1
|
Julg B, Walker-Sperling VEK, Wagh K, Aid M, Stephenson KE, Zash R, Liu J, Nkolola JP, Hoyt A, Castro M, Serebryannyy L, Yanosick K, Speidel T, Borducchi EN, Murzda T, Maxfield L, Arduino R, McDermott AB, Gama L, Giorgi EE, Koup RA, Seaman MS, Rolle CP, DeJesus E, Li W, Korber B, Barouch DH. Safety and antiviral effect of a triple combination of HIV-1 broadly neutralizing antibodies: a phase 1/2a trial. Nat Med 2024; 30:3534-3543. [PMID: 39266747 PMCID: PMC11645281 DOI: 10.1038/s41591-024-03247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/12/2024] [Indexed: 09/14/2024]
Abstract
Human immunodeficiency virus type 1 (HIV-1)-specific broadly neutralizing monoclonal antibodies (bNAbs) have to date shown transient viral suppression when administered as monotherapy or as a cocktail of two antibodies1-4. A combination of three bNAbs provides improved neutralization coverage of global viruses, which may more potently suppress viral escape and rebound5-7. Here we performed an open-label, two-part study evaluating a single intravenous dose of HIV-1 bNAbs, PGT121, PGDM1400 and VRC07-523LS, in six adults without HIV in part 1 and a multicenter trial of up to six monthly infusions of these three bNAbs in 12 people living with HIV with an antiretroviral therapy (ART) interruption in part 2. The primary endpoints were safety, tolerability and pharmacokinetics, and the secondary endpoints in part 2 were antiviral activity following ART discontinuation, changes in CD4+ T cell counts and development of HIV-1 sequence mutations associated with bNAb resistance. The trial met its prespecified endpoints. The bNAb treatment was generally safe and well tolerated. In part 2, 83% of participants (10 of 12) maintained virologic suppression for the duration of antibody therapy for at least 28 weeks, and 42% of participants (5 of 12) showed virologic suppression for at least 38-44 weeks, despite the decline of serum bNAb concentrations to low or undetectable levels. In exploratory analyses, early viral rebound in two individuals correlated with baseline resistance to PGT121 and PGDM1400, whereas long-term virologic control in five individuals correlated with reduced immune activation, T cell exhaustion and proinflammatory signaling following bNAb therapy. Our data show the potential of a triple bNAb cocktail to suppress HIV-1 in the absence of ART. ClinicalTrials.gov registration: NCT03721510 .
Collapse
Affiliation(s)
- Boris Julg
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | | | - Kshitij Wagh
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rebecca Zash
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joseph P Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amelia Hoyt
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mike Castro
- Vaccine Research Center, National Institute of Health, Bethesda, MD, USA
| | | | - Katherine Yanosick
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tessa Speidel
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tetyana Murzda
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lori Maxfield
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Roberto Arduino
- Houston AIDS Research Team, McGovern Medical School at The University of Texas Health Science Center, Houston, TX, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Health, Bethesda, MD, USA
| | - Lucio Gama
- Vaccine Research Center, National Institute of Health, Bethesda, MD, USA
| | - Elena E Giorgi
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Health, Bethesda, MD, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | - Wenjun Li
- University of Massachusetts, Lowell, MA, USA
| | - Bette Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Dan H Barouch
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
2
|
Schlachetzki JC, Gianella S, Ouyang Z, Lana AJ, Yang X, O'Brien S, Challacombe JF, Gaskill PJ, Jordan-Sciutto KL, Chaillon A, Moore D, Achim CL, Ellis RJ, Smith DM, Glass CK. Gene expression and chromatin conformation of microglia in virally suppressed people with HIV. Life Sci Alliance 2024; 7:e202402736. [PMID: 39060113 PMCID: PMC11282357 DOI: 10.26508/lsa.202402736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The presence of HIV in sequestered reservoirs is a central impediment to a functional cure, allowing HIV to persist despite life-long antiretroviral therapy (ART), and driving a variety of comorbid conditions. Our understanding of the latent HIV reservoir in the central nervous system is incomplete, because of difficulties in accessing human central nervous system tissues. Microglia contribute to HIV reservoirs, but the molecular phenotype of HIV-infected microglia is poorly understood. We leveraged the unique "Last Gift" rapid autopsy program, in which people with HIV are closely followed until days or even hours before death. Microglial populations were heterogeneous regarding their gene expression profiles but showed similar chromatin accessibility landscapes. Despite ART, we detected occasional microglia containing cell-associated HIV RNA and HIV DNA integrated into open regions of the host's genome (∼0.005%). Microglia with detectable HIV RNA showed an inflammatory phenotype. These results demonstrate a distinct myeloid cell reservoir in the brains of people with HIV despite suppressive ART. Strategies for curing HIV and neurocognitive impairment will need to consider the myeloid compartment to be successful.
