1
|
Herbin SR, Crum H, Gens K. Breaking the Cycle of Recurrent Clostridioides difficile Infections: A Narrative Review Exploring Current and Novel Therapeutic Strategies. J Pharm Pract 2024; 37:1361-1373. [PMID: 38739837 DOI: 10.1177/08971900241248883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Clostridioides difficile is a toxin-producing bacteria that is a main cause of antibiotic-associated diarrhea. Clostridioides difficile infections (CDI) are associated with disruptions within the gastrointestinal (GI) microbiota which can be further exacerbated by CDI-targeted antibiotic treatment thereby causing recurrent CDI (rCDI) and compounding the burden placed on patients and the healthcare system. Treatment of rCDI consists of antibiotics which can be paired with preventative therapeutics, such as bezlotoxumab or fecal microbiota transplants (FMTs), if sustained clinical response is not obtained. Newer preventative strategies have been recently approved to assist in restoring balance within the GI system with the goal of preventing recurrent infections.
Collapse
Affiliation(s)
- Shelbye R Herbin
- Antimicrobial Stewardship and Medication Safety, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Hannah Crum
- Mercy Hospital Southeast, Cape Girardeau, MO, USA
| | - Krista Gens
- Allina Health, Minneapolis, MN, USA
- Abbott Northwestern Hospital, Minneapolis, MN, USA
| |
Collapse
|
2
|
Berry P, Khanna S. Fecal microbiota spores, live-brpk (VOWST™/VOS) for prevention of recurrent Clostridioides difficile infection. Future Microbiol 2024:1-10. [PMID: 39320321 DOI: 10.1080/17460913.2024.2403892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Clostridioides difficile infection (CDI) is a health crisis comprising a majority of healthcare-associated infections and is now being seen in the community. Persistent dysbiosis despite treatment with standard-of-care antibiotics increases risk of recurrent infections. Fecal microbiota transplantation has been an effective way of addressing dysbiosis, but the studies have lacked standardization, which makes outcome and safety data difficult to interpret. Standardized microbiome therapies have demonstrated efficacy and safety for recurrent CDI and have been approved to prevent recurrent infection. In this review, we discuss the data behind and the practice use of fecal microbiota spores, live-brpk (VOWST™ / VOS), a US FDA approved live biotherapeutic for the prevention of recurrent CDI.
Collapse
Affiliation(s)
- Parul Berry
- C. difficile Clinic & Microbiome Restoration Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sahil Khanna
- C. difficile Clinic & Microbiome Restoration Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Li C, Wang ZX, Xiao H, Wu FG. Intestinal Delivery of Probiotics: Materials, Strategies, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310174. [PMID: 38245861 DOI: 10.1002/adma.202310174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Probiotics with diverse and crucial properties and functions have attracted broad interest from many researchers, who adopt intestinal delivery of probiotics to modulate the gut microbiota. However, the major problems faced for the therapeutic applications of probiotics are the viability and colonization of probiotics during their processing, oral intake, and subsequent delivery to the gut. The challenges of simple oral delivery (stability, controllability, targeting, etc.) have greatly limited the use of probiotics in clinical therapies. Nanotechnology can endow the probiotics to be delivered to the intestine with improved survival rate and increased resistance to the adverse environment. Additionally, the progress in synthetic biology has created new opportunities for efficiently and purposefully designing and manipulating the probiotics. In this article, a brief overview of the types of probiotics for intestinal delivery, the current progress of different probiotic encapsulation strategies, including the chemical, physical, and genetic strategies and their combinations, and the emerging single-cell encapsulation strategies using nanocoating methods, is presented. The action mechanisms of probiotics that are responsible for eliciting beneficial effects are also briefly discussed. Finally, the therapeutic applications of engineered probiotics are discussed, and the future trends toward developing engineered probiotics with advanced features and improved health benefits are proposed.
Collapse
Affiliation(s)
- Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
4
|
Zaidi SMH, Haider R, Kazmi SAB, Husnain A, Khan S, Merchant S, Tayyab H, Wazeen FR, Chaudhary AJ. Beyond Antibiotics: Novel Approaches in the Treatment of Recurrent Clostridioides difficile Infection. ACG Case Rep J 2024; 11:e01333. [PMID: 39081300 PMCID: PMC11286250 DOI: 10.14309/crj.0000000000001333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/06/2024] [Indexed: 08/02/2024] Open
Affiliation(s)
| | - Ramsha Haider
- Karachi Medical and Dental College, Karachi, Pakistan
| | | | - Ali Husnain
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Saniah Khan
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | | | - Hamnah Tayyab
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Fazl Rahim Wazeen
- Department of Medicine, Greater Baltimore Medical Center, Towson, MD
| | | |
Collapse
|
5
|
Fekete EE, Wang A, Creskey M, Cummings SE, Lavoie JR, Ning Z, Li J, Figeys D, Chen R, Zhang X. Multilevel Proteomic Profiling of Colorectal Adenocarcinoma Caco-2 Cell Differentiation to Characterize an Intestinal Epithelial Model. J Proteome Res 2024; 23:2561-2575. [PMID: 38810023 PMCID: PMC11232098 DOI: 10.1021/acs.jproteome.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Emergent advancements on the role of the intestinal microbiome for human health and disease necessitate well-defined intestinal cellular models to study and rapidly assess host, microbiome, and drug interactions. Differentiated Caco-2 cell line is commonly utilized as an epithelial model for drug permeability studies and has more recently been utilized for investigating host-microbiome interactions. However, its suitability to study such interactions remains to be characterized. Here, we employed multilevel proteomics to demonstrate that both spontaneous and butyrate-induced Caco-2 differentiations displayed similar protein and pathway changes, including the downregulation of proteins related to translation and proliferation and upregulation of functions implicated in host-microbiome interactions, such as cell adhesion, tight junction, extracellular vesicles, and responses to stimuli. Lysine acetylomics revealed that histone protein acetylation levels were decreased along with cell differentiation, while the acetylation in proteins associated with mitochondrial functions was increased. This study also demonstrates that, compared to spontaneous differentiation methods, butyrate-containing medium accelerates Caco-2 differentiation, with earlier upregulation of proteins related to host-microbiome interactions, suggesting its superiority for assay development using this intestinal model. Altogether, this multiomics study emphasizes the controlled progression of Caco-2 differentiation toward a specialized intestinal epithelial-like cell and establishes its suitability for investigating the host-microbiome interactions.
