1
|
Landis JT, Moorad R, Pluta LJ, Caro-Vegas C, McNamara RP, Eason AB, Bailey A, Villamor FCS, Juarez A, Wong JP, Yang B, Broussard GS, Damania B, Dittmer DP. Intra-Host Evolution Provides for the Continuous Emergence of SARS-CoV-2 Variants. mBio 2023; 14:e0344822. [PMID: 36786605 PMCID: PMC10127995 DOI: 10.1128/mbio.03448-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023] Open
Abstract
Variants of concern (VOC) in SARS-CoV-2 refer to viruses whose viral genomes differ from the ancestor virus by ≥3 single-nucleotide variants (SNVs) and that show the potential for higher transmissibility and/or worse clinical progression. VOC have the potential to disrupt ongoing public health measures and vaccine efforts. Still, too little is known regarding how frequently new viral variants emerge and under what circumstances. We report a study to determine the degree of SARS-CoV-2 sequence evolution in 94 patients and to estimate the frequency at which highly diverse variants emerge. Two cases accumulated ≥9 SNVs over a 2-week period and one case accumulated 23 SNVs over 3 weeks, including three nonsynonymous mutations in the spike protein (D138H, E554D, D614G). The remainder of the infected patients did not show signs of intra-host evolution. We estimate that in as much as 2% of hospitalized COVID-19 cases, variants with multiple mutations in the spike glycoprotein emerge in as little as 1 month of persistent intra-host virus replication. This suggests the continued local emergence of variants with multiple nonsynonymous SNVs, even in patients without overt immune deficiency. Surveillance by sequencing for (i) viremic COVID-19 patients, (ii) patients suspected of reinfection, and (iii) patients with diminished immune function may offer broad public health benefits. IMPORTANCE New SARS-CoV-2 variants can potentially disrupt ongoing public health measures and vaccine efforts. Still, little is known regarding how frequently new viral variants emerge and under what circumstances. Based on this study, we estimate that in hospitalized COVID-19 cases, variants with multiple mutations may emerge locally in as little as 1 month, even in patients without overt immune deficiency. Surveillance by sequencing for continuously shedding patients, patients suspected of reinfection, and patients with diminished immune function may offer broad public health benefits.
Collapse
Affiliation(s)
- Justin T. Landis
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Razia Moorad
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Linda J. Pluta
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Carolina Caro-Vegas
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Ryan P. McNamara
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Anthony B. Eason
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Aubrey Bailey
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Femi Cleola S. Villamor
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Angelica Juarez
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Jason P. Wong
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Brian Yang
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Grant S. Broussard
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Blossom Damania
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Bonenfant G, Deyoe JE, Wong T, Grijalva CG, Cui D, Talbot HK, Hassell N, Halasa N, Chappell J, Thornburg NJ, Rolfes MA, Wentworth DE, Zhou B. Surveillance and Correlation of Severe Acute Respiratory Syndrome Coronavirus 2 Viral RNA, Antigen, Virus Isolation, and Self-Reported Symptoms in a Longitudinal Study With Daily Sampling. Clin Infect Dis 2022; 75:1698-1705. [PMID: 35442437 PMCID: PMC9213875 DOI: 10.1093/cid/ciac282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/04/2022] [Indexed: 11/14/2022] Open
Abstract
The novel coronavirus pandemic incited unprecedented demand for assays that detect viral nucleic acids, viral proteins, and corresponding antibodies. The 320 molecular diagnostics in receipt of US Food and Drug Administration emergency use authorization mainly focus on viral detection; however, no currently approved test can be used to infer infectiousness, that is, the presence of replicable virus. As the number of tests conducted increased, persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA positivity by reverse-transcription polymerase chain reaction (RT-PCR) in some individuals led to concerns over quarantine guidelines. To this end, we attempted to design an assay that reduces the frequency of positive test results from individuals who do not shed culturable virus. We describe multiplex quantitative RT-PCR assays that detect genomic RNA (gRNA) and subgenomic RNA (sgRNA) species of SARS-CoV-2, including spike, nucleocapsid, membrane, envelope, and ORF8. Viral RNA abundances calculated from these assays were compared with antigen presence, self-reported symptoms, and culture outcome (virus isolation) using samples from a 14-day longitudinal household transmission study. By characterizing the clinical and molecular dynamics of infection, we show that sgRNA detection has higher predictive value for culture outcome compared to detection of gRNA alone. Our findings suggest that sgRNA presence correlates with active infection and may help identify individuals shedding culturable virus.