Collapse
Affiliation(s)
- Johannes Cm Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Sara Gianella
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, CA, USA
| | - Zhengyu Ouyang
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Addison J Lana
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Xiaoxu Yang
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Sydney O'Brien
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Jean F Challacombe
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Antoine Chaillon
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, CA, USA
| | - David Moore
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Cristian L Achim
- Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Davey M Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, CA, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
3
|
Dufour C, Ruiz MJ, Pagliuzza A, Richard C, Shahid A, Fromentin R, Ponte R, Cattin A, Wiche Salinas TR, Salahuddin S, Sandstrom T, Schinkel SB, Costiniuk CT, Jenabian MA, Ancuta P, Routy JP, Cohen ÉA, Brumme ZL, Power C, Angel JB, Chomont N. Near full-length HIV sequencing in multiple tissues collected postmortem reveals shared clonal expansions across distinct reservoirs during ART. Cell Rep 2023; 42:113053. [PMID: 37676762 DOI: 10.1016/j.celrep.2023.113053] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
HIV persists in tissues during antiretroviral therapy (ART), but the relative contribution of different anatomical compartments to the viral reservoir in humans remains unknown. We performed an extensive characterization of HIV reservoirs in two men who donated their bodies to HIV cure research and who had been on suppressive ART for years. HIV DNA is detected in all tissues, with large variations across anatomical compartments and between participants. Intact HIV genomes represent 2% and 25% of all proviruses in the two participants and are mainly detected in secondary lymphoid organs, with the spleen and mediastinal lymph nodes harboring intact viral genomes in both individuals. Multiple copies of identical HIV genomes are found in all tissues, indicating that clonal expansions are common in anatomical sites. The majority (>85%) of these expanded clones are shared across multiple tissues. These findings suggest that infected cells expand, migrate, and possibly circulate between anatomical sites.
Collapse
Affiliation(s)
- Caroline Dufour
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Centre de Recherche du CHUM, Montreal, QC Canada
| | - Maria Julia Ruiz
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Centre de Recherche du CHUM, Montreal, QC Canada
| | | | | | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Rémi Fromentin
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Centre de Recherche du CHUM, Montreal, QC Canada
| | - Rosalie Ponte
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada; Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Amélie Cattin
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Centre de Recherche du CHUM, Montreal, QC Canada
| | - Tomas Raul Wiche Salinas
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Centre de Recherche du CHUM, Montreal, QC Canada
| | - Syim Salahuddin
- Département de Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
| | - Teslin Sandstrom
- Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Cecilia T Costiniuk
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada; Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Département de Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
| | - Petronela Ancuta
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Centre de Recherche du CHUM, Montreal, QC Canada
| | - Jean-Pierre Routy
- Research Institute of McGill University Health Centre, Montreal, QC, Canada; Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Éric A Cohen
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, 6-11 Heritage Medical Research Center, Edmonton, AB, Canada; Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Jonathan B Angel
- Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada; Division of Infectious Diseases, Ottawa Hospital-General Campus, Ottawa, ON, Canada
| | - Nicolas Chomont
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Centre de Recherche du CHUM, Montreal, QC Canada.
| |
Collapse
|
4
|
Dubé K, Villa TJ, Taylor J, Kaytes A, Moore DJ, Little SJ, Chaillon A, Smith DM, Gianella S. A Community-Driven Framework to Prioritize the Use of Donated Human Biological Materials in the Context of HIV Cure-Related Research at the End of Life. Pathog Immun 2023; 8:1-16. [PMID: 37252012 PMCID: PMC10225111 DOI: 10.20411/pai.v8i1.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Initiated in 2017 after extensive community engagement, the Last Gift program enrolls altruistic volunteers willing to donate their cells and tissues at the end of life to allow studies on HIV reservoir dynamics across anatomical sites. As the Last Gift team received tissue requests outside the scope of HIV cure research, we noticed the absence of guiding frameworks to help prioritize the use of altruistically donated human biological materials. In this commentary, we present a proposed framework for prioritizing the use of donated human biological materials within and outside the end-of-life (EOL) HIV cure research context, using the Last Gift study as an example. First, we discuss regulatory and policy considerations, and highlight key ethical values to guide prioritization decisions. Second, we present our prioritization framework and share some of our experiences prioritizing requests for donated human biological materials within and outside EOL HIV cure research.