Collapse
Affiliation(s)
- Emily Ef Fekete
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Angela Wang
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Marybeth Creskey
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Sarah E Cummings
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Jessie R Lavoie
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
| | - Jianjun Li
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A0R6, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
| | - Rui Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A0R6, Canada
| | - Xu Zhang
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
| |
Collapse
|
6
|
Quan M, Zhang X, Fang Q, Lv X, Wang X, Zong Z. Fighting against Clostridioides difficile infection: Current medications. Int J Antimicrob Agents 2024; 64:107198. [PMID: 38734214 DOI: 10.1016/j.ijantimicag.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Clostridioides difficile (formerly Clostridium difficile) has been regarded as an 'urgent threat' and a significant global health problem, as life-threatening diarrhoea and refractory recurrence are common in patients with C. difficile infection (CDI). Unfortunately, the available anti-CDI drugs are limited. Recent guidelines recommend fidaxomicin and vancomycin as first-line drugs to treat CDI, bezlotoxumab to prevent recurrence, and faecal microbiota transplantation for rescue treatment. Currently, researchers are investigating therapeutic antibacterial drugs (e.g. teicoplanin, ridinilazole, ibezapolstat, surotomycin, cadazolid, and LFF571), preventive medications against recurrence (e.g. Rebyota, Vowst, VP20621, VE303, RBX7455, and MET-2), primary prevention strategies (e.g. vaccine, ribaxamase, and DAV132) and other anti-CDI medications in the preclinical stage (e.g. Raja 42, Myxopyronin B, and bacteriophage). This narrative review summarises current medications, including newly marketed drugs and products in development against CDI, to help clinicians treat CDI appropriately and to call for more research on innovation.
Collapse
Affiliation(s)
- Min Quan
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoxia Zhang
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Qingqing Fang
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoju Lv
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohui Wang
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| | - Zhiyong Zong
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Wang Y, Hunt A, Danziger L, Drwiega EN. A Comparison of Currently Available and Investigational Fecal Microbiota Transplant Products for Recurrent Clostridioides difficile Infection. Antibiotics (Basel) 2024; 13:436. [PMID: 38786164 PMCID: PMC11117328 DOI: 10.3390/antibiotics13050436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Clostridioides difficile infection (CDI) is an intestinal infection that causes morbidity and mortality and places significant burden and cost on the healthcare system, especially in recurrent cases. Antibiotic overuse is well recognized as the leading cause of CDI in high-risk patients, and studies have demonstrated that even short-term antibiotic exposure can cause a large and persistent disturbance to human colonic microbiota. The recovery and sustainability of the gut microbiome after dysbiosis have been associated with fewer CDI recurrences. Fecal microbiota transplantation (FMT) refers to the procedure in which human donor stool is processed and transplanted to a patient with CDI. It has been historically used in patients with pseudomembranous colitis even before the discovery of Clostridioides difficile. More recent research supports the use of FMT as part of the standard therapy of recurrent CDI. This article will be an in-depth review of five microbiome therapeutic products that are either under investigation or currently commercially available: Rebyota (fecal microbiota, live-jslm, formerly RBX2660), Vowst (fecal microbiota spores, live-brpk, formerly SER109), VE303, CP101, and RBX7455. Included in this review is a comparison of the products' composition and dosage forms, available safety and efficacy data, and investigational status.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| | - Aaron Hunt
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| | - Larry Danziger
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
- Division of Infectious Diseases, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Emily N. Drwiega
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Buckholz AP, Brown RS. Future Therapies of Hepatic Encephalopathy. Clin Liver Dis 2024; 28:331-344. [PMID: 38548443 PMCID: PMC10987054 DOI: 10.1016/j.cld.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Hepatic encephalopathy, either covert or overt, affects more than half of patients with cirrhosis and has lasting effects even after portal hypertension is corrected. Unfortunately, the current therapeutic options still result in high rates of relapse and progression, in part owing to cost barriers and side effects, leading to poor adherence. This review summarizes emerging treatment options, which could take advantage of alternative disease pathways to improve future care of those with hepatic encephalopathy.
Collapse
Affiliation(s)
- Adam P Buckholz
- Division of Gastroenterology and Hepatology, New York/Presbyterian-Weill Cornell Medical College, 1305 York Avenue, 4th Floor, New York, NY 10021, USA
| | - Robert S Brown
- Division of Gastroenterology and Hepatology, New York/Presbyterian-Weill Cornell Medical College, 1305 York Avenue, 4th Floor, New York, NY 10021, USA.
| |
Collapse
|
9
|
Porcari S, Fusco W, Spivak I, Fiorani M, Gasbarrini A, Elinav E, Cammarota G, Ianiro G. Fine-tuning the gut ecosystem: the current landscape and outlook of artificial microbiome therapeutics. Lancet Gastroenterol Hepatol 2024; 9:460-475. [PMID: 38604200 DOI: 10.1016/s2468-1253(23)00357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 04/13/2024]
Abstract
The gut microbiome is acknowledged as a key determinant of human health, and technological progress in the past two decades has enabled the deciphering of its composition and functions and its role in human disorders. Therefore, manipulation of the gut microbiome has emerged as a promising therapeutic option for communicable and non-communicable disorders. Full exploitation of current therapeutic microbiome modulators (including probiotics, prebiotics, and faecal microbiota transplantation) is hindered by several factors, including poor precision, regulatory and safety issues, and the impossibility of providing reproducible and targeted treatments. Artificial microbiota therapeutics (which include a wide range of products, such as microbiota consortia, bacteriophages, bacterial metabolites, and engineered probiotics) have appeared as an evolution of current microbiota modulators, as they promise safe and reproducible effects, with variable levels of precision via different pathways. We describe the landscape of artificial microbiome therapeutics, from those already on the market to those still in the pipeline, and outline the major challenges for positioning these therapeutics in clinical practice.
