1
|
Umemura T, Kakizaki H, Mutoh Y, Mizuno T, Ito Y, Hioki T, Kato H, Hagihara M, Yamada T, Ikeda Y, Mikamo H, Ichihara T, Hamada Y. Effectiveness and safety of the simulation-based first-dose design of voriconazole. J Infect Chemother 2025; 31:102453. [PMID: 38944383 DOI: 10.1016/j.jiac.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND We investigated whether the initial voriconazole (VRCZ) dosing design, as determined using simulation software with a population pharmacokinetic model of Japanese patients, impacts the effectiveness and safety when compared with VRCZ initiation according to the package insert. METHODS In this single-center retrospective observational study, we employed records from Tosei General Hospital (a 633-bed hospital), dated April 2017 to September 2023. Eligible patients were divided into the software-based simulation group, comprising patients administered initial VRCZ dosage adjustment by pharmacists using software-based simulation, and the standard therapy group, whose dosage was administered by a physician following the package insert recommendations without simulation. The primary objective of this study was to determine the efficacy of VRCZ first-dose design in reducing the incidence of hepatotoxicity and visual symptoms. RESULTS The median ages of enrolled participants (n = 93) were 75 (68-79) and 72 (65-78) years in the software-based simulation and standard therapy groups, respectively. Regardless of formulation, initial trough concentrations were lower in the VRCZ software-based first dosage adjustment group and higher rate within the appropriate range (1-4 μg/mL). The incidence of all-grade hepatotoxicity or visual symptoms was significantly lower in the software-based simulation group. The log-rank test revealed a significant impact on the occurrence of ≥grade 2 hepatotoxicity in the software-based first dosage adjustment group compared to that in the standard therapy group. CONCLUSIONS The initial VRCZ dosing design using simulation software improved the achievement of appropriate initial trough concentrations and resulted in fewer occurrences of hepatotoxicity (≥grade 2) when compared with the standard therapy.
Collapse
Affiliation(s)
- Takumi Umemura
- Department of Pharmacy, Tosei General Hospital, Seto, Aichi, Japan; Department of Clinical Infectious Diseases, Tosei General Hospital, Seto, Aichi, Japan; Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Aichi, Japan; College of Pharmacy, Kinjo Gakuin University, Nagoya, Aichi, Japan.
| | - Hiromi Kakizaki
- Department of Pharmacy, Tosei General Hospital, Seto, Aichi, Japan
| | - Yoshikazu Mutoh
- Department of Clinical Infectious Diseases, Tosei General Hospital, Seto, Aichi, Japan
| | - Takahito Mizuno
- Department of Pharmacy, Tosei General Hospital, Seto, Aichi, Japan
| | - Yuki Ito
- Department of Pharmacy, Tosei General Hospital, Seto, Aichi, Japan
| | - Tatsuya Hioki
- Department of Clinical Infectious Diseases, Tosei General Hospital, Seto, Aichi, Japan
| | - Hideo Kato
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Aichi, Japan; Department of Pharmacy, Mie University Hospital, Tsu, Mie, Japan
| | - Mao Hagihara
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tetsuya Yamada
- Department of Pharmacy, Tosei General Hospital, Seto, Aichi, Japan
| | - Yoshiaki Ikeda
- College of Pharmacy, Kinjo Gakuin University, Nagoya, Aichi, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Aichi, Japan
| | | | - Yukihiro Hamada
- Department of Pharmacy, Kochi Medical School Hospital, Nankoku, Kochi, Japan
| |
Collapse
|
2
|
Lemaitre F, Lalanne S, Verdier M. Questioning the Design of Non-Inferiority Trials: The Strange Case for Therapeutic Drug Monitoring Absence in Phase III Trials. Clin Pharmacol Ther 2025; 117:25-27. [PMID: 39119915 PMCID: PMC11652807 DOI: 10.1002/cpt.3408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Affiliation(s)
- Florian Lemaitre
- Univ Rennes, CHU Rennes, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR S 1085RennesFrance
| | | | | |
Collapse
|
3
|
Jiang L, Lin Z. Voriconazole: a review of adjustment programs guided by therapeutic drug monitoring. Front Pharmacol 2024; 15:1439586. [PMID: 39712496 PMCID: PMC11658975 DOI: 10.3389/fphar.2024.1439586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/12/2024] [Indexed: 12/24/2024] Open
Abstract
Objectives Exploring adjustments to the voriconazole dosing program based on therapeutic drug monitoring results to implement individualized therapy. Methods PubMed and Embase were systematically searched to obtain study about voriconazole dose adjustment program guided by therapeutic drug monitoring. Quality evaluation and summarization of the obtained studies were performed to obtain program adjustments for voriconazole under therapeutic drug monitoring. Results A total of 1,356 and 2,979 studies were searched on PubMed and Embase, respectively, and after removing irrelevant and duplicated studies, a total of 25 studies were included. A loading dose of 5 mg/kg q12 h or 200 mg q12 h and a maintenance dose of 50 mg q12 h or 100 mg q24 h is recommended for patients with Child-Pugh C. And in patients with Child-Pugh C, CYP2C19 genotype had no significant effect on voriconazole blood concentrations. Recommendations for presenting dosing programs based on different CYP2C19 genotypes are inconsistent, and genetic testing is not routinely recommended prior to dosing from a pharmacoeconomic perspective. Additionally, in adult patients, if the voriconazole trough concentration is subtherapeutic, the voriconazole dose should be increased by 25%∼50%. If the voriconazole trough concentration is supratherapeutic,the voriconazole dose should be decreased by 25%∼50%. If a drug-related adverse event occurs, hold 1 dose, decrease subsequent dose by 50%.In pediatric patients, if the voriconazole trough concentration is subtherapeutic, increase the voriconazole dose by 1∼2 mg/kg or increase the voriconazole dose by 50%. If the voriconazole trough concentration is supratherapeutic, reduce the voriconazole dose by 1 mg/kg or hold 1 dose, and decrease the subsequent dose by 25%. Conclusion It is recommended that all patients on voriconazole should have their initial dosing program selected on the basis of their hepatic function or other influencing factors (e.g., pathogens, infections, C-reactive protein, albumin, or obesity), and that therapeutic concentrations should be achieved through appropriate dosage adjustments guided by therapeutic drug monitoring. Routine genetic testing for voriconazole application in patients is not considered necessary at this time. However, there has been a great deal of research and partial consensus on individualized dosing of voriconazole, but there are still some critical issues that have not been resolved.
Collapse
Affiliation(s)
| | - Zhiqiang Lin
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
4
|
Elkurdi R, Grill MF, Kekic A, Blair JE. Clinical utility of pharmacogenomic testing for patients with coccidioidal meningitis. Med Mycol 2024; 62:myae113. [PMID: 39567855 DOI: 10.1093/mmy/myae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024] Open
Abstract
Coccidioidomycosis can cause severe meningitis, requiring lifelong treatment. In this study, we sought to better understand the potential effect of pharmacogenomic testing on treatment outcomes of patients with coccidioidal meningitis. Of 13 patients with coccidioidal meningitis who underwent pharmacogenomic testing, 11 had genetic variants of CYP2C19 and CYP3A5 that affect antifungal efficacy. These results led to real-time treatment changes and future antifungal planning. Routine pharmacogenomic testing helps to avoid antifungal treatments that are futile or lead to adverse effects.
Collapse
Affiliation(s)
- Rawan Elkurdi
- Division of Infectious Diseases, Mayo Clinic, Phoenix, Arizona, USA
- University of Arizona, Banner - University Medical Center, Phoenix, Arizona, USA
| | - Marie F Grill
- Department of Neurology, Mayo Clinic, Phoenix, Arizona, USA
| | | | - Janis E Blair
- Division of Infectious Diseases, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
5
|
Kreitmann L, Blot S, Nseir S. Invasive fungal infections in non-neutropenic patients. Intensive Care Med 2024; 50:2166-2170. [PMID: 39432102 DOI: 10.1007/s00134-024-07683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Affiliation(s)
- Louis Kreitmann
- Department of Infectious Disease, Faculty of Medicine, Centre for Antimicrobial Optimisation, Imperial College London, London, UK
- Department of Critical Care Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Stijn Blot
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Saad Nseir
- CHU Lille, Service de Médecine Intensive-Réanimation, Lille, France.
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
| |
Collapse
|
6
|
Venkatakrishnan G, Amma BSPT, Menon RN, Rajakrishnan H, Surendran S. Infections in acute liver failure - Assessment, prevention, and management. Best Pract Res Clin Gastroenterol 2024; 73:101958. [PMID: 39709213 DOI: 10.1016/j.bpg.2024.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/22/2024] [Indexed: 12/23/2024]
Abstract
Infections in acute liver failure (ALF) increase the associated morbidity and mortality, and often hamper the possibility of transplantation. Two-thirds of the infections in ALF are bacterial while one-third is fungal. High suspicion for infection is essential whenever there is clinical deterioration. Multi-drug resistant infections are frequently encountered with prolonged ICU stay, invasive lines, ventilation and renal replacement therapy. Since most of the infections in ALF are nosocomial, prevention of infections is crucial by infection control practices in the ICU. Although markers such as CRP, procalcitonin (for bacterial infections), 1,3-beta-D glucan, and galactomannan (fungal infections) aid in the diagnosis, the gold standard is blood culture. Therapy for respiratory infections must be based on BAL or mini-BAL culture. In this article, we discuss the common infections occurring in ALF, methods for early diagnosis and recommended prophylactic, pre-emptive as well as therapeutic options for treating infections in ALF.
Collapse
Affiliation(s)
- Guhan Venkatakrishnan
- Department of Gastrointestinal Surgery and Solid Organ Transplant, Amrita Institute of Medical Sciences and Research Centre, Amrita University, Kochi, Kerala, India
| | - Binoj S Pillai Thankamony Amma
- Department of Gastrointestinal Surgery and Solid Organ Transplant, Amrita Institute of Medical Sciences and Research Centre, Amrita University, Kochi, Kerala, India
| | - Ramachandran N Menon
- Department of Gastrointestinal Surgery and Solid Organ Transplant, Amrita Institute of Medical Sciences and Research Centre, Amrita University, Kochi, Kerala, India
| | - Haritha Rajakrishnan
- Department of Gastrointestinal Surgery and Solid Organ Transplant, Amrita Institute of Medical Sciences and Research Centre, Amrita University, Kochi, Kerala, India
| | - Sudhindran Surendran
- Department of Gastrointestinal Surgery and Solid Organ Transplant, Amrita Institute of Medical Sciences and Research Centre, Amrita University, Kochi, Kerala, India.
| |
Collapse
|
7
|
Kline A, Parta M, Cuellar-Rodriguez J, Gea-Banacloche J, Kelly C, Pittaluga S, Zerbe CS, Holland SM, Malech HL, Kang EM. Outcomes in hematopoetic cell transplantation in the setting of mold infections in patients with chronic granulomatous disease. Bone Marrow Transplant 2024:10.1038/s41409-024-02389-x. [PMID: 39496936 DOI: 10.1038/s41409-024-02389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 11/06/2024]
Abstract
Chronic granulomatous disease (CGD) is a disorder of immunity characterized by phagocyte dysfunction. Mold infections in patients with CGD are often severe and disseminated. We present patient characteristics, microbiological data, and outcomes for 26 patients with CGD who received hematopoietic cell transplantation (HCT) or gene therapy-modified cells (GT) between 2008 and 2019, with proven fungal infection either before or during their transplant. All patients engrafted, and all but one GT recipient had neutrophil recovery and evidence of functional correction. Eighteen patients (69%) are currently alive and 19 patients (73% of total, 90% of patients with repeat imaging performed) had evidence of radiographic improvement. With 3 exceptions, deaths were not principally related to the fungal infection and duration of antecedent infection did not correlate with death. Aspergillus species accounted for the majority of disease (50%), followed by Phellinus species (18%). Osteomyelitis and disseminated disease were common, as only 11 patients (42%) had disease restricted to pneumonia. Triazole therapy was used in all 26 patients, with combination therapy used in 25 (96%). HCT or gene therapy, with appropriate antifungal therapy, are viable therapies for refractory fungal infections in patients with CGD.
