1
|
Burke RM, Ramani S, Lynch J, Cooper LV, Cho H, Bandyopadhyay AS, Kirkwood CD, Steele AD, Kang G. Geographic disparities impacting oral vaccine performance: Observations and future directions. Clin Exp Immunol 2025; 219:uxae124. [PMID: 39774633 PMCID: PMC11773816 DOI: 10.1093/cei/uxae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/01/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Oral vaccines have several advantages compared with parenteral administration: they can be relatively cheap to produce in high quantities, easier to administer, and induce intestinal mucosal immunity that can protect against infection. These characteristics have led to successful use of oral vaccines against rotavirus, polio, and cholera. Unfortunately, oral vaccines for all three diseases have demonstrated lower performance in the highest-burden settings where they are most needed. Rotavirus vaccines are estimated to have >85% effectiveness against hospitalization in children <12 months in countries with low child mortality, but only ~65% effectiveness in countries with high child mortality. Similarly, oral polio vaccines have lower immunogenicity in developing country settings compared with high-resource settings. Data are more limited for oral cholera vaccines, but suggest lower titers among children compared with adults, and, for some vaccines, lower efficacy in endemic settings compared with non-endemic settings. These disparities are likely multifactorial, and available evidence suggests a role for maternal factors (e.g. transplacental antibodies, breastmilk), host factors (e.g. genetic polymorphisms-with the best evidence for rotavirus-or previous infection), and environmental factors (e.g. gut microbiome, co-infections). Overall, these data highlight the rather ambiguous and often contradictory nature of evidence on factors affecting oral vaccine response, cautioning against broad extrapolation of outcomes based on one population or one vaccine type. Meaningful impact on performance of oral vaccines will likely only be possible with a suite of interventions, given the complex and multifactorial nature of the problem, and the degree to which contributing factors are intertwined.
Collapse
Affiliation(s)
- Rachel M Burke
- Global Development Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Julia Lynch
- Office of the Director General, International Vaccine Institute, Seoul, Republic of Korea
| | - Laura V Cooper
- School of Public Health, Imperial College London, London, UK
| | - Haeun Cho
- Department of Data Science and Innovation, International Vaccine Institute, Seoul, Republic of Korea
| | | | - Carl D Kirkwood
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - A Duncan Steele
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Gagandeep Kang
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|
2
|
Cnossen VM, van Leeuwen RP, Mazur NI, Vernhes C, ten Voorde W, Burggraaf J, de Visser SJ, Roestenberg M, Kamerling IMC. From setbacks to success: lessons from the journey of RSV vaccine development. Ther Adv Vaccines Immunother 2024; 12:25151355241308305. [PMID: 39711948 PMCID: PMC11660060 DOI: 10.1177/25151355241308305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024] Open
Abstract
Respiratory syncytial virus (RSV) causes high worldwide infant mortality, as well as a high disease burden in the elderly. Efforts in vaccine development over the past 60 years have recently delivered three approved vaccines and two monoclonal antibodies (mAbs). Looking back at the eventful history of RSV vaccine development, several factors can be identified that have hampered the developmental pathway, including the occurrence of enhanced RSV disease (ERD) in the first vaccine attempt and the difficulty in characterizing and stabilizing the pre-fusion F protein as a vaccine target. Moreover, the need for large trials to test vaccine efficacy, usually done late in development, and the lack of a correlate of protection (CoP) result in significant uncertainties in RSV vaccine development. The use of controlled human infection models (CHIMs) may provide a solution for some of these problems: through swift, cost-efficient and closely monitored assessment of vaccine safety and efficacy in early clinical phases, vaccines can either 'fail fast' or show results supporting further investments. Moreover, CHIMs facilitate the assessment of disease and could assist in the identification of a CoP supporting late-stage development. Although some factors may affect translatability to real-world vaccine efficacy, CHIMs can support the clinical development pathway in various ways. We advocate for, and demonstrate, a conceptual and rational design of RSV vaccine development. Assessing protective efficacy early on would result in the most cost-efficient pathway and identification of target populations should be done as early as possible. For RSV, elderly individuals and people in low- and middle-income countries are high-impact populations for RSV prevention. While RSV immunization is now available in certain regions, global access is not accomplished yet, and worldwide prevention does not seem within reach. Quick and cost-effective assessments of candidates currently in the pipeline could contribute to future successes in the battle against RSV.
Collapse
Affiliation(s)
- Victor M. Cnossen
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | | | | | - Charlotte Vernhes
- Vaccines Europe, European Federation of Pharmaceutical Industries and Associations, Brussels, Belgium
| | | | | | - Saco J. de Visser
- Centre for Future Affordable & Sustainable Therapy Development (FAST), The Hague, The Netherlands
| | - Meta Roestenberg
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
| | - Ingrid M. C. Kamerling
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
3
|
Finger F, Lemaitre J, Juin S, Jackson B, Funk S, Lessler J, Mintz E, Dely P, Boncy J, Azman AS. Inferring the proportion of undetected cholera infections from serological and clinical surveillance in an immunologically naive population. Epidemiol Infect 2024; 152:e149. [PMID: 39618115 PMCID: PMC11626459 DOI: 10.1017/s0950268824000888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 12/11/2024] Open
Abstract
Most infections with pandemic Vibrio cholerae are thought to result in subclinical disease and are not captured by surveillance. Previous estimates of the ratio of infections to clinical cases have varied widely (2 to 100 infections per case). Understanding cholera epidemiology and immunity relies on the ability to translate between numbers of clinical cases and the underlying number of infections in the population. We estimated the infection incidence during the first months of an outbreak in a cholera-naive population using a Bayesian vibriocidal antibody titer decay model combining measurements from a representative serosurvey and clinical surveillance data. 3,880 suspected cases were reported in Grande Saline, Haiti, between 20 October 2010 and 6 April 2011 (clinical attack rate 18.4%). We found that more than 52.6% (95% Credible Interval (CrI) 49.4-55.7) of the population ≥2 years showed serologic evidence of infection, with a lower infection rate among children aged 2-4 years (35.5%; 95%CrI 24.2-51.6) compared with people ≥5 years (53.1%; 95%CrI 49.4-56.4). This estimated infection rate, nearly three times the clinical attack rate, with underdetection mainly seen in those ≥5 years, has likely impacted subsequent outbreak dynamics. Our findings show how seroincidence estimates improve understanding of links between cholera burden, transmission dynamics and immunity.
Collapse
Affiliation(s)
- Flavio Finger
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Epicentre, Paris, France
| | - Joseph Lemaitre
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stanley Juin
- Center for Global Health, Massachusetts General Hospital, Boston, MA, USA
| | - Brendan Jackson
- United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sebastian Funk
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Justin Lessler
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eric Mintz
- United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Patrick Dely
- Ministère de la Santé Publique et de la Population, Port au Prince, Haiti
| | - Jacques Boncy
- Ministère de la Santé Publique et de la Population, Port au Prince, Haiti
| | - Andrew S Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
- Center for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
4
|
Fredsgaard-Jones T, Harris SA, Morrison H, Ateere A, Nassanga B, Ramon RL, Mitton C, Fletcher E, Decker J, Preston-Jones H, Jackson S, Mawer A, Satti I, Barer M, Hinks T, Bettinson H, McShane H. A dose escalation study to evaluate the safety of an aerosol BCG infection in previously BCG-vaccinated healthy human UK adults. Front Immunol 2024; 15:1427371. [PMID: 39611145 PMCID: PMC11602284 DOI: 10.3389/fimmu.2024.1427371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/14/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Tuberculosis (TB) is the leading cause of death worldwide from a single infectious agent. Bacillus Calmette-Guérin (BCG), the only licensed vaccine, provides limited protection. Controlled human infection models (CHIMs) are useful in accelerating vaccine development for pathogens with no correlates of protection; however, the need for prolonged treatment makes Mycobacterium tuberculosis an unethical challenge agent. Aerosolised BCG provides a potential safe surrogate of infection. A CHIM in BCG-vaccinated as well as BCG-naïve individuals would allow identification of novel BCG-booster vaccine candidates and facilitate CHIM studies in populations with high TB endemicity. The purpose of this study was to evaluate the safety and utility of an aerosol BCG CHIM in historically BCG-vaccinated volunteers. Methods There were 12 healthy, historically BCG-vaccinated UK adults sequentially enrolled into dose-escalating groups. The first three received 1 × 104 CFU aerosol BCG Danish 1331 via a nebuliser. After safety review, subsequent groups received doses of 1 × 105 CFU, 1 × 106 CFU, or 1 × 107 CFU. Safety was monitored through self-reported adverse events (AEs), laboratory tests, and lung function testing. Immunology blood samples were taken pre-infection and at multiple timepoints post-infection. A bronchoalveolar lavage (BAL) taken 14 days post-infection was analysed for presence of live BCG. Results No serious AEs occurred during the study. Solicited systemic and respiratory AEs were frequent in all groups, but generally short-lived and mild in severity. There was a trend for more reported AEs in the highest-dose group. No live BCG was detected in BAL from any volunteers. Aerosol BCG induced potent systemic cellular immune responses in the highest-dose group 7 days post-infection. Discussion Aerosol BCG infection up to a dose of 1 × 107 CFU was well-tolerated in historically BCG-vaccinated healthy, UK adults. No live BCG was detected in the BAL fluid 14 days post-infection despite potent systemic responses, suggesting early clearance. Further work is needed to expand the number of volunteers receiving BCG via the aerosol route to refine and establish utility of this aerosol BCG CHIM. Clinical trial registration https://clinicaltrials.gov/, identifier NCT04777721.