Collapse
Affiliation(s)
- Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - William Fusco
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Igor Spivak
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Medical Clinic III, University Hospital Aachen, Aachen, Germany
| | - Marcello Fiorani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Microbiome and Cancer Division, DKFZ, Heidelberg, Germany
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
10
|
Al Naser Y, AlGashami M, Aljashaami L. Clostridioides difficile infection: a changing treatment paradigm. PRZEGLAD GASTROENTEROLOGICZNY 2024; 19:1-5. [PMID: 38571533 PMCID: PMC10985755 DOI: 10.5114/pg.2024.136237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/02/2023] [Indexed: 04/05/2024]
Abstract
Clostridioides difficile infection (CDI) poses a persistent challenge in healthcare, with substantial morbidity and mortality implications. This comprehensive review explores current CDI management, emphasising guidelines from IDSA, SHEA, and ESCMID. Additionally, this study spotlights recent drug developments that have the potential to reshape CDI treatment paradigms. Within the current treatment landscape, fidaxomicin, vancomycin, bezlotoxumab, and faecal microbiota transplantation offer varied options, each with its unique strengths and limitations. Fidaxomicin, effective yet resource-constrained, presents a dilemma, with vancomycin emerging as a pragmatic alternative. Bezlotoxumab, though augmenting antibiotics, grapples with cost and safety concerns. Meanwhile, faecal microbiota transplantation, highly efficacious, confronts evolving safety considerations. The horizon of CDI treatment also features promising therapies such as SER-109 and Rebyota, epitomising the evolving paradigm. As CDI management advances, the critical role of standardised microbiome restoration therapies becomes evident, ensuring long-term safety and diversifying treatment strategies.
Collapse
|
11
|
Monday L, Tillotson G, Chopra T. Microbiota-Based Live Biotherapeutic Products for Clostridioides Difficile Infection- The Devil is in the Details. Infect Drug Resist 2024; 17:623-639. [PMID: 38375101 PMCID: PMC10876012 DOI: 10.2147/idr.s419243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
Clostridioides difficile infection (CDI) remains a significant contributor to healthcare costs and morbidity due to high rates of recurrence. Currently, available antibiotic treatment strategies further disrupt the fecal microbiome and do not address the alterations in commensal flora (dysbiosis) that set the stage for CDI. Advances in microbiome-based research have resulted in the development of new agents, classified as live biotherapeutic products (LBPs), for preventing recurrent CDI (rCDI) by restoring eubiosis. Prior to the LBPs, fecal microbiota transplantation (FMT) was available for this purpose; however, lack of large-scale availability and safety concerns have remained barriers to its widespread use. The LBPs are an exciting development, but questions remain. Some are derived directly from human stool while other developmental products contain a defined microbial consortium manufactured ex vivo, and they may be composed of either living bacteria or their spores, making it difficult to compare members of this heterogenous drug class to one another. None have been studied head-to head or against FMT in preventing rCDI. As a class, they have considerable variability in their biologic composition, biopharmaceutic science, route of administration, stages of development, and clinical trial data. This review will start by explaining the role of dysbiosis in CDI, then give the details of the biopharmaceutical components for the LBPs which are approved or in development including how they differ from FMT and from one another. We then discuss the clinical trials of the LBPs currently approved for rCDI and end with the future clinical directions of LBPs beyond C. difficile.
Collapse
Affiliation(s)
- Lea Monday
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Teena Chopra
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
12
|
Wu J, Singleton SS, Bhuiyan U, Krammer L, Mazumder R. Multi-omics approaches to studying gastrointestinal microbiome in the context of precision medicine and machine learning. Front Mol Biosci 2024; 10:1337373. [PMID: 38313584 PMCID: PMC10834744 DOI: 10.3389/fmolb.2023.1337373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
The human gastrointestinal (gut) microbiome plays a critical role in maintaining host health and has been increasingly recognized as an important factor in precision medicine. High-throughput sequencing technologies have revolutionized -omics data generation, facilitating the characterization of the human gut microbiome with exceptional resolution. The analysis of various -omics data, including metatranscriptomics, metagenomics, glycomics, and metabolomics, holds potential for personalized therapies by revealing information about functional genes, microbial composition, glycans, and metabolites. This multi-omics approach has not only provided insights into the role of the gut microbiome in various diseases but has also facilitated the identification of microbial biomarkers for diagnosis, prognosis, and treatment. Machine learning algorithms have emerged as powerful tools for extracting meaningful insights from complex datasets, and more recently have been applied to metagenomics data via efficiently identifying microbial signatures, predicting disease states, and determining potential therapeutic targets. Despite these rapid advancements, several challenges remain, such as key knowledge gaps, algorithm selection, and bioinformatics software parametrization. In this mini-review, our primary focus is metagenomics, while recognizing that other -omics can enhance our understanding of the functional diversity of organisms and how they interact with the host. We aim to explore the current intersection of multi-omics, precision medicine, and machine learning in advancing our understanding of the gut microbiome. A multidisciplinary approach holds promise for improving patient outcomes in the era of precision medicine, as we unravel the intricate interactions between the microbiome and human health.
Collapse
Affiliation(s)
- Jingyue Wu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Stephanie S. Singleton
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Urnisha Bhuiyan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Lori Krammer
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- The McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC, United States
| |
Collapse
|
13
|
Fischer M, Ray A. Future Microbiome Therapeutics for Clostridioides difficile Infection. Am J Gastroenterol 2024; 119:S27-S29. [PMID: 38153223 DOI: 10.14309/ajg.0000000000002576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/22/2023] [Indexed: 12/29/2023]
Affiliation(s)
| | - Arnab Ray
- Ochsner Clinic Foundation, New Orleans, LA
| |
Collapse
|
14
|
Berry P, Khanna S. Recurrent Clostridioides difficile Infection: Current Clinical Management and Microbiome-Based Therapies. BioDrugs 2023; 37:757-773. [PMID: 37493938 DOI: 10.1007/s40259-023-00617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Clostridioides difficile is one of the most important causes of healthcare-associated diarrhea. The high incidence and recurrence rates of C. difficile infection, as well as its associated morbidity and mortality, are great concerns. The most common complication of C. difficile infection is recurrence, with rates of 20-30% after a primary infection and 60% after three or more episodes. Medical management of recurrent C. difficile infection involves a choice of therapy that is different from the antibiotic used in the primary episode. Patients with recurrent C. difficile infection also benefit from fecal microbiota transplantation or standardized microbiome restoration therapies (approved or experimental) to restore eubiosis. In contrast to antibiotics, microbiome restoration therapies restore a normal gut flora and eliminate C. difficile colonization and infection. Fecal microbiota transplantation in recurrent C. difficile infection has demonstrated higher success rates than vancomycin, fidaxomicin, or placebo. Fecal microbiota transplantation has traditionally been considered safe, with the most common adverse reactions being abdominal discomfort, and diarrhea, and rare serious adverse events. Significant heterogeneity and a lack of standardization regarding the process of preparation, and administration of fecal microbiota transplantation remain a major pitfall. Standardized microbiome-based therapies provide a promising alternative. In the ECOSPOR III trial of SER-109, an oral formulation of bacterial spores, a significant reduction in the recurrence rate (12%) was observed compared with placebo (40%). In the phase III PUNCH CD3 trial, RBX2660 also demonstrated high efficacy rates of 70.6% versus 57.5%. Both these agents are now US Food and Drug Administration approved for recurrent C. difficile infection. Other standardized microbiome-based therapies currently in the pipeline are VE303, RBX7455, and MET-2. Antibiotic neutralization strategies, vaccines, passive monoclonal antibodies, and drug repurposing are other therapeutic strategies being explored to treat C. difficile infection.