Collapse
Affiliation(s)
- Ahnika Kline
- Department of Laboratory Medicine/National Institutes of Health, San Diego, CA, USA.
| | - Mark Parta
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, San Diego, CA, USA
| | - Jennifer Cuellar-Rodriguez
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Juan Gea-Banacloche
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Corin Kelly
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stefania Pittaluga
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Derpartment of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christa S Zerbe
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven M Holland
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Harry L Malech
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth M Kang
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Resztak M, Zalewska P, Wachowiak J, Sobkowiak-Sobierajska A, Główka FK. Voriconazole therapeutic drug monitoring including analysis of CYP2C19 phenotype in immunocompromised pediatric patients with invasive fungal infections. Eur J Clin Pharmacol 2024; 80:1829-1840. [PMID: 39240338 PMCID: PMC11458732 DOI: 10.1007/s00228-024-03752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE Therapeutic drug monitoring (TDM) of voriconazole (VCZ) should be mandatory for all pediatric patients with invasive fungal infections (IFIs). The narrow therapeutic index, inter-individual variability in VCZ pharmacokinetics, and genetic polymorphisms cause achieving therapeutic concentration during therapy to be challenging in this population. METHODS The study included 44 children suffering from IFIs treated with VCZ. Trough concentrations (Ctrough) of VCZ ware determined by the HPLC-FLD method. Identification of the CYP2C19*2 and CYP2C19*17 genetic polymorphisms was performed by PCR-RFLP. The correlation between polymorphisms and VCZ Ctrough was analyzed. Moreover, the effect of factors such as dose, age, sex, route of administration, and drug interactions was investigated. RESULTS VCZ was administered orally and intravenously at a median maintenance dosage of 14.7 mg/kg/day for a median of 10 days. The VCZ Ctrough was highly variable and ranged from 0.1 to 6.8 mg/L. Only 45% of children reached the therapeutic range. There was no significant association between Ctrough and dosage, age, sex, route of administration, and concomitant medications. The frequencies of variant phenotype normal (NM), intermediate (IM), rapid (RM) and ultrarapid metabolizers (UM) were 41%, 18%, 28%, and 13%, respectively. Ctrough of VCZ were significantly higher in NM and IM groups compared with RM, and UM groups. CONCLUSION The Ctrough of VCZ is characterized by inter-individual variability and a low rate of patients reaching the therapeutic range. The significant association exists in children between VCZ Ctrough and CYPC19 phenotype. The combination of repeated TDM and genotyping is necessary to ensure effective treatment.
Collapse
Affiliation(s)
- Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland.
| | - Paulina Zalewska
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Franciszek K Główka
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
9
|
Flores J, Flank J, Polito S, Dhillon P, Pang I, Ho L, Yee KW. Evaluation of voriconazole therapeutic drug monitoring in malignant hematology patients. J Oncol Pharm Pract 2024:10781552241284528. [PMID: 39295509 DOI: 10.1177/10781552241284528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Malignant hematology (MH) patients are susceptible to invasive fungal infections due to prolonged neutropenia and immunosuppressive therapies, which may require voriconazole therapy. Although voriconazole therapeutic drug monitoring (TDM) is common, evidence describing this practice is limited. The primary objective of this study was to describe the current practice of voriconazole TDM in MH patients at the Princess Margaret Cancer Centre (PM). METHODS A retrospective chart review was conducted for MH inpatients initiated on voriconazole at PM between November 1st, 2019 and November 13th, 2020. Data regarding voriconazole doses, levels, dose changes, and adverse effects were collected. The primary endpoint was the proportion of patients with initial voriconazole levels within therapeutic range (1-5 mg/L). RESULTS Fifty-six patients were included in the study. The most common reason for starting voriconazole was possible invasive fungal infection (44 patients, 78.6%). Fifty-one patients (91.1%) received a loading dose of voriconazole, averaging 386.5 ± 78.5 mg. The average maintenance dose was 242.1 ± 45.7 mg. An average of 2.6 ± 2.9 levels were drawn per patient with an average level of 3.2 ± 2.4 mg/L. Forty-one patients (73.2%) had an initial voriconazole level within therapeutic range and 90 out of 145 total levels (62.1%) were within therapeutic range. There were 52 dose modifications made; 31 (60.8%) doses adjusted, 12 (23.5%) doses held, and 9 (17.6%) doses discontinued. For the 31 dose adjustments, 26 (83.9%) had a level redrawn and 17 (65.4%) of those levels were within therapeutic range. Twenty-three (41.1%) patients developed adverse effects, 8 (34.8%) of which were associated with supratherapeutic levels. Of these 23 patients, 19 (33.9%) experienced transaminitis, 3 (5.4%) experienced both transaminitis and neurotoxicity, and 1 (1.8%) experienced photopsia. CONCLUSION Overall, 41 (73.2%) patients achieved an initial voriconazole level within therapeutic range. Of these 41 patients, 30 (73.2%) remained within therapeutic range for the duration of their inpatient voriconazole therapy. These findings suggest that the current practice of voriconazole TDM at our institution is yielding largely positive results, but still has room for improvement.
Collapse
Affiliation(s)
- Jerome Flores
- University Health Network, Toronto, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | | | | | | | - Ian Pang
- University Health Network, Toronto, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Lina Ho
- University Health Network, Toronto, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | | |
Collapse
|
10
|
Shilpy N, Pushker N, Meel R, Agrawal S, Bajaj MS, Sharma S, Thakar A, Satapathy G, Velpandian T. Voriconazole in the treatment of invasive aspergillosis of orbit. Med J Armed Forces India 2024; 80:541-546. [PMID: 39309577 PMCID: PMC11411301 DOI: 10.1016/j.mjafi.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/06/2022] [Indexed: 11/06/2022] Open
Abstract
Background The aim of the study was to evaluate the outcomes of voriconazole in terms of functional recovery and response on imaging in the management of invasive aspergillosis of orbit. Methods This was a prospective non-comparative interventional study. Diagnosed cases of invasive orbital aspergillosis were studied in a tertiary care hospital. Intravenous voriconazole followed by oral treatment was given. Sinus debridement was done, where needed. The response to treatment was assessed clinically and on radiology. Results A total of 10 diagnosed cases of invasive orbital aspergillosis were studied. Nine cases (90%) occurred in immunocompetent patients. Predisposing sinus infection was seen in 8 patients (80%). The most common presenting complaint was the protrusion of eye. On voriconazole treatment, there was a statistically significant improvement in vision and extraocular movements from first week onwards (p = 0.01 and p = 0.02, respectively) and reduction in proptosis from second week onwards (p = 0.003). Imaging was done at three months follow-up which revealed a good response to treatment in 90% of patients. All patients tolerated the drug well except one who had transient hepatic dysfunction. The mean follow-up was 5.8 months (range: 3-12 months). There was no recurrence of disease till the last follow-up. Conclusion Invasive orbital aspergillosis commonly presents as sino-orbital disease, mostly in immunocompetent adult patients. Voriconazole is a safe and effective drug with good short-term clinical outcome.
Collapse
Affiliation(s)
- Neha Shilpy
- Consultant (Ophthalmology), Regional Institute of Ophthalmology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Neelam Pushker
- Professor (Oculoplasty & Orbital Tumor), Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, Delhi, India
| | - Rachna Meel
- Associate Professor (Oculoplasty & Orbital Tumor), Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, Delhi, India
| | - Sahil Agrawal
- Senior Reseasrch Officer (Oculoplasty & Orbital Tumor), Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, Delhi, India
| | - Mandeep Singh Bajaj
- Professor (Oculoplasty & Orbital Tumor), Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, Delhi, India
| | - Sanjay Sharma
- Professor (Ophthalmic Radiodiagnosis), Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, Delhi, India
| | - Alok Thakar
- Professor (Otorhinolaryngology), AIIMS, Delhi, India
| | - Gita Satapathy
- Ex Professor (Ocular Microbiology), Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, Delhi, India
| | - T. Velpandian
- Professor (Ocular Pharmacology), Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, Delhi, India
| |
Collapse
|
11
|
Boglione-Kerrien C, Le Bot A, Luque Paz D, Verdier MC, Guegan H, Gangneux JP, Bellissant E, Lemaitre F. Voriconazole as an alternative oral treatment in fluconazole-resistant urinary candidiasis. Infect Dis Now 2024; 54:104955. [PMID: 39043250 DOI: 10.1016/j.idnow.2024.104955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES This study aims to assess the urinary diffusion and clinical effectiveness of voriconazole in patients with fluconazole-resistant urinary candidiasis. PATIENTS AND METHODS In this prospective pilot study, we utilized a validated chromatography method to measure voriconazole in urine over a 12-hour period between two administrations of the drug and in plasma at trough. RESULTS Thirty-five patients, including five with fluconazole-resistant urinary candidiasis, were included. Urine and plasma voriconazole concentrations, mean 1.7 mg/L (range: 0.3-12.6) and mean 2.0 mg/L (range: 0.1-11.1) respectively, exhibited a strong correlation (R2 = 0.88). None of the five patients treated for candidiasis experienced clinical or microbiological failure following treatment, with urine concentrations ranging from 0.5 to 2.7 mg/L. CONCLUSIONS The urinary diffusion of voriconazole resulted in drug exposure above the target minimum inhibitory concentration (MIC) in the five patients treated for voriconazole-susceptible Candida strains in urine. Therapeutic drug monitoring may allow optimize in situ concentrations.
Collapse
Affiliation(s)
| | - Audrey Le Bot
- CHU Rennes, Infectious Diseases and Intensive Care Unit, F-35000 Rennes, France
| | - David Luque Paz
- CHU Rennes, Infectious Diseases and Intensive Care Unit, F-35000 Rennes, France
| | - Marie-Clémence Verdier
- CHU Rennes, Laboratory of Biological Pharmacology, F-35000 Rennes, France; Univ Rennes, CHU de Rennes, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Hélène Guegan
- Univ Rennes, CHU de Rennes, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France; CHU Rennes, Laboratory of Parasitology and Medical Mycology, European Confederation of Medical Mycology (ECMM) Excellence Center, Centre National de Référence Aspergilloses Chroniques, F-35000 Rennes, France
| | - Jean-Pierre Gangneux
- Univ Rennes, CHU de Rennes, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France; CHU Rennes, Laboratory of Parasitology and Medical Mycology, European Confederation of Medical Mycology (ECMM) Excellence Center, Centre National de Référence Aspergilloses Chroniques, F-35000 Rennes, France
| | - Eric Bellissant
- CHU Rennes, Laboratory of Biological Pharmacology, F-35000 Rennes, France; Univ Rennes, CHU de Rennes, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Florian Lemaitre
- CHU Rennes, Laboratory of Biological Pharmacology, F-35000 Rennes, France; Univ Rennes, CHU de Rennes, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
12
|
Machado M, Fortún J, Muñoz P. Invasive aspergillosis: A comprehensive review. Med Clin (Barc) 2024; 163:189-198. [PMID: 38714471 DOI: 10.1016/j.medcli.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 05/09/2024]
Abstract
Invasive aspergillosis (IA) is a severe fungal infection caused by Aspergillus species, particularly Aspergillus fumigatus, although new species, sometimes resistant to antifungals are becoming more common. IA predominantly affects immunocompromised patients, such as those with haematological malignancies, solid organ transplant recipients, and critically ill patients. However, new at-risk populations have emerged in recent years, such as IA associated with severe viral infections. Advanced diagnostic methods are crucial, especially considering the rising concern of antifungal resistance. Early detection is critical for successful treatment, typically involving antifungal medications like voriconazole or amphotericin B, but new antifungals are arriving to complete the therapeutic strategies. Despite advancements, mortality rates remain high, underscoring the importance of timely interventions and ongoing research. Healthcare providers should maintain a high index of suspicion, especially in immunocompromised patients and other new risk factors that are arising, to promptly diagnose and manage invasive aspergillosis.
