1
|
Marcink TC, Zipursky G, Sobolik EB, Golub K, Herman E, Stearns K, Greninger AL, Porotto M, Moscona A. How a paramyxovirus fusion/entry complex adapts to escape a neutralizing antibody. Nat Commun 2024; 15:8831. [PMID: 39396053 PMCID: PMC11470942 DOI: 10.1038/s41467-024-53082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Paramyxoviruses including measles, Nipah, and parainfluenza viruses are public health threats with pandemic potential. Human parainfluenza virus type 3 (HPIV3) is a leading cause of illness in pediatric, older, and immunocompromised populations. There are no approved vaccines or therapeutics for HPIV3. Neutralizing monoclonal antibodies (mAbs) that target viral fusion are a potential strategy for mitigating paramyxovirus infection, however their utility may be curtailed by viral evolution that leads to resistance. Paramyxoviruses enter cells by fusing with the cell membrane in a process mediated by a complex consisting of a receptor binding protein (HN) and a fusion protein (F). Existing atomic resolution structures fail to reveal physiologically relevant interactions during viral entry. We present cryo-ET structures of pre-fusion HN-F complexes in situ on surfaces of virions that evolved resistance to an anti-HPIV3 F neutralizing mAb. Single mutations in F abolish mAb binding and neutralization. In these complexes, the HN protein that normally restrains F triggering has shifted to uncap the F apex. These complexes are more readily triggered to fuse. These structures shed light on the adaptability of the pre-fusion HN-F complex and mechanisms of paramyxoviral resistance to mAbs, and help define potential barriers to resistance for the design of mAbs.
Collapse
Affiliation(s)
- Tara C Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Gillian Zipursky
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Elizabeth B Sobolik
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kate Golub
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Emily Herman
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kyle Stearns
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Microbiology & Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
2
|
Jaishwal P, Jha K, Singh SP. Revisiting the dimensions of universal vaccine with special focus on COVID-19: Efficacy versus methods of designing. Int J Biol Macromol 2024; 277:134012. [PMID: 39048013 DOI: 10.1016/j.ijbiomac.2024.134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Even though the use of SARS-CoV-2 vaccines during the COVID-19 pandemic showed unprecedented success in a short time, it also exposed a flaw in the current vaccine design strategy to offer broad protection against emerging variants of concern. However, developing broad-spectrum vaccines is still a challenge for immunologists. The development of universal vaccines against emerging pathogens and their variants appears to be a practical solution to mitigate the economic and physical effects of the pandemic on society. Very few reports are available to explain the basic concept of universal vaccine design and development. This review provides an overview of the innate and adaptive immune responses generated against vaccination and essential insight into immune mechanisms helpful in designing universal vaccines targeting influenza viruses and coronaviruses. In addition, the characteristics, safety, and factors affecting the efficacy of universal vaccines have been discussed. Furthermore, several advancements in methods worthy of designing universal vaccines are described, including chimeric immunogens, heterologous prime-boost vaccines, reverse vaccinology, structure-based antigen design, pan-reactive antibody vaccines, conserved neutralizing epitope-based vaccines, mosaic nanoparticle-based vaccines, etc. In addition to the several advantages, significant potential constraints, such as defocusing the immune response and subdominance, are also discussed.
Collapse
Affiliation(s)
- Puja Jaishwal
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | - Kisalay Jha
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | | |
Collapse
|
3
|
Chakraborty S, Chauhan A. Fighting the flu: a brief review on anti-influenza agents. Biotechnol Genet Eng Rev 2024; 40:858-909. [PMID: 36946567 DOI: 10.1080/02648725.2023.2191081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
The influenza virus causes one of the most prevalent and lethal infectious viral diseases of the respiratory system; the disease progression varies from acute self-limiting mild fever to disease chronicity and death. Although both the preventive and treatment measures have been vital in protecting humans against seasonal epidemics or sporadic pandemics, there are several challenges to curb the influenza virus such as limited or poor cross-protection against circulating virus strains, moderate protection in immune-compromised patients, and rapid emergence of resistance. Currently, there are four US-FDA-approved anti-influenza drugs to treat flu infection, viz. Rapivab, Relenza, Tamiflu, and Xofluza. These drugs are classified based on their mode of action against the viral replication cycle with the first three being Neuraminidase inhibitors, and the fourth one targeting the viral polymerase. The emergence of the drug-resistant strains of influenza, however, underscores the need for continuous innovation towards development and discovery of new anti-influenza agents with enhanced antiviral effects, greater safety, and improved tolerability. Here in this review, we highlighted commercially available antiviral agents besides those that are at different stages of development including under clinical trials, with a brief account of their antiviral mechanisms.