Collapse
Affiliation(s)
- Karine Dubé
- Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA
- AntiViral Research Center, University of California San Diego, San Diego, CA
- Health Policy and Management, UNC Gillings School of Global Public Health, Chapel Hill, NC
| | - Thomas J. Villa
- HIV Obstruction by Programmed Epigenetics Delaney Collaboratory Community Team, San Francisco, CA
- Reversing Immune Dysfunction Delaney Collaboratory for HIV Cure Research Community Advisory Board, La Jolla, CA
| | - Jeff Taylor
- Reversing Immune Dysfunction Delaney Collaboratory for HIV Cure Research Community Advisory Board, La Jolla, CA
- HIV + Aging Research Project – Palm Springs, Palm Springs, CA
- AntiViral Research Center Community Advisory Board, University of California San Diego, San Diego, CA
| | - Andy Kaytes
- Reversing Immune Dysfunction Delaney Collaboratory for HIV Cure Research Community Advisory Board, La Jolla, CA
- AntiViral Research Center Community Advisory Board, University of California San Diego, San Diego, CA
| | - David J. Moore
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, CA
| | - Susan J. Little
- Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA
- AntiViral Research Center, University of California San Diego, San Diego, CA
| | - Antoine Chaillon
- Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA
| | - Davey M. Smith
- Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA
- AntiViral Research Center, University of California San Diego, San Diego, CA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA
- AntiViral Research Center, University of California San Diego, San Diego, CA
| |
Collapse
|
5
|
Subtle Longitudinal Alterations in Env Sequence Potentiate Differences in Sensitivity to Broadly Neutralizing Antibodies following Acute HIV-1 Subtype C Infection. J Virol 2022; 96:e0127022. [PMID: 36453881 PMCID: PMC9769376 DOI: 10.1128/jvi.01270-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) for HIV-1 prevention or cure strategies must inhibit transmitted/founder and reservoir viruses. Establishing sensitivity of circulating viruses to bNAbs and genetic patterns affecting neutralization variability may guide rational bNAbs selection for clinical development. We analyzed 326 single env genomes from nine individuals followed longitudinally following acute HIV-1 infection, with samples collected at ~1 week after the first detection of plasma viremia; 300 to 1,709 days postinfection but prior to initiating antiretroviral therapy (ART) (median = 724 days); and ~1 year post ART initiation. Sequences were assessed for phylogenetic relatedness, potential N- and O-linked glycosylation, and variable loop lengths (V1 to V5). A total of 43 env amplicons (median = 3 per patient per time point) were cloned into an expression vector and the TZM-bl assay was used to assess the neutralization profiles of 15 bNAbs targeting the CD4 binding site, V1/V2 region, V3 supersite, MPER, gp120/gp41 interface, and fusion peptide. At 1 μg/mL, the neutralization breadths were as follows: VRC07-LS and N6.LS (100%), VRC01 (86%), PGT151 (81%), 10-1074 and PGT121 (80%), and less than 70% for 10E8, 3BNC117, CAP256.VRC26, 4E10, PGDM1400, and N123-VRC34.01. Features associated with low sensitivity to V1/V2 and V3 bNAbs were higher potential glycosylation sites and/or relatively longer V1 and V4 domains, including known "signature" mutations. The study shows significant variability in the breadth and potency of bNAbs against circulating HIV-1 subtype C envelopes. VRC07-LS, N6.LS, VRC01, PGT151, 10-1074, and PGT121 display broad activity against subtype C variants, and major determinants of sensitivity to most bNAbs were within the V1/V4 domains. IMPORTANCE Broadly neutralizing antibodies (bNAbs) have potential clinical utility in HIV-1 prevention and cure strategies. However, bNAbs target diverse epitopes on the HIV-1 envelope and the virus may evolve to evade immune responses. It is therefore important to identify antibodies with broad activity in high prevalence settings, as well as the genetic patterns that may lead to neutralization escape. We investigated 15 bNAbs with diverse biophysical properties that target six epitopes of the HIV-1 Env glycoprotein for their ability to inhibit viruses that initiated infection, viruses circulating in plasma at chronic infection before antiretroviral treatment (ART), or viruses that were archived in the reservoir during ART in subtype C infected individuals in South Africa, a high burden country. We identify the antibodies most likely to be effective for clinical use in this setting and describe mutational patterns associated with neutralization escape from these antibodies.