Collapse
Affiliation(s)
| | | | - Hazel Morrison
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alberta Ateere
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Celia Mitton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Eve Fletcher
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | - Jonathan Decker
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | | | - Susan Jackson
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Andrew Mawer
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iman Satti
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Michael Barer
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | - Timothy Hinks
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Henry Bettinson
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Rappuoli R, Alter G, Pulendran B. Transforming vaccinology. Cell 2024; 187:5171-5194. [PMID: 39303685 PMCID: PMC11736809 DOI: 10.1016/j.cell.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
The COVID-19 pandemic placed the field of vaccinology squarely at the center of global consciousness, emphasizing the vital role of vaccines as transformative public health tools. The impact of vaccines was recently acknowledged by the award of the 2023 Nobel Prize in Physiology or Medicine to Katalin Kariko and Drew Weissman for their seminal contributions to the development of mRNA vaccines. Here, we provide a historic perspective on the key innovations that led to the development of some 27 licensed vaccines over the past two centuries and recent advances that promise to transform vaccines in the future. Technological revolutions such as reverse vaccinology, synthetic biology, and structure-based design transformed decades of vaccine failures into successful vaccines against meningococcus B and respiratory syncytial virus (RSV). Likewise, the speed and flexibility of mRNA vaccines profoundly altered vaccine development, and the advancement of novel adjuvants promises to revolutionize our ability to tune immunity. Here, we highlight exciting new advances in the field of systems immunology that are transforming our mechanistic understanding of the human immune response to vaccines and how to predict and manipulate them. Additionally, we discuss major immunological challenges such as learning how to stimulate durable protective immune response in humans.
Collapse
Affiliation(s)
| | - Galit Alter
- Moderna Therapeutics, Cambridge, MA 02139, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Da Costa RM, Rooke JL, Wells TJ, Cunningham AF, Henderson IR. Type 5 secretion system antigens as vaccines against Gram-negative bacterial infections. NPJ Vaccines 2024; 9:159. [PMID: 39218947 PMCID: PMC11366766 DOI: 10.1038/s41541-024-00953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Infections caused by Gram-negative bacteria are leading causes of mortality worldwide. Due to the rise in antibiotic resistant strains, there is a desperate need for alternative strategies to control infections caused by these organisms. One such approach is the prevention of infection through vaccination. While live attenuated and heat-killed bacterial vaccines are effective, they can lead to adverse reactions. Newer vaccine technologies focus on utilizing polysaccharide or protein subunits for safer and more targeted vaccination approaches. One promising avenue in this regard is the use of proteins released by the Type 5 secretion system (T5SS). This system is the most prevalent secretion system in Gram-negative bacteria. These proteins are compelling vaccine candidates due to their demonstrated protective role in current licensed vaccines. Notably, Pertactin, FHA, and NadA are integral components of licensed vaccines designed to prevent infections caused by Bordetella pertussis or Neisseria meningitidis. In this review, we delve into the significance of incorporating T5SS proteins into licensed vaccines, their contributions to virulence, conserved structural motifs, and the protective immune responses elicited by these proteins.
Collapse
Affiliation(s)
- Rochelle M Da Costa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica L Rooke
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Hensen ADO, Vehreschild MJGT, Gerding DN, Krut O, Chen W, Young VB, Tzipori S, Solbach P, Gibani MM, Chiu C, de Keersmaecker SCJ, Dasyam D, Morel S, Devaster JM, Corti N, Kuijper EJ, Roestenberg M, Smits WK. How to develop a Controlled Human Infection Model for Clostridioides difficile. Clin Microbiol Infect 2024:S1198-743X(24)00425-7. [PMID: 39214188 DOI: 10.1016/j.cmi.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Clostridioides difficile (C. difficile) remains the leading cause of healthcare-associated diarrhoea, posing treatment challenges due to antibiotic resistance and high relapse rates. Fecal microbiota transplantation (FMT) is a novel treatment strategy to prevent relapses of C. difficile infection (CDI), however the exact components conferring colonisation resistance are unknown, hampering its translation to a medicinal product. Development of novel products independent of antibiotics, which increase colonisation resistance or induce protective immune mechanisms are urgently needed. OBJECTIVES To establish a framework for a Controlled Human Infection Model (CHIM) for C. difficile, in which healthy volunteers are exposed to toxigenic C. difficile spores, offering the possibility to test novel approaches and identify microbiota and immunological targets. Whereas experimental exposure to non-toxigenic C. difficile (NTCD) has been done before, a toxigenic C. difficile CHIM faces ethical, scientific, logistical and biosafety challenges. SOURCES Specific challenges in developing a C. difficile CHIM were discussed by a group of international experts during a workshop organized by Inno4Vac, an IHI-funded consortium. CONTENT The experts agreed that the main challenges are: developing a clinically relevant CHIM which induces mild to moderate CDI symptoms but no severe CDI, determining optimal C. difficile inoculum dose and understanding the timing and duration of antibiotic pre-treatment in inducing susceptibility to CDI in healthy volunteers. IMPLICATIONS Should these challenges be tackled, a C. difficile CHIM not only provides a way forward for the testing of novel products but also offers a framework for better understanding of the pathophysiology, pathogenesis and immunology of C. difficile colonisation and infection.
Collapse
Affiliation(s)
- Annefleur D O Hensen
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, and German Centre for Infection Research (DZIF), Site Bonn-Cologne, Cologne, Germany
| | | | - Oleg Krut
- Paul-Ehrlich-Institut (PEI), Langen, Germany
| | - Wilbur Chen
- University of Maryland School of Medicine, Centre for Vaccine Development and Global Health, Maryland, United States
| | | | | | | | | | | | | | | | | | | | | | - Ed J Kuijper
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| | - Wiep Klaas Smits
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
8
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
9
|
Cavaleri M, Kaslow D, Boateng E, Chen WH, Chiu C, Choy RKM, Correa-Oliveira R, Durbin A, Egesa M, Gibani M, Kapulu M, Katindi M, Olotu A, Pongsuwan P, Simuyandi M, Speder B, Talaat KR, Weller C, Wills B, Baay M, Balasingam S, Olesen OF, Neels P. Fourth Controlled Human Infection Model (CHIM) meeting, CHIM regulatory issues, May 24, 2023. Biologicals 2024; 85:101745. [PMID: 38341355 PMCID: PMC7616643 DOI: 10.1016/j.biologicals.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Many aspects of Controlled Human Infection Models (CHIMs, also known as human challenge studies and human infection studies) have been discussed extensively, including Good Manufacturing Practice (GMP) production of the challenge agent, CHIM ethics, environmental safety in CHIM, recruitment, community engagement, advertising and incentives, pre-existing immunity, and clinical, immunological, and microbiological endpoints. The fourth CHIM meeting focused on regulation of CHIM studies, bringing together scientists and regulators from high-, middle-, and low-income countries, to discuss barriers and hurdles in CHIM regulation. Valuable initiatives for regulation of CHIMs have already been undertaken but further capacity building remains essential. The Wellcome Considerations document is a good starting point for further discussions.
