1
|
Szablewski CM, McBride DS, Trock SC, Habing GG, Hoet AE, Nelson SW, Nolting JM, Bowman AS. Evolution of influenza A viruses in exhibition swine and transmission to humans, 2013-2015. Zoonoses Public Health 2024; 71:281-293. [PMID: 38110691 PMCID: PMC10994755 DOI: 10.1111/zph.13104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
AIMS Swine are a mixing vessel for the emergence of novel reassortant influenza A viruses (IAV). Interspecies transmission of swine-origin IAV poses a public health and pandemic risk. In the United States, the majority of zoonotic IAV transmission events have occurred in association with swine exposure at agricultural fairs. Accordingly, this human-animal interface necessitates mitigation strategies informed by understanding of interspecies transmission mechanisms in exhibition swine. Likewise, the diversity of IAV in swine can be a source for novel reassortant or mutated viruses that pose a risk to both swine and human health. METHODS AND RESULTS In an effort to better understand those risks, here we investigated the epidemiology of IAV in exhibition swine and subsequent transmission to humans by performing phylogenetic analyses using full genome sequences from 272 IAV isolates collected from exhibition swine and 23 A(H3N2)v viruses from human hosts during 2013-2015. Sixty-seven fairs (24.2%) had at least one pig test positive for IAV with an overall estimated prevalence of 8.9% (95% CI: 8.3-9.6, Clopper-Pearson). Of the 19 genotypes found in swine, 5 were also identified in humans. There was a positive correlation between the number of human cases of a genotype and its prevalence in exhibition swine. Additionally, we demonstrated that A(H3N2)v viruses clustered tightly with exhibition swine viruses that were prevalent in the same year. CONCLUSIONS These data indicate that multiple genotypes of swine-lineage IAV have infected humans, and highly prevalent IAV genotypes in exhibition swine during a given year are also the strains detected most frequently in human cases of variant IAV. Continued surveillance and rapid characterization of IAVs in exhibition swine can facilitate timely phenotypic evaluation and matching of candidate vaccine strains to those viruses present at the human-animal interface which are most likely to spillover into humans.
Collapse
Affiliation(s)
| | - Dillon S. McBride
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Susan C. Trock
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gregory G. Habing
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Armando E. Hoet
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Sarah W. Nelson
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Jacqueline M. Nolting
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Andrew S. Bowman
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| |
Collapse
|
2
|
Charniga K, Cucunubá ZM, Walteros DM, Mercado M, Prieto F, Ospina M, Nouvellet P, Donnelly CA. Descriptive analysis of surveillance data for Zika virus disease and Zika virus-associated neurological complications in Colombia, 2015-2017. PLoS One 2021; 16:e0252236. [PMID: 34133446 PMCID: PMC8208586 DOI: 10.1371/journal.pone.0252236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne pathogen that recently caused a major epidemic in the Americas. Although the majority of ZIKV infections are asymptomatic, the virus has been associated with birth defects in fetuses and newborns of infected mothers as well as neurological complications in adults. We performed a descriptive analysis on approximately 106,000 suspected and laboratory-confirmed cases of Zika virus disease (ZVD) that were reported during the 2015-2017 epidemic in Colombia. We also analyzed a dataset containing patients with neurological complications and recent febrile illness compatible with ZVD. Females had higher cumulative incidence of ZVD than males. Compared to the general population, cases were more likely to be reported in young adults (20 to 39 years of age). We estimated the cumulative incidence of ZVD in pregnant females at 3,120 reported cases per 100,000 population (95% CI: 3,077-3,164), which was considerably higher than the incidence in both males and non-pregnant females. ZVD cases were reported in all 32 departments. Four-hundred and eighteen patients suffered from ZIKV-associated neurological complications, of which 85% were diagnosed with Guillain-Barré syndrome. The median age of ZIKV cases with neurological complications was 12 years older than that of ZVD cases. ZIKV-associated neurological complications increased with age, and the highest incidence was reported among individuals aged 75 and older. Even though neurological complications and deaths due to ZIKV were rare in this epidemic, better risk communication is needed for people living in or traveling to ZIKV-affected areas.