Collapse
Affiliation(s)
| | - Ashwini Chauhan
- Department of Microbiology, Tripura University, Agartala, India
| |
Collapse
|
4
|
Nguyen THO, Rowntree LC, Chua BY, Thwaites RS, Kedzierska K. Defining the balance between optimal immunity and immunopathology in influenza virus infection. Nat Rev Immunol 2024; 24:720-735. [PMID: 38698083 DOI: 10.1038/s41577-024-01029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Suryadevara N, Otrelo-Cardoso AR, Kose N, Hu YX, Binshtein E, Wolters RM, Greninger AL, Handal LS, Carnahan RH, Moscona A, Jardetzky TS, Crowe JE. Functional and structural basis of human parainfluenza virus type 3 neutralization with human monoclonal antibodies. Nat Microbiol 2024; 9:2128-2143. [PMID: 38858594 DOI: 10.1038/s41564-024-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/02/2024] [Indexed: 06/12/2024]
Abstract
Human parainfluenza virus type 3 (hPIV3) is a respiratory pathogen that can cause severe disease in older people and infants. Currently, vaccines against hPIV3 are in clinical trials but none have been approved yet. The haemagglutinin-neuraminidase (HN) and fusion (F) surface glycoproteins of hPIV3 are major antigenic determinants. Here we describe naturally occurring potently neutralizing human antibodies directed against both surface glycoproteins of hPIV3. We isolated seven neutralizing HN-reactive antibodies and a pre-fusion conformation F-reactive antibody from human memory B cells. One HN-binding monoclonal antibody (mAb), designated PIV3-23, exhibited functional attributes including haemagglutination and neuraminidase inhibition. We also delineated the structural basis of neutralization for two HN and one F mAbs. MAbs that neutralized hPIV3 in vitro protected against infection and disease in vivo in a cotton rat model of hPIV3 infection, suggesting correlates of protection for hPIV3 and the potential clinical utility of these mAbs.
Collapse
MESH Headings
- Animals
- Parainfluenza Virus 3, Human/immunology
- Parainfluenza Virus 3, Human/genetics
- Humans
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- Sigmodontinae
- Viral Fusion Proteins/immunology
- Viral Fusion Proteins/chemistry
- HN Protein/immunology
- HN Protein/chemistry
- HN Protein/genetics
- Respirovirus Infections/immunology
- Respirovirus Infections/virology
- Disease Models, Animal
- Neutralization Tests
- B-Lymphocytes/immunology
- Models, Molecular
Collapse
Affiliation(s)
| | | | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yao-Xiong Hu
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachael M Wolters
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Laura S Handal
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anne Moscona
- Departments of Pediatrics, Microbiology and Immunology, and Physiology and Cellular Biophysics, and Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Tiruthani K, Cruz‐Teran C, Chan JFW, Ma A, McSweeney M, Wolf W, Yuan S, Poon VKM, Chan CCS, Botta L, Farrer B, Stewart I, Schaefer A, Edelstein J, Kumar P, Arora H, Hutchins JT, Hickey AJ, Yuen K, Lai SK. Engineering a "muco-trapping" ACE2-immunoglobulin hybrid with picomolar affinity as an inhaled, pan-variant immunotherapy for COVID-19. Bioeng Transl Med 2024; 9:e10650. [PMID: 39036085 PMCID: PMC11256170 DOI: 10.1002/btm2.10650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 07/23/2024] Open
Abstract
Soluble angiotensin-converting enzyme 2 (ACE2) can act as a decoy molecule that neutralizes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by blocking spike (S) proteins on virions from binding ACE2 on host cells. Based on structural insights of ACE2 and S proteins, we designed a "muco-trapping" ACE2-Fc conjugate, termed ACE2-(G4S)6-Fc, comprised of the extracellular segment of ACE2 (lacking the C-terminal collectrin domain) that is linked to mucin-binding IgG1-Fc via an extended glycine-serine flexible linker. ACE2-(G4S)6-Fc exhibits substantially greater binding affinity and neutralization potency than conventional full length ACE2-Fc decoys or similar truncated ACE2-Fc decoys without flexible linkers, possessing picomolar binding affinity and strong neutralization potency against pseudovirus and live virus. ACE2-(G4S)6-Fc effectively trapped fluorescent SARS-CoV-2 virus like particles in fresh human airway mucus and was stably nebulized using a commercial vibrating mesh nebulizer. Intranasal dosing of ACE2-(G4S)6-Fc in hamsters as late as 2 days postinfection provided a 10-fold reduction in viral load in the nasal turbinate tissues by Day 4. These results strongly support further development of ACE2-(G4S)6-Fc as an inhaled immunotherapy for COVID-19, as well as other emerging viruses that bind ACE2 for cellular entry.
Collapse
Affiliation(s)
- Karthik Tiruthani
- Division of Pharmacoengineering and Molecular PharmaceuticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Carlos Cruz‐Teran
- Division of Pharmacoengineering and Molecular PharmaceuticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jasper F. W. Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam, Hong Kong Special Administrative RegionChina
- Centre for Virology, Vaccinology and TherapeuticsHong Kong Science and Technology ParkHong Kong Special Administrative RegionChina
| | - Alice Ma
- UNC/NCSU Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | - Whitney Wolf
- Division of Pharmacoengineering and Molecular PharmaceuticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Shoufeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam, Hong Kong Special Administrative RegionChina
- Centre for Virology, Vaccinology and TherapeuticsHong Kong Science and Technology ParkHong Kong Special Administrative RegionChina
| | - Vincent K. M. Poon
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam, Hong Kong Special Administrative RegionChina
- Centre for Virology, Vaccinology and TherapeuticsHong Kong Science and Technology ParkHong Kong Special Administrative RegionChina
| | - Chris C. S. Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam, Hong Kong Special Administrative RegionChina
- Centre for Virology, Vaccinology and TherapeuticsHong Kong Science and Technology ParkHong Kong Special Administrative RegionChina
| | | | - Brian Farrer
- Inhalon Biopharma, Inc.MorrisvilleNorth CarolinaUSA
| | - Ian Stewart
- RTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Alison Schaefer
- UNC/NCSU Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jasmine Edelstein
- UNC/NCSU Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Priya Kumar
- Department of Anesthesiology, School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Harendra Arora
- Department of Anesthesiology, School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | | | | | - Kwok‐Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam, Hong Kong Special Administrative RegionChina
- Centre for Virology, Vaccinology and TherapeuticsHong Kong Science and Technology ParkHong Kong Special Administrative RegionChina
| | - Samuel K. Lai
- Division of Pharmacoengineering and Molecular PharmaceuticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Inhalon Biopharma, Inc.MorrisvilleNorth CarolinaUSA
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
7
|
Franchini M, Focosi D. Monoclonal Antibodies and Hyperimmune Immunoglobulins in the Next Pandemic. Curr Top Microbiol Immunol 2024. [PMID: 38877202 DOI: 10.1007/82_2024_274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Pandemics are highly unpredictable events that are generally caused by novel viruses. There is a high likelihood that such novel pathogens belong to entirely novel viral families for which no targeted small-molecule antivirals exist. In addition, small-molecule antivirals often have pharmacokinetic properties that make them contraindicated for the frail patients who are often the most susceptible to a novel virus. Passive immunotherapies-available from the first convalescent patients-can then play a key role in controlling pandemics. Convalescent plasma is immediately available, but if manufacturers have fast platforms to generate marketable drugs, other forms of passive antibody treatment can be produced. In this chapter, we will review the technological platforms for generating monoclonal antibodies and hyperimmune immunoglobulins, the current experience on their use for treatment of COVID-19, and the pipeline for pandemic candidates.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy.