Collapse
Affiliation(s)
| | | | | | - Wilbur H Chen
- Center for Vaccine Development, University of Maryland School of Medicine, USA.
| | | | - Robert K M Choy
- PATH Center for Vaccine Innovation and Access, Seattle, WA, USA.
| | | | - Anna Durbin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, USA.
| | - Moses Egesa
- MRC/UVRI and LSHTM Uganda Research Unit, Uganda; London School of Hygiene and Tropical Medicine, UK.
| | | | | | | | | | | | | | | | - Kawsar R Talaat
- Johns Hopkins Bloomberg School of Public Health, Baltimore, USA.
| | | | - Bridget Wills
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam.
| | - Marc Baay
- P95 Epidemiology & Pharmacovigilance, Leuven, Belgium.
| | | | - Ole F Olesen
- European Vaccine Initiative, Heidelberg, Germany.
| | | |
Collapse
|
10
|
Shrivastava S, Agnememel AB, Ndungo E, Islam D, Liang Y, Frenck RW, Pasetti MF. Oral immunization with Shigella sonnei WRSs2 and WRSs3 vaccine strains elicits systemic and mucosal antibodies with functional anti-microbial activity. mSphere 2024; 9:e0041923. [PMID: 38132716 PMCID: PMC10826362 DOI: 10.1128/msphere.00419-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Shigella causes bacillary dysentery and is responsible for a high burden of disease globally. Several studies have emphasized the value of functional antibody activity to understand Shigella immunity and correlates of protection. The anti-microbial function of local (mucosal) antibodies and their contribution to preventing Shigella infection remain unknown. The goal of this study was to identify the functional humoral immune effectors elicited by two Shigella sonnei live oral vaccine candidates, WRSs2 and WRSs3. Complement-dependent bactericidal [serum bactericidal antibody (SBA)/bactericidal antibody (BA)] and opsonophagocytic killing antibody (OPKA) activity were determined in sera and stool extracts as indicators of systemic and local anti-microbial immunity. High levels of SBA/BA and OPKA were detected in serum as well as in fecal extracts from volunteers who received a single dose of WRSs2 and WRSs3. Functional antibody activity peaked on days 10 and 14 post-vaccination in fecal and serum samples, respectively. Bactericidal and OPKA titers were closely associated. Peak fold rises in functional antibody titers in serum and fecal extracts were also associated. Antibody activity interrogated in IgG and IgA purified from stool fractions identified IgG as the primary driver of mucosal bactericidal and OPKA activity, with minimal functional activity of IgA alone, highlighting an underappreciated role for IgG in bacterial clearance in the mucosa. The combination of IgG and IgA in equal proportions enhanced bactericidal and OPKA titers hinting at a co-operative or synergistic action. Our findings provide insight into the functional anti-microbial capacity of vaccine-induced mucosal IgG and IgA and propose an operative local humoral effector of protective immunity.IMPORTANCEThere is an urgent need for a safe, effective, and affordable vaccine against Shigella. Understanding the immunological underpinning of Shigella infection and the make-up of protective immunity is critical to achieve the best approach to prevent illness caused by this mucosal pathogen. We measured the complement-dependent bactericidal and opsonophagocytic antibody killing in serum and stool extracts from adult volunteers vaccinated with Shigella sonnei live oral vaccine candidates WRSs2 and WRSs3. For the first time, we detected functional antibody responses in stool samples that were correlated with those in sera. Using purified stool IgA and IgG fractions, we found that functional activity was mediated by IgG, with some help from IgA. These findings provide insight into the functional anti-microbial capacity of vaccine-induced mucosal IgG and IgA and support future studies to identify potential markers of protective mucosal immunity.
Collapse
Affiliation(s)
- Shikha Shrivastava
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alain B. Agnememel
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Esther Ndungo
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dilara Islam
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yuanyuan Liang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert W. Frenck
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Marcela F. Pasetti
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Smith C, Smith E, Rydlova A, Varro R, Hinton JCD, Gordon MA, Choy RKM, Liu X, Pollard AJ, Chiu C, Cooke GS, Gibani MM. Protocol for the challenge non-typhoidal Salmonella (CHANTS) study: a first-in-human, in-patient, double-blind, randomised, safety and dose-escalation controlled human infection model in the UK. BMJ Open 2024; 14:e076477. [PMID: 38199617 PMCID: PMC10806722 DOI: 10.1136/bmjopen-2023-076477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Invasive non-typhoidal Salmonella (iNTS) serovars are a major cause of community-acquired bloodstream infections in sub-Saharan Africa (SSA). In this setting, Salmonella enterica serovar Typhimurium accounts for two-thirds of infections and is associated with an estimated case fatality rate of 15%-20%. Several iNTS vaccine candidates are in early-stage assessment which-if found effective-would provide a valuable public health tool to reduce iNTS disease burden. The CHANTS study aims to develop a first-in-human Salmonella Typhimurium controlled human infection model, which can act as a platform for future vaccine evaluation, in addition to providing novel insights into iNTS disease pathogenesis. METHODS AND ANALYSIS This double-blind, safety and dose-escalation study will randomise 40-80 healthy UK participants aged 18-50 to receive oral challenge with one of two strains of S. Typhimurium belonging to the ST19 (strain 4/74) or ST313 (strain D23580) lineages. 4/74 is a global strain often associated with diarrhoeal illness predominantly in high-income settings, while D23580 is an archetypal strain representing invasive disease-causing isolates found in SSA. The primary objective is to determine the minimum infectious dose (colony-forming unit) required for 60%-75% of participants to develop clinical or microbiological features of systemic salmonellosis. Secondary endpoints are to describe and compare the clinical, microbiological and immunological responses following challenge. Dose escalation or de-escalation will be undertaken by continual-reassessment methodology and limited within prespecified safety thresholds. Exploratory objectives are to describe mechanisms of iNTS virulence, identify putative immune correlates of protection and describe host-pathogen interactions in response to infection. ETHICS AND DISSEMINATION Ethical approval has been obtained from the NHS Health Research Authority (London-Fulham Research Ethics Committee 21/PR/0051; IRAS Project ID 301659). The study findings will be disseminated in international peer-reviewed journals and presented at national/international stakeholder meetings. Study outcome summaries will be provided to both funders and participants. TRIAL REGISTRATION NUMBER NCT05870150.
Collapse
Affiliation(s)
- Christopher Smith
- Department of Infectious Disease, Imperial College London, London, UK
| | - Emma Smith
- Department of Infectious Disease, Imperial College London, London, UK
| | - Anna Rydlova
- Department of Infectious Disease, Imperial College London, London, UK
| | - Robert Varro
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Melita A Gordon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Southern Region, Malawi
| | | | - Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics, Oxford University, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, Oxford University, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Graham S Cooke
- Department of Infectious Disease, Imperial College London, London, UK
| | - Malick M Gibani
- Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
12
|
Jackson S, McShane H. Challenges in Developing a Controlled Human Tuberculosis Challenge Model. Curr Top Microbiol Immunol 2024; 445:229-255. [PMID: 35332386 DOI: 10.1007/82_2022_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Controlled human infection models (CHIMs) have provided pivotal scientific advancements, contributing to the licensure of new vaccines for many pathogens. Despite being one of the world's oldest known pathogens, there are still significant gaps in our knowledge surrounding the immunobiology of Mycobacterium tuberculosis (M. tb). Furthermore, the only licensed vaccine, BCG, is a century old and demonstrates limited efficacy in adults from endemic areas. Despite good global uptake of BCG, tuberculosis (TB) remains a silent epidemic killing 1.4 million in 2019 (WHO, Global tuberculosis report 2020). A mycobacterial CHIM could expedite the development pipeline of novel TB vaccines and provide critical understanding on the immune response to TB. However, developing a CHIM for such a complex organism is a challenging process. The first hurdle to address is which challenge agent to use, as it would not be ethical to use virulent M. tb. This chapter describes the current progress and outstanding issues in the development of a TB CHIM. Previous and current human studies include both aerosol and intradermal models using either BCG or purified protein derivative (PPD) as a surrogate agent. Future work investigating the use of attenuated M. tb is underway.