Collapse
Affiliation(s)
- Kelly Charniga
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Zulma M Cucunubá
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | | | | | | | | | - Pierre Nouvellet
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Christl A Donnelly
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Pandemic Paradox: Early Life H2N2 Pandemic Influenza Infection Enhanced Susceptibility to Death during the 2009 H1N1 Pandemic. mBio 2018; 9:mBio.02091-17. [PMID: 29339427 PMCID: PMC5770550 DOI: 10.1128/mbio.02091-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent outbreaks of H5, H7, and H9 influenza A viruses in humans have served as a vivid reminder of the potentially devastating effects that a novel pandemic could exert on the modern world. Those who have survived infections with influenza viruses in the past have been protected from subsequent antigenically similar pandemics through adaptive immunity. For example, during the 2009 H1N1 "swine flu" pandemic, those exposed to H1N1 viruses that circulated between 1918 and the 1940s were at a decreased risk for mortality as a result of their previous immunity. It is also generally thought that past exposures to antigenically dissimilar strains of influenza virus may also be beneficial due to cross-reactive cellular immunity. However, cohorts born during prior heterosubtypic pandemics have previously experienced elevated risk of death relative to surrounding cohorts of the same population. Indeed, individuals born during the 1890 H3Nx pandemic experienced the highest levels of excess mortality during the 1918 "Spanish flu." Applying Serfling models to monthly mortality and influenza circulation data between October 1997 and July 2014 in the United States and Mexico, we show corresponding peaks in excess mortality during the 2009 H1N1 "swine flu" pandemic and during the resurgent 2013-2014 H1N1 outbreak for those born at the time of the 1957 H2N2 "Asian flu" pandemic. We suggest that the phenomenon observed in 1918 is not unique and points to exposure to pandemic influenza early in life as a risk factor for mortality during subsequent heterosubtypic pandemics.IMPORTANCE The relatively low mortality experienced by older individuals during the 2009 H1N1 influenza virus pandemic has been well documented. However, reported situations in which previous influenza virus exposures have enhanced susceptibility are rare and poorly understood. One such instance occurred in 1918-when those born during the heterosubtypic 1890 H3Nx influenza virus pandemic experienced the highest levels of excess mortality. Here, we demonstrate that this phenomenon was not unique to the 1918 H1N1 pandemic but that it also occurred during the contemporary 2009 H1N1 pandemic and 2013-2014 H1N1-dominated season for those born during the heterosubtypic 1957 H2N2 "Asian flu" pandemic. These data highlight the heretofore underappreciated phenomenon that, in certain instances, prior exposure to pandemic influenza virus strains can enhance susceptibility during subsequent pandemics. These results have important implications for pandemic risk assessment and should inform laboratory studies aimed at uncovering the mechanism responsible for this effect.
Collapse
|
4
|
Bliss N, Stull JW, Moeller SJ, Rajala-Schultz PJ, Bowman AS. Movement patterns of exhibition swine and associations of influenza A virus infection with swine management practices. J Am Vet Med Assoc 2017; 251:706-713. [PMID: 28857695 DOI: 10.2460/javma.251.6.706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify the geographic distribution of exhibition swine in the Midwestern United States, characterize management practices used for exhibition swine, and identify associations between those practices and influenza A virus (IAV) detection in exhibition swine arriving at county or state agricultural fairs. DESIGN Cross-sectional survey. SAMPLE 480 swine exhibitors and 641 exhibition swine. PROCEDURES Inventories of swine exhibited at fairs in 6 selected Midwestern states during 2013 and of the total swine population (including commercial swine) in these regions in 2012 were obtained and mapped. In 2014, snout wipe samples were collected from swine on arrival at 9 selected fairs in Indiana (n = 5) and Ohio (4) and tested for the presence of IAV. Also at fair arrival, swine exhibitors completed a survey regarding swine management practices. RESULTS Contrary to the total swine population, the exhibition swine population was heavily concentrated in Indiana and Ohio. Many swine exhibitors reported attending multiple exhibitions within a season (median number, 2; range, 0 to 50), with exhibited swine often returned to their farm of origin. Rearing of commercial and exhibition swine on the same premises was reported by 13.3% (56/422) of exhibitors. Hosting an on-farm open house or sale was associated with an increased odds of IAV detection in snout wipe samples. CONCLUSIONS AND CLINICAL RELEVANCE The exhibition swine population was highly variable and differed from the commercial swine population in terms of pig density across geographic locations, population integrity, and on-farm management practices. Exhibition swine may be important in IAV transmission, and identified biosecurity deficiencies may have important public and animal health consequences.