| |
Collapse
|
8
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. Retracted and republished from: "The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs". mBio 2024; 15:e0017524. [PMID: 38551343 PMCID: PMC11077966 DOI: 10.1128/mbio.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the Food and Drug Administration are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These recommended antivirals are currently effective for major subtypes of IVs as the compounds target conserved domains in neuraminidase or polymerase acidic (PA) protein. However, this trend may gradually change due to the selection of antiviral drugs and the natural evolution of IVs. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Department of High-Tech Development, Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Epidemic Prevention Laboratory, Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
Focosi D, Franchini M, Senefeld JW, Joyner MJ, Sullivan DJ, Pekosz A, Maggi F, Casadevall A. Passive immunotherapies for the next influenza pandemic. Rev Med Virol 2024; 34:e2533. [PMID: 38635404 DOI: 10.1002/rmv.2533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Influenzavirus is among the most relevant candidates for a next pandemic. We review here the phylogeny of former influenza pandemics, and discuss candidate lineages. After briefly reviewing the other existing antiviral options, we discuss in detail the evidences supporting the efficacy of passive immunotherapies against influenzavirus, with a focus on convalescent plasma.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Mantua Hospital, Mantua, Italy
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Fabrizio Maggi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Sun W, Wu Y, Ying T. Progress in novel delivery technologies to improve efficacy of therapeutic antibodies. Antiviral Res 2024; 225:105867. [PMID: 38521465 DOI: 10.1016/j.antiviral.2024.105867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Monoclonal antibody-based therapeutics have achieved remarkable success in treating a wide range of human diseases. However, conventional systemic delivery methods have limitations in insufficient target tissue permeability, high costs, repeated administrations, etc. Novel technologies have been developed to address these limitations and further enhance antibody therapy. Local antibody delivery via respiratory tract, gastrointestinal tract, eye and blood-brain barrier have shown promising results in increasing local concentrations and overcoming barriers. Nucleic acid-encoded antibodies expressed from plasmid DNA, viral vectors or mRNA delivery platforms also offer advantages over recombinant proteins such as sustained expression, rapid onset, and lower costs. This review summarizes recent advances in antibody delivery methods and highlights innovative technologies that have potential to expand therapeutic applications of antibodies.
Collapse
Affiliation(s)
- Wenli Sun
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China.
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China.
| |
Collapse
|
11
|
Plotnik D, Sager JE, Aryal M, Fanget MC, Peter A, Schmid MA, Cebrik D, Mogalian E, Boundy K, Yeh WW, Griffin P, Reyes M. A phase 1 study in healthy volunteers to investigate the safety, tolerability, and pharmacokinetics of VIR-2482: a monoclonal antibody for the prevention of severe influenza A illness. Antimicrob Agents Chemother 2024; 68:e0127323. [PMID: 38376227 PMCID: PMC10988998 DOI: 10.1128/aac.01273-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
The objective of this study was to evaluate the safety, tolerability, pharmacokinetics (PK), and immunogenicity of VIR-2482 in healthy adult subjects. A phase 1, first-in-human, randomized, double-blind, placebo-controlled dose-escalation study was conducted. One hundred participants were allocated to four cohorts (60 mg, 300 mg, 1,200 mg, and 1,800 mg). In each cohort, participants were randomized in a 4:1 ratio (active:placebo) to receive either VIR-2482 or volume-matched placebo by gluteal intramuscular injection. Participants remained at the investigative site under observation for 48 h, and adverse events (AEs) were collected for 56 days. PK and immunogenicity were measured up to 52 weeks post-dose. VIR-2482 was well tolerated at all doses studied. The overall incidence of AEs was comparable between VIR-2482 (68.8%) and placebo (85.0%). Nineteen VIR-2482 (23.8%) and six placebo (30.0%) recipients had Grade 1 or 2 AEs that were considered to be related to the study intervention. There were no treatment-related serious AEs. Injection-site reactions (ISRs) were reported in six (7.5%) VIR-2482 recipients, while no such reactions were reported among the placebo recipients. All ISRs were Grade 1, and there was no relationship with the dose. Median VIR-2482 serum elimination half-life ranged from 56.7 to 70.6 days across cohorts. The serum area under the curve and Cmax were dose-proportional. Nasopharyngeal VIR-2482 concentrations were approximately 2%-5% of serum levels and were less than dose-proportional. The incidence of immunogenicity across all cohorts was 1.3%. Overall, the safety, tolerability, and pharmacokinetic profile of VIR-2482 at doses up to 1,800 mg supported its further investigation as a long-acting antibody for the prevention of influenza A illness. This study has been registered at ClinicalTrials.gov under identifier NCT04033406.