Collapse
Affiliation(s)
- Susan Jackson
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, Oxford University, Oxford, UK
| | - Helen McShane
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, Oxford University, Oxford, UK.
| |
Collapse
|
13
|
Oxford JS, Catchpole A, Mann A, Bell A, Noulin N, Gill D, Oxford JR, Gilbert A, Balasingam S. A Brief History of Human Challenge Studies (1900-2021) Emphasising the Virology, Regulatory and Ethical Requirements, Raison D'etre, Ethnography, Selection of Volunteers and Unit Design. Curr Top Microbiol Immunol 2024; 445:1-32. [PMID: 35704095 DOI: 10.1007/82_2022_253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Venetian quarantine 400 years ago was an important public health measure. Since 1900 this has been refined to include "challenge" or deliberate infection with pathogens be they viruses, bacteria, or parasites. Our focus is virology and ranges from the early experiments in Cuba with Yellow Fever Virus to the most widespread pathogen of our current times, COVID-19. The latter has so far caused over four million deaths worldwide and 190 million cases of the disease. Quarantine and challenge were also used to investigate the Spanish Influenza of 1918 which caused over 100 million deaths. We consider here the merits of the approach, that is the speeding up of knowledge in a practical sense leading to the more rapid licensing of vaccines and antimicrobials. At the core of quarantine and challenge initiatives is the design of the unit to allow safe confinement of the pathogen and protection of the staff. Most important though is the safety of volunteers. We can see now, as in 1900, that members of our society are prepared and willing to engage in these experiments for the public good. Our ethnology study, where the investigator observed the experiment from within the quarantine, gave us the first indication of changing attitudes amongst volunteers whilst in quarantine. These quarantine experiments, referred to as challenge studies, human infection studies, or "controlled human infection models" involve thousands of clinical samples taken over two to three weeks and can provide a wealth of immunological and molecular data on the infection itself and could allow the discovery of new targets for vaccines and therapeutics. The Yellow Fever studies from 121 years ago gave the impetus for development of a successful vaccine still used today whilst also uncovering the nature of the Yellow Fever agent, namely that it was a virus. We outline how carefully these experiments are approached and the necessity to have high quality units with self-contained air-flow along with extensive personal protective equipment for nursing and medical staff. Most important is the employment of highly trained scientific, medical and nursing staff. We face a future of emerging pathogens driven by the increasing global population, deforestation, climate change, antibiotic resistance and increased global travel. These emerging pathogens may be pathogens we currently are not aware of or have not caused outbreaks historically but could also be mutated forms of known pathogens including viruses such as influenza (H7N9, H5N1 etc.) and coronaviruses. This calls for challenge studies to be part of future pandemic preparedness as an additional tool to assist with the rapid development of broad-spectrum antimicrobials, immunomodulators and new vaccines.
Collapse
Affiliation(s)
- J S Oxford
- Blizzard Institute of Cell and Molecular Science, Queen Mary University of London, London, E1 2AT, UK
| | | | | | | | | | - D Gill
- Blizzard Institute of Cell and Molecular Science, Queen Mary University of London, London, E1 2AT, UK
| | - J R Oxford
- Inveresk Medical Practice, Edinburgh, E21 7BP, UK
| | | | | |
Collapse
|
14
|
Cohen MB. Human Challenge Studies for Cholera. Curr Top Microbiol Immunol 2024; 445:177-188. [PMID: 35377003 DOI: 10.1007/82_2022_258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human challenge model permits an estimate of the vaccine protection against moderate and severe cholera. It eliminates the difficulty in setting up a vaccine study in endemic area including uncertainties about the incidence of cholera and the logistic arrangements for capturing those who do/do not become ill. Valuable information from small groups of subjects can be obtained in a short period. Under proper precautions and study design, the challenge model is safe and efficient. Although the model has evolved since it was introduced over 50 years ago, it has been used extensively to test vaccine efficacy. Vaccine licensure has resulted from data obtained using the human challenge model. In addition, the model has been used to: (1) Establish and validate a standardized inoculum, (2) Identify immune markers and immune responses, (3) Determine natural immunity (in re-challenge studies), (4) Identify the role of the gastric acid barrier in preventing cholera infection, (5) Show homologous and heterologous infection-derived immunity, and (6) Test the efficacy of anti-diarrheal/anti-secretory small molecules. The aim of this chapter is to present an overview on the state of the art for human challenge models used to study cholera and new medical interventions against it.
Collapse
Affiliation(s)
- Mitchell B Cohen
- Katharine Reynolds Ireland Chair of Pediatrics, University of Alabama at Birmingham, Physician-in-Chief, Children's of Alabama, Birmingham, AL, USA.
- , 1600 7th Ave. South, Suite 600, Birmingham, AL, 35213, USA.
| |
Collapse
|
15
|
Abo YN, Jamrozik E, McCarthy JS, Roestenberg M, Steer AC, Osowicki J. Strategic and scientific contributions of human challenge trials for vaccine development: facts versus fantasy. THE LANCET. INFECTIOUS DISEASES 2023; 23:e533-e546. [PMID: 37573871 DOI: 10.1016/s1473-3099(23)00294-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 08/15/2023]
Abstract
The unprecedented speed of delivery of SARS-CoV-2 pandemic vaccines has redefined the limits for all vaccine development. Beyond the aspirational 100-day timeline for tomorrow's hypothetical pandemic vaccines, there is a sense of optimism that development of other high priority vaccines can be accelerated. Early in the COVID-19 pandemic, an intense and polarised academic and public discourse arose concerning the role of human challenge trials for vaccine development. A case was made for human challenge trials as a powerful tool to establish early proof-of-concept of vaccine efficacy in humans, inform vaccine down selection, and address crucial knowledge gaps regarding transmission, pathogenesis, and immune protection. We review the track record of human challenge trials contributing to the development of vaccines for 19 different pathogens and discuss relevant limitations, barriers, and pitfalls. This Review also highlights opportunities for efforts to broaden the scope and boost the effects of human challenge trials, to accelerate all vaccine development.
Collapse
Affiliation(s)
- Yara-Natalie Abo
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Parkville, VIC, Australia.
| | - Euzebiusz Jamrozik
- Ethox and Pandemic Sciences Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK; Monash-WHO Collaborating Centre for Bioethics, Monash University, Melbourne, VIC, Australia
| | - James S McCarthy
- Department of Infectious Diseases, The University of Melbourne, Parkville, VIC, Australia; Victorian Infectious Diseases Services, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Meta Roestenberg
- Controlled Human Infections Center, Leiden University Medical Center, Leiden, Netherlands
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Giersing BK, Isbrucker R, Kaslow DC, Cavaleri M, Baylor N, Maiga D, Pavlinac PB, Riddle MS, Kang G, MacLennan CA. Clinical and regulatory development strategies for Shigella vaccines intended for children younger than 5 years in low-income and middle-income countries. Lancet Glob Health 2023; 11:e1819-e1826. [PMID: 37858591 PMCID: PMC10603611 DOI: 10.1016/s2214-109x(23)00421-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/21/2023]
Abstract
Shigellosis causes considerable public health burden, leading to excess deaths as well as acute and chronic consequences, particularly among children living in low-income and middle-income countries (LMICs). Several Shigella vaccine candidates are advancing in clinical trials and offer promise. Although multiple target populations might benefit from a Shigella vaccine, the primary strategic goal of WHO is to accelerate the development and accessibility of safe, effective, and affordable Shigella vaccines that reduce mortality and morbidity in children younger than 5 years living in LMICs. WHO consulted with regulators and policy makers at national, regional, and global levels to evaluate pathways that could accelerate regulatory approval in this priority population. Special consideration was given to surrogate efficacy biomarkers, the role of controlled human infection models, and the establishment of correlates of protection. A field efficacy study in children younger than 5 years in LMICs is needed to ensure introduction in this priority population.