Collapse
Affiliation(s)
- Marina Machado
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Universidad de Alcalá, Escuela de Doctorado, Alcalá de Henares, Spain.
| | - Jesús Fortún
- Infectious Diseases Department, Hospital Ramón y Cajal, Madrid, Spain; Universidad de Alcalá, Escuela de Doctorado, Alcalá de Henares, Spain; IRYCIS: Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid, Spain
| |
Collapse
|
13
|
Li X, Hu Q, Xu T. Associated factors with voriconazole plasma concentration: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1368274. [PMID: 39246651 PMCID: PMC11377273 DOI: 10.3389/fphar.2024.1368274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Background: Voriconazole plasma concentration exhibits significant variability and maintaining it within the therapeutic range is the key to enhancing its efficacy. We conducted a systematic review and meta-analysis to estimate the prevalence of patients achieving the therapeutic range of plasma voriconazole concentration and identify associated factors. Methods: Eligible studies were identified through the PubMed, Embase, Cochrane Library, and Web of Science databases from their inception until 18 November 2023. We conducted a meta-analysis using a random-effects model to determine the prevalence of patients who reached the therapeutic plasma voriconazole concentration range. Factors associated with plasma voriconazole concentration were summarized from the included studies. Results: Of the 60 eligible studies, 52 reported the prevalence of patients reaching the therapeutic range, while 20 performed multiple linear regression analyses. The pooled prevalence who achieved the therapeutic range was 56% (95% CI: 50%-63%) in studies without dose adjustment patients. The pooled prevalence of adult patients was 61% (95% CI: 56%-65%), and the pooled prevalence of children patients was 55% (95% CI: 50%-60%) The study identified, in the children population, several factors associated with plasma voriconazole concentration, including age (coefficient 0.08, 95% CI: 0.01 to 0.14), albumin (-0.05 95% CI: -0.09 to -0.01), in the adult population, some factors related to voriconazole plasma concentration, including omeprazole (1.37, 95% CI 0.82 to 1.92), pantoprazole (1.11, 95% CI: 0.17-2.04), methylprednisolone (-1.75, 95% CI: -2.21 to -1.30), and dexamethasone (-1.45, 95% CI: -2.07 to -0.83). Conclusion: The analysis revealed that only approximately half of the patients reached the plasma voriconazole concentration therapeutic range without dose adjustments and the pooled prevalence of adult patients reaching the therapeutic range is higher than that of children. Therapeutic drug monitoring is crucial in the administration of voriconazole, especially in the children population. Particular attention may be paid to age, albumin levels in children, and the use of omeprazole, pantoprazole, dexamethasone and methylprednisolone in adults. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023483728.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiaozhi Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Xu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Ling J, Yang X, Dong L, Jiang Y, Zou S, Hu N. Influence of C-reactive protein on the pharmacokinetics of voriconazole in relation to the CYP2C19 genotype: a population pharmacokinetics analysis. Front Pharmacol 2024; 15:1455721. [PMID: 39228522 PMCID: PMC11368715 DOI: 10.3389/fphar.2024.1455721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Voriconazole is a broad-spectrum triazole antifungal agent. A number of studies have revealed that the impact of C-reactive protein (CRP) on voriconazole pharmacokinetics was associated with the CYP2C19 phenotype. However, the combined effects of CYP2C19 genetic polymorphisms and inflammation on voriconazole pharmacokinetics have not been considered in previous population pharmacokinetic (PPK) studies, especially in the Chinese population. This study aimed to analyze the impact of inflammation on the pharmacokinetics of voriconazole in patients with different CYP2C19 genotypes and optimize the dosage of administration. Data were obtained retrospectively from adult patients aged ≥16 years who received voriconazole for invasive fungal infections from October 2020 to June 2023. Plasma voriconazole levels were measured via high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). CYP2C19 genotyping was performed using the fluorescence in situ hybridization method. A PPK model was developed using the nonlinear mixed-effect model (NONMEM). The final model was validated using bootstrap, visual predictive check (VPC), and normalized prediction distribution error (NPDE). The Monte Carlo simulation was applied to evaluate and optimize the dosing regimens. A total of 232 voriconazole steady-state trough concentrations from 167 patients were included. A one-compartment model with first order and elimination adequately described the data. The typical clearance (CL) and the volume of distribution (V) of voriconazole were 3.83 L/h and 134 L, respectively. The bioavailability was 96.5%. Covariate analysis indicated that the CL of voriconazole was substantially influenced by age, albumin, gender, CRP, and CYP2C19 genetic variations. The V of voriconazole was significantly associated with body weight. An increase in the CRP concentration significantly decreased voriconazole CL in patients with the CYP2C19 normal metabolizer (NM) and intermediate metabolizer (IM), but it had no significant effect on patients with the CYP2C19 poor metabolizer (PM). The Monte Carlo simulation based on CRP levels indicated that patients with high CRP concentrations required a decreased dose to attain the therapeutic trough concentration and avoid adverse drug reactions in NM and IM patients. These results indicate that CRP affects the pharmacokinetics of voriconazole and is associated with the CYP2C19 phenotype. Clinicians dosing voriconazole should consider the patient's CRP level, especially in CYP2C19 NMs and IMs.
Collapse
Affiliation(s)
| | | | | | | | | | - Nan Hu
- Department of Pharmacy, The First People’s Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
15
|
Minichmayr IK, Dreesen E, Centanni M, Wang Z, Hoffert Y, Friberg LE, Wicha SG. Model-informed precision dosing: State of the art and future perspectives. Adv Drug Deliv Rev 2024; 215:115421. [PMID: 39159868 DOI: 10.1016/j.addr.2024.115421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Model-informed precision dosing (MIPD) stands as a significant development in personalized medicine to tailor drug dosing to individual patient characteristics. MIPD moves beyond traditional therapeutic drug monitoring (TDM) by integrating mathematical predictions of dosing, and considering patient-specific factors (patient characteristics, drug measurements) as well as different sources of variability. For this purpose, rigorous model qualification is required for the application of MIPD in patients. This review delves into new methods in model selection and validation, also highlighting the role of machine learning in improving MIPD, the utilization of biosensors for real-time monitoring, as well as the potential of models integrating biomarkers for efficacy or toxicity for precision dosing. The clinical evidence of TDM and MIPD is discussed for various medical fields including infection medicine, oncology, transplant medicine, and inflammatory bowel diseases, thereby underscoring the role of pharmacokinetics/pharmacodynamics and specific biomarkers. Further research, particularly randomized clinical trials, is warranted to corroborate the value of MIPD in enhancing patient outcomes and advancing personalized medicine.
Collapse
Affiliation(s)
- I K Minichmayr
- Dept. of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - E Dreesen
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - M Centanni
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Z Wang
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Y Hoffert
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - L E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - S G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
16
|
Panagopoulou P, Roilides E. An update on pharmacotherapy for fungal infections in allogeneic stem cell transplant recipients. Expert Opin Pharmacother 2024; 25:1453-1482. [PMID: 39096057 DOI: 10.1080/14656566.2024.2387686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Invasive fungal diseases (IFD) constitute a major cause of morbidity and mortality in hematopoietic stem cell transplantation (HSCT) recipients. AREAS COVERED We describe epidemiology, causes and risk factors of IFD in allogeneic HSCT discussing prophylaxis and treatment in various HSCT phases. We present the most recent studies on this thematic area, including novel data on currently available antifungals, i.e. formulations, dosing, safety, efficacy and therapeutic drug monitoring. Finally, we present the most recent relevant recommendations published. Literature search included PubMed, Scopus, and clinicaltrials.gov between January 2014 and April 2024. EXPERT OPINION The antifungal agents employed for prophylaxis and therapy should be predicated on local epidemiology of IFD. Fluconazole prophylaxis remains a first-line choice before engraftment when the main pathogen is Candida spp. After engraftment, prophylaxis should be with mold-active agents (i.e. triazoles). For candidiasis, echinocandins are suggested as first-line treatment, whereas aspergillosis responds well to mold-active azoles and liposomal amphotericin B (L-AmB). For mucormycosis, treatment of choice includes L-AmB and isavuconazole. Choice between fever-driven and diagnostics-driven strategies remains equivocal. Open research topics remain: 1) optimization of tools to ensure prompt and accurate IFD diagnosis to avoid unnecessary exposure to antifungals, drug interactions and cost; 2) refinement of treatment for resistant/refractory strains.
Collapse
Affiliation(s)
- Paraskevi Panagopoulou
- Pediatric Hematology & Oncology, 4th Department of Pediatrics, Aristotle University School of Medicine and Papageorgiou General Hospital, Thessaloniki, Greece
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, Aristotle University School of Medicine and Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
17
|
Lu H, Mao Y, Zeng Y, Li P, Yan P, Shi Q, Liu L. The Effect of Rifapentine and Rifampicin on Serum Voriconazole Levels Persist for 5 Days and 7 Days or More After Discontinuation in Tuberculosis Patients with Chronic Pulmonary Aspergillosis. Infect Drug Resist 2024; 17:2853-2862. [PMID: 39005851 PMCID: PMC11244130 DOI: 10.2147/idr.s461785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Voriconazole, a first-line therapeutic agent for chronic pulmonary aspergillosis, is metabolized by the cytochrome 450 enzymes, specifically CYP2C19 and CYP3A4. Rifampicin and rifapentine act as inducers of the cytochrome P450 enzyme. The current study explored the potential drug interactions arising from the co-administration of voriconazole with either rifampicin or rifapentine, as well as the duration of this effect on serum voriconazole levels after discontinuation of rifampicin or rifapentine. Patients and Methods A retrospective study was conducted in tuberculosis patients with chronic pulmonary aspergillosis. These patients underwent a combination therapy involving voriconazole and rifampicin or rifapentine, or they were treated with voriconazole after discontinuation of rifampicin or rifapentine. The serum concentrations of voriconazole at steady-state were monitored. Data on demographic characteristics and the serum voriconazole levels were used for statistical analyses. Results A total of 124 serum voriconazole concentrations from 109 patients were included in the study. The average serum concentration of voriconazole fell below the effective therapeutic range in patients treated with both voriconazole and rifampicin or rifapentine. Notably the co-administration of rifapentine led to a substantial (>70%) decrease in serum voriconazole levels in two patients. Moreover, this interfering effect persisted for at least 7 days following rifampicin discontinuation, while it endured for 5 days or more after discontinuation of rifapentine. Conclusion Concomitant use of voriconazole and rifampicin or rifapentine should be avoided, and it is not recommended to initiate voriconazole therapy within 5 or 7 days after discontinuation of rifapentine or rifampicin. Therapeutic drug monitoring not only provides a basis for the adjustment of clinical dose, but also serves as a valuable tool for identifying drug interactions.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| | - Yanmei Mao
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| | - Ying Zeng
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| | - Pengyu Li
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| | - Pan Yan
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| | - Qunzhi Shi
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| | - Lin Liu
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| |
Collapse
|
18
|
Boyer J, Hoenigl M, Kriegl L. Therapeutic drug monitoring of antifungal therapies: do we really need it and what are the best practices? Expert Rev Clin Pharmacol 2024; 17:309-321. [PMID: 38379525 DOI: 10.1080/17512433.2024.2317293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Despite advancements, invasive fungal infections (IFI) still carry high mortality rates, often exceeding 30%. The challenges in diagnosis, coupled with limited effective antifungal options, make managing IFIs complex. Antifungal drugs are essential for IFI management, but their efficacy can be diminished by drug-drug interactions and pharmacokinetic variability. Therapeutic Drug Monitoring (TDM), especially in the context of triazole use, has emerged as a valuable strategy to optimize antifungal therapy. AREAS COVERED This review provides current evidence regarding the potential benefits of TDM in IFI management. It discusses how TDM can enhance treatment response, safety, and address altered pharmacokinetics in specific patient populations. EXPERT OPINION TDM plays a crucial role in achieving optimal therapeutic outcomes in IFI management, particularly for certain antifungal agents. Preclinical studies consistently show a link between therapeutic drug levels and antifungal efficacy. However, clinical research in mycology faces challenges due to patient heterogeneity and the diversity of fungal infections. TDM's potential advantages in guiding Echinocandin therapy for critically ill patients warrant further investigation. Additionally, for drugs like Posaconazole, assessing whether serum levels or alternative markers like saliva offer the best measure of efficacy is an intriguing question.
Collapse
Affiliation(s)
- Johannes Boyer
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
- Translational Mycology Working Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
19
|
Hinze CA, Fuge J, Grote-Koska D, Brand K, Slevogt H, Cornberg M, Simon S, Joean O, Welte T, Rademacher J. Factors influencing voriconazole plasma level in intensive care patients. JAC Antimicrob Resist 2024; 6:dlae045. [PMID: 38500519 PMCID: PMC10946233 DOI: 10.1093/jacamr/dlae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Background In clinical routine, voriconazole plasma trough levels (Cmin) out of target range are often observed with little knowledge about predisposing influences. Objectives To determine the distribution and influencing factors on voriconazole blood levels of patients treated on intensive- or intermediate care units (ICU/IMC). Patients and methods Data were collected retrospectively from patients with at least one voriconazole trough plasma level on ICU/IMC (n = 153) to determine the proportion of sub-, supra- or therapeutic plasma levels. Ordinal logistic regression analysis was used to assess factors hindering patients to reach voriconazole target range. Results Of 153 patients, only 71 (46%) reached the target range at the first therapeutic drug monitoring, whereas 66 (43%) patients experienced too-low and 16 (10%) too-high plasma levels. Ordinal logistic regression analysis identified the use of extra corporeal membrane oxygenation (ECMO), low international normalized ratio (INR) and aspartate-aminotransferase (AST) serum levels as predictors for too-low plasma levels. Conclusion Our data highlight an association of ECMO, INR and AST levels with voriconazole plasma levels, which should be considered in the care of critically ill patients to optimize antifungal therapy with voriconazole.