Collapse
Affiliation(s)
| | | | | | | | - Alessia Peter
- Humabs BioMed, SA, Vir Biotechnology, Bellinzona, Switzerland
| | | | | | | | - Keith Boundy
- Vir Biotechnology, San Francisco, California, USA
| | - Wendy W. Yeh
- Vir Biotechnology, San Francisco, California, USA
| | - Paul Griffin
- Mater Health and University of Queensland, Queensland, Australia
| | | |
Collapse
|
12
|
McSweeney MD, Alnajjar S, Schaefer AM, Richardson Z, Wolf W, Stewart I, Sriboonyapirat P, McCallen J, Farmer E, Nzati B, Lord S, Farrer B, Moench TR, Kumar PA, Arora H, Pickles RJ, Hickey AJ, Ackermann M, Lai SK. Inhaled "Muco-Trapping" Monoclonal Antibody Effectively Treats Established Respiratory Syncytial Virus (RSV) Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306729. [PMID: 38225749 DOI: 10.1002/advs.202306729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in infants, the immunocompromised, and the elderly. RSV infects the airway epithelium via the apical membrane and almost exclusively sheds progeny virions back into the airway mucus (AM), making RSV difficult to target by systemically administered therapies. An inhalable "muco-trapping" variant of motavizumab (Mota-MT), a potent neutralizing mAb against RSV F is engineered. Mota-MT traps RSV in AM via polyvalent Fc-mucin bonds, reducing the fraction of fast-moving RSV particles in both fresh pediatric and adult AM by ≈20-30-fold in a Fc-glycan dependent manner, and facilitates clearance from the airways of mice within minutes. Intranasal dosing of Mota-MT eliminated viral load in cotton rats within 2 days. Daily nebulized delivery of Mota-MT to RSV-infected neonatal lambs, beginning 3 days after infection when viral load is at its maximum, led to a 10 000-fold and 100 000-fold reduction in viral load in bronchoalveolar lavage and lung tissues relative to placebo control, respectively. Mota-MT-treated lambs exhibited reduced bronchiolitis, neutrophil infiltration, and airway remodeling than lambs receiving placebo or intramuscular palivizumab. The findings underscore inhaled delivery of muco-trapping mAbs as a promising strategy for the treatment of RSV and other acute respiratory infections.
Collapse
Affiliation(s)
| | - Sarhad Alnajjar
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Alison M Schaefer
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Whitney Wolf
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ian Stewart
- RTI International, Research Triangle Park, NC, 27709, USA
| | | | - Justin McCallen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ellen Farmer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Sam Lord
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | - Brian Farrer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Priya A Kumar
- Department of Anesthesiology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Outcomes Research Consortium, Cleveland, OH, 44195, USA
| | - Harendra Arora
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Raymond J Pickles
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Mark Ackermann
- USDA/ARS-National Animal Disease Center, Ames, IA, 50010, USA
| | - Samuel K Lai
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
13
|
Sun X, Ma H, Wang X, Bao Z, Tang S, Yi C, Sun B. Broadly neutralizing antibodies to combat influenza virus infection. Antiviral Res 2024; 221:105785. [PMID: 38145757 DOI: 10.1016/j.antiviral.2023.105785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The diversified classification and continuous alteration of influenza viruses underscore for antivirals and vaccines that can counter a broad range of influenza subtypes. Hemagglutinin (HA) and neuraminidase (NA) are two principle viral surface targets for broadly neutralizing antibodies. A series of monoclonal antibodies, targeting HA and NA, have been discovered and characterized with a wide range of neutralizing activity against influenza viruses. Clinical studies have demonstrated the safety and efficacy of some HA stem-targeting antibodies against influenza viruses. Broadly neutralizing antibodies (bnAbs) can serve as both prophylactic and therapeutic agents, as well as play a critical role in identifying antigens and epitopes for the development of universal vaccines. In this review, we described and summarized the latest discoveries and advancements of bnAbs against influenza viruses in both pre- and clinical development. Additionally, we assess whether bnAbs can serve as a viable alternative to vaccination against influenza. Finally, we discussed the rationale behind reverse vaccinology, a structure-guided universal vaccine design strategy that efficiently identifies candidate antigens and conserved epitopes that can be targeted by antibodies.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Hanwen Ma
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xuanjia Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhiheng Bao
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shubing Tang
- Department of Investigational New Drug, Shanghai Reinovax Biologics Co., Ltd, Shanghai, 200135, China
| | - Chunyan Yi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bing Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
14
|
ElSherif M, Halperin SA. Benefits of Combining Molecular Biology and Controlled Human Infection Model Methodologies in Advancing Vaccine Development. J Mol Biol 2023; 435:168322. [PMID: 37866477 DOI: 10.1016/j.jmb.2023.168322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Infectious diseases continue to account for a significant portion of global deaths despite the use of vaccines for several centuries. Immunization programs around the world are a testament to the great success of multiple vaccines, yet there are still diseases without vaccines and others that require safer more effective ones. Addressing uncontrolled and emerging disease threats is restrained by the limitations and bottlenecks encountered with traditional vaccine development paradigms. Recent advances in modern molecular biology technologies have enhanced the interrogation of host pathogen interaction and deciphered complex pathways, thereby uncovering the myriad interplay of biological events that generate immune protection against foreign agents. Consequent to insights into the immune system, modern biology has been instrumental in the development and production of next generation 21st century vaccines. As these biological tools, commonly and collectively referred to as 'omics, became readily available, there has been a renewed consideration of Controlled Human Infection Models (CHIMs). Successful and reproducible CHIMs can complement modern molecular biology for the study of infectious diseases and development of effective vaccines in a regulated process that mitigates risk, cost, and time, with capacity to discern immune correlates of protection.