Collapse
|
5
|
Moser CB, White LF. Estimating age-specific reproductive numbers-A comparison of methods. Stat Methods Med Res 2016; 27:2050-2059. [PMID: 28571521 DOI: 10.1177/0962280216673676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Large outbreaks, such as those caused by influenza, put a strain on resources necessary for their control. In particular, children have been shown to play a key role in influenza transmission during recent outbreaks, and targeted interventions, such as school closures, could positively impact the course of emerging epidemics. As an outbreak is unfolding, it is important to be able to estimate reproductive numbers that incorporate this heterogeneity and to use surveillance data that is routinely collected to more effectively target interventions and obtain an accurate understanding of transmission dynamics. There are a growing number of methods that estimate age-group specific reproductive numbers with limited data that build on methods assuming a homogenously mixing population. In this article, we introduce a new approach that is flexible and improves on many aspects of existing methods. We apply this method to influenza data from two outbreaks, the 2009 H1N1 outbreaks in South Africa and Japan, to estimate age-group specific reproductive numbers and compare it to three other methods that also use existing data from social mixing surveys to quantify contact rates among different age groups. In this exercise, all estimates of the reproductive numbers for children exceeded the critical threshold of one and in most cases exceeded those of adults. We introduce a flexible new method to estimate reproductive numbers that describe heterogeneity in the population.
Collapse
Affiliation(s)
- Carlee B Moser
- 1 1Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,2 Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Laura F White
- 2 Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
Bowman AS, Nelson SW, Page SL, Nolting JM, Killian ML, Sreevatsan S, Slemons RD. Swine-to-human transmission of influenza A(H3N2) virus at agricultural fairs, Ohio, USA, 2012. Emerg Infect Dis 2015; 20:1472-80. [PMID: 25148572 PMCID: PMC4178388 DOI: 10.3201/eid2009.131082] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Local health care providers should be alerted to the possibility of human infection with variant influenza A viruses, especially during fairs. Agricultural fairs provide an opportunity for bidirectional transmission of influenza A viruses. We sought to determine influenza A virus activity among swine at fairs in the United States. As part of an ongoing active influenza A virus surveillance project, nasal swab samples were collected from exhibition swine at 40 selected Ohio agricultural fairs during 2012. Influenza A(H3N2) virus was isolated from swine at 10 of the fairs. According to a concurrent public health investigation, 7 of the 10 fairs were epidemiologically linked to confirmed human infections with influenza A(H3N2) variant virus. Comparison of genome sequences of the subtype H3N2 isolates recovered from humans and swine from each fair revealed nucleotide identities of >99.7%, confirming zoonotic transmission between swine and humans. All influenza A(H3N2) viruses isolated in this study, regardless of host species or fair, were >99.5% identical, indicating that 1 virus strain was widely circulating among exhibition swine in Ohio during 2012.
