes of 992 MAC-PD patients according to disease severity and compared the outcomes of intermittent and daily therapy for mild disease. Patients were divided into groups according to severity using the body mass index, age, cavity, erythrocyte sedimentation rate, and sex (BACES) system, and culture conversion rates were evaluated. We also evaluated the effects of intermittent treatment on the culture conversion rates in mild disease group. Using the BACES, 992 patients were divided into mild (n = 331), moderate (n = 503), and severe (n = 158) disease groups, and culture conversion at the end of treatment was achieved in 85% (282/331), 80% (403/503), and 61% (97/158), respectively. Differences in culture conversion among the severity groups were significant (p < 0.001). In patients with mild disease, culture conversion rates were similar between intermittent (84%, 166/198) and daily (87%, 116/133) treatment (p = 0.396), and intermittent antibiotic therapy did not negatively impact culture conversion (adjusted hazard ratio 1.08; confidence interval 0.83–1.41; p = 0.578). MAC-PD patients with mild disease had higher culture conversion rates. Daily and intermittent therapy yielded similar culture conversion rates for mild disease. Treatment strategies with lower pill burden may be applicable in mild MAC-PD.
Collapse
|
14
|
van Ingen J, Obradovic M, Hassan M, Lesher B, Hart E, Chatterjee A, Daley CL. Nontuberculous mycobacterial lung disease caused by Mycobacterium avium complex - disease burden, unmet needs, and advances in treatment developments. Expert Rev Respir Med 2021; 15:1387-1401. [PMID: 34612115 DOI: 10.1080/17476348.2021.1987891] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Nontuberculous mycobacterial (NTM) lung disease (LD) is the most common clinical manifestation of NTM infection and is a growing health concern. Up to 85% of NTM-LD cases are caused by Mycobacterium avium complex (MAC). Increased awareness of NTM-LD caused by MAC is needed as patients with this disease experience substantial burden and unmet treatment needs. AREAS COVERED This review provides clinicians and regulatory and healthcare decision makers an overview of the clinical, economic, and humanistic burden of NTM-LD and the unmet treatment needs faced by patients and clinicians. The review focuses on NTM-LD caused by MAC. A summary of the 2020 NTM guidelines specifically for MAC-LD and an overview of novel treatment options, including amikacin liposome inhalation suspension (ALIS) as the first approved therapy for refractory MAC-LD, and investigational drugs in testing phase are provided. EXPERT OPINION Key advancements in NTM-LD management include recent updates to clinical practice guidelines, approval of ALIS for the treatment of refractory MAC-LD, and ongoing clinical trials of investigational treatments. Yet opportunities still exist to improve patient outcomes, including development of better screening tools, such as reliable and responsive biomarkers to help identify high-risk patients, and addressing unmet treatment needs.
Collapse
Affiliation(s)
- Jakko van Ingen
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, Co, and the University of Colorado School of Medicine, Aurora, CO, US
| |
Collapse
|
15
|
Gill LI, Dominic C, Tiberi S. Atypical mycobacterial infections - management and when to treat. Curr Opin Pulm Med 2021; 27:216-223. [PMID: 33560672 DOI: 10.1097/mcp.0000000000000764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Infections caused by nontuberculous mycobacteria (NTM) are increasing for several reasons, including diagnostic advances, increased awareness and a larger at-risk population. NTM pulmonary disease is surpassing tuberculosis (TB) in some low incidence areas. This review summarizes the latest literature and guidelines and aims to be a concise source outlining treatment and management of NTM lung infections, integrating established treatment paradigms with novel pharmacological interventions. RECENT FINDINGS Recent additions to NTM treatment are inhaled liposomal amikacin and the anti-TB drug bedaquiline. Several other new or repurposed treatments are being explored in vitro, in animal models and in clinical trials, including novel beta-lactamase inhibitor/lactam combinations, dual-lactam combinations, efflux pump inhibitors, novel antimicrobials, inhaled clofazimine suspension and bacteriophages. SUMMARY Patients with NTM pulmonary disease are mainly female and older with significant delay between diagnosis and treatment being common. Treatment varies according to causative organism, drug susceptibilities, radiological type and disease severity. Underlying chronic conditions, drug intolerances and interactions require careful consideration. In all cases, at least three drugs should be used to minimize acquisition of drug resistance, and all patients should receive a minimum of 12 months of treatment. Expert advice should be taken. NTM treatment is longer than TB treatment, more likely to fail and more likely to cause toxicity. The relatively small numbers of patients affected by each NTM species has limited research. Novel treatments hold promise; nevertheless, it is likely that new solutions for NTM management will stem from the TB pipeline for the foreseeable future.
Collapse
Affiliation(s)
- Laura Indira Gill
- Department of Infection, Royal London Hospital, Barts Health NHS Trust
| | - Catherine Dominic
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London
| | - Simon Tiberi
- Department of Infection, Royal London Hospital, Barts Health NHS Trust
| |
Collapse
|