Collapse
Affiliation(s)
- Parul Berry
- All India Institute of Medical Sciences, New Delhi, India
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, C. difficile Clinic and Microbiome Restoration Program, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
15
|
McFarland LV, Goldstein EJC, Kullar R. Microbiome-Related and Infection Control Approaches to Primary and Secondary Prevention of Clostridioides difficile Infections. Microorganisms 2023; 11:1534. [PMID: 37375036 DOI: 10.3390/microorganisms11061534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Clostridioides difficile infections (CDIs) have decreased in the past years, but since 2021, some hospitals have reported an increase in CDI rates. CDI remains a global concern and has been identified as an urgent threat to healthcare. Although multiple treatment options are available, prevention strategies are more limited. As CDI is an opportunistic infection that arises after the normally protective microbiome has been disrupted, preventive measures aimed at restoring the microbiome have been tested. Our aim is to update the present knowledge on these various preventive strategies published in the past five years (2018-2023) to guide clinicians and healthcare systems on how to best prevent CDI. A literature search was conducted using databases (PubMed, Google Scholar, and clinicaltrials.gov) for phase 2-3 clinical trials for the primary or secondary prevention of CDI and microbiome and probiotics. As the main factor for Clostridium difficile infections is the disruption of the normally protective intestinal microbiome, strategies aimed at restoring the microbiome seem most rational. Some strains of probiotics, the use of fecal microbial therapy, and live biotherapeutic products offer promise to fill this niche; although, more large randomized controlled trials are needed that document the shifts in the microbiome population.
Collapse
Affiliation(s)
| | | | - Ravina Kullar
- Expert Stewardship Inc., Newport Beach, CA 92663, USA
| |
Collapse
|
16
|
Gawey BJ, Khanna S. Clostridioides difficile Infection: Landscape and Microbiome Therapeutics. Gastroenterol Hepatol (N Y) 2023; 19:319-328. [PMID: 37706187 PMCID: PMC10496268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Clostridioides difficile infection (CDI) is the leading cause of hospital-acquired diarrhea and is common in the community. Both younger individuals who may be healthy otherwise and older individuals with comorbid conditions are at risk for developing CDI, with the predominant risk factor being antibiotic use. Unlike other gastrointestinal infections, CDI is not self-limited, requires antimicrobial therapy, and tends to recur at high rates even without additional risk factor exposure. The goals of CDI management include controlling active symptoms and using a recurrence prevention strategy such as a narrow-spectrum antibiotic, tapered and pulsed regimens, antibody- based therapies (directed against toxin B), or microbiome restoration. In recent years, fecal microbiota transplantation (FMT) has been the most used modality to prevent recurrent CDI with high cure rates. Heterogeneity, lack of scalability, and serious adverse events from FMT have led to development of standardized microbiota restoration therapies (MRTs). The US Food and Drug Administration has approved 2 stool-derived MRTs for prevention of recurrent CDI: fecal microbiota, live-jslm, an enema-based therapy; and fecal microbiota spores, live-brpk, an oral therapy. A phase 3 trial for a synthetic oral MRT is underway. This article outlines the pathophysiology and treatment of CDI, focusing primarily on the gut microbiome and standardized MRTs.
Collapse
Affiliation(s)
- Brent J. Gawey
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Sahil Khanna
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Nagarakanti S, Orenstein R. Treating Clostridioides difficile: Could Microbiota-based Live Biotherapeutic Products Provide the Answer? Infect Drug Resist 2023; 16:3137-3143. [PMID: 37235073 PMCID: PMC10208241 DOI: 10.2147/idr.s400570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a pressing health care issue due to the limited effectiveness of current treatments and high recurrence rates. Current available antibiotic options for CDI disrupt the fecal microbiome which predisposes recurrent CDI. Fecal microbiota transplantation (FMT) has improved the outcomes of recurrent CDI, but concerns surrounding the safety and standardization of the product persist. Microbiota-based live biotherapeutic products (LBPs), are emerging as potential alternatives to FMT for CDI treatment. This review explores the potential of LBPs as safe and effective therapy for CDI. While preclinical and early clinical studies have shown promising results, further research is necessary to determine the optimal composition and dosage of LBPs and to ensure their safety and efficacy in clinical practice. Overall, LBPs hold great promise as a novel therapy for CDI and warrant further investigation in other conditions related to disruption of the colonic microbiota.
Collapse
Affiliation(s)
| | - Robert Orenstein
- Division of Infectious Diseases, Mayo Clinic Arizona, Phoenix, AZ, USA
| |
Collapse
|
18
|
Wang R. Clostridioides difficile infection: microbe-microbe interactions and live biotherapeutics. Front Microbiol 2023; 14:1182612. [PMID: 37228365 PMCID: PMC10203151 DOI: 10.3389/fmicb.2023.1182612] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
Clostridioides difficile is a gram-positive, spore-forming, obligate anaerobe that infects the colon. C. difficile is estimated to cause nearly half a million cases in the United States annually, with about 29,000 associated deaths. Unfortunately, the current antibiotic treatment is not ideal. While antibiotics can treat the infections, they also disrupt the gut microbiota that mediates colonization resistance against enteric pathogens, including C. difficile; disrupted gut microbiota provides a window of opportunity for recurrent infections. Therefore, therapeutics that restore the gut microbiota and suppress C. difficile are being evaluated for safety and efficacy. This review will start with mechanisms by which gut bacteria affect C. difficile pathogenesis, followed by a discussion on biotherapeutics for recurrent C. difficile infections.