Collapse
Affiliation(s)
- Birgitte K Giersing
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland.
| | - Richard Isbrucker
- Norms and Standards for Biologicals, World Health Organization, Geneva, Switzerland
| | - David C Kaslow
- Essential Medicines and PATH Center for Vaccines Innovation and Access, PATH, Seattle, WA, USA
| | - Marco Cavaleri
- Office of Health Threats and Vaccine Strategy, European Medicines Agency, Amsterdam, Netherlands
| | | | - Diadié Maiga
- Vaccine Regulation, World Health Organization, Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Patricia B Pavlinac
- Global Center for Integrated Health of Women, Adolescents, and Children (Global WACh), Department of Global Health and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Mark S Riddle
- Department of Internal Medicine (Community Faculty), University of Nevada, Reno, NV, USA
| | - Gagandeep Kang
- Department of Gastrointestinal Sciences, CMC Vellore, Vellore, India
| | - Calman A MacLennan
- Enterics, Diagnostics, Genomics & Epidemiology, Global Health, Bill & Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|
17
|
Finger F, Lemaitre J, Juin S, Jackson B, Funk S, Lessler J, Mintz E, Dely P, Boncy J, Azman AS. Inferring the proportion of undetected cholera infections from serological and clinical surveillance in an immunologically naive population. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.01.23297461. [PMID: 37961651 PMCID: PMC10635253 DOI: 10.1101/2023.11.01.23297461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Most infections with pandemic Vibrio cholerae are thought to result in subclinical disease and are not captured by surveillance. Previous estimates of the ratio of infections to clinical cases have varied widely (2 to 100). Understanding cholera epidemiology and immunity relies on the ability to translate between numbers of clinical cases and the underlying number of infections in the population. We estimated the infection incidence during the first months of an outbreak in a cholera-naive population using a Bayesian vibriocidal antibody titer decay model combining measurements from a representative serosurvey and clinical surveillance data. 3,880 suspected cases were reported in Grande Saline, Haiti, between 20 October 2010 and 6 April 2011 (clinical attack rate 18.4%). We found that more than 52.6% (95% Credible Interval (CrI) 49.4-55.7) of the population ≥2 years showed serologic evidence of infection, with a lower infection rate among children aged 2-4 years (35.5%; 95%CrI 24.2-51.6) compared with people ≥5 years (53.1%; 95%CrI 49.4-56.4). This estimated infection rate, nearly three times the clinical attack rate, with underdetection mainly seen in those ≥5 years, has likely impacted subsequent outbreak dynamics. Our findings show how seroincidence estimates improve understanding of links between cholera burden, transmission dynamics and immunity.
Collapse
Affiliation(s)
- Flavio Finger
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Epicentre, Paris, France
| | - Joseph Lemaitre
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stanley Juin
- Center for Global Health, Massachusetts General Hospital, Boston, MA, USA
| | - Brendan Jackson
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sebastian Funk
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Justin Lessler
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Eric Mintz
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patrick Dely
- Ministère de la Santé Publique et de la Population, Port au Prince, Haiti
| | - Jacques Boncy
- Ministère de la Santé Publique et de la Population, Port au Prince, Haiti
| | - Andrew S Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
- Center for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
18
|
He X, Zhang T, Huan S, Yang Y. Novel Influenza Vaccines: From Research and Development (R&D) Challenges to Regulatory Responses. Vaccines (Basel) 2023; 11:1573. [PMID: 37896976 PMCID: PMC10610648 DOI: 10.3390/vaccines11101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza vaccines faced significant challenges in achieving sufficient protective efficacy and production efficiency in the past. In recent decades, novel influenza vaccines, characterized by efficient and scalable production, advanced platforms, and new adjuvant technologies, have overcome some of these weaknesses and have been widely licensed. Furthermore, researchers are actively pursuing the development of next-generation and universal influenza vaccines to provide comprehensive protection against potential pandemic subtypes or strains. However, new challenges have emerged as these novel vaccines undergo evaluation and authorization. In this review, we primarily outline the critical challenges and advancements in research and development (R&D) and highlight the improvements in regulatory responses for influenza vaccines.
Collapse
Affiliation(s)
- Xiangchuan He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; (X.H.); (T.Z.)
- Key Laboratory of Innovative Drug Research and Evaluation, National Medical Products Administration, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Tianxiang Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; (X.H.); (T.Z.)
- Key Laboratory of Innovative Drug Research and Evaluation, National Medical Products Administration, Beijing 100084, China
| | - Shitong Huan
- China Office, The Bill & Melinda Gates Foundation, Beijing 100084, China
| | - Yue Yang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; (X.H.); (T.Z.)
- Key Laboratory of Innovative Drug Research and Evaluation, National Medical Products Administration, Beijing 100084, China
| |
Collapse
|
19
|
Smith C, Smith E, Chiu C, Hinton J, Perez Sepulveda B, Gordon M, Choy RK, Hill PW, Meiring JE, Darton TC, Carey ME, Cooke G, Gibani MM. The Challenge Non-Typhoidal Salmonella (CHANTS) Consortium: Development of a non-typhoidal Salmonella controlled human infection model: Report from a consultation group workshop, 05 July 2022, London, UK. Wellcome Open Res 2023; 8:111. [PMID: 37808389 PMCID: PMC10558987 DOI: 10.12688/wellcomeopenres.19012.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Invasive non-typhoidal Salmonella disease (iNTS) is a major cause of morbidity and mortality globally, particularly as a cause of bloodstream infection in children and immunocompromised adults in sub-Saharan Africa. Vaccines to prevent non-typhoidal Salmonella (NTS) would represent a valuable public health tool in this setting to avert cases and prevent expansion of antimicrobial resistance. Several NTS and combination typhoidal-NTS vaccine candidates are in early-stage development, although the pathway to licensure is unclear due to challenges in conducting large phase III field trials. Controlled human infection models (CHIM) present an opportunity to accelerate vaccine development for a range of enteric pathogens. Several recent typhoidal Salmonella CHIMs have been conducted safely and have played pivotal roles in progressing vaccine candidates to pre-qualification and licensure. The Challenge Non-Typhoidal Salmonella (CHANTS) consortium has been formed with funding from the Wellcome Trust, to deliver the first NTS CHIM, which can act as a platform for future vaccine evaluation. This paper reports the conclusions of a consultation group workshop convened with key stakeholders. The aims of this meeting were to: (1) define the rationale for an NTS CHIM (2) map the NTS vaccine pipeline (3) refine study design and (4) establish potential future use cases.
Collapse
Affiliation(s)
- Christopher Smith
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Emma Smith
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Jay Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Blanca Perez Sepulveda
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Melita Gordon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | - Peter W.S. Hill
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - James E. Meiring
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Thomas C. Darton
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Megan E. Carey
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Graham Cooke
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Malick M. Gibani
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - CHANTS Consortium
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- PATH, Seattle, Washington, 98121, USA
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Smith C, Smith E, Chiu C, Hinton J, Perez Sepulveda B, Gordon M, Choy RK, Hill PW, Meiring JE, Darton TC, Carey ME, Cooke G, Gibani MM. The Challenge Non-Typhoidal Salmonella (CHANTS) Consortium: Development of a non-typhoidal Salmonella controlled human infection model: Report from a consultation group workshop, 05 July 2022, London, UK. Wellcome Open Res 2023; 8:111. [PMID: 37808389 PMCID: PMC10558987 DOI: 10.12688/wellcomeopenres.19012.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 04/21/2024] Open
Abstract
Invasive non-typhoidal Salmonella disease (iNTS) is a major cause of morbidity and mortality globally, particularly as a cause of bloodstream infection in children and immunocompromised adults in sub-Saharan Africa. Vaccines to prevent non-typhoidal Salmonella (NTS) would represent a valuable public health tool in this setting to avert cases and prevent expansion of antimicrobial resistance. Several NTS and combination typhoidal-NTS vaccine candidates are in early-stage development, although the pathway to licensure is unclear due to challenges in conducting large phase III field trials. Controlled human infection models (CHIM) present an opportunity to accelerate vaccine development for a range of enteric pathogens. Several recent typhoidal Salmonella CHIMs have been conducted safely and have played pivotal roles in progressing vaccine candidates to pre-qualification and licensure. The Challenge Non-Typhoidal Salmonella (CHANTS) consortium has been formed with funding from the Wellcome Trust, to deliver the first NTS CHIM, which can act as a platform for future vaccine evaluation. This paper reports the conclusions of a consultation group workshop convened with key stakeholders. The aims of this meeting were to: (1) define the rationale for an NTS CHIM (2) map the NTS vaccine pipeline (3) refine study design and (4) establish potential future use cases.