Collapse
Affiliation(s)
- Gaston Bonenfant
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Jessica E. Deyoe
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Terianne Wong
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Dan Cui
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- General Dynamics Information Technology, Inc, Falls Church, Virginia, USA
| | - H. Keipp Talbot
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Norman Hassell
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Natasha Halasa
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James Chappell
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Natalie J. Thornburg
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melissa A. Rolfes
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E. Wentworth
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bin Zhou
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
3
|
McKittrick JM, Burke TW, Petzold E, Sempowski GD, Denny TN, Polage CR, Tsalik EL, McClain MT. SARS-CoV-2 reinfection across a spectrum of immunological states. Health Sci Rep 2022; 5:e554. [PMID: 35899182 PMCID: PMC9308002 DOI: 10.1002/hsr2.554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/02/2021] [Accepted: 01/30/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Several cases of symptomatic reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after full recovery from a prior episode have been reported. As reinfection has become an increasingly common phenomenon, an improved understanding of the risk factors for reinfection and the character and duration of the serological responses to infection and vaccination is critical for managing the coronavirus disease 2019 (COVID-19) pandemic. Methods We described four cases of SARS-CoV-2 reinfection in individuals representing a spectrum of healthy and immunocompromised states, including (1) a healthy 41-year-old pediatrician, (2) an immunocompromised 31-year-old with granulomatosis with polyangiitis, (3) a healthy 26-year-old pregnant woman, and (4) a 50-year-old with hypertension and hyperlipidemia. We performed confirmatory quantitative reverse transcription-polymerase chain reaction and qualitative immunoglobulin M and quantitative IgG testing on all available patient samples to confirm the presence of infection and serological response to infection. Results Our analysis showed that patients 1 and 2, a healthy and an immunocompromised patient, both failed to mount a robust serologic response to the initial infection. In contrast, patients 3 and 4, with minimal comorbid disease, both mounted a strong serological response to their initial infection, but were still susceptible to reinfection. Conclusion Repeat episodes of COVID-19 are capable of occurring in patients regardless of the presence of known risk factors for infection or level of serological response to infection, although this did not trigger critical illness in any instance.
Collapse
Affiliation(s)
| | - Thomas W. Burke
- Center for Applied Genomics and Precision MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Elizabeth Petzold
- Center for Applied Genomics and Precision MedicineDuke UniversityDurhamNorth CarolinaUSA
| | | | | | | | - Ephraim L. Tsalik
- Center for Applied Genomics and Precision MedicineDuke UniversityDurhamNorth CarolinaUSA
- Durham Veterans Affairs Medical CenterDurhamNorth CarolinaUSA
- Division of Infectious DiseasesDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Micah T. McClain
- Center for Applied Genomics and Precision MedicineDuke UniversityDurhamNorth CarolinaUSA
- Durham Veterans Affairs Medical CenterDurhamNorth CarolinaUSA
- Division of Infectious DiseasesDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
4
|
Pilz S, Theiler-Schwetz V, Trummer C, Krause R, Ioannidis JPA. SARS-CoV-2 reinfections: Overview of efficacy and duration of natural and hybrid immunity. ENVIRONMENTAL RESEARCH 2022; 209:112911. [PMID: 35149106 PMCID: PMC8824301 DOI: 10.1016/j.envres.2022.112911] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 05/13/2023]
Abstract
Seroprevalence surveys suggest that more than a third and possibly more than half of the global population has been infected with SARS-CoV-2 by early 2022. As large numbers of people continue to be infected, the efficacy and duration of natural immunity in terms of protection against SARS-CoV-2 reinfections and severe disease is of crucial significance for the future. This narrative review provides an overview on epidemiological studies addressing this issue. National surveys covering 2020-2021 documented that a previous SARS-CoV-2 infection is associated with a significantly reduced risk of reinfections with efficacy lasting for at least one year and only relatively moderate waning immunity. Importantly, natural immunity showed roughly similar effect sizes regarding protection against reinfection across different SARS-CoV-2 variants, with the exception of the Omicron variant for which data are just emerging before final conclusions can be drawn. Risk of hospitalizations and deaths was also reduced in SARS-CoV-2 reinfections versus primary infections. Observational studies indicate that natural immunity may offer equal or greater protection against SARS-CoV-2 infections compared to individuals receiving two doses of an mRNA vaccine, but data are not fully consistent. The combination of a previous SARS-CoV-2 infection and a respective vaccination, termed hybrid immunity, seems to confer the greatest protection against SARS-CoV-2 infections, but several knowledge gaps remain regarding this issue. Natural immunity should be considered for public health policy regarding SARS-CoV-2.