Collapse
Affiliation(s)
| | - Jan Fuge
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Denis Grote-Koska
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Hortense Slevogt
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Respiratory Infection Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Centre for Individualized Infection Medicine, Hannover, Germany
- German Center for Infection Research (DZIF), partner-site Hannover-Braunschweig, Hannover, Germany
| | - Susanne Simon
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| | - Oana Joean
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jessica Rademacher
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
20
|
Chastain DB, White BP, Tu PJ, Chan S, Jackson BT, Kubbs KA, Bandali A, McDougal S, Henao-Martínez AF, Cluck DB. Candidemia in Adult Patients in the ICU: A Reappraisal of Susceptibility Testing and Antifungal Therapy. Ann Pharmacother 2024; 58:305-321. [PMID: 37272474 DOI: 10.1177/10600280231175201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
OBJECTIVE To provide updates on the epidemiology and recommendations for management of candidemia in patients with critical illness. DATA SOURCES A literature search using the PubMed database (inception to March 2023) was conducted using the search terms "invasive candidiasis," "candidemia," "critically ill," "azoles," "echinocandin," "antifungal agents," "rapid diagnostics," "antifungal susceptibility testing," "therapeutic drug monitoring," "antifungal dosing," "persistent candidemia," and "Candida biofilm." STUDY SELECTION/DATA EXTRACTION Clinical data were limited to those published in the English language. Ongoing trials were identified through ClinicalTrials.gov. DATA SYNTHESIS A total of 109 articles were reviewed including 25 pharmacokinetic/pharmacodynamic studies and 30 studies including patient data, 13 of which were randomized controlled clinical trials. The remaining 54 articles included fungal surveillance data, in vitro studies, review articles, and survey data. The current 2016 Infectious Diseases Society of America (IDSA) Clinical Practice Guideline for the Management of Candidiasis provides recommendations for selecting empiric and definitive antifungal therapies for candidemia, but data are limited regarding optimized dosing strategies in critically ill patients with dynamic pharmacokinetic changes or persistent candidemia complicated. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Outcomes due to candidemia remain poor despite improved diagnostic platforms, antifungal susceptibility testing, and antifungal therapy selection for candidemia in critically ill patients. Earlier detection and identification of the species causing candidemia combined with recognition of patient-specific factors leading to dosing discrepancies are crucial to improving outcomes in critically ill patients with candidemia. CONCLUSIONS Treatment of candidemia in critically ill patients must account for the incidence of non-albicans Candida species and trends in antifungal resistance as well as overcome the complex pathophysiologic changes to avoid suboptimal antifungal exposure.
Collapse
Affiliation(s)
- Daniel B Chastain
- Department of Clinical & Administrative Pharmacy, University of Georgia College of Pharmacy, Albany, GA, USA
| | - Bryan P White
- University of Oklahoma Health Medical Center, Oklahoma City, OK, USA
| | - Patrick J Tu
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Sophea Chan
- Department of Clinical & Administrative Pharmacy, University of Georgia College of Pharmacy, Albany, GA, USA
- Department of Pharmacy, Phoebe Putney Memorial Hospital, Albany, GA, USA
| | | | - Kara A Kubbs
- University of Oklahoma Health Medical Center, Oklahoma City, OK, USA
| | - Aiman Bandali
- Overlook Medical Center, Atlantic Health System, Summit, NJ, USA
| | | | - Andrés F Henao-Martínez
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David B Cluck
- Department of Pharmacy Practice, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
21
|
Eschenauer GA. Antifungal Therapies for Aspergillus spp.: Present and Future. Semin Respir Crit Care Med 2024; 45:61-68. [PMID: 38151025 DOI: 10.1055/s-0043-1776776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Currently available and recommended options for the treatment of pulmonary aspergillosis include the triazoles, echinocandins, and amphotericin B products. These therapies have significant limitations. Only the azoles are available orally, but their use is often limited by toxicities, drug-drug interactions, pharmacokinetic variability, and emerging resistance. While the echinocandins are safe agents and may have a role in combination therapy, they are unproven as monotherapy. Amphotericin B preparations are toxic and require intensive monitoring. Finally, aspergillosis continues to be a disease conferring substantial morbidity and mortality, and clinical trials have not identified a therapeutic approach clearly associated with improved outcomes. As a result, there is a great need for new options in the treatment of invasive aspergillosis. Ideally, such options would be safe, have high oral bioavailability, have favorable pharmacokinetics to sequestered sites and retain activity against azole-resistant isolates. Reassuringly, there is a robust pipeline of novel therapies in development. Rezafungin (a once-weekly dosed echinocandin) and ibrexafungerp (oral agent with same mechanism of action as echinocandins) will likely be reserved for combination therapy or refractory/intolerance scenarios with no other options. Inhaled opelconazole is an attractive option for combination therapy and prophylaxis of pulmonary aspergillosis. Development of an oral form of amphotericin B that avoids nephrotoxicity and electrolyte disturbances is an exciting development. Finally, olorofim and fosmanogepix, two agents with novel mechanisms of action and oral formulations, hold significant potential to challenge the triazole antifungals place as preferred therapies. However, many questions remain regarding these novel agents, and at the time of this writing, none of these agents have been robustly studied in Phase III studies of aspergillosis, and so their promise remains investigational.
Collapse
Affiliation(s)
- Gregory A Eschenauer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
22
|
Andreev SS, Bronin GO, Epifanova NY, Kozlova OP, Pristanskova EA, Khostelidi SN, Shadrivova OV. Benefits of early antifungal therapy in hematology patients. ONCOHEMATOLOGY 2024; 19:99-112. [DOI: 10.17650/1818-8346-2024-19-1-99-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Invasive fungal infections (IFIs) are a serious threat to patients with hematological diseases. These infections are characterized by high mortality and lead to significant financial costs for treatment. The most common pathogens of IFIs are Aspergillus spp. and Candida spp., but in recent years, cases of infections caused by rare pathogens have become more frequent. Diagnosis of IFIs and choice of treatment remain challenging due to the nonspecificity of symptoms and the diversity of clinical cases. In this regard, the problem of start time and choice of antifungal therapy remains of current interest. This review briefly describes diagnostic criteria, challenges associated with IFIs diagnosing, provides evidence for empiric and preventive strategies as two early treatment approaches, and examines the impact of therapy initiation on patient outcomes. Treatment of IFIs in hematologic patients should be individualized. At the same time, early administration of therapy with broad-spectrum drugs for febrile neutropenia and parallel diagnostic measures can improve treatment outcomes. There is a lack of current data on the benefits of specific treatment strategies, highlighting the need for further research.
Collapse
Affiliation(s)
| | - G. O. Bronin
- Morozov Children’s City Clinical Hospital of the Moscow Healthcare Department
| | - N. Yu. Epifanova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - O. P. Kozlova
- North-Western State Medical University named after I.I. Mechnikov, Ministry of Health of Russia
| | - E. A. Pristanskova
- Russian Children’s Clinical Hospital ‒ branch of the N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| | - S. N. Khostelidi
- North-Western State Medical University named after I.I. Mechnikov, Ministry of Health of Russia
| | - O. V. Shadrivova
- North-Western State Medical University named after I.I. Mechnikov, Ministry of Health of Russia
| |
Collapse
|
23
|
Chiang YH, Cheng CN, Chuang PJ, Chen YC, Chen YJ, Kuo CH, Lin SW, Chang LC. Enhancing the identification of voriconazole-associated hepatotoxicity by targeted metabolomics. Int J Antimicrob Agents 2024; 63:107028. [PMID: 37931850 DOI: 10.1016/j.ijantimicag.2023.107028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Voriconazole-associated hepatotoxicity is a common condition that generally manifests as elevated liver enzymes and can lead to drug discontinuation. Careful monitoring of voriconazole-associated hepatotoxicity is needed but there are no specific plasma biomarkers for this condition. Metabolomics has emerged as a promising technique for investigating biomarkers associated with drug-induced toxicity. The aim of this study was to use targeted metabolomics to evaluate seven endogenous metabolites as potential biomarkers of voriconazole-associated hepatotoxicity. Patients undergoing therapeutic drug monitoring of voriconazole were classified into a hepatotoxicity group (18 patients) or a control group (153 patients). Plasma samples were analysed using ultra-high-performance liquid chromatography coupled to mass spectrometry. Metabolite concentrations in the two groups were compared. Areas under the receiver operating characteristic (AUROC) curves generated from logistic regressions were used to correlate the concentrations of these seven metabolites with voriconazole trough concentrations and conventional liver biochemistry tests. Glycocholate and α-ketoglutarate levels were significantly higher in the hepatotoxicity group compared with the control group (false discovery rate-corrected P < 0.001 and P = 0.024, respectively). The metabolites glycocholate (AUROC = 0.795) and α-ketoglutarate (AUROC = 0.696) outperformed voriconazole trough concentrations (AUROC = 0.555) and approached the performance of alkaline phosphatase (AUROC = 0.876) and total bilirubin (AUROC = 0.815). A panel of glycocholate combined with voriconazole trough concentrations (AUROC = 0.827) substantially improved the performance of voriconazole trough concentrations alone in predicting hepatotoxicity. In conclusion, the panel integrating glycocholate with voriconazole trough concentrations has great potential for identifying voriconazole-associated hepatotoxicity.
Collapse
Affiliation(s)
- Yi-Hsuan Chiang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Ning Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jiun Chuang
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jing Chen
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Shu-Wen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Cancer Center, Taipei, Taiwan.
| | - Lin-Chau Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
24
|
Girton M, Tomsig J, Bazydlo L. Triazole Antifungal Quantification for Therapeutic Drug Monitoring in Serum by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS): Posaconazole, Voriconazole, Itraconazole, and Hydroxyitraconazole. Methods Mol Biol 2024; 2737:55-65. [PMID: 38036810 DOI: 10.1007/978-1-0716-3541-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Antifungal therapy with triazole drugs including posaconazole, voriconazole, itraconazole, and its active metabolite hydroxyitraconazole is routinely accompanied by therapeutic drug monitoring to ensure optimal dosing. The method presented here simultaneously quantitates these compounds in serum by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Specimen preparation includes protein precipitation with a methanol and acetonitrile mixture, centrifugation, and filtration. Analyte separation is achieved by reverse-phase chromatography using a dC18 column and a linear gradient of methanol in water. Analytes are detected by multiple reaction monitoring mass spectrometry and quantitated by comparison to a standard curve.
Collapse
Affiliation(s)
- Mark Girton
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Jose Tomsig
- Medical Laboratories, UVA Health, Charlottesville, VA, USA
| | - Lindsay Bazydlo
- Department of Pathology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
25
|
Groll AH, Körholz K, Holterhus M, Lehrnbecher T. New and emerging options for management of invasive fungal diseases in paediatric patients. Mycoses 2024; 67:e13654. [PMID: 37789721 DOI: 10.1111/myc.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 10/05/2023]
Abstract
Invasive fungal diseases (IFDs) play an important role in the supportive care of paediatric patients with acute leukaemia and those undergoing allogeneic haematopoietic cell transplantation, and they are associated with significantly decreased overall survival rates in affected individuals. Relative to adults, children and adolescents are distinct in terms of host biology, predisposing conditions, presentation and epidemiology of fungal diseases, and in the pharmacology of antifungal agents. The paediatric development of antifungal agents has moved forward in a coordinated manner, and major advances have been made regarding concepts and recommendations for the prevention and treatment of IFDs. However, antifungal therapy is increasingly complex, and a solid knowledge of the available options is needed more than ever for successful management. This narrative review provides a summary of the paediatric development of agents that have been recently approved (anidulafungin, posaconazole) or are in advanced stages of development (isavuconazole). It also reviews the emerging evidence for the efficacy of echinocandins for prophylaxis of invasive aspergillosis, presents new data on alternative dosing regimens of echinocandins and voriconazole, and provides a brief overview of new antifungal agents in clinical development that are expected to be developed for paediatric patients.