Collapse
Affiliation(s)
- Christopher Smith
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Emma Smith
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Jay Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Blanca Perez Sepulveda
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Melita Gordon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | - Peter W.S. Hill
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - James E. Meiring
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Thomas C. Darton
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Megan E. Carey
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Graham Cooke
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Malick M. Gibani
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - CHANTS Consortium
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- PATH, Seattle, Washington, 98121, USA
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Ortiz JR, Bernstein DI, Hoft DF, Woods CW, McClain MT, Frey SE, Brady RC, Bryant C, Wegel A, Frenck RW, Walter EB, Abate G, Williams SR, Atmar RL, Keitel WA, Rouphael N, Memoli MJ, Makhene MK, Roberts PC, Neuzil KM. A Multicenter, Controlled Human Infection Study of Influenza A(H1N1)pdm09 in Healthy Adults. J Infect Dis 2023; 228:287-298. [PMID: 36702771 PMCID: PMC10420403 DOI: 10.1093/infdis/jiad021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND We evaluated the associations between baseline influenza virus-specific hemagglutination inhibition (HAI) and microneutralization (MN) titers and subsequent symptomatic influenza virus infection in a controlled human infection study. METHODS We inoculated unvaccinated healthy adults aged 18-49 years with an influenza A/California/04/2009/H1N1pdm-like virus (NCT04044352). We collected serial safety labs, serum for HAI and MN, and nasopharyngeal swabs for reverse-transcription polymerase chain reaction (RT-PCR) testing. Analyses used the putative seroprotective titer of ≥40 for HAI and MN. The primary clinical outcome was mild-to-moderate influenza disease (MMID), defined as ≥1 postchallenge positive qualitative RT-PCR test with a qualifying symptom/clinical finding. RESULTS Of 76 participants given influenza virus challenge, 54 (71.1%) experienced MMID. Clinical illness was generally very mild. MMID attack rates among participants with baseline titers ≥40 by HAI and MN were 64.9% and 67.9%, respectively, while MMID attack rates among participants with baseline titers <40 by HAI and MN were 76.9% and 78.3%, respectively. The estimated odds of developing MMID decreased by 19% (odds ratio, 0.81 [95% confidence interval, .62-1.06]; P = .126) for every 2-fold increase in baseline HAI. There were no significant adverse events. CONCLUSIONS We achieved a 71.1% attack rate of MMID. High baseline HAI and MN were associated with protection from illness. Clinical Trials Registration. NCT04044352.
Collapse
Affiliation(s)
- Justin R Ortiz
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | - David I Bernstein
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Ohio; Departments of
| | - Daniel F Hoft
- Internal Medicine and
- Molecular Microbiology and Immunology, Division of Infectious Diseases, Allergy and Immunology and Center for Vaccine Development, Saint Louis University School of Medicine, Missouri
| | - Christopher W Woods
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Micah T McClain
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | | | - Rebecca C Brady
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Ohio; Departments of
| | - Christopher Bryant
- Vaccine and Infectious Disease Therapeutic Research Unit, The Emmes Company, Rockville, Maryland
| | - Ashley Wegel
- Vaccine and Infectious Disease Therapeutic Research Unit, The Emmes Company, Rockville, Maryland
| | - Robert W Frenck
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Ohio; Departments of
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | | | - Sarah R Williams
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore
| | - Robert L Atmar
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Wendy A Keitel
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | | | - Mamodikoe K Makhene
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Paul C Roberts
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
22
|
Morrison H, Jackson S, McShane H. Controlled human infection models in COVID-19 and tuberculosis: current progress and future challenges. Front Immunol 2023; 14:1211388. [PMID: 37304270 PMCID: PMC10248465 DOI: 10.3389/fimmu.2023.1211388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Controlled Human Infection Models (CHIMs) involve deliberately exposing healthy human volunteers to a known pathogen, to allow the detailed study of disease processes and evaluate methods of treatment and prevention, including next generation vaccines. CHIMs are in development for both tuberculosis (TB) and Covid-19, but challenges remain in their ongoing optimisation and refinement. It would be unethical to deliberately infect humans with virulent Mycobacteria tuberculosis (M.tb), however surrogate models involving other mycobacteria, M.tb Purified Protein Derivative or genetically modified forms of M.tb either exist or are under development. These utilise varying routes of administration, including via aerosol, per bronchoscope or intradermal injection, each with their own advantages and disadvantages. Intranasal CHIMs with SARS-CoV-2 were developed against the backdrop of the evolving Covid-19 pandemic and are currently being utilised to both assess viral kinetics, interrogate the local and systemic immunological responses post exposure, and identify immune correlates of protection. In future it is hoped they can be used to assess new treatments and vaccines. The changing face of the pandemic, including the emergence of new virus variants and increasing levels of vaccination and natural immunity within populations, has provided a unique and complex environment within which to develop a SARS-CoV-2 CHIM. This article will discuss current progress and potential future developments in CHIMs for these two globally significant pathogens.
Collapse
|
23
|
Mittal M, Tripathi S, Saini A, Mani I. Phage for treatment of Vibrio cholerae infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:21-39. [PMID: 37770173 DOI: 10.1016/bs.pmbts.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bacteriophages (or "phages") are ubiquitous and the amplest biological entities on our planet. It is a natural enemy of bacteria. Cholera is one of the most known diseases to cause multiple pandemics around the world, killing millions of people. The pathogen of cholera is Vibrio species. Up until the emergence of multidrug resistance, preventive therapeutics like antibiotics were the most effective means of battling bacteria. Globally, one of the most significant challenges in treating microbial infections is the development of drug-resistant strains. Based on their antibacterial properties and unique characteristics, phages are being comprehensively evaluated taxonomically. Moreover, phage-based vaccination is evolving as one of the most encouraging preventive approaches. Due to this, its related research got remarkable recognition. However, due to the rapid emergence of bacterial resistance to antibiotics, the use of phages (phage therapy) could be a major motive for research because the most promising solution lies in bacteriophages. This chapter briefly highlights the promising use of bacteriophages to combat Vibrio-related infectious diseases.
Collapse
Affiliation(s)
- Milky Mittal
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Surbhi Tripathi
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India.
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
24
|
Wiens KE, Iyer AS, Bhuiyan TR, Lu LL, Cizmeci D, Gorman MJ, Yuan D, Becker RL, Ryan ET, Calderwood SB, LaRocque RC, Chowdhury F, Khan AI, Levine MM, Chen WH, Charles RC, Azman AS, Qadri F, Alter G, Harris JB. Predicting Vibrio cholerae infection and symptomatic disease: a systems serology study. THE LANCET. MICROBE 2023; 4:e228-e235. [PMID: 36907197 PMCID: PMC10186354 DOI: 10.1016/s2666-5247(22)00391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 12/09/2022] [Indexed: 03/11/2023]
Abstract
BACKGROUND Vibriocidal antibodies are currently the best characterised correlate of protection against cholera and are used to gauge immunogenicity in vaccine trials. Although other circulating antibody responses have been associated with a decreased risk of infection, the correlates of protection against cholera have not been comprehensively compared. We aimed to analyse antibody-mediated correlates of protection from both V cholerae infection and cholera-related diarrhoea. METHODS We conducted a systems serology study that analysed 58 serum antibody biomarkers as correlates of protection against V cholerae O1 infection or diarrhoea. We used serum samples from two cohorts: household contacts of people with confirmed cholera in Dhaka, Bangladesh, and cholera-naive volunteers who were recruited at three centres in the USA, vaccinated with a single dose of CVD 103-HgR live oral cholera vaccine, and then challenged with V cholerae O1 El Tor Inaba strain N16961. We measured antigen-specific immunoglobulin responses against antigens using a customised Luminex assay and used conditional random forest models to examine which baseline biomarkers were most important for classifying individuals who went on to develop infection versus those who remained uninfected or asymptomatic. V cholerae infection was defined as having a positive stool culture result on days 2-7 or day 30 after enrolment of the household's index cholera case and, in the vaccine challenge cohort, was the development of symptomatic diarrhoea (defined as two or more loose stools of ≥200 mL each, or a single loose stool of ≥300 mL over a 48-h period). FINDINGS In the household contact cohort (261 participants from 180 households), 20 (34%) of the 58 studied biomarkers were associated with protection against V cholerae infection. We identified serum antibody-dependent complement deposition targeting the O1 antigen as the most predictive correlate of protection from infection in the household contacts, whereas vibriocidal antibody titres ranked lower. A five-biomarker model predicted protection from V cholerae infection with a cross-validated area under the curve (cvAUC) of 79% (95% CI 73-85). This model also predicted protection against diarrhoea in unvaccinated volunteers challenged with V cholerae O1 after vaccination (n=67; area under the curve [AUC] 77%, 95% CI 64-90). Although a different five-biomarker model best predicted protection from the development of cholera diarrhoea in the challenged vaccinees (cvAUC 78%, 95% CI 66-91), this model did poorly at predicting protection against infection in the household contacts (AUC 60%, 52-67). INTERPRETATION Several biomarkers predict protection better than vibriocidal titres. A model based on protection against infection among household contacts was predictive of protection against both infection and diarrhoeal illness in challenged vaccinees, suggesting that models based on observed conditions in a cholera-endemic population might be more likely to identify broadly applicable correlates of protection than models trained on single experimental settings. FUNDING National Institute of Allergy and Infectious Diseases and National Institute of Child Health and Human Development, National Institutes of Health.