Collapse
Affiliation(s)
- Stefan Pilz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036, Graz, Austria.
| | - Verena Theiler-Schwetz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036, Graz, Austria
| | - Christian Trummer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036, Graz, Austria
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, Medical University of Graz, 8036, Graz, Austria
| | - John P A Ioannidis
- Departments of Medicine, Epidemiology and Population Health, Biomedical Data Science, and Statistics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Borras-Bermejo B, Piñana M, Andrés C, Zules R, González-Sánchez A, Esperalba J, Parés-Badell O, García-Cehic D, Rando A, Campos C, Codina MG, Martín MC, Castillo C, García-Comuñas K, Vásquez-Mercado R, Martins-Martins R, Colomer-Castell S, Pumarola T, Campins M, Quer J, Antón A. Characteristics of 24 SARS-CoV-2-Sequenced Reinfection Cases in a Tertiary Hospital in Spain. Front Microbiol 2022; 13:876409. [PMID: 35722299 PMCID: PMC9201979 DOI: 10.3389/fmicb.2022.876409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
Background Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the main concern is whether reinfections are possible, and which are the associated risk factors. This study aims to describe the clinical and molecular characteristics of 24 sequence-confirmed reinfection SARS-CoV-2 cases over 1 year in Barcelona (Catalonia, Spain). Methods Patients with > 45 days between two positive PCR tests regardless of symptoms and negative tests between episodes were initially considered as suspected reinfection cases from November 2020 to May 2021. Whole-genome sequencing (WGS) was performed to confirm genetic differences between consensus sequences and for phylogenetic studies based on PANGOLIN nomenclature. Reinfections were confirmed by the number of mutations, change in lineage, or epidemiological criteria. Results From 39 reported suspected reinfection cases, complete viral genomes could be sequenced from both episodes of 24 patients, all were confirmed as true reinfections. With a median age of 44 years (interquartile range [IQR] 32–65), 66% were women and 58% were healthcare workers (HCWs). The median days between episodes were 122 (IQR 72–199), occurring one-third within 3 months. Reinfection episodes were frequently asymptomatic and less severe than primary infections. The absence of seroconversion was associated with symptomatic reinfections. Only one case was reinfected with a variant of concern (VOC). Conclusion Severe acute respiratory syndrome coronavirus 2 reinfections can occur in a shorter time than previously reported and are mainly found in immunocompetent patients. Surveillance through WGS is useful to identify viral mutations associated with immune evasion.