Collapse
|
19
|
Alshrari AS, Hudu SA, Elmigdadi F, Imran M. The Urgent Threat of Clostridioides difficile Infection: A Glimpse of the Drugs of the Future, with Related Patents and Prospects. Biomedicines 2023; 11:biomedicines11020426. [PMID: 36830964 PMCID: PMC9953237 DOI: 10.3390/biomedicines11020426] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Clostridioides difficile infection (CDI) is an urgent threat and unmet medical need. The current treatments for CDI are not enough to fight the burden of CDI and recurrent CDI (r-CDI). This review aims to highlight the future drugs for CDI and their related patented applications. The non-patent literature was collected from PubMed and various authentic websites of pharmaceutical industries. The patent literature was collected from free patent databases. Many possible drugs of the future for CDI, with diverse mechanisms of action, are in development in the form of microbiota-modulating agents (e.g., ADS024, CP101, RBX2660, RBX7455, SYN-004, SER-109, VE303, DAV132, MET-2, and BB128), small molecules (e.g., ridinilazole, ibezapolstat, CRS3123, DNV3837, MGB-BP-3, alanyl-L-glutamine, and TNP-2198), antibodies (e.g., IM-01 and LMN-201), and non-toxic strains of CD (e.g., NTCD-M3). The development of some therapeutic agents (e.g., DS-2969b, OPS-2071, cadazolid, misoprostol, ramoplanin, KB109, LFF571, and Ramizol) stopped due to failed clinical trials or unknown reasons. The patent literature reveals some important inventions for the existing treatments of CDI and supports the possibility of developing more and better CDI-treatment-based inventions, including patient-compliant dosage forms, targeted drug delivery, drug combinations of anti-CDI drugs possessing diverse mechanisms of action, probiotic and enzymatic supplements, and vaccines. The current pipeline of anti-CDI medications appears promising. However, it will be fascinating to see how many of the cited are successful in gaining approval from drug regulators such as the US FDA and becoming medicines for CDI and r-CDI.
Collapse
Affiliation(s)
- Ahmed S. Alshrari
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Shuaibu Abdullahi Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Correspondence: (S.A.H.); (M.I.)
| | - Fayig Elmigdadi
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
- Correspondence: (S.A.H.); (M.I.)
| |
Collapse
|
20
|
Xie Y, Chupina Estrada A, Nelson B, Feng H, Pothoulakis C, Chesnel L, Koon HW. ADS024, a Bacillus velezensis strain, protects human colonic epithelial cells against C. difficile toxin-mediated apoptosis. Front Microbiol 2023; 13:1072534. [PMID: 36704560 PMCID: PMC9873417 DOI: 10.3389/fmicb.2022.1072534] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Clostridioides difficile infection (CDI) causes intestinal injury. Toxin A and toxin B cause intestinal injury by inducing colonic epithelial cell apoptosis. ADS024 is a Bacillus velezensis strain in development as a single-strain live biotherapeutic product (SS-LBP) to prevent the recurrence of CDI following the completion of standard antibiotic treatment. We evaluated the protective effects of the sterile filtrate and ethyl acetate extract of conditioned media from ADS024 and DSM7 (control strain) against mucosal epithelial injury in toxin-treated human colonic tissues and apoptosis in toxin-treated human colonic epithelial cells. Ethyl acetate extracts were generated from conditioned culture media from DSM7 and ADS024. Toxin A and toxin B exposure caused epithelial injury in fresh human colonic explants. The sterile filtrate of ADS024, but not DSM7, prevented toxin B-mediated epithelial injury in fresh human colonic explants. Both sterile filtrate and ethyl acetate extract of ADS024 prevented toxin-mediated apoptosis in human colonic epithelial cells. The anti-apoptotic effects of ADS024 filtrate and ethyl acetate extract were dependent on the inhibition of caspase 3 cleavage. The sterile filtrate, but not ethyl acetate extract, of ADS024 partially degraded toxin B. ADS024 inhibits toxin B-mediated apoptosis in human colonic epithelial cells and colonic explants.
Collapse
Affiliation(s)
- Ying Xie
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States,Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Andrea Chupina Estrada
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Becca Nelson
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Hanping Feng
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, College Park, College Park, MD, United States
| | - Charalabos Pothoulakis
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | | | - Hon Wai Koon
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States,*Correspondence: Hon Wai Koon,
| |
Collapse
|
21
|
Bloom PP, Young VB. Microbiome therapeutics for the treatment of recurrent Clostridioides difficile infection. Expert Opin Biol Ther 2023; 23:89-101. [PMID: 36536532 DOI: 10.1080/14712598.2022.2154600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The gut microbiome is implicated in Clostridioides difficile infection (CDI) and recurrent CDI (rCDI). AREAS COVERED This review covers the mechanisms by which microbiome therapeutics treat rCDI, their efficacy and safety, and clinical trial design considerations for future research. EXPERT OPINION Altering the chemical environment of the gut and reconstituting colonization resistance is a promising strategy for preventing and treating rCDI. Fecal microbiota transplant (FMT) is safe and effective for the treatment of rCDI. However, limitations of FMT have prompted investigation into alternative microbiome therapeutics. These alternative microbiome therapies require further evaluation, and adaptive trial designs should be strongly considered to more rapidly discern variables including the need for bowel preparation, timing and selection of pre-treatment antibiotics, and dose and duration of microbiome therapeutics. A broad range of adverse events must be prospectively evaluated in these controlled trials, as microbiome therapeutics have the potential for numerous effects. Future studies will lead to a greater understanding of the mechanisms by which microbiome therapies can break the cycle of rCDI, which should ultimately yield a personalized approach to rCDI treatment that restores an individual's specific deficit(s) in colonization resistance to C. difficile.
Collapse
Affiliation(s)
- Patricia P Bloom
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, USA
| | - Vincent B Young
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, USA.,Department of Microbiology and Immunology, University of Michigan, USA
| |
Collapse
|
22
|
Yang L, Hung LY, Zhu Y, Ding S, Margolis KG, Leong KW. Material Engineering in Gut Microbiome and Human Health. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9804014. [PMID: 35958108 PMCID: PMC9343081 DOI: 10.34133/2022/9804014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the past decade regarding our understanding of the gut microbiome's role in human health. Currently, however, a comprehensive and focused review marrying the two distinct fields of gut microbiome and material research is lacking. To bridge the gap, the current paper discusses critical aspects of the rapidly emerging research topic of "material engineering in the gut microbiome and human health." By engaging scientists with diverse backgrounds in biomaterials, gut-microbiome axis, neuroscience, synthetic biology, tissue engineering, and biosensing in a dialogue, our goal is to accelerate the development of research tools for gut microbiome research and the development of therapeutics that target the gut microbiome. For this purpose, state-of-the-art knowledge is presented here on biomaterial technologies that facilitate the study, analysis, and manipulation of the gut microbiome, including intestinal organoids, gut-on-chip models, hydrogels for spatial mapping of gut microbiome compositions, microbiome biosensors, and oral bacteria delivery systems. In addition, a discussion is provided regarding the microbiome-gut-brain axis and the critical roles that biomaterials can play to investigate and regulate the axis. Lastly, perspectives are provided regarding future directions on how to develop and use novel biomaterials in gut microbiome research, as well as essential regulatory rules in clinical translation. In this way, we hope to inspire research into future biomaterial technologies to advance gut microbiome research and gut microbiome-based theragnostics.