Collapse
Affiliation(s)
- Kirsten E Wiens
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, USA
| | - Anita S Iyer
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Taufiqur R Bhuiyan
- Infectious Diseases Division, International Centre for Diarrheoal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Lenette L Lu
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine and Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Parkland Health and Hospital System, Dallas, TX, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Matthew J Gorman
- Ragon Institute of MGH, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Dansu Yuan
- Ragon Institute of MGH, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Rachel L Becker
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrheoal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division, International Centre for Diarrheoal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Myron M Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Andrew S Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrheoal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Galit Alter
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Ragon Institute of MGH, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
McCarty JM, Cassie D, Bedell L. Immunogenicity of partial doses of live oral cholera vaccine CVD 103-HgR in children in the United States. Vaccine 2023; 41:2739-2742. [PMID: 36959054 DOI: 10.1016/j.vaccine.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/25/2023]
Abstract
In a phase 4, placebo-controlled, double-blind, multi-center study performed to assess the immunogenicity of a single oral dose of live, attenuated cholera vaccine, volunteers aged 2-17 years were randomized 6:1 to receive 1 × 109 colony forming units of PXVX0200 or placebo. In the subset of subjects who consumed < 80 % of the vaccine dose, seroconversion rates were calculated and stratified by amount consumed. Of 468 subjects dosed, a subset of 33 (7 %) received < 80 % of the vaccine dose. SVA seroconversion occurred in 75.8 % of these subjects, including 100 % (7/7) of those who took 50-80 % and 69.2 % (18/26) of those who took < 50 %, versus 98.5 % of those who consumed 80 % or more. Vaccination with PXVX0200 produced an immune response in most children who received partial dosing. Since SVA seroconversion is a strong correlate of protection, PXVX0200 may protect against cholera infection in children who ingest only part of the vaccine dose.
Collapse
Affiliation(s)
| | - David Cassie
- Emergent BioSolutions Inc., Gaithersburg, MD, United States
| | - Lisa Bedell
- Emergent BioSolutions Inc., Gaithersburg, MD, United States
| |
Collapse
|
26
|
Sharma A, Apte A, Rajappa M, Vaz M, Vaswani V, Goenka S, Malhotra S, Sangoram R, Lakshminarayanan S, Jayaram S, Mathaiyan J, Farseena K, Mukerjee P, Jaswal S, Dongre A, Timms O, Shafiq N, Aggarwal R, Kaur M, Juvekar S, Sekhar A, Kang G. Perceptions about controlled human infection model (CHIM) studies among members of ethics committees of Indian medical institutions: A qualitative exploration. Wellcome Open Res 2023; 7:209. [PMID: 36969719 PMCID: PMC10031138 DOI: 10.12688/wellcomeopenres.17968.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
Introduction: Controlled Human Infection Model (CHIM) studies provide a unique platform for studying the pathophysiology of infectious diseases and accelerated testing of vaccines and drugs in controlled settings. However, ethical issues shroud them as the disease-causing pathogen is intentionally inoculated into healthy consenting volunteers, and effective treatment may or may not be available. We explored the perceptions of the members of institutional ethics committees (IECs) in India about CHIM studies. Methods: This qualitative exploratory study, conducted across seven sites in India, included 11 focused group discussions (FGD) and 31 in-depth interviews (IDI). A flexible approach was used with the aid of a topic guide. The data were thematically analyzed using grounded theory and an inductive approach. Emerging themes and sub-themes were analyzed, and major emergent themes were elucidated. Results: Seventy-two IEC members participated in the study including 21 basic medical scientists, 29 clinicians, 9 lay people, 6 legal experts and 7 social scientists. Three major themes emerged from this analysis-apprehensions about conduct of CHIM studies in India, a perceived need for CHIM studies in India and risk mitigation measures needed to protect research participants and minimize the associated risks. Conclusion: Development of a specific regulatory and ethical framework, training of research staff and ethics committee members, and ensuring specialized research infrastructure along with adequate community sensitization were considered essential before initiation of CHIM studies in India.
Collapse
Affiliation(s)
- Abhishek Sharma
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Aditi Apte
- KEM Hospital Research Centre, Pune, Maharashtra, 411011, India
| | - Medha Rajappa
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Manjulika Vaz
- St John's Medical College, Bengaluru, Karnataka, 560034, India
| | - Vina Vaswani
- Yenepoya University, Mangalore, Karnataka, 575018, India
| | - Shifalika Goenka
- Centre for Chronic Disease Control (CCDC), Delhi, Delhi, 110016, India
| | - Samir Malhotra
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Rashmi Sangoram
- KEM Hospital Research Centre, Pune, Maharashtra, 411011, India
| | - Subitha Lakshminarayanan
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Suganya Jayaram
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Jayanthi Mathaiyan
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | | | - Prarthna Mukerjee
- Centre for Chronic Disease Control (CCDC), Delhi, Delhi, 110016, India
| | - Surinder Jaswal
- Tata Institute of Social Sciences, Mumbai, Maharashtra, 400088, India
| | - Amol Dongre
- Pramukhswami Medical College, Karamsad, Gujarat, 388325, India
| | - Olinda Timms
- St John's Medical College, Bengaluru, Karnataka, 560034, India
| | - Nusrat Shafiq
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Rakesh Aggarwal
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Manmeet Kaur
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Sanjay Juvekar
- KEM Hospital Research Centre, Pune, Maharashtra, 411011, India
| | - Amrita Sekhar
- Translational Health Science and Technology Institute, Faridabad, Haryana, 101213, India
| | - Gagandeep Kang
- Christian Medical College, Vellore, Tamil Nadu, 632004, India
| |
Collapse
|
27
|
Adams-Phipps J, Toomey D, Więcek W, Schmit V, Wilkinson J, Scholl K, Jamrozik E, Osowicki J, Roestenberg M, Manheim D. A Systematic Review of Human Challenge Trials, Designs, and Safety. Clin Infect Dis 2023; 76:609-619. [PMID: 36219704 PMCID: PMC9938741 DOI: 10.1093/cid/ciac820] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Few studies have assessed participant safety in human challenge trials (HCTs). Key questions regarding HCTs include how risky such trials have been, how often adverse events (AEs) and serious adverse events (SAEs) occur, and whether risk mitigation measures have been effective. METHODS A systematic search of PubMed and PubMed Central for articles reporting on results of HCTs published between 1980 and 2021 was performed and completed by 7 October 2021. RESULTS Of 2838 articles screened, 276 were reviewed in full. A total of 15 046 challenged participants were described in 308 studies that met inclusion criteria; 286 (92.9%) of these studies reported mitigation measures used to minimize risk to the challenge population. Among 187 studies that reported on SAEs, 0.2% of participants experienced at least 1 challenge-related SAE. Among 94 studies that graded AEs by severity, challenge-related AEs graded "severe" were reported by between 5.6% and 15.8% of participants. AE data were provided as a range to account for unclear reporting. Eighty percent of studies published after 2010 were registered in a trials database. CONCLUSIONS HCTs are increasingly common and used for an expanding list of diseases. Although AEs occur, severe AEs and SAEs are rare. Reporting has improved over time, though not all papers provide a comprehensive report of relevant health impacts. We found very few severe symptoms or SAEs in studies that reported them, but many HCTs did not report relevant safety data. This study was preregistered on PROSPERO as CRD42021247218.