Collapse
Affiliation(s)
- Blanca Borras-Bermejo
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Piñana
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Andrés
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Zules
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandra González-Sánchez
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Juliana Esperalba
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Oleguer Parés-Badell
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Damir García-Cehic
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ariadna Rando
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Campos
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca, Barcelona, Spain
| | - Maria Gema Codina
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Carmen Martín
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Carla Castillo
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Karen García-Comuñas
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Rodrigo Vásquez-Mercado
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Reginald Martins-Martins
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Sergi Colomer-Castell
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca, Barcelona, Spain
| | - Tomàs Pumarola
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Magda Campins
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Josep Quer,
| | - Andrés Antón
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Andrés Antón,
| |
Collapse
|
6
|
Letizia AG, Arnold CE, Adhikari BN, Voegtly LJ, Glang L, Rice GK, Goforth CW, Schilling MA, Weir DL, Malagon F, Ramos I, Vangeti S, Gonzalez-Reiche AS, Cer RZ, Sealfon SC, van Bakel H, Bishop-Lilly KA. Immunological and Genetic Investigation of SARS-CoV-2 Reinfection in an Otherwise Healthy, Young Marine Recruit. Pathogens 2021; 10:pathogens10121589. [PMID: 34959544 PMCID: PMC8709254 DOI: 10.3390/pathogens10121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
We used epidemiologic and viral genetic information to identify a case of likely reinfection in an otherwise healthy, young Marine recruit enrolled in the prospective, longitudinal COVID-19 Health Action Response for Marines (CHARM) study, and we paired these findings with serological studies. This participant had a positive RT-PCR to SARS-CoV-2 upon routine sampling on study day 7, although he was asymptomatic at that time. He cleared the infection within seven days. On study day 46, he had developed symptoms consistent with COVID-19 and tested positive by RT-PCR for SARS-CoV-2 again. Viral whole genome sequencing was conducted from nares swabs at multiple time points. The day 7 sample was determined to be lineage B.1.340, whereas both the day 46 and day 49 samples were B.1.1. The first positive result for anti-SARS-CoV-2 IgM serology was collected on day 49 and for IgG on day 91. This case appears most consistent with a reinfection event. Our investigation into this case is unique in that we compared sequence data from more than just paired specimens, and we also assayed for immune response after both the initial infection and the later reinfection. These data demonstrate that individuals who have experienced an infection with SARS-CoV-2 may fail to generate effective or long-lasting immunity, similar to endemic human beta coronaviruses.
Collapse
Affiliation(s)
- Andrew G. Letizia
- Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (A.G.L.); (C.W.G.); (M.A.S.); (D.L.W.)
| | - Catherine E. Arnold
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA; (C.E.A.); (B.N.A.)
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
| | - Bishwo N. Adhikari
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA; (C.E.A.); (B.N.A.)
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
| | - Logan J. Voegtly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
- Leidos, Inc., Reston, VA 20190, USA
| | - Lindsay Glang
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
- Leidos, Inc., Reston, VA 20190, USA
| | - Gregory K. Rice
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
- Leidos, Inc., Reston, VA 20190, USA
| | - Carl W. Goforth
- Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (A.G.L.); (C.W.G.); (M.A.S.); (D.L.W.)
| | - Megan A. Schilling
- Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (A.G.L.); (C.W.G.); (M.A.S.); (D.L.W.)
| | - Dawn L. Weir
- Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (A.G.L.); (C.W.G.); (M.A.S.); (D.L.W.)
| | - Francisco Malagon
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
- Leidos, Inc., Reston, VA 20190, USA
| | - Irene Ramos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (I.R.); (S.V.); (S.C.S.)
| | - Sindhu Vangeti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (I.R.); (S.V.); (S.C.S.)
| | - Ana S. Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology at Mount Sinai, New York, NY 10029, USA; (A.S.G.-R.); (H.v.B.)
| | - Regina Z. Cer
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (I.R.); (S.V.); (S.C.S.)
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology at Mount Sinai, New York, NY 10029, USA; (A.S.G.-R.); (H.v.B.)
| | - Kimberly A. Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
- Correspondence:
| |
Collapse
|
7
|
Eshrati B, Baradaran HR, Moradi G, Dehghanbanadaki H, Azh N, Soheili M, Moetamed Gorji N, Moradi Y. Evaluation of Reinfection in COVID-19 Patients in the World: A Narrative Review. Med J Islam Repub Iran 2021; 35:144. [PMID: 35321379 PMCID: PMC8840848 DOI: 10.47176/mjiri.35.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 11/30/2022] Open
Abstract
Background: The evaluation of reinfection and the genetic structure of all human and virus genomes could help to develop programs and protocols for providing services and ultimately to prevent the disease by producing more effective vaccines. Therefore, the aim of this study was to investigate the presence and occurrence of COVID-19 reinfection through a narrative review study. Methods: We searched the Medline (PubMed), Embase, Scopus, Web of Science, Cochrane library, Ovid, and CINHAL databases. Inclusion criteria included all studies whose main purpose was to provide information about the occurrence or presence of reinfection in patients with COVID-19. An independent samples t test was used to compare the continuous outcomes between the 2 groups. Results: The mean duration of the first episode in the group with mild or moderate COVID-19 was 24.42±1.67 days, and it was 21.80±3.79 days in the group with severe COVID-19. The mean duration of the second episode (reinfection) in patients with mild or moderate form was 15.38 ± 5.57 days, and it was 19.20±2.98 days in patients with severe form. In both episodes, the duration of the disease did not significantly differ between the 2 groups (p=0.484 in the first episode; p=0.675 in the second episode), but the interval to the occurrence of reinfection in patients with the mild or moderate form was significantly longer than those with the severe form (p<0.001). In this instance, the time interval in patients with the mild or moderate form was 36.63±5.71 days while in those with the severe form of the disease it was 29.70±5.65 days. Besides, the genomes of the viruses isolated from the first and second episode were different. Conclusion: According to the results, all patients should be very careful about the severity of the second episode because of the more need for medical interventions for saving the patients. The interval between the first end and the second episode as well as the duration of each episode is highly important for better management of the disease.