Collapse
Affiliation(s)
- May ElSherif
- Canadian Center for Vaccinology, IWK Health, Nova Scotia Health, and Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Scott A Halperin
- Canadian Center for Vaccinology, IWK Health, Nova Scotia Health, and Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
15
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs. mBio 2023; 14:e0127323. [PMID: 37610204 PMCID: PMC10653855 DOI: 10.1128/mbio.01273-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the FDA are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. Notably, owing to the high variability of IVs, no drug exists that can effectively treat all types and subtypes of IVs. Moreover, the current trend of drug resistance is likely to continue as the viral genome is constantly mutating. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
16
|
Tan CW, Valkenburg SA, Poon LLM, Wang LF. Broad-spectrum pan-genus and pan-family virus vaccines. Cell Host Microbe 2023; 31:902-916. [PMID: 37321173 PMCID: PMC10265776 DOI: 10.1016/j.chom.2023.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Although the development and clinical application of SARS-CoV-2 vaccines during the COVID-19 pandemic demonstrated unprecedented vaccine success in a short time frame, it also revealed a limitation of current vaccines in their inability to provide broad-spectrum or universal protection against emerging variants. Broad-spectrum vaccines, therefore, remain a dream and challenge for vaccinology. This review will focus on current and future efforts in developing universal vaccines targeting different viruses at the genus and/or family levels, with a special focus on henipaviruses, influenza viruses, and coronaviruses. It is evident that strategies for developing broad-spectrum vaccines will be virus-genus or family specific, and it is almost impossible to adopt a universal approach for different viruses. On the other hand, efforts in developing broad-spectrum neutralizing monoclonal antibodies have been more successful and it is worth considering broad-spectrum antibody-mediated immunization, or "universal antibody vaccine," as an alternative approach for early intervention for future disease X outbreaks.
Collapse
Affiliation(s)
- Chee Wah Tan
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Sophie A Valkenburg
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China.
| | - Lin-Fa Wang
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore; Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Singhealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
17
|
Maasoumy B, Ingiliz P, Spinner CD, Cordes C, Stellbrink HJ, Schulze zur Wiesch J, Schneeweiß SM, Deterding K, Müller T, Kahlhöfer J, Dörge P, von Karpowitz M, Manns MP, Wedemeyer H, Cornberg M. Sofosbuvir plus velpatasvir for 8 weeks in patients with acute hepatitis C: The HepNet acute HCV-V study. JHEP Rep 2023; 5:100650. [PMID: 36852107 PMCID: PMC9957891 DOI: 10.1016/j.jhepr.2022.100650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background & Aims EASL guidelines recommend 8 weeks of treatment with sofosbuvir plus velpatasvir (SOF/VEL) for the treatment of acute or recently acquired HCV infection, but only 6- and 12-week data are available. Therefore, the aim of this study was to evaluate the safety and efficacy of a shortened 8-week SOF/VEL treatment for acute HCV monoinfection. Methods In this investigator-initiated, prospective, multicentre, single-arm study, we recruited 20 adult patients with acute HCV monoinfection from nine centers in Germany. Patients received SOF/VEL (400/100 mg) as a fixed-dose combination tablet once daily for 8 weeks. The primary efficacy endpoint was the proportion of patients with sustained virological response 12 weeks after the end of treatment (SVR12). Results The median HCV RNA viral load at baseline was 104,307 IU/ml; the distribution of HCV genotypes was as follows: GT1a/1b/2/3/4: n = 12/1/1/3/3. Thirteen (65%) of the 20 patients were taking medication for HIV pre-exposure prophylaxis. SVR12 was achieved in all patients who complied with the study protocol (n = 18/18 [100%], per protocol analysis), but the primary endpoint was not met in the intention-to-treat analysis (n = 18/20 [90%]) because two patients were lost to follow-up. One serious adverse event (unrelated to study drug) occurred during 12 weeks of post-treatment follow-up. Conclusions The 8-week treatment with SOF/VEL was well tolerated and highly effective in all adherent patients with acute HCV monoinfection. Early treatment of hepatitis C might effectively prevent the spread of HCV in high-risk groups. Clinical Trial Number NCT03818308. Impact and implications The HepNet acute HCV-V study (NCT03818308), an investigator-initiated, single-arm, multicenter pilot study, demonstrates the efficacy and safety of 8 weeks of daily treatment with the fixed-dose combination sofosbuvir/velpatasvir (400/100 mg) in patients with acute hepatitis C virus (HCV) infection. All patients who completed therapy and were followed-up achieved sustained virologic response. Thus, early treatment with SOF/VEL which might effectively prevent the spread of HCV in high-risk groups can be recommended for patients with acute HCV monoinfection.