Collapse
Affiliation(s)
- Letao Yang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lin Y. Hung
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kara G. Margolis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
23
|
Wang X, Zhao J, Feng Y, Feng Z, Ye Y, Liu L, Kang G, Cao X. Evolutionary Insights Into Microbiota Transplantation in Inflammatory Bowel Disease. Front Cell Infect Microbiol 2022; 12:916543. [PMID: 35811664 PMCID: PMC9257068 DOI: 10.3389/fcimb.2022.916543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The intestinal microbiome plays an essential role in human health and disease status. So far, microbiota transplantation is considered a potential therapeutic approach for treating some chronic diseases, including inflammatory bowel disease (IBD). The diversity of gut microbiota is critical for maintaining resilience, and therefore, transplantation with numerous genetically diverse gut microbiota with metabolic flexibility and functional redundancy can effectively improve gut health than a single probiotic strain supplement. Studies have shown that natural fecal microbiota transplantation or washing microbiota transplantation can alleviate colitis and improve intestinal dysbiosis in IBD patients. However, unexpected adverse reactions caused by the complex and unclear composition of the flora limit its wider application. The evolving strain isolation technology and modifiable pre-existing strains are driving the development of microbiota transplantation. This review summarized the updating clinical and preclinical data of IBD treatments from fecal microbiota transplantation to washing microbiota transplantation, and then to artificial consortium transplantation. In addition, the factors considered for strain combination were reviewed. Furthermore, four types of artificial consortium transplant products were collected to analyze their combination and possible compatibility principles. The perspective on individualized microbiota transplantation was also discussed ultimately.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yuanhang Feng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Zelin Feng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yulin Ye
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Limin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
- *Correspondence: Xiaocang Cao, ; Guangbo Kang,
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- *Correspondence: Xiaocang Cao, ; Guangbo Kang,
| |
Collapse
|
24
|
O'Donnell MM, Hegarty JW, Healy B, Schulz S, Walsh CJ, Hill C, Ross RP, Rea MC, Farquhar R, Chesnel L. Identification of ADS024, a newly characterized strain of Bacillus velezensis with direct Clostridiodes difficile killing and toxin degradation bio-activities. Sci Rep 2022; 12:9283. [PMID: 35662257 PMCID: PMC9166764 DOI: 10.1038/s41598-022-13248-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/23/2022] [Indexed: 12/30/2022] Open
Abstract
Clostridioides difficile infection (CDI) remains a significant health threat worldwide. C. difficile is an opportunistic, toxigenic pathogen that takes advantage of a disrupted gut microbiome to grow and produce signs and symptoms ranging from diarrhea to pseudomembranous colitis. Antibiotics used to treat C. difficile infection are usually broad spectrum and can further disrupt the commensal gut microbiota, leaving patients susceptible to recurrent C. difficile infection. There is a growing need for therapeutic options that can continue to inhibit the outgrowth of C. difficile after antibiotic treatment is completed. Treatments that degrade C. difficile toxins while having minimal collateral impact on gut bacteria are also needed to prevent recurrence. Therapeutic bacteria capable of producing a range of antimicrobial compounds, proteases, and other bioactive metabolites represent a potentially powerful tool for preventing CDI recurrence following resolution of symptoms. Here, we describe the identification and initial characterization of ADS024 (formerly ART24), a novel therapeutic bacterium that can kill C. difficile in vitro with limited impact on other commensal bacteria. In addition to directly killing C. difficile, ADS024 also produces proteases capable of degrading C. difficile toxins, the drivers of symptoms associated with most cases of CDI. ADS024 is in clinical development for the prevention of CDI recurrence as a single-strain live biotherapeutic product, and this initial data set supports further studies aimed at evaluating ADS024 in future human clinical trials.
Collapse
Affiliation(s)
| | - James W Hegarty
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Brian Healy
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sarah Schulz
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Calum J Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | |
Collapse
|
25
|
Blount K, Jones C, Walsh D, Gonzalez C, Shannon WD. Development and Validation of a Novel Microbiome-Based Biomarker of Post-antibiotic Dysbiosis and Subsequent Restoration. Front Microbiol 2022; 12:781275. [PMID: 35058900 PMCID: PMC8764365 DOI: 10.3389/fmicb.2021.781275] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The human gut microbiota are important to health and wellness, and disrupted microbiota homeostasis, or “dysbiosis,” can cause or contribute to many gastrointestinal disease states. Dysbiosis can be caused by many factors, most notably antibiotic treatment. To correct dysbiosis and restore healthier microbiota, several investigational microbiota-based live biotherapeutic products (LBPs) are in formal clinical development. To better guide and refine LBP development and to better understand and manage the risks of antibiotic administration, biomarkers that distinguish post-antibiotic dysbiosis from healthy microbiota are needed. Here we report the development of a prototype Microbiome Health Index for post-Antibiotic dysbiosis (MHI-A). Methods: MHI-A was developed and validated using longitudinal gut microbiome data from participants in clinical trials of RBX2660 and RBX7455 – investigational LBPs in development for reducing recurrent Clostridioides difficile infections (rCDI). The MHI-A algorithm relates the relative abundances of microbiome taxonomic classes that changed the most after RBX2660 or RBX7455 treatment, that strongly correlated with clinical response, and that reflect biological mechanisms believed important to rCDI. The diagnostic utility of MHI-A was reinforced using publicly available microbiome data from healthy or antibiotic-treated populations. Results: MHI-A has high accuracy to distinguish post-antibiotic dysbiosis from healthy microbiota. MHI-A values were consistent across multiple healthy populations and were significantly shifted by antibiotic treatments known to alter microbiota compositions, shifted less by microbiota-sparing antibiotics. Clinical response to RBX2660 and RBX7455 correlated with a shift of MHI-A from dysbiotic to healthy values. Conclusion: MHI-A is a promising biomarker of post-antibiotic dysbiosis and subsequent restoration. MHI-A may be useful for rank-ordering the microbiota-disrupting effects of antibiotics and as a pharmacodynamic measure of microbiota restoration.