Collapse
Affiliation(s)
- Babak Eshrati
- Preventive Medicine and Public Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Baradaran
- Ageing Clinical & Experimental Research Team, Institute of Applied Health Sciences, University of Aberdeen, UK
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ghobad Moradi
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hojat Dehghanbanadaki
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Azh
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Soheili
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Yousef Moradi
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
8
|
Pirofski LA. Disease Severity and Durability of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antibody Response: A View Through the Lens of the Second Year of the Pandemic. Clin Infect Dis 2021; 73:e1345-e1347. [PMID: 33905478 PMCID: PMC8135546 DOI: 10.1093/cid/ciab374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Liise-anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
9
|
Armstrong JN, Campbell L, Rabatsky-her T, Leung V, Parikh S. Repeat positive SARS-CoV-2 RNA testing in nursing home residents during the initial 9 months of the COVID-19 pandemic: an observational retrospective analysis. LANCET REGIONAL HEALTH. AMERICAS 2021; 3:100054. [PMID: 34458887 PMCID: PMC8380052 DOI: 10.1016/j.lana.2021.100054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Nursing homes are high-risk COVID-19 settings with residents who are typically older and have multiple comorbidities. SARS-CoV-2 testing occurs frequently in nursing homes, with public health guidance suggesting that repeat testing is generally not warranted in the 90 days following initial positive test results. Interpretation of repeat positive tests beyond 90 days is challenging and the consequences of decisions following these tests are significant. METHODS We utilized a surveillance system for COVID-19 to identify Connecticut nursing home residents who tested positive for SARS-CoV-2 by RNA-based testing ≥ 90 days after initial positive results. We analyzed statewide nursing home testing data over a 9-month period, from the first Connecticut nursing home case identified on March 15 through December 15, 2020, when nursing home COVID-19 vaccinations began in Connecticut. FINDINGS We identified 156 residents (median age 75 years) with positive RNA-based PCR tests occurring ≥90 days after an initial positive test. Residents with repeat positives tests represented approximately 2.6% (156/6,079) of nursing home residents surviving beyond 90 days of their initial SARS-CoV-2 diagnosis statewide since the start of the pandemic, with a median time to repeat positivity of 135 days (range 90-245 days). Deaths were reported in 12.8% (20/156) of residents following the repeat positive test, with 80% (16/20) having one or more intervening negative RT-PCR tests prior to the repeat positive test. INTERPRETATION Our analysis suggests that repeat positive testing in nursing home populations may exceed those reported in younger age groups. Repeat positive tests beyond 90 days may accompany severe outcomes, and should be prospectively investigated with genomic, virologic and additional data, when feasible. Data shed light on the duration of protective immunity following natural infection in this subset of largely elderly and medically frail individuals. FUNDING This work was conducted in the context of the Connecticut DPH COVID-19 response and not supported by specific funding.