Collapse
Affiliation(s)
- Benjamin Maasoumy
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
- German Center for Infection Research (DZIF), HepNet Study-House, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Patrick Ingiliz
- Zentrum für Infektiologie Berlin-Prenzlauer Berg, Berlin, Germany
- University Hospital Henri-Mondor, INSERM U955, Créteil, France
| | - Christoph D. Spinner
- Technical University of Munich, School of Medicine, University Hospital Rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | | | | | - Julian Schulze zur Wiesch
- Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | | | - Katja Deterding
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
- Department of Gastroenterology and Hepatology, University Hospital Essen, 45147 Essen, Germany
| | - Tobias Müller
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Julia Kahlhöfer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
- German Center for Infection Research (DZIF), HepNet Study-House, Hannover, Germany
| | - Petra Dörge
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
- German Center for Infection Research (DZIF), HepNet Study-House, Hannover, Germany
| | | | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
- German Center for Infection Research (DZIF), HepNet Study-House, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
- Center for Individualized Infection Medicine (CiiM), Hannover, Germany
| | - for the HepNet Acute HCV-V Study Group
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
- German Center for Infection Research (DZIF), HepNet Study-House, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
- Zentrum für Infektiologie Berlin-Prenzlauer Berg, Berlin, Germany
- University Hospital Henri-Mondor, INSERM U955, Créteil, France
- Technical University of Munich, School of Medicine, University Hospital Rechts der Isar, Department of Internal Medicine II, Munich, Germany
- Praxis Dr. Cordes, Berlin, Germany
- ICH Study Center Hamburg, Hamburg, Germany
- Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
- Praxis Hohenstaufenring, Köln, Germany
- Department of Gastroenterology and Hepatology, University Hospital Essen, 45147 Essen, Germany
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- Institute for Biometry, Hannover Medical School, Germany
- Center for Individualized Infection Medicine (CiiM), Hannover, Germany
| |
Collapse
|
18
|
Jones JC, Yen HL, Adams P, Armstrong K, Govorkova EA. Influenza antivirals and their role in pandemic preparedness. Antiviral Res 2023; 210:105499. [PMID: 36567025 PMCID: PMC9852030 DOI: 10.1016/j.antiviral.2022.105499] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Effective antivirals provide crucial benefits during the early phase of an influenza pandemic, when vaccines are still being developed and manufactured. Currently, two classes of viral protein-targeting drugs, neuraminidase inhibitors and polymerase inhibitors, are approved for influenza treatment and post-exposure prophylaxis. Resistance to both classes has been documented, highlighting the need to develop novel antiviral options that may include both viral and host-targeted inhibitors. Such efforts will form the basis of management of seasonal influenza infections and of strategic planning for future influenza pandemics. This review focuses on the two classes of approved antivirals, their drawbacks, and ongoing work to characterize novel agents or combination therapy approaches to address these shortcomings. The importance of these topics in the ongoing process of influenza pandemic planning is also discussed.
Collapse
Affiliation(s)
- Jeremy C Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Peter Adams
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC, USA
| | - Kimberly Armstrong
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
19
|
Morens DM, Taubenberger JK, Fauci AS. Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses. Cell Host Microbe 2023; 31:146-157. [PMID: 36634620 PMCID: PMC9832587 DOI: 10.1016/j.chom.2022.11.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 01/13/2023]
Abstract
Viruses that replicate in the human respiratory mucosa without infecting systemically, including influenza A, SARS-CoV-2, endemic coronaviruses, RSV, and many other "common cold" viruses, cause significant mortality and morbidity and are important public health concerns. Because these viruses generally do not elicit complete and durable protective immunity by themselves, they have not to date been effectively controlled by licensed or experimental vaccines. In this review, we examine challenges that have impeded development of effective mucosal respiratory vaccines, emphasizing that all of these viruses replicate extremely rapidly in the surface epithelium and are quickly transmitted to other hosts, within a narrow window of time before adaptive immune responses are fully marshaled. We discuss possible approaches to developing next-generation vaccines against these viruses, in consideration of several variables such as vaccine antigen configuration, dose and adjuventation, route and timing of vaccination, vaccine boosting, adjunctive therapies, and options for public health vaccination polices.
Collapse
Affiliation(s)
- David M. Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding author
| | - Anthony S. Fauci
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Phillips AM, Maurer DP, Brooks C, Dupic T, Schmidt AG, Desai MM. Hierarchical sequence-affinity landscapes shape the evolution of breadth in an anti-influenza receptor binding site antibody. eLife 2023; 12:83628. [PMID: 36625542 PMCID: PMC9995116 DOI: 10.7554/elife.83628] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) that neutralize diverse variants of a particular virus are of considerable therapeutic interest. Recent advances have enabled us to isolate and engineer these antibodies as therapeutics, but eliciting them through vaccination remains challenging, in part due to our limited understanding of how antibodies evolve breadth. Here, we analyze the landscape by which an anti-influenza receptor binding site (RBS) bnAb, CH65, evolved broad affinity to diverse H1 influenza strains. We do this by generating an antibody library of all possible evolutionary intermediates between the unmutated common ancestor (UCA) and the affinity-matured CH65 antibody and measure the affinity of each intermediate to three distinct H1 antigens. We find that affinity to each antigen requires a specific set of mutations - distributed across the variable light and heavy chains - that interact non-additively (i.e., epistatically). These sets of mutations form a hierarchical pattern across the antigens, with increasingly divergent antigens requiring additional epistatic mutations beyond those required to bind less divergent antigens. We investigate the underlying biochemical and structural basis for these hierarchical sets of epistatic mutations and find that epistasis between heavy chain mutations and a mutation in the light chain at the VH-VL interface is essential for binding a divergent H1. Collectively, this is the first work to comprehensively characterize epistasis between heavy and light chain mutations and shows that such interactions are both strong and widespread. Together with our previous study analyzing a different class of anti-influenza antibodies, our results implicate epistasis as a general feature of antibody sequence-affinity landscapes that can potentiate and constrain the evolution of breadth.