Collapse
Affiliation(s)
- Ken Blount
- Rebiotix Inc., a Ferring Company, Roseville, MN, United States
| | - Courtney Jones
- Rebiotix Inc., a Ferring Company, Roseville, MN, United States
| | - Dana Walsh
- Rebiotix Inc., a Ferring Company, Roseville, MN, United States
| | | | | |
Collapse
|
26
|
Abstract
Symbiotic microorganisms inhabiting the gastrointestinal tract promote health by decreasing susceptibility to infection and enhancing resistance to a range of diseases. In this Review, we discuss our increasing understanding of the impact of the microbiome on the mammalian host and recent efforts to culture and characterize intestinal symbiotic microorganisms that produce or modify metabolites that impact disease pathology. Manipulation of the intestinal microbiome has great potential to reduce the incidence and/or severity of a wide range of human conditions and diseases, and the biomedical research community now faces the challenge of translating our understanding of the microbiome into beneficial medical therapies. Our increasing understanding of symbiotic microbial species and the application of ecological principles and machine learning are providing exciting opportunities for microbiome-based therapeutics to progress from faecal microbiota transplantation to the administration of precisely defined and clinically validated symbiotic microbial consortia that optimize disease resistance.
Collapse
|
27
|
Buckley AM, Moura IB, Wilcox MH. The potential of microbiome replacement therapies for Clostridium difficile infection. Curr Opin Gastroenterol 2022; 38:1-6. [PMID: 34871192 DOI: 10.1097/mog.0000000000000800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW There is a paradox when treating Clostridium difficile infection (CDI); treatment antibiotics reduce C. difficile colonization but cause further microbiota disruption and can lead to recurrent disease. The success of faecal microbiota transplants (FMT) in treating CDI has become a new research area in microbiome restorative therapies but are they a viable long-term treatment option? RECENT FINDINGS C. difficile displays metabolic flexibility to use different nutritional sources during CDI. Using microbiome therapies for the efficient restoration of bile homeostasis and to reduce the bioavailability of preferential nutrients will target the germination ability of C. difficile spores and the growth rate of vegetative cells. Several biotechnology companies have developed microbiome therapeutics for treating CDI, which are undergoing clinical trials. SUMMARY There is confidence in using restorative microbiome therapies for treating CDI after the demonstrated efficacy of FMT, where several biotechnology companies are aiming to supply what would be a 'first in class' treatment option. Efficient removal of C. difficile from the different intestinal biogeographies should be considered in future microbiome therapies. With the gut microbiota implicated in different diseases, more work is needed to assess the long-term consequences of microbiome therapies.
Collapse
Affiliation(s)
- Anthony M Buckley
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health
- Microbiome and Nutritional Science Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds
| | - Ines B Moura
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health
| | - Mark H Wilcox
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health
- Microbiology, Leeds Teaching Hospital NHS Trust, Old Medical School, Leeds General Infirmary, Leeds, UK
| |
Collapse
|
28
|
Zhang Y, Saint Fleur A, Feng H. The development of live biotherapeutics against Clostridioides difficile infection towards reconstituting gut microbiota. Gut Microbes 2022; 14:2052698. [PMID: 35319337 PMCID: PMC8959509 DOI: 10.1080/19490976.2022.2052698] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is the most prevalent pathogen of nosocomial diarrhea. In the United States, over 450,000 cases of C. difficile infection (CDI), responsible for more than 29,000 deaths, are reported annually in recent years. Because of the emergence of hypervirulent strains and strains less susceptible to vancomycin and fidaxomicin, new therapeutics other than antibiotics are urgently needed. The gut microbiome serves as one of the first-line defenses against C. difficile colonization. The use of antibiotics causes gut microbiota dysbiosis and shifts the status from colonization resistance to infection. Hence, novel CDI biotherapeutics capable of reconstituting normal gut microbiota have become a focus of drug development in this field.
Collapse
Affiliation(s)
- Yongrong Zhang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD21201, United States
| | - Ashley Saint Fleur
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD21201, United States
| | - Hanping Feng
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD21201, United States
| |
Collapse
|
29
|
Perez M, Ntemiri A, Tan H, Harris HMB, Roager HM, Ribière C, O’Toole PW. A synthetic consortium of 100 gut commensals modulates the composition and function in a colon model of the microbiome of elderly subjects. Gut Microbes 2021; 13:1-19. [PMID: 33993839 PMCID: PMC8128205 DOI: 10.1080/19490976.2021.1919464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Administration of cultured gut isolates holds promise for modulating the altered composition and function of the microbiota in older subjects, and for promoting their health. From among 692 initial isolates, we selected 100 gut commensal strains (MCC100) based on emulating the gut microbiota of healthy subjects, and retaining strain diversity within selected species. MCC100 susceptibility to seven antibiotics was determined, and their genomes were screened for virulence factor, antimicrobial resistance and bacteriocin genes. Supplementation of healthy and frail elderly microbiota types with the MCC100 in an in vitro colon model increased alpha-diversity, raised relative abundance of taxa including Blautia luti, Bacteroides fragilis, and Sutterella wadsworthensis; and introduced taxa such as Bifidobacterium spp. Microbiota changes correlated with higher levels of branched chain amino acids, which are health-associated in elderly. The study establishes that the MCC100 consortium can modulate older subjects' microbiota composition and associated metabolome in vitro, paving the way for pre-clinical and human trials.