Collapse
Affiliation(s)
- Jillian N. Armstrong
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Lauren Campbell
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | - Vivian Leung
- Connecticut Department of Public Health, Hartford, CT, USA
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA,Corresponding author: Sunil Parikh, MD, MPH, Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St, New Haven, CT 06520; Phone (203) 737-7906.
| |
Collapse
|
10
|
Buskermolen M, Te Paske K, van Beek J, Kortbeek T, Götz H, Fanoy E, Feenstra S, Richardus JH, Vollaard A. Relapse in the first 8 weeks after onset of COVID-19 disease in outpatients: Viral reactivation or inflammatory rebound? J Infect 2021; 83:e6-e8. [PMID: 34147529 PMCID: PMC8236092 DOI: 10.1016/j.jinf.2021.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Maaike Buskermolen
- Department of Infectious Disease Control, Municipal Public Health Service Rotterdam-Rijnmond, Rotterdam, Netherlands.
| | - Karlijn Te Paske
- Department of Infectious Disease Control, Municipal Public Health Service Utrecht, Utrecht, Netherlands
| | - Janko van Beek
- Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Titia Kortbeek
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Hannelore Götz
- Department of Infectious Disease Control, Municipal Public Health Service Rotterdam-Rijnmond, Rotterdam, Netherlands; Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Ewout Fanoy
- Department of Infectious Disease Control, Municipal Public Health Service Rotterdam-Rijnmond, Rotterdam, Netherlands
| | - Sabiena Feenstra
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Jan Hendrik Richardus
- Department of Infectious Disease Control, Municipal Public Health Service Rotterdam-Rijnmond, Rotterdam, Netherlands; Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Albert Vollaard
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| |
Collapse
|
11
|
Rennert L, McMahan C. Risk of SARS-CoV-2 reinfection in a university student population. Clin Infect Dis 2021; 74:719-722. [PMID: 33993225 PMCID: PMC8241413 DOI: 10.1093/cid/ciab454] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Indexed: 11/14/2022] Open
Abstract
We assess protection from previous SARS-CoV-2 infection in 16,101 university students. Among 2,021 students previously infected in Fall 2020, risk of re-infection during the Spring 2021 semester was 2.2%; estimated protection from previous SARS-CoV-2 infection was 84% (95% CI: 78%–88%).
Collapse
Affiliation(s)
- Lior Rennert
- Department of Public Health Sciences, Clemson University, Clemson, SC, USA
| | - Christopher McMahan
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
12
|
Wang H, Miao Z, Zhang C, Wei X, Li X. K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases. Comput Struct Biotechnol J 2021; 19:1966-1975. [PMID: 33841752 PMCID: PMC8025586 DOI: 10.1016/j.csbj.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022] Open
Abstract
Infectious disease is a great enemy of humankind. The ravages of COVID-19 are leading to profound crises across the world. There is an urgent requirement for analyzing the current pandemic situation, predicting trends over time, and assessing the effectiveness of containment measures. Thus, numerous statistical models, primarily based on the susceptible–exposed–infected–recovered or removed (SEIR) model, have been established. However, these models are highly technical, which are difficult for the public and governing bodies to understand and use. To address this issue, we developed a simple operating software based on our improved K-SEIR model termed as the kernelkernel SEIR simulator (K-SEIR-Sim). This software includes natural propagation parameters, containment measure parameters, and certain characteristic parameters that can deduce the effects of natural propagation and containment measures. Further, the applicability of the proposed software was demonstrated using the example of the COVID-19 outbreak in the United States and the city of Wuhan, China. Operating results verified the potency of the proposed software in evaluating the epidemic situation and human intervention during COVID-19. Importantly, the software can perform real-time, backward-looking, and forward-looking analysis by functioning in data-driven and model-driven ways. All of them have considerable practical values in their applications according to the actual needs of personal use. Conclusively, K-SEIR-Sim is the first simple customized operating software that is highly valuable for the global fight against COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Hongzhi Wang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Zhiying Miao
- School of Optoelectronics and Information Technology, University of Shanghai for Science and Technology, Shanghai, 200090, China
| | - Chaobao Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaona Wei
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Xiangqi Li
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
- Corresponding author.
| |
Collapse
|
13
|
Piantadosi A. SARS-CoV-2 Episode 2? A sequel nobody wants to see. Clin Infect Dis 2021; 73:2226-2227. [PMID: 33693515 PMCID: PMC7989576 DOI: 10.1093/cid/ciab224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Anne Piantadosi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine Atlanta, Georgia, USA.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine Atlanta, Georgia, USA
| |
Collapse
|