Collapse
Affiliation(s)
- Angela M Phillips
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Microbiology and Immunology, University of California, San FranciscoSan FranciscoUnited States
| | - Daniel P Maurer
- Ragon Institute of MGH, MIT, and HarvardCambridgeUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Caelan Brooks
- Department of Physics, Harvard UniversityCambridgeUnited States
| | - Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and HarvardCambridgeUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
| |
Collapse
|
21
|
McSweeney MD, Stewart I, Richardson Z, Kang H, Park Y, Kim C, Tiruthani K, Wolf W, Schaefer A, Kumar P, Aurora H, Hutchins J, Cho JM, Hickey AJ, Lee SY, Lai SK. Stable nebulization and muco-trapping properties of regdanvimab/IN-006 support its development as a potent, dose-saving inhaled therapy for COVID-19. Bioeng Transl Med 2022; 8:e10391. [PMID: 36248234 PMCID: PMC9537933 DOI: 10.1002/btm2.10391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 01/21/2023] Open
Abstract
The respiratory tract represents the key target for antiviral delivery in early interventions to prevent severe COVID-19. While neutralizing monoclonal antibodies (mAb) possess considerable efficacy, their current reliance on parenteral dosing necessitates very large doses and places a substantial burden on the healthcare system. In contrast, direct inhaled delivery of mAb therapeutics offers the convenience of self-dosing at home, as well as much more efficient mAb delivery to the respiratory tract. Here, building on our previous discovery of Fc-mucin interactions crosslinking viruses to mucins, we showed that regdanvimab, a potent neutralizing mAb already approved for COVID-19 in several countries, can effectively trap SARS-CoV-2 virus-like particles in fresh human airway mucus. IN-006, a reformulation of regdanvimab, was stably nebulized across a wide range of concentrations, with no loss of activity and no formation of aggregates. Finally, nebulized delivery of IN-006 resulted in 100-fold greater mAb levels in the lungs of rats compared to serum, in marked contrast to intravenously dosed mAbs. These results not only support our current efforts to evaluate the safety and efficacy of IN-006 in clinical trials, but more broadly substantiate nebulized delivery of human antiviral mAbs as a new paradigm in treating SARS-CoV-2 and other respiratory pathologies.
Collapse
Affiliation(s)
- Morgan D. McSweeney
- Inhalon Biopharma IncResearch Triangle ParkNorth CarolinaUSA
- Mucommune LLCResearch Triangle ParkNorth CarolinaUSA
| | - Ian Stewart
- RTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Zach Richardson
- Inhalon Biopharma IncResearch Triangle ParkNorth CarolinaUSA
- Mucommune LLCResearch Triangle ParkNorth CarolinaUSA
| | - Hyunah Kang
- Biotechnology Research InstituteCelltrion IncIncheonRepublic of Korea
| | - Yoona Park
- Biotechnology Research InstituteCelltrion IncIncheonRepublic of Korea
| | - Cheolmin Kim
- Biotechnology Research InstituteCelltrion IncIncheonRepublic of Korea
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina‐Chapel HillChapel HillNorth CarolinaUSA
| | - Whitney Wolf
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina‐Chapel HillChapel HillNorth CarolinaUSA
| | - Alison Schaefer
- UNC/NCSU Joint Department of Biomedical EngineeringUniversity of North Carolina‐Chapel HillChapel HillNorth CarolinaUSA
| | - Priya Kumar
- Department of Anesthesiology, School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Harendra Aurora
- Department of Anesthesiology, School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Jeff Hutchins
- Inhalon Biopharma IncResearch Triangle ParkNorth CarolinaUSA
| | - Jong Moon Cho
- Biotechnology Research InstituteCelltrion IncIncheonRepublic of Korea
| | | | - Soo Young Lee
- Biotechnology Research InstituteCelltrion IncIncheonRepublic of Korea
| | - Samuel K. Lai
- Inhalon Biopharma IncResearch Triangle ParkNorth CarolinaUSA
- Mucommune LLCResearch Triangle ParkNorth CarolinaUSA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina‐Chapel HillChapel HillNorth CarolinaUSA
- UNC/NCSU Joint Department of Biomedical EngineeringUniversity of North Carolina‐Chapel HillChapel HillNorth CarolinaUSA
- Department of Microbiology and Immunology, School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
22
|
Park J, Legaspi SLF, Schwartzman LM, Gygli SM, Sheng ZM, Freeman AD, Matthews LM, Xiao Y, Ramuta MD, Batchenkova NA, Qi L, Rosas LA, Williams SL, Scherler K, Gouzoulis M, Bellayr I, Morens DM, Walters KA, Memoli MJ, Kash JC, Taubenberger JK. An inactivated multivalent influenza A virus vaccine is broadly protective in mice and ferrets. Sci Transl Med 2022; 14:eabo2167. [PMID: 35857640 PMCID: PMC11022527 DOI: 10.1126/scitranslmed.abo2167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Influenza A viruses (IAVs) present major public health threats from annual seasonal epidemics and pandemics and from viruses adapted to a variety of animals including poultry, pigs, and horses. Vaccines that broadly protect against all such IAVs, so-called "universal" influenza vaccines, do not currently exist but are urgently needed. Here, we demonstrated that an inactivated, multivalent whole-virus vaccine, delivered intramuscularly or intranasally, was broadly protective against challenges with multiple IAV hemagglutinin and neuraminidase subtypes in both mice and ferrets. The vaccine is composed of four β-propiolactone-inactivated low-pathogenicity avian IAV subtypes of H1N9, H3N8, H5N1, and H7N3. Vaccinated mice and ferrets demonstrated substantial protection against a variety of IAVs, including the 1918 H1N1 strain, the highly pathogenic avian H5N8 strain, and H7N9. We also observed protection against challenge with antigenically variable and heterosubtypic avian, swine, and human viruses. Compared to control animals, vaccinated mice and ferrets demonstrated marked reductions in viral titers, lung pathology, and host inflammatory responses. This vaccine approach indicates the feasibility of eliciting broad, heterosubtypic IAV protection and identifies a promising candidate for influenza vaccine clinical development.