Collapse
Affiliation(s)
- Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
| | - Katharina Körholz
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
| | - Malcolm Holterhus
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
| | - Thomas Lehrnbecher
- Department of Pediatrics, Division of Hematology, Oncology and Hemostaseology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
26
|
Hanai Y, Ueda T, Hamada Y, Oda K, Takahashi Y, Nakajima K, Miyazaki Y, Kiriyama M, Uekusa S, Matsuo K, Matsumoto K, Kimura T, Takesue Y. Optimal timing for therapeutic drug monitoring of voriconazole to prevent adverse effects in Japanese patients. Mycoses 2023; 66:1035-1044. [PMID: 37584173 DOI: 10.1111/myc.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND The optimal timing for therapeutic drug monitoring (TDM) of voriconazole in Asians, who have higher rates of poor metabolisers than non-Asians, is unclear. This can cause unexpectedly high concentrations and delays in reaching steady-state levels. OBJECTIVES To determine the appropriate timing of TDM in Japanese patients receiving voriconazole. PATIENTS/METHODS Trough levels (Cmin ) were measured on days 3-5 (recommended timing, RT) and days 6-14 (delayed timing, DT) after starting voriconazole in patients receiving an appropriate dosage. Considering bioavailability, Cmin was only compared in patients receiving oral voriconazole. RESULTS A total of 289 and 186 patients were included in the safety and pharmacokinetic analyses, respectively. There was a significant difference in Cmin measured no later than and after day 5 (3.59 ± 2.12 [RT] vs. 4.77 ± 3.88 μg/mL [DT], p = .023), whereas no significant difference was observed on cutoff day 6 (3.91 ± 2.60 vs. 4.40 ± 3.94 μg/mL, p = .465), suggesting that Cmin close to the steady-state was achieved after day 5. DT causes a delay in achieving the therapeutic range. The hepatotoxicity rates were 21.5% and 36.8% in the RT and DT groups, respectively (p = .004); DT was an independent risk factor for hepatotoxicity. CONCLUSION Although steady-state concentrations may not be achieved by day 5, early dose optimisation using RT can prevent hepatotoxicity in Japanese patients. TDM should be performed on days 3-5 to ensure safety. However, subsequent TDM may be necessary due to a possible further increase in Cmin .
Collapse
Affiliation(s)
- Yuki Hanai
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Takashi Ueda
- Department of Infection Control and Prevention, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yukihiro Hamada
- Department of Pharmacy, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Kazutaka Oda
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshiko Takahashi
- Department of Pharmacy, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazuhiko Nakajima
- Department of Infection Control and Prevention, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mone Kiriyama
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Shusuke Uekusa
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Kazuhiro Matsuo
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Toshimi Kimura
- Department of Pharmacy, Juntendo University Hospital, Tokyo, Japan
| | - Yoshio Takesue
- Department of Infection Control and Prevention, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Clinical Infectious Diseases, Tokoname City Hospital, Tokoname, Japan
| |
Collapse
|
27
|
Boglione-Kerrien C, Zerrouki S, Le Bot A, Camus C, Marchand T, Bellissant E, Tron C, Verdier MC, Gangneux JP, Lemaitre F. Can we predict the influence of inflammation on voriconazole exposure? An overview. J Antimicrob Chemother 2023; 78:2630-2636. [PMID: 37796931 DOI: 10.1093/jac/dkad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Voriconazole is a triazole antifungal indicated for invasive fungal infections that exhibits a high degree of inter-individual and intra-individual pharmacokinetic variability. Voriconazole pharmacokinetics is non-linear, making dosage adjustments more difficult. Therapeutic drug monitoring is recommended by measurement of minimum plasma concentrations. Several factors are responsible for the high pharmacokinetic variability of voriconazole: age, feeding (which decreases absorption), liver function, genetic polymorphism of the CYP2C19 gene, drug interactions and inflammation. Invasive fungal infections are indeed very frequently associated with inflammation, which engenders a risk of voriconazole overexposure. Many studies have reviewed this topic in both the adult and paediatric populations, but few studies have focused on the specific point of the prediction, to evaluate the influence of inflammation on voriconazole pharmacokinetics. Predicting the impact of inflammation on voriconazole pharmacokinetics could help optimize antifungal therapy and improve patient management. This review summarizes the existing data on the influence of inflammation on voriconazole pharmacokinetics in adult populations. We also evaluate the role of C-reactive protein, the impact of inflammation on patient metabolic phenotypes, and the tools that can be used to predict the effect of inflammation on voriconazole pharmacokinetics.
Collapse
Affiliation(s)
- Christelle Boglione-Kerrien
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
| | - Selim Zerrouki
- Rennes University Hospital, Department of Biochemistry, Rennes, France
| | - Audrey Le Bot
- Rennes University Hospital, Department of Infectious Diseases, Rennes, France
| | - Christophe Camus
- Rennes University Hospital, Department of Intensive Care Medicine, Rennes, France
| | - Tony Marchand
- Rennes University Hospital, Department of Clinical Haematology, Rennes, France
| | - Eric Bellissant
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| | - Camille Tron
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| | - Marie-Clémence Verdier
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| | - Jean-Pierre Gangneux
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
- Rennes University Hospital, Department of Parasitology and Mycology, National Reference Centre for Mycoses and Antifungals (LA Asp-C) and European Excellence Centre in Medical Mycology (ECMM EC), Rennes, France
| | - Florian Lemaitre
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
28
|
Crone CG, Wulff SM, Ledergerber B, Helweg-Larsen J, Bredahl P, Arendrup MC, Perch M, Helleberg M. Invasive Aspergillosis among Lung Transplant Recipients during Time Periods with Universal and Targeted Antifungal Prophylaxis-A Nationwide Cohort Study. J Fungi (Basel) 2023; 9:1079. [PMID: 37998886 PMCID: PMC10672607 DOI: 10.3390/jof9111079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
The optimal prevention strategy for invasive aspergillosis (IA) in lung transplant recipients (LTXr) is unknown. In 2016, the Danish guidelines were changed from universal to targeted IA prophylaxis. Previously, we found higher rates of adverse events in the universal prophylaxis period. In a Danish nationwide study including LTXr, for 2010-2019, we compared IA rates in time periods with universal vs. targeted prophylaxis and during person-time with vs. person-time without antifungal prophylaxis. IA hazard rates were analyzed in multivariable Cox models with adjustment for time after LTX. Among 295 LTXr, antifungal prophylaxis was initiated in 183/193 and 6/102 during the universal and targeted period, respectively. During the universal period, 62% discontinued prophylaxis prematurely. The median time on prophylaxis was 37 days (IQR 11-84). IA was diagnosed in 27/193 (14%) vs. 15/102 (15%) LTXr in the universal vs. targeted period, with an adjusted hazard ratio (aHR) of 0.94 (95% CI 0.49-1.82). The aHR of IA during person-time with vs. person-time without antifungal prophylaxis was 0.36 (95% CI 0.12-1.02). No difference in IA was found during periods with universal vs. targeted prophylaxis. Prophylaxis was protective of IA when taken. Targeted prophylaxis may be preferred over universal due to comparable IA rates and lower rates of adverse events.
Collapse
Affiliation(s)
- Cornelia Geisler Crone
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
| | - Signe Marie Wulff
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
| | - Bruno Ledergerber
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
| | - Jannik Helweg-Larsen
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
- Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Pia Bredahl
- Department of Thoracic Anesthesia, Copenhagen University Hospital —Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark;
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark;
- Department of Clinical Microbiology, Copenhagen University Hospital —Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| | - Michael Perch
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital —Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Marie Helleberg
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
- Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| |
Collapse
|
29
|
Gastine SE, Rauwolf KK, Pieper S, Hempel G, Lehrnbecher T, Tragiannidis A, Groll AH. Voriconazole plasma concentrations and dosing in paediatric patients below 24 months of age. Mycoses 2023; 66:969-976. [PMID: 37553971 DOI: 10.1111/myc.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Voriconazole (VCZ) is an important first-line option for management of invasive fungal diseases and approved in paediatric patients ≥24 months at distinct dosing schedules that consider different developmental stages. Information on dosing and exposures in children <24 months of age is scarce. Here we report our experience in children <24 months who received VCZ due to the lack of alternative treatment options. This retrospective analysis includes 50 distinct treatment episodes in 17 immunocompromised children aged between 3 and <24 months, who received VCZ between 2004 and 2022 as prophylaxis (14 patients; 47 episodes) or as empirical treatment (3 patients; 3 episodes) by mouth (46 episodes) or intravenously (4 episodes) based on contraindications, intolerance or lack of alternative options. Trough concentrations were measured as clinically indicated, and tolerability was assessed based on hepatic function parameters and discontinuations due to adverse events (AEs). VCZ was administered for a median duration of 10 days (range: 1-138). Intravenous doses ranged from 4.9 to 7.0 mg/kg (median: 6.5) twice daily, and oral doses from 3.8 to 29 mg/kg (median: 9.5) twice daily, respectively. The median trough concentration was 0.63 mg/L (range: 0.01-16.2; 38 samples). Only 34.2% of samples were in the recommended target range of 1-6 mg/L; 57.9% had lower and 7.9% higher trough concentrations. Hepatic function parameters analysed at baseline, during treatment and at end of treatment did not show significant changes during VCZ treatment. There was no correlation between dose and exposure or hepatic function parameters. In three episodes, VCZ was discontinued due to an AE (6%; three patients). In conclusion, this retrospective analysis reveals no signal for increased toxicity in paediatric patients <24 months of age. Empirical dosing resulted in mostly subtherapeutic exposures which emphasises the need for more systematic study of the pharmacokinetics of VCZ in this age group.
Collapse
Affiliation(s)
- Silke E Gastine
- Institute of Pharmaceutical and Medical Chemistry - Department of Clinical Pharmacy, Westphalian Wilhelms University Münster, Münster, Germany
| | - Kerstin K Rauwolf
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
| | - Stephanie Pieper
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
| | - Georg Hempel
- Institute of Pharmaceutical and Medical Chemistry - Department of Clinical Pharmacy, Westphalian Wilhelms University Münster, Münster, Germany
| | - Thomas Lehrnbecher
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | - Athanasios Tragiannidis
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
- 2nd Department of Pediatrics, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
| |
Collapse
|
30
|
Munzen ME, Goncalves Garcia AD, Martinez LR. An update on the global treatment of invasive fungal infections. Future Microbiol 2023; 18:1095-1117. [PMID: 37750748 PMCID: PMC10718168 DOI: 10.2217/fmb-2022-0269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/13/2023] [Indexed: 09/27/2023] Open
Abstract
Fungal infections are a serious problem affecting many people worldwide, creating critical economic and medical consequences. Fungi are ubiquitous and can cause invasive diseases in individuals mostly living in developing countries or with weakened immune systems, and antifungal drugs currently available have important limitations in tolerability and efficacy. In an effort to counteract the high morbidity and mortality rates associated with invasive fungal infections, various approaches are being utilized to discover and develop new antifungal agents. This review discusses the challenges posed by fungal infections, outlines different methods for developing antifungal drugs and reports on the status of drugs currently in clinical trials, which offer hope for combating this serious global problem.
Collapse
Affiliation(s)
- Melissa E Munzen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | - Luis R Martinez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
31
|
O'Keeffe JC, Singh N, Slavin MA. Approach to diagnostic evaluation and prevention of invasive fungal disease in patients prior to allogeneic hematopoietic stem cell transplant. Transpl Infect Dis 2023; 25 Suppl 1:e14197. [PMID: 37988269 DOI: 10.1111/tid.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
In recent years, advancements in the treatment landscape for hematological malignancies, such as acute myeloid leukemia and acute lymphoblastic leukemia, have significantly improved disease prognosis and overall survival. However, the treatment landscape is changing and the emergence of targeted oral therapies and immune-based treatments has brought forth new challenges in evaluating and preventing invasive fungal diseases (IFDs). IFD disproportionately affects immunocompromised hosts, particularly those undergoing therapy for acute leukemia and allogeneic hematopoietic stem cell transplant. This review aims to provide a comprehensive overview of the pretransplant workup, identification, and prevention of IFD in patients with hematological malignancy. The pretransplant period offers a critical window to assess each patient's risk factors and implement appropriate prophylactic measures. Risk assessment includes evaluation of disease, host, prior treatments, and environmental factors, allowing a dynamic evaluation that considers disease progression and treatment course. Diagnostic screening, involving various biomarkers and radiological modalities, plays a crucial role in early detection of IFD. Antifungal prophylaxis choice is based on available evidence as well as individual risk assessment, potential for drug-drug interactions, toxicity, and patient adherence. Therapeutic drug monitoring ensures effective antifungal stewardship and optimal treatment. Patient education and counselling are vital in minimizing environmental exposures to fungal pathogens and promoting medication adherence. A well-structured and individualized approach, encompassing risk assessment, prophylaxis, surveillance, and patient education, is essential for effectively preventing IFD in hematological malignancies, ultimately leading to improved patient outcomes and overall survival.
Collapse
Affiliation(s)
- Jessica C O'Keeffe
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Nikhil Singh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Department of Pharmacy, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Monica A Slavin
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
McCreary EK, Davis MR, Narayanan N, Andes DR, Cattaneo D, Christian R, Lewis RE, Watt KM, Wiederhold NP, Johnson MD. Utility of triazole antifungal therapeutic drug monitoring: Insights from the Society of Infectious Diseases Pharmacists: Endorsed by the Mycoses Study Group Education and Research Consortium. Pharmacotherapy 2023; 43:1043-1050. [PMID: 37459118 DOI: 10.1002/phar.2850] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 08/15/2023]
Abstract
Triazole antifungals (i.e., fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole) are commonly used in clinical practice to prevent or treat invasive fungal infections. Most triazole antifungals require therapeutic drug monitoring (TDM) due to highly variable pharmacokinetics, known drug interactions, and established relationships between exposure and response. On behalf of the Society of Infectious Diseases Pharmacists (SIDP), this insight describes the pharmacokinetic principles and pharmacodynamic targets of commonly used triazole antifungals and provides the rationale for utility of TDM within each agent.