Collapse
|
6
|
Riggs PK, Chaillon A, Jiang G, Letendre SL, Tang Y, Taylor J, Kaytes A, Smith DM, Dubé K, Gianella S. Lessons for Understanding Central Nervous System HIV Reservoirs from the Last Gift Program. Curr HIV/AIDS Rep 2022; 19:566-579. [PMID: 36260191 PMCID: PMC9580451 DOI: 10.1007/s11904-022-00628-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Deep tissue HIV reservoirs, especially within the central nervous system (CNS), are understudied due to the challenges of sampling brain, spinal cord, and other tissues. Understanding the cellular characteristics and viral dynamics in CNS reservoirs is critical so that HIV cure trials can address them and monitor the direct and indirect effects of interventions. The Last Gift program was developed to address these needs by enrolling altruistic people with HIV (PWH) at the end of life who agree to rapid research autopsy. RECENT FINDINGS Recent findings from the Last Gift emphasize significant heterogeneity across CNS reservoirs, CNS compartmentalization including differential sensitivity to broadly neutralizing antibodies, and bidirectional migration of HIV across the blood-brain barrier. Our findings add support for the potential of CNS reservoirs to be a source of rebounding viruses and reseeding of systemic sites if they are not targeted by cure strategies. This review highlights important scientific, practical, and ethical lessons learned from the Last Gift program in the context of recent advances in understanding the CNS reservoirs and key knowledge gaps in current research.
Collapse
Affiliation(s)
| | | | - Guochun Jiang
- Department of Biochemistry and Biophysics, Institute of Global Health and Infectious Diseases, UNC HIV Cure Center, Chapel Hill, NC, USA
| | | | - Yuyang Tang
- Department of Biochemistry and Biophysics, Institute of Global Health and Infectious Diseases, UNC HIV Cure Center, Chapel Hill, NC, USA
| | - Jeff Taylor
- AntiViral Research Center (AVRC) Community Advisory Board, University of California San Diego, San Diego, CA, USA
- HIV + Aging Research Project - Palm Springs (HARP-PS), Palm Springs, CA, USA
| | - Andrew Kaytes
- AntiViral Research Center (AVRC) Community Advisory Board, University of California San Diego, San Diego, CA, USA
| | | | - Karine Dubé
- Department of Medicine, UCSD, San Diego, CA, USA
| | | |
Collapse
|
7
|
Dănăilă VR, Avram S, Buiu C. The applications of machine learning in HIV neutralizing antibodies research-A systematic review. Artif Intell Med 2022; 134:102429. [PMID: 36462896 DOI: 10.1016/j.artmed.2022.102429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
Machine learning algorithms play an essential role in bioinformatics and allow exploring the vast and noisy biological data in unrivaled ways. This paper is a systematic review of the applications of machine learning in the study of HIV neutralizing antibodies. This significant and vast research domain can pave the way to novel treatments and to a vaccine. We selected the relevant papers by investigating the available literature from the Web of Science and PubMed databases in the last decade. The computational methods are applied in neutralization potency prediction, neutralization span prediction against multiple viral strains, antibody-virus binding sites detection, enhanced antibodies design, and the study of the antibody-induced immune response. These methods are viewed from multiple angles spanning data processing, model description, feature selection, evaluation, and sometimes paper comparisons. The algorithms are diverse and include supervised, unsupervised, and generative types. Both classical machine learning and modern deep learning were taken into account. The review ends with our ideas regarding future research directions and challenges.
Collapse
Affiliation(s)
- Vlad-Rareş Dănăilă
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, 313 Splaiul Independenţei, Bucharest 060042, Romania.
| | - Speranţa Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania.
| | - Cătălin Buiu
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, 313 Splaiul Independenţei, Bucharest 060042, Romania.
| |
Collapse
|