Collapse
Affiliation(s)
- Marta Perez
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Alexandra Ntemiri
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Huizi Tan
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hugh M. B. Harris
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Henrik M. Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Céline Ribière
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul W. O’Toole
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland,CONTACT Paul W. O’Toole School of Microbiology & APC Microbiome Ireland, Food Science Building, University College Cork, CorkT12 YN60, Ireland
| |
Collapse
|
30
|
Khanna S. Microbiota restoration for recurrent Clostridioides difficile: Getting one step closer every day! J Intern Med 2021; 290:294-309. [PMID: 33856727 DOI: 10.1111/joim.13290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Clostridioides difficile infection (CDI) is an urgent health threat being the most common healthcare-associated infection, and its management is a clinical conundrum. Over 450 000 infections are seen in the United States with similar incidence seen in the rest of the developed world. The majority of infections seen are mild-moderate with fulminant disease and mortality being rare complications seen in the elderly and in those with comorbidities. The most common complication of CDI is recurrent infection with rates as high as 60% after three or more infections. A dilemma in the management of primary and recurrent CDI is testing due to the high sensitivity of the nucleic acid amplification tests such as the polymerase chain reaction, which leads to clinical false positives if patients are not chosen carefully (with symptoms) before testing. A newer testing regimen involving a 2-step strategy is emerging using glutamate dehydrogenase as a screening strategy followed by enzyme immunoassay for the C. difficile toxin. Microbiota restoration therapies are the cornerstone of management of recurrent CDI to prevent future recurrences. The most common modality of microbiota restoration is faecal microbiota transplantation, which has been tainted with heterogeneity and adverse events such as serious infectious transmission. The success rates for recurrence prevention from microbiota restoration therapies are over 90% compared with less than 50% of recurrence prevention with courses of antibiotics. This has led to development and emergence of standardized microbiota restoration therapies in capsule and enema forms. Capsule-based therapies include CP101 (positive phase II results), RBX7455 (positive phase I results), SER-109 (positive phase III results) and VE303 (ongoing phase II trial). Enema-based therapy includes RBX2660 (positive phase III data). This review summarizes the principles of management and diagnosis of CDI and focuses on emerging and existing data on faecal microbiota transplantation and standardized microbiota restoration therapies.
Collapse
Affiliation(s)
- S Khanna
- From the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
31
|
Khanna S. My Treatment Approach to Clostridioides difficile Infection. Mayo Clin Proc 2021; 96:2192-2204. [PMID: 34175104 DOI: 10.1016/j.mayocp.2021.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Clostridioides difficile infection is the most common cause of infectious diarrhea in hospitals with an increasing incidence in the community. Clinical presentation of C difficile infection ranges from diarrhea manageable in the outpatient setting to fulminant infection requiring intensive care admission. There have been significant advances in the management of primary and recurrent C difficile infection including diagnostics, newer antibiotics, antibody treatments, and microbiome restoration therapies. Because of the risk of clinical false-positive results with the polymerase chain reaction test, a two-step assay combining an enzyme immune assay for glutamate dehydrogenase and the C difficile toxin is being used. Cost permitting, I treat a first episode of C difficile infection preferably with fidaxomicin over vancomycin but not metronidazole. The most common complication after C difficile infection is recurrence. I manage a first recurrence with a vancomycin taper and pulse or fidaxomicin and recommend a single dose of intravenous bezlotoxumab (a monoclonal antibody against the toxin B) to reduce recurrence rates for those patients at high risk. Patients with multiply recurrent C difficile infection are managed with a course of antibiotics such as vancomycin or fidaxomicin followed by microbiota restoration. The success of fecal microbiota transplantation is greater than 85%, compared with the 40% to 50% success rate of antibiotics in this situation. Fecal microbiota transplantation is heterogeneous and has rare but serious risks such as transmission of infections. Standardized microbiota restoration therapies are in clinical development and have completed phase III clinical trials. This review answers common clinical questions in the management of C difficile infection.
Collapse
Affiliation(s)
- Sahil Khanna
- C difficile Clinic and Microbiome Restoration Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
32
|
Yadav D, Khanna S. Safety of fecal microbiota transplantation for Clostridioides difficile infection focusing on pathobionts and SARS-CoV-2. Therap Adv Gastroenterol 2021; 14:17562848211009694. [PMID: 33959193 PMCID: PMC8064662 DOI: 10.1177/17562848211009694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a consequence of flagrant use of antibiotics, an aging population with increasing comorbidities, and increased hospitalizations. The treatment of choice for CDI is antibiotics (vancomycin or fidaxomicin), with a possibility of recurrent CDI despite lack of additional risk factors for CDI. For the last 10 years, fecal microbiota transplantation (FMT) has emerged as a promising therapy for recurrent CDI, with success rates of over 85% compared with less than 50% with antibiotics for multiple recurrent CDI. Along with the success of FMT, several adverse and serious adverse events with FMT have been reported. These range from self-limiting abdominal pain to death due to severe sepsis. This review focuses on the safety of FMT, emphasizing the reports of transmission of pathobionts like extended-spectrum beta lactamase Escherichia coli and Shiga toxin-producing E. coli. The severe acute respiratory syndrome coronavirus-2 is a potential pathogen that could be transmitted via FMT during the COVID-19 pandemic. The challenges faced by clinicians for donor screening, clinical trials, and other aspects of FMT during the pandemic are discussed.
Collapse
Affiliation(s)
- Devvrat Yadav
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
33
|
Sehgal K, Khanna S. Gut microbiome and Clostridioides difficile infection: a closer look at the microscopic interface. Therap Adv Gastroenterol 2021; 14:1756284821994736. [PMID: 33747125 PMCID: PMC7905718 DOI: 10.1177/1756284821994736] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of Clostridioides difficile infection (CDI) was recognized with its link to the use of antimicrobials. Antimicrobials significantly alter gut microbiota structure and composition, which led to the discovery of the association of this gut perturbation with the development of CDI. A number of factors implicated in its pathogenesis, such as advancing age, proton-pump inhibitors, and gastrointestinal diseases, are linked to gut microbiota perturbations. In an effort to better understand CDI, a multitude of studies have tried to ascertain protective and predictive microbial footprints linked with CDI. It has further been realized that CDI in itself can alter the gut microbiome. Its spore-forming capability poses as an impediment in the management of the infection and contributes to its recurrence. Antibiotic therapies used for its management have also been linked to gut microbiota changes, making its treatment a little more challenging. In an effort to exploit and utilize this association, gut microbial restoration therapies, particularly in the form of fecal microbial transplant, are increasingly being put to use and are proving to be beneficial. In this review, we summarize the association of the gut microbiome and microbial perturbation with initial and recurrent CDI.
Collapse
Affiliation(s)
- Kanika Sehgal
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Khanna S. Advances in Clostridioides difficile therapeutics. Expert Rev Anti Infect Ther 2021; 19:1067-1070. [PMID: 33427531 DOI: 10.1080/14787210.2021.1874919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|