Collapse
Affiliation(s)
- Erin K McCreary
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Matthew R Davis
- Infectious Disease Connect, Inc., Pittsburgh, Pennsylvania, USA
| | - Navaneeth Narayanan
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - David R Andes
- Departments of Medicine and Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, Department of Laboratory Medicine, Luigi Sacco University Hospital, Milan, Italy
| | - Robbie Christian
- Department of Pharmacy, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Russell E Lewis
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Kevin M Watt
- Division of Pediatric Clinical Pharmacology and Division of Critical Care, University of Utah, Salt Lake City, Utah, USA
| | - Nathan P Wiederhold
- Department of Pathology and Laboratory Medicine, Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Melissa D Johnson
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
33
|
Li G, Li Q, Zhang C, Yu Q, Li Q, Zhou X, Yang R, Yang X, Liu H, Yang Y. The impact of gene polymorphism and hepatic insufficiency on voriconazole dose adjustment in invasive fungal infection individuals. Front Genet 2023; 14:1242711. [PMID: 37693307 PMCID: PMC10484623 DOI: 10.3389/fgene.2023.1242711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Voriconazole (VRZ) is a broad-spectrum antifungal medication widely used to treat invasive fungal infections (IFI). The administration dosage and blood concentration of VRZ are influenced by various factors, posing challenges for standardization and individualization of dose adjustments. On the one hand, VRZ is primarily metabolized by the liver, predominantly mediated by the cytochrome P450 (CYP) 2C19 enzyme. The genetic polymorphism of CYP2C19 significantly impacts the blood concentration of VRZ, particularly the trough concentration (Ctrough), thereby influencing the drug's efficacy and potentially causing adverse drug reactions (ADRs). Recent research has demonstrated that pharmacogenomics-based VRZ dose adjustments offer more accurate and individualized treatment strategies for individuals with hepatic insufficiency, with the possibility to enhance therapeutic outcomes and reduce ADRs. On the other hand, the security, pharmacokinetics, and dosing of VRZ in individuals with hepatic insufficiency remain unclear, making it challenging to attain optimal Ctrough in individuals with both hepatic insufficiency and IFI, resulting in suboptimal drug efficacy and severe ADRs. Therefore, when using VRZ to treat IFI, drug dosage adjustment based on individuals' genotypes and hepatic function is necessary. This review summarizes the research progress on the impact of genetic polymorphisms and hepatic insufficiency on VRZ dosage in IFI individuals, compares current international guidelines, elucidates the current application status of VRZ in individuals with hepatic insufficiency, and discusses the influence of CYP2C19, CYP3A4, CYP2C9, and ABCB1 genetic polymorphisms on VRZ dose adjustments and Ctrough at the pharmacogenomic level. Additionally, a comprehensive summary and analysis of existing studies' recommendations on VRZ dose adjustments based on CYP2C19 genetic polymorphisms and hepatic insufficiency are provided, offering a more comprehensive reference for dose selection and adjustments of VRZ in this patient population.
Collapse
Affiliation(s)
- Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinhui Li
- Department of Medical, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qin Yu
- College of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rou Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuerong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailin Liu
- Department of Pharmacy, The People’s Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
34
|
Sprute R, Nacov JA, Neofytos D, Oliverio M, Prattes J, Reinhold I, Cornely OA, Stemler J. Antifungal prophylaxis and pre-emptive therapy: When and how? Mol Aspects Med 2023; 92:101190. [PMID: 37207579 DOI: 10.1016/j.mam.2023.101190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
The growing pool of critically ill or immunocompromised patients leads to a constant increase of life-threatening invasive infections by fungi such as Aspergillus spp., Candida spp. and Pneumocystis jirovecii. In response to this, prophylactic and pre-emptive antifungal treatment strategies have been developed and implemented for high-risk patient populations. The benefit by risk reduction needs to be carefully weighed against potential harm caused by prolonged exposure against antifungal agents. This includes adverse effects and development of resistance as well as costs for the healthcare system. In this review, we summarise evidence and discuss advantages and downsides of antifungal prophylaxis and pre-emptive treatment in the setting of malignancies such as acute leukaemia, haematopoietic stem cell transplantation, CAR-T cell therapy, and solid organ transplant. We also address preventive strategies in patients after abdominal surgery and with viral pneumonia as well as individuals with inherited immunodeficiencies. Notable progress has been made in haematology research, where strong recommendations regarding antifungal prophylaxis and pre-emptive treatment are backed by data from randomized controlled trials, whereas other critical areas still lack high-quality evidence. In these areas, paucity of definitive data translates into centre-specific strategies that are based on interpretation of available data, local expertise, and epidemiology. The development of novel immunomodulating anticancer drugs, high-end intensive care treatment and the development of new antifungals with new modes of action, adverse effects and routes of administration will have implications on future prophylactic and pre-emptive approaches.
Collapse
Affiliation(s)
- Rosanne Sprute
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Julia A Nacov
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Dionysios Neofytos
- Division of Infectious Diseases, Transplant Infectious Disease Service, University Hospital of Geneva, Geneva, Switzerland
| | - Matteo Oliverio
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Juergen Prattes
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Medical University of Graz, Department of Internal Medicine, Division of Infectious Disease, Excellence Center for Medical Mycology (ECMM), Graz, Austria
| | - Ilana Reinhold
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Zurich, Switzerland
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Jannik Stemler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
35
|
Gautier-Veyret E, Thiebaut-Bertrand A, Stanke-Labesque F. Comment on 'Therapeutic drug monitoring-guided treatment versus standard dosing of voriconazole for invasive aspergillosis in haematological patients: A multicentre, prospective, cluster randomised, crossover clinical trial'. Int J Antimicrob Agents 2023; 62:106853. [PMID: 37209956 DOI: 10.1016/j.ijantimicag.2023.106853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Affiliation(s)
| | - Anne Thiebaut-Bertrand
- Univ. Grenoble Alpes, Département d'Hématologie Clinique, CHU Grenoble Alpes, 38000 Grenoble, France
| | | |
Collapse
|
36
|
Veringa A, Brüggemann RJ, Alffenaar JWC. In reply to comment on 'Therapeutic drug monitoring-guided treatment versus standard dosing of voriconazole for invasive aspergillosis in haematological patients: a multicenter, prospective, cluster randomised, crossover clinical trial'. Int J Antimicrob Agents 2023; 62:106854. [PMID: 37209957 DOI: 10.1016/j.ijantimicag.2023.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Affiliation(s)
- Anette Veringa
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Department of Clinical Pharmacy, OLVG, Oosterpark 9, 1091 AC, Amsterdam, the Netherlands.
| | - Roger J Brüggemann
- Department of Pharmacy, Centre of Expertise in Mycology Radboudumc/CWZ and Radboud Institute of Health Science, University of Nijmegen, Radboudumc Nijmegen, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Faculty of Medicine and Health, Sydney Pharmacy School, University of Sydney, Camperdown NSW 2006, Sydney, Australia; Westmead Hospital, Westmead, NSW, 2145, Sydney, Australia
| |
Collapse
|
37
|
Ma J, Wang Y, Ma S, Li J. The Investigation and Prediction of Voriconazole-Associated Hepatotoxicity under Therapeutic Drug Monitoring . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082975 DOI: 10.1109/embc40787.2023.10340343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Voriconazole is commonly used as the first-line agent to treat invasive fungal infections (IFIs), but the induction of hepatotoxicity limits its use. To improve the treatment outcomes and minimize toxicity, doctors often administer Therapeutic Drug Monitoring (TDM) to patients receiving voriconazole treatment. Here, we conducted a real-world clinical investigation of voriconazole-treated patients and found significant differences between the TDM (n=318) and non-TDM cohort (n=6,379), and such incidence of hepatotoxicity showed 10.6% in the non-TDM cohort, compared with 21.5% in the TDM cohort. Based on our previous investigation, we presented and compared several machine learning models (including AdaBoost, decision tree, GBDT, logistic regression, neural networks, and random forest) for the early warning of voriconazole-associated hepatoxicity. Through the five-fold cross validation, the logistic model outperformed other models with a mean AUC of 0.7933±0.0934. Our findings offer important insights into the safe and effective application of voriconazole.
Collapse
|
38
|
Ronda M, Llop-Talaveron JM, Fuset M, Leiva E, Shaw E, Gumucio-Sanguino VD, Diez Y, Colom H, Rigo-Bonnin R, Puig-Asensio M, Carratalà J, Padullés A. Voriconazole Pharmacokinetics in Critically Ill Patients and Extracorporeal Membrane Oxygenation Support: A Retrospective Comparative Case-Control Study. Antibiotics (Basel) 2023; 12:1100. [PMID: 37508196 PMCID: PMC10376825 DOI: 10.3390/antibiotics12071100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Voriconazole, an antifungal agent, displays high intra- and inter-individual variability. The predictive pharmacokinetic (PK) index requires a minimum plasma concentration (Cmin) in patient serum of between 1-5.5 mg/L. It is common to encounter fungal infections in patients undergoing extracorporeal membrane oxygenation (ECMO) support, and data regarding voriconazole PK changes during ECMO are scarce. Our study compared voriconazole PKs in patients with and without ECMO support in a retrospective cohort of critically-ill patients. Fifteen patients with 26 voriconazole Cmin determinations in the non-ECMO group and nine patients with 27 voriconazole Cmin determinations in the ECMO group were recruited. The ECMO group had lower Cmin (0.38 ± 2.98 vs. 3.62 ± 3.88, p < 0.001) and higher infratherapeutic Cmin values (16 vs. 1, p < 0.001) than the non-ECMO group. Multivariate analysis identified ECMO support (-0.668, CI95 -0.978--0.358) and plasma albumin levels (-0.023, CI95 -0.046--0.001) as risk factors for low Cmin values. When comparing pre- and post-therapeutic drug optimisation samples from the ECMO group, the dose required to achieve therapeutic Cmin was 6.44 mg/kg twice a day. Therapeutic drug optimisation is essential to improve target attainment.
Collapse
Affiliation(s)
- Mar Ronda
- Infectious Disease Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josep Manuel Llop-Talaveron
- Pharmacy Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - MariPaz Fuset
- Critical Care Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Elisabet Leiva
- Pharmacy Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Evelyn Shaw
- Infectious Disease Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28019 Madrid, Spain
- Epidemiologia de les Infeccions Bacterianes, Patologia Infecciosa i Transplantament, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | | | - Yolanda Diez
- Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Raul Rigo-Bonnin
- Clinical Laboratory, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Mireia Puig-Asensio
- Infectious Disease Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Epidemiologia de les Infeccions Bacterianes, Patologia Infecciosa i Transplantament, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Jordi Carratalà
- Infectious Disease Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28019 Madrid, Spain
- Epidemiologia de les Infeccions Bacterianes, Patologia Infecciosa i Transplantament, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Ariadna Padullés
- Pharmacy Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28019 Madrid, Spain
| |
Collapse
|
39
|
Carmo A, Rocha M, Pereirinha P, Tomé R, Costa E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics (Basel) 2023; 12:884. [PMID: 37237787 PMCID: PMC10215229 DOI: 10.3390/antibiotics12050884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The use of antifungal drugs started in the 1950s with polyenes nystatin, natamycin and amphotericin B-deoxycholate (AmB). Until the present day, AmB has been considered to be a hallmark in the treatment of invasive systemic fungal infections. Nevertheless, the success and the use of AmB were associated with severe adverse effects which stimulated the development of new antifungal drugs such as azoles, pyrimidine antimetabolite, mitotic inhibitors, allylamines and echinochandins. However, all of these drugs presented one or more limitations associated with adverse reactions, administration route and more recently the development of resistance. To worsen this scenario, there has been an increase in fungal infections, especially in invasive systemic fungal infections that are particularly difficult to diagnose and treat. In 2022, the World Health Organization (WHO) published the first fungal priority pathogens list, alerting people to the increased incidence of invasive systemic fungal infections and to the associated risk of mortality/morbidity. The report also emphasized the need to rationally use existing drugs and develop new drugs. In this review, we performed an overview of the history of antifungals and their classification, mechanism of action, pharmacokinetic/pharmacodynamic (PK/PD) characteristics and clinical applications. In parallel, we also addressed the contribution of fungi biology and genetics to the development of resistance to antifungal drugs. Considering that drug effectiveness also depends on the mammalian host, we provide an overview on the roles of therapeutic drug monitoring and pharmacogenomics as means to improve the outcome, prevent/reduce antifungal toxicity and prevent the emergence of antifungal resistance. Finally, we present the new antifungals and their main characteristics.