Collapse
Affiliation(s)
| | - Danny Toomey
- 1Day Sooner Research Team, Lewes, Delaware, USA
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | | | | | - Keller Scholl
- RAND Corporation, Pardee RAND Graduate School, Santa Monica, California, USA
| | - Euzebiusz Jamrozik
- The Ethox Centre & Wellcome Centre for Ethics and the Humanities, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Monash Bioethics Centre, Monash University, Clayton, VIC, Australia
- Royal Melbourne Hospital Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Joshua Osowicki
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, ZAThe Netherlands
| | - David Manheim
- 1Day Sooner Research Team, Lewes, Delaware, USA
- Technion, Israel Institute of Technology, Haifa, Israel
- ALTER, Association for Long Term Existence and Resilience, Rehovot, Israel
| |
Collapse
|
28
|
Lipid nanoparticles technology in vaccines: Shaping the future of prophylactic medicine. Colloids Surf B Biointerfaces 2023; 222:113111. [PMID: 36586237 DOI: 10.1016/j.colsurfb.2022.113111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Throughout decades, the intrinsic power of the immune system to fight pathogens has inspired researchers to develop techniques that enable the prevention or treatment of infections via boosting the immune response against the target pathogens, which has led to the evolution of vaccines. The recruitment of Lipid nanoparticles (LNPs) as either vaccine delivery platforms or immunogenic modalities has witnessed a breakthrough recently, which has been crowned with the development of effective LNPs-based vaccines against COVID-19. In the current article, we discuss some principles of such a technology, with a special focus on the technical aspects from a translational perspective. Representative examples of LNPs-based vaccines against cancer, COVID-19, as well as other infectious diseases, autoimmune diseases, and allergies are highlighted, considering the challenges and promises. Lastly, the key features that can improve the clinical translation of this area of endeavor are inspired.
Collapse
|
29
|
Houser KV, Happe M, Bean R, Coates EE. Vaccines. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
30
|
De-Simone SG, Napoleão-Pêgo P, Gonçalves PS, Lechuga GC, Cardoso SV, Provance DW, Morel CM, da Silva FR. B-Cell Epitope Mapping of the Vibrio cholera Toxins A, B, and P and an ELISA Assay. Int J Mol Sci 2022; 24:531. [PMID: 36613974 PMCID: PMC9820764 DOI: 10.3390/ijms24010531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Oral immunization with the choleric toxin (CT) elicits a high level of protection against its enterotoxin activities and can control cholera in endemic settings. However, the complete B-cell epitope map of the CT that is responsible for protection remains to be clarified. A library of one-hundred, twenty-two 15-mer peptides covering the entire sequence of the three chains of the CT protein (CTP) was prepared by SPOT synthesis. The immunoreactivity of membrane-bound peptides with sera from mice vaccinated with an oral inactivated vaccine (Schankol™) allowed the mapping of continuous B-cell epitopes, topological studies, multi-antigen peptide (MAP) synthesis, and Enzyme-Linked Immunosorbent Assay (ELISA) development. Eighteen IgG epitopes were identified; eight in the CTA, three in the CTB, and seven in the protein P. Three V. cholera specific epitopes, Vc/TxA-3, Vc/TxB-11, and Vc/TxP-16, were synthesized as MAP4 and used to coat ELISA plates in order to screen immunized mouse sera. Sensitivities and specificities of 100% were obtained with the MAP4s of Vc/TxA-3 and Vc/TxB-11. The results revealed a set of peptides whose immunoreactivity reflects the immune response to vaccination. The array of peptide data can be applied to develop improved serological tests in order to detect cholera toxin exposure, as well as next generation vaccines to induce more specific antibodies against the cholera toxin.
Collapse
Affiliation(s)
- Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Molecular and Cellular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-036, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Priscilla S. Gonçalves
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Molecular and Cellular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-036, RJ, Brazil
| | - Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Sergian V. Cardoso
- Department of Health, Graduate Program in Translational Biomedicine (BIOTRANS), University of Grande Rio (UNIGRANRIO), Caxias 25071-202, RJ, Brazil
| | - David W. Provance
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Flavio R. da Silva
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
31
|
Jones FK, Bhuiyan TR, Muise RE, Khan AI, Slater DM, Hutt Vater KR, Chowdhury F, Kelly M, Xu P, Kováč P, Biswas R, Kamruzzaman M, Ryan ET, Calderwood SB, LaRocque RC, Lessler J, Charles RC, Leung DT, Qadri F, Harris JB, Azman AS. Identifying Recent Cholera Infections Using a Multiplex Bead Serological Assay. mBio 2022; 13:e0190022. [PMID: 36286520 PMCID: PMC9765614 DOI: 10.1128/mbio.01900-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Estimates of incidence based on medically attended cholera can be severely biased. Vibrio cholerae O1 leaves a lasting antibody signal and recent advances showed that these can be used to estimate infection incidence rates from cross-sectional serologic data. Current laboratory methods are resource intensive and challenging to standardize across laboratories. A multiplex bead assay (MBA) could efficiently expand the breadth of measured antibody responses and improve seroincidence accuracy. We tested 305 serum samples from confirmed cholera cases (4 to 1083 d postinfection) and uninfected contacts in Bangladesh using an MBA (IgG/IgA/IgM for 7 Vibrio cholerae O1-specific antigens) as well as traditional vibriocidal and enzyme-linked immunosorbent assays (2 antigens, IgG, and IgA). While postinfection vibriocidal responses were larger than other markers, several MBA-measured antibodies demonstrated robust responses with similar half-lives. Random forest models combining all MBA antibody measures allowed for accurate identification of recent cholera infections (e.g., past 200 days) including a cross-validated area under the curve (cvAUC200) of 92%, with simpler 3 IgG antibody models having similar accuracy. Across infection windows between 45 and 300 days, the accuracy of models trained on MBA measurements was non-inferior to models based on traditional assays. Our results illustrated a scalable cholera serosurveillance tool that can be incorporated into multipathogen serosurveillance platforms. IMPORTANCE Reliable estimates of cholera incidence are challenged by poor clinical surveillance and health-seeking behavior biases. We showed that cross-sectional serologic profiles measured with a high-throughput multiplex bead assay can lead to accurate identification of those infected with pandemic Vibrio cholerae O1, thus allowing for estimates of seroincidence. This provides a new avenue for understanding the epidemiology of cholera, identifying priority areas for cholera prevention/control investments, and tracking progress in the global fight against this ancient disease.
Collapse
Affiliation(s)
- Forrest K. Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Taufiqur R. Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rachel E. Muise
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ashraful I. Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Damien M. Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kian Robert Hutt Vater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Peng Xu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pavol Kováč
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rajib Biswas
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Kamruzzaman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
- University of North Carolina Population Center, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Daniel T. Leung
- Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew S. Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Institute of Global Health, University of Geneva, Geneva, Switzerland
| |
Collapse
|
32
|
Collins JP, Ryan ET, Wong KK, Daley MF, Ratner AJ, Appiah GD, Sanchez PJ, Gutelius BJ. Cholera Vaccine: Recommendations of the Advisory Committee on Immunization Practices, 2022. MMWR Recomm Rep 2022; 71:1-8. [PMID: 36173766 PMCID: PMC9536201 DOI: 10.15585/mmwr.rr7102a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This report summarizes all recommendations from CDC’s Advisory
Committee on Immunization Practices (ACIP) for the use of lyophilized CVD
103-HgR vaccine (CVD 103-HgR) (Vaxchora, Emergent BioSolutions,
Gaithersburg, MD) in the United States. The live attenuated oral cholera