Collapse
|
7
|
Johnson C, Hohenboken M, Poling T, Jaehnig P, Kanesa-thasan N. Safety and Immunogenicity of Cell Culture-Derived A/H3N2 Variant Influenza Vaccines: A Phase I Randomized, Observer-Blind, Dose-Ranging Study. J Infect Dis 2015; 212:72-80. [PMID: 25538277 PMCID: PMC4542591 DOI: 10.1093/infdis/jiu826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/15/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A/H3N2 variant (H3N2v) influenza may sustain human-to-human transmission, and an available candidate vaccine would be important. METHODS In this phase I, randomized, observer-blind, dose-ranging study, 627 healthy subjects ≥ 3 years of age were randomized to receive 2 vaccinations with H3N2c cell-culture-derived vaccine doses containing 3.75 µg, 7.5 µg, or 15 µg hemagglutinin antigen of H3N2v with or without MF59 (registered trademark of Novartis AG) adjuvant (an oil-in-water emulsion). This paper reports Day 43 planned interim data. RESULTS Single MF59-adjuvanted H3N2c doses elicited immune responses in almost all subjects regardless of antigen and adjuvant dose; the Center for Biologics Evaluation Research and Review (CBER) licensure criteria were met for all groups. Subjects with prevaccination hemagglutination inhibition titers <10 and children 3-<9 years achieve CBER criteria only after receiving 2 doses of nonadjuvanted H3N2c vaccine. Highest antibody titers were observed in the 7.5 µg + 0.25 mL MF59 groups in all age cohorts. MF59-adjuvanted H3N2c vaccines showed the highest rates of solicited local and systemic events, predominately mild or moderate. CONCLUSIONS A single dose of H3N2c vaccine may be immunogenic and supports further development of MF59-adjuvanted H3N2c vaccines, especially for pediatric populations. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov identifier NCT01855945 (http://clinicaltrials.gov/ct2/show/NCT01855945).
Collapse
Affiliation(s)
| | | | - Terry Poling
- Heartland Research Associates LLC, Wichita, Kansas
| | - Peter Jaehnig
- Novartis Vaccines and Diagnostics, GmbH, Marburg, Germany
| | | |
Collapse
|
8
|
Sanchez JL, Cooper MJ, Myers CA, Cummings JF, Vest KG, Russell KL, Sanchez JL, Hiser MJ, Gaydos CA. Respiratory Infections in the U.S. Military: Recent Experience and Control. Clin Microbiol Rev 2015; 28:743-800. [PMID: 26085551 PMCID: PMC4475643 DOI: 10.1128/cmr.00039-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This comprehensive review outlines the impact of military-relevant respiratory infections, with special attention to recruit training environments, influenza pandemics in 1918 to 1919 and 2009 to 2010, and peacetime operations and conflicts in the past 25 years. Outbreaks and epidemiologic investigations of viral and bacterial infections among high-risk groups are presented, including (i) experience by recruits at training centers, (ii) impact on advanced trainees in special settings, (iii) morbidity sustained by shipboard personnel at sea, and (iv) experience of deployed personnel. Utilizing a pathogen-by-pathogen approach, we examine (i) epidemiology, (ii) impact in terms of morbidity and operational readiness, (iii) clinical presentation and outbreak potential, (iv) diagnostic modalities, (v) treatment approaches, and (vi) vaccine and other control measures. We also outline military-specific initiatives in (i) surveillance, (ii) vaccine development and policy, (iii) novel influenza and coronavirus diagnostic test development and surveillance methods, (iv) influenza virus transmission and severity prediction modeling efforts, and (v) evaluation and implementation of nonvaccine, nonpharmacologic interventions.
Collapse
Affiliation(s)
- Jose L Sanchez
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Michael J Cooper
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | | | - James F Cummings
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Kelly G Vest
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Kevin L Russell
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Joyce L Sanchez
- Mayo Clinic, Division of General Internal Medicine, Rochester, Minnesota, USA
| | - Michelle J Hiser
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA Oak Ridge Institute for Science and Education, Postgraduate Research Participation Program, U.S. Army Public Health Command, Aberdeen Proving Ground, Aberdeen, Maryland, USA
| | - Charlotte A Gaydos
- International STD, Respiratory, and Biothreat Research Laboratory, Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Finelli L, Swerdlow DL. The emergence of influenza A (H3N2)v virus: what we learned from the first wave. Clin Infect Dis 2013; 57 Suppl 1:S1-3. [PMID: 23794725 DOI: 10.1093/cid/cit324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lyn Finelli
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, GA 30333, USA
| | | |
Collapse
|