Collapse
Affiliation(s)
- Anália Carmo
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Marilia Rocha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Patricia Pereirinha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Rui Tomé
- Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal;
| | - Eulália Costa
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| |
Collapse
|
40
|
Weiss ZF, Little J, Hammond S. Evolution of antifungals for invasive mold infections in immunocompromised hosts, then and now. Expert Rev Anti Infect Ther 2023; 21:535-549. [PMID: 37104686 DOI: 10.1080/14787210.2023.2207821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
INTRODUCTION The current armamentarium of antifungal agents for invasive mold infections (IMI) has dramatically improved over the last 50 years. Existing therapies are, however, associated with toxicities, drug interactions, and in some cases, therapeutic failures. Novel antifungals are needed to address the increasing prevalence of IMI and the growing threat of antifungal resistance. AREAS COVERED We review the history and development of the most commonly used antifungals. We discuss the current consensus guidelines and supporting data for treatment of invasive mold infection (IMI), the role of susceptibility testing, and the niche that novel antifungals could fill. We review the current data for aspergillosis, mucormycosis, and hyalohyphomycosis. EXPERT OPINION Robust clinical trial data demonstrating the relative effectiveness of our current antifungal agents for treating IMI outside of A. fumigatus remains limited. Clinical trials are urgently needed to delineate the relationship between MICs and clinical outcomes for existing agents and to better evaluate the invitro and in-vivo aspects of antifungal synergy. Continued international multicenter collaboration and standardized clinical endpoints for trials evaluating both existing and new agents is necessary to advance the field.
Collapse
Affiliation(s)
- Zoe Freeman Weiss
- Tufts Medical Center, Division of Infectious Diseases and Geographic Medicine, Boston MA, USA
- Tufts Medical Center, Division of Pathology, Boston MA, USA
| | - Jessica Little
- Brigham and Women's Hospital, Division of Infectious Diseases, Boston MA, USA
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
| | - Sarah Hammond
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
- Massachusetts General Hospital, Divisions of Infectious Diseases and Hematology Oncology, Boston MA, USA
| |
Collapse
|
41
|
Gatti M, Fornaro G, Pasquini Z, Zanoni A, Bartoletti M, Viale P, Pea F. Impact of Inflammation on Voriconazole Exposure in Critically ill Patients Affected by Probable COVID-19-Associated Pulmonary Aspergillosis. Antibiotics (Basel) 2023; 12:antibiotics12040764. [PMID: 37107125 PMCID: PMC10134964 DOI: 10.3390/antibiotics12040764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: To explore the impact of the degree of inflammation on voriconazole exposure in critically ill patients affected by COVID-associated pulmonary aspergillosis (CAPA); (2) Methods: Critically ill patients receiving TDM-guided voriconazole for the management of proven or probable CAPA between January 2021 and December 2022 were included. The concentration/dose ratio (C/D) was used as a surrogate marker of voriconazole total clearance. A receiving operating characteristic (ROC) curve analysis was performed by using C-reactive protein (CRP) or procalcitonin (PCT) values as the test variable and voriconazole C/D ratio > 0.375 (equivalent to a trough concentration [Cmin] value of 3 mg/L normalized to the maintenance dose of 8 mg/kg/day) as the state variable. Area under the curve (AUC) and 95% confidence interval (CI) were calculated; (3) Results: Overall, 50 patients were included. The median average voriconazole Cmin was 2.47 (1.75-3.33) mg/L. The median (IQR) voriconazole concentration/dose ratio (C/D) was 0.29 (0.14-0.46). A CRP value > 11.46 mg/dL was associated with the achievement of voriconazole Cmin > 3 mg/L, with an AUC of 0.667 (95% CI 0.593-0.735; p < 0.001). A PCT value > 0.3 ng/mL was associated with the attainment of voriconazole Cmin > 3 mg/L (AUC 0.651; 95% CI 0.572-0.725; p = 0.0015). (4) Conclusions: Our findings suggest that in critically ill patients with CAPA, CRP and PCT values above the identified thresholds may cause the downregulation of voriconazole metabolism and favor voriconazole overexposure, leading to potentially toxic concentrations.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giacomo Fornaro
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Zeno Pasquini
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Andrea Zanoni
- Division of Anesthesiology, Department of Anesthesia and Intensive Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Michele Bartoletti
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
42
|
Neofytos D, Steinbach WJ, Hanson K, Carpenter PA, Papanicolaou GA, Slavin MA. American Society for Transplantation and Cellular Therapy Series, #6: Management of Invasive Candidiasis in Hematopoietic Cell Transplantation Recipients. Transplant Cell Ther 2023; 29:222-227. [PMID: 36649748 DOI: 10.1016/j.jtct.2023.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The Practice Guidelines Committee of the American Society of Transplantation and Cellular Therapy (ASTCT) partnered with its Transplant Infectious Disease Special Interest Group (TID-SIG) to update its 2009 compendium-style infectious disease guidelines for hematopoietic cell transplantation (HCT). A completely new approach was taken with the goal of better serving clinical providers by publishing each standalone topic in the infectious disease series as a concise format of frequently asked questions (FAQ), tables, and figures. Adult and pediatric infectious disease and HCT content experts developed and then answered FAQs and finalized topics with harmonized recommendations made by assigning an A through E strength of recommendation paired with a level of supporting evidence graded I through III. This sixth guideline in the series focuses on invasive candidiasis (IC) with FAQs to address epidemiology, clinical diagnosis, prophylaxis, and treatment of IC, plus special considerations for pediatric, cord blood, haploidentical, and T cell-depleted HCT recipients and chimeric antigen receptor T cell recipients, as well as future research directions.
Collapse
Affiliation(s)
- Dionysios Neofytos
- Division of Infectious Diseases, Transplant Infectious Disease Service, University Hospital of Geneva, Geneva, Switzerland.
| | - William J Steinbach
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kimberly Hanson
- Transplant Infectious Diseases and Immunocompromised Host Service, Clinical Microbiology, University of Utah, Salt Lake City, Utah
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Genovefa A Papanicolaou
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Monica A Slavin
- Department of Infectious Disease Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
43
|
Telles JP, Morales R, Yamada CH, Marins TA, D'Amaro Juodinis V, Sztajnbok J, Silva M, Bassetti BR, Albiero J, Tuon FF. Optimization of Antimicrobial Stewardship Programs Using Therapeutic Drug Monitoring and Pharmacokinetics-Pharmacodynamics Protocols: A Cost-Benefit Review. Ther Drug Monit 2023; 45:200-208. [PMID: 36622029 DOI: 10.1097/ftd.0000000000001067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/08/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE Antimicrobial stewardship programs are important for reducing antimicrobial resistance because they can readjust antibiotic prescriptions to local guidelines, switch intravenous to oral administration, and reduce hospitalization times. Pharmacokinetics-pharmacodynamics (PK-PD) empirically based prescriptions and therapeutic drug monitoring (TDM) programs are essential for antimicrobial stewardship, but there is a need to fit protocols according to cost benefits. The cost benefits can be demonstrated by reducing toxicity and hospital stay, decreasing the amount of drug used per day, and preventing relapses in infection. Our aim was to review the data available on whether PK-PD empirically based prescriptions and TDM could improve the cost benefits of an antimicrobial stewardship program to decrease global hospital expenditures. METHODS A narrative review based on PubMed search with the relevant studies of vancomycin, aminoglycosides, beta-lactams, and voriconazole. RESULTS TDM protocols demonstrated important cost benefit for patients treated with vancomycin, aminoglycosides, and voriconazole mainly due to reduce toxicities and decreasing the hospital length of stay. In addition, PK-PD strategies that used infusion modifications to meropenem, piperacillin-tazobactam, ceftazidime, and cefepime, such as extended or continuous infusion, demonstrated important cost benefits, mainly due to reducing daily drug needs and lengths of hospital stays. CONCLUSIONS TDM protocols and PK-PD empirically based prescriptions improve the cost-benefits and decrease the global hospital expenditures.
Collapse
Affiliation(s)
- João Paulo Telles
- - AC Camargo Cancer Center, Infectious Diseases Department, São Paulo
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
| | - Ronaldo Morales
- - Clinical Pharmacokinetics Center, School of Pharmaceutical Sciences, University of São Paulo
- - Pediatric Intensive Care Unit, Department of Pediatrics, Hospital Sírio-Libanês. São Paulo
| | - Carolina Hikari Yamada
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
- - Hospital Universitário Evangélico Mackenzie, Department of Infectious Diseases, Curitiba
| | - Tatiana A Marins
- - Hospital Israelita Albert Einstein, Department of Clinical Pharmacy, São Paulo
| | | | - Jaques Sztajnbok
- - Instituto de Infectologia Emílio Ribas, São Paulo
- - Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (ICr/HC-FMUSP)
| | - Moacyr Silva
- - Hospital Israelita Albert Einstein, Department of Infection Prevention and Control, São Paulo
| | - Bil Randerson Bassetti
- - Hospital Santa Rita de Cássia, Department of Infectious Disease and Infection Control, Vitória ; and
| | - James Albiero
- - Universidade Estadual de Maringá, Pharmacy Department, Programa de Pós-Graduação em Assistência Farmacêutica, Maringá, Brazil
| | - Felipe Francisco Tuon
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
| |
Collapse
|
44
|
Codina MS, Bozkir HÖ, Jorda A, Zeitlinger M. Individualised antimicrobial dose optimisation: a systematic review and meta-analysis of randomised controlled trials. Clin Microbiol Infect 2023:S1198-743X(23)00134-9. [PMID: 36965694 DOI: 10.1016/j.cmi.2023.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Therapeutic drug management (TDM) and model-informed precision dosing (MIPD) allow dose individualisation to increase drug effectivity and reduce toxicity. OBJECTIVES Evaluate the available evidence on the clinical efficacy of individualised antimicrobial dosing optimisation. METHODS Data sources: Pubmed, Embase, Web of Science, and Cochrane Library databases from database inception to the 11th of November 2022. STUDY ELIGIBILITY CRITERIA Published peer-reviewed Randomised Controlled Trials (RCTs). PARTICIPANTS Human subjects aged ≥18 years receiving an antibiotic or antifungal drug. INTERVENTIONS Patients receiving individualised antimicrobial dose adjustment. Assessment of risk of bias: Cochrane risk-of-bias tool for randomised trials (RoB2). Methods of data synthesis: Primary outcome was the risk of mortality. Secondary outcomes included target attainment, treatment failure, clinical and microbiological cure, length of stay, treatment duration and adverse events. Effect sizes were pooled using a random-effects model. Statistical heterogeneity was assessed by inconsistency testing (I2). RESULTS Ten RCTs were included in the meta-analysis (1,241 participants; n= 624 in the TDM group, n = 617 in the control group). Individualised antimicrobial dose optimisation was associated with a numerical decrease in mortality (RR = 0.86; 95% CI 0.71-1.05), without reaching statistical significance. Moreover, it was associated with significantly higher target attainment rates (RR = 1.41; 95% CI, 1.13-1.76) and a significant decrease in treatment failure (RR = 0.70; 95% CI, 0.54-0.92). Individualised antimicrobial dose optimisation was also associated with improvement, but not significant in clinical cure (RR = 1.33; 95% CI, 0.94-1.33) and microbiological outcome (RR = 1.25; CI, 1.00-1.57), as well as with a significant decrease in the risk of nephrotoxicity (RR = 0.55; 95% CI, 0.31-0.97). CONCLUSIONS This meta-analysis demonstrates that target attainment, treatment failure, and nephrotoxicity were significantly improved in patients who underwent individualised antimicrobial dose optimisation. However, it did not show a significant decrease in mortality, clinical cure or microbiological outcome.
Collapse
Affiliation(s)
- Maria Sanz Codina
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Haktan Övul Bozkir
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Anselm Jorda
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
45
|
Pulmonary Histoplasmosis: A Clinical Update. J Fungi (Basel) 2023; 9:jof9020236. [PMID: 36836350 PMCID: PMC9964986 DOI: 10.3390/jof9020236] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Histoplasma capsulatum, the etiological agent for histoplasmosis, is a dimorphic fungus that grows as a mold in the environment and as a yeast in human tissues. The areas of highest endemicity lie within the Mississippi and Ohio River Valleys of North America and parts of Central and South America. The most common clinical presentations include pulmonary histoplasmosis, which can resemble community-acquired pneumonia, tuberculosis, sarcoidosis, or malignancy; however, certain patients can develop mediastinal involvement or progression to disseminated disease. Understanding the epidemiology, pathology, clinical presentation, and diagnostic testing performance is pivotal for a successful diagnosis. While most immunocompetent patients with mild acute or subacute pulmonary histoplasmosis should receive therapy, all immunocompromised patients and those with chronic pulmonary disease or progressive disseminated disease should also receive therapy. Liposomal amphotericin B is the agent of choice for severe or disseminated disease, and itraconazole is recommended in milder cases or as "step-down" therapy after initial improvement with amphotericin B. In this review, we discuss the current epidemiology, pathology, diagnosis, clinical presentations, and management of pulmonary histoplasmosis.