Collapse
Affiliation(s)
- Jaekeun Park
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharon L. Fong Legaspi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M. Schwartzman
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian M. Gygli
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley D. Freeman
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lex M. Matthews
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitchell D. Ramuta
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalia A. Batchenkova
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Qi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luz Angela Rosas
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie L. Williams
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Monica Gouzoulis
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian Bellayr
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - David M. Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Matthew J. Memoli
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John C. Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Bitterman R, Kumar D. Respiratory Viruses in Solid Organ Transplant Recipients. Viruses 2021; 13:2146. [PMID: 34834953 PMCID: PMC8622983 DOI: 10.3390/v13112146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
Solid organ transplantation is often lifesaving, but does carry an increased risk of infection. Respiratory viral infections are one of the most prevalent infections, and are a cause of significant morbidity and mortality, especially among lung transplant recipients. There is also data to suggest an association with acute rejection and chronic lung allograft dysfunction in lung transplant recipients. Respiratory viral infections can appear at any time post-transplant and are usually acquired in the community. All respiratory viral infections share similar clinical manifestations and are all currently diagnosed using nucleic acid testing. Influenza has good treatment options and prevention strategies, although these are hampered by resistance to neuraminidase inhibitors and lower vaccine immunogenicity in the transplant population. Other respiratory viruses, unfortunately, have limited treatments and preventive methods. This review summarizes the epidemiology, clinical manifestations, therapies and preventive measures for clinically significant RNA and DNA respiratory viruses, with the exception of SARS-CoV-2. This area is fast evolving and hopefully the coming decades will bring us new antivirals, immunologic treatments and vaccines.
Collapse
Affiliation(s)
| | - Deepali Kumar
- Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada;
| |
Collapse
|
24
|
Giurgea LT, Cervantes-Medina A, Walters KA, Scherler K, Han A, Czajkowski LM, Baus HA, Hunsberger S, Klein SL, Kash JC, Taubenberger JK, Memoli MJ. Sex Differences in Influenza: The Challenge Study Experience. J Infect Dis 2021; 225:715-722. [PMID: 34423369 DOI: 10.1093/infdis/jiab422] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/19/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Preclinical animal studies and retrospective human studies suggest that adult females have worse outcomes from influenza than males. Prospective studies in humans are missing. METHODS Data from 164 healthy volunteers who underwent Influenza A/California/04/2009/H1N1 challenge were compiled to compare differences between sexes. Baseline characteristics, including hormone levels, hemagglutination-inhibition (HAI) titers, neuraminidase-inhibition titers (NAI), and outcomes after challenge were compared. Linear and logistic regression models were built to determine significant predictor variables with respect to outcomes of interest. RESULTS Hemagglutination-inhibition (HAI) titers were similar between the sexes, but neuraminidase-inhibition titers (NAI) were higher in males than females at 4-weeks and 8-weeks post-challenge. Females were more likely to have symptoms (mean 0.96 vs 0.80, p=.003) and to have a higher number of symptoms (median 3 vs 4, p=.011) than males. Linear and logistic regression models showed that pre-challenge NAI titers, but not HAI titers or sex hormone levels, were predictive of all shedding and symptom outcomes of interest. CONCLUSIONS Females in our cohorts were more likely to be symptomatic and to have a higher number of symptoms than males. NAI titers predicted all outcomes of interest and may explain differential outcomes between the sexes.
Collapse
Affiliation(s)
- Luca T Giurgea
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Adriana Cervantes-Medina
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | | | | | - Alison Han
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Lindsay M Czajkowski
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Holly Ann Baus
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Sally Hunsberger
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894 USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Matthew J Memoli
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| |
Collapse
|
25
|
Strategies Targeting Hemagglutinin as a Universal Influenza Vaccine. Vaccines (Basel) 2021; 9:vaccines9030257. [PMID: 33805749 PMCID: PMC7998911 DOI: 10.3390/vaccines9030257] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza virus has significant viral diversity, both through antigenic drift and shift, which makes development of a vaccine challenging. Current influenza vaccines are updated yearly to include strains predicted to circulate in the upcoming influenza season, however this can lead to a mismatch which reduces vaccine efficacy. Several strategies targeting the most abundant and immunogenic surface protein of influenza, the hemagglutinin (HA) protein, have been explored. These strategies include stalk-directed, consensus-based, and computationally derived HA immunogens. In this review, we explore vaccine strategies which utilize novel antigen design of the HA protein to improve cross-reactive immunity for development of a universal influenza vaccine.
Collapse
|