Collapse
|
46
|
Veringa A, Brüggemann RJ, Span LFR, Biemond BJ, de Boer MGJ, van den Heuvel ER, Klein SK, Kraemer D, Minnema MC, Prakken NHJ, Rijnders BJA, Swen JJ, Verweij PE, Wondergem MJ, Ypma PF, Blijlevens N, Kosterink JGW, van der Werf TS, Alffenaar JWC. Therapeutic drug monitoring-guided treatment versus standard dosing of voriconazole for invasive aspergillosis in haematological patients: a multicentre, prospective, cluster randomised, crossover clinical trial. Int J Antimicrob Agents 2023; 61:106711. [PMID: 36642232 DOI: 10.1016/j.ijantimicag.2023.106711] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/27/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Voriconazole therapeutic drug monitoring (TDM) is recommended based on retrospective data and limited prospective studies. This study aimed to investigate whether TDM-guided voriconazole treatment is superior to standard treatment for invasive aspergillosis. METHODS A multicentre (n = 10), prospective, cluster randomised, crossover clinical trial was performed in haematological patients aged ≥18 years treated with voriconazole. All patients received standard voriconazole dose at the start of treatment. Blood/serum/plasma was periodically collected after treatment initiation of voriconazole and repeated during treatment in both groups. The TDM group had measured voriconazole concentrations reported back, with dose adjustments made as appropriate, while the non-TDM group had voriconazole concentrations measured only after study completion. The composite primary endpoint included response to treatment and voriconazole treatment discontinuation due to an adverse drug reaction related to voriconazole within 28 days after treatment initiation. RESULTS In total, 189 patients were enrolled in the study. For the composite primary endpoint, 74 patients were included in the non-TDM group and 68 patients in the TDM group. Here, no significant difference was found between both groups (P = 0.678). However, more trough concentrations were found within the generally accepted range of 1-6 mg/L for the TDM group (74.0%) compared with the non-TDM group (64.0%) (P < 0.001). CONCLUSIONS In this trial, TDM-guided dosing of voriconazole did not show improved treatment outcome compared with standard dosing. We believe that these findings should open up the discussion for an approach to voriconazole TDM that includes drug exposure, pathogen susceptibility and host defence. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov registration no. NCT00893555.
Collapse
Affiliation(s)
- Anette Veringa
- Department of Clinical Pharmacy, OLVG, Amsterdam, the Netherlands; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - Roger J Brüggemann
- Department of Pharmacy, Centre of Expertise in Mycology Radboudumc/CWZ and Radboud Institute of Health Science, University of Nijmegen, Radboudumc Nijmegen, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Lambert F R Span
- Department of Haematology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Bart J Biemond
- Department of Haematology, Amsterdam University Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Mark G J de Boer
- Department of Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Edwin R van den Heuvel
- Department of Mathematics and Computer Science, Eindhoven University of Technology, 5612 AZ, Eindhoven, the Netherlands
| | - Saskia K Klein
- Department of Haematology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Department of Haematology, Meander Medical Centre Amersfoort, Maatweg 3, 3813 TZ, Amersfoort, the Netherlands
| | - Doris Kraemer
- Department of Oncology and Haematology, Oldenburg Clinic, Rahel-Straus-Straße 10, 26133, Oldenburg, Germany
| | - Monique C Minnema
- Department of Haematology, University Medical Centre Utrecht, University Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherland
| | - Niek H J Prakken
- Department of Radiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine and Infectious Diseases, Erasmus University Medical Centre, Doctor Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboudumc Nijmegen, the Netherlands; Centre of Expertise in Mycology Radboudumc/CWZ, Radboud University, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Mariëlle J Wondergem
- Department of Haematology, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Paula F Ypma
- Department of Haematology, Haga Hospital, Els Borst-Eilersplein 275, 2545 AA, The Hague, the Netherlands
| | - Nicole Blijlevens
- Department of Haematology, Radboudumc Nijmegen, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands; Radboud Institute of Health Sciences, Geert Grooteplein Zuid 21, 6525 EZ, Nijmegen, the Netherlands
| | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Groningen Research Institute of Pharmacy, Pharmacotherapy, Epidemiology & Economics, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Tjip S van der Werf
- Department of Internal Medicine and Department of Pulmonary Diseases and Tuberculosis Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Faculty of Medicine and Health, Sydney Pharmacy School, University of Sydney, Camperdown NSW 2006, Sydney, Australia; Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| |
Collapse
|
47
|
Boglione-Kerrien C, Morcet J, Scailteux LM, Bénézit F, Camus C, Mear JB, Gangneux JP, Bellissant E, Tron C, Verdier MC, Lemaitre F. Contribution of voriconazole N-oxide plasma concentration measurements to voriconazole therapeutic drug monitoring in patients with invasive fungal infection. Mycoses 2023; 66:396-404. [PMID: 36698317 DOI: 10.1111/myc.13570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Voriconazole (VRC), a widely used triazole antifungal, exhibits significant inter- and intra-individual pharmacokinetic variability. The main metabolite voriconazole N-oxide (NOX) can provide information on the patient's drug metabolism capacity. OBJECTIVES Our objectives were to implement routine measurement of NOX concentrations and to describe the metabolic ratio (MR), and the contribution of the MR to VRC therapeutic drug monitoring (TDM) by proposing a suggested dosage-adjustment algorithm. PATIENTS AND METHODS Sixty-one patients treated with VRC were prospectively included in the study, and VRC and NOX levels were assayed by LC-MS/MS. A mixed logistic model on repeated measures was implemented to analyse risk factors for the patient's concentration to be outside the therapeutic range. RESULTS Based on 225 measurements, the median and interquartile range were 2.4 μg/ml (1.2; 4.2), 2.1 μg/ml (1.5; 3.0) and 1.0 (0.6; 1.9) for VRC, NOX and the MR, respectively. VRC Cmin <2 μg/ml were associated with a higher MR during the previous visit. MR values >1.15 and <0.48 were determined to be the best predictors for having a VRC Cmin lower than 2 μg/ml and above 5.5 μg/ml, respectively, at the next visit. CONCLUSIONS Measurement of NOX resulted useful for TDM of patients treated with VRC. The MR using NOX informed interpretation and clinical decision-making and is very interesting for complex patients. VRC phenotyping based on the MR is now performed routinely in our institution. A dosing algorithm has been suggested from these results.
Collapse
Affiliation(s)
| | - Jeff Morcet
- Inserm, CIC-P 1414 Clinical Investigation Centre, Rennes, France
| | - Lucie-Marie Scailteux
- Department of Clinical Pharmacology, Rennes University Hospital, Pharmacovigilance, Pharmacoepidemiology and Drug Information Centre, Rennes, France
| | - François Bénézit
- Department of Infectious Diseases, Rennes University Hospital, Rennes, France
| | - Christophe Camus
- Department of Intensive Care Medicine, Rennes University Hospital, Rennes, France
| | - Jean-Baptiste Mear
- Department of Clinical Haematology, Rennes University Hospital, Rennes, France
| | - Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Eric Bellissant
- Department of Biological Pharmacology, CHU Rennes, Rennes, France.,Inserm, CIC-P 1414 Clinical Investigation Centre, Rennes, France
| | - Camille Tron
- Department of Biological Pharmacology, CHU Rennes, Rennes, France.,Inserm, CIC-P 1414 Clinical Investigation Centre, Rennes, France
| | - Marie-Clémence Verdier
- Department of Biological Pharmacology, CHU Rennes, Rennes, France.,Inserm, CIC-P 1414 Clinical Investigation Centre, Rennes, France
| | - Florian Lemaitre
- Department of Biological Pharmacology, CHU Rennes, Rennes, France.,Inserm, CIC-P 1414 Clinical Investigation Centre, Rennes, France
| |
Collapse
|
48
|
Systemic Antifungal Therapy for Invasive Pulmonary Infections. J Fungi (Basel) 2023; 9:jof9020144. [PMID: 36836260 PMCID: PMC9966409 DOI: 10.3390/jof9020144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Antifungal therapy for pulmonary fungal diseases is in a state of flux. Amphotericin B, the time-honored standard of care for many years, has been replaced by agents demonstrating superior efficacy and safety, including extended-spectrum triazoles and liposomal amphotericin B. Voriconazole, which became the treatment of choice for most pulmonary mold diseases, has been compared with posaconazole and itraconazole, both of which have shown clinical efficacy similar to that of voriconazole, with fewer adverse events. With the worldwide expansion of azole-resistant Aspergillus fumigatus and infections with intrinsically resistant non-Aspergillus molds, the need for newer antifungals with novel mechanisms of action becomes ever more pressing.
Collapse
|
49
|
A survey to describe common practices on antifungal monitoring among Spanish clinicians. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2023; 41:18-23. [PMID: 36621244 DOI: 10.1016/j.eimce.2021.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/22/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION We developed a survey to obtain information on the monitoring practices of major systemic antifungals for treatment and prevention of serious fungal infection. METHODS The survey included questions relating to methodology and practice and was distributed among 137 colleagues of the Study Group of Medical Mycology (GEMICOMED) from July to December 2019. RESULTS Monitoring was routinely carried out by most respondents, mainly for voriconazole, and was more likely used to determine the efficacy of the dose administered and less for minimizing drug toxicity. Most responders did not follow the strategies of voriconazole dosage based on CYP2C19 genotyping. Monitoring of posaconazole, itraconazole, or other azole metabolites was not carried out or scarcely demanded. Most responders rarely used flucytosine in their clinical practice nor did they monitor it. According to the answers given by some responders, monitoring isavuconazole, amphotericin B, caspofungin and fluconazole exposure would be also interesting in daily clinical practice in selected patient populations. CONCLUSIONS The survey reveals common practices and attitudes towards antifungal monitoring, sometimes not performed as per best recommendations, offering an opportunity for education and research. Appropriate use of therapeutic drug monitoring may be an objective of antifungal stewardship programmes.
Collapse
|
50
|
Sharad N, Singh G, Xess I, Agarwal R, Seth T, Reeta KH, Kothari S. Therapeutic Drug Monitoring of Voriconazole in Children with Hematologic Malignancy and Invasive Fungal Infections: An RCT from a Tertiary Care Centre in India. Cardiovasc Hematol Disord Drug Targets 2023; 23:285-292. [PMID: 38192215 DOI: 10.2174/011871529x245299231102055046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Voriconazole is a triazole anti-fungal with non-linear kinetics and a narrow therapeutic range. The objective of our study was to monitor the voriconazole serum levels in children with hematological malignancy and clinically suspected invasive fungal infections. METHODS The study was a prospective, randomized controlled trial conducted from June 2016 to December 2017. All children who had haematologic malignancies with clinically suspected invasive fungal infections and received voriconazole as the only anti-fungal were included in the study. The children were randomly allotted into two groups; one was the group that underwent TDM, and the other, TDM, was not done. Bioassay was the method employed for TDM. The trough levels were evaluated on a sample obtained on the fifth day of starting the drug. The institute's ethics committee approved the study. RESULT A total of 30 children were included in the study: 15 in the TDM group and 15 in the non-TDM group. The most common underlying malignancy was AML. Neutropenia due to chemotherapy sessions was these patients' most common risk factor. A favorable outcome was seen in 13/15 (86.7%) in the TDM group and 11/15 in the non-TDM group (73.3%). CONCLUSION Only five out of 15 (33.3%) children had voriconazole serum levels within the therapeutic range. Alterations in dose had to be done in the remaining to achieve the recommended serum levels. Thus, we recommend TDM for all children of hematologic malignancy receiving voriconazole for better management. Our findings also revealed that children with AML had lower than recommended levels of voriconazole on TDM evaluation, whereas those with ALL had normal to elevated levels of voriconazole.
Collapse
Affiliation(s)
- Neha Sharad
- Department of Microbiology, AIIMS, New Delhi, India
| | | | | | | | - Tulika Seth
- Department of Haematology, AIIMS, New Delhi, India
| | - K H Reeta
- Department of Pharmacology, AIIMS, New Delhi, India
| | | |
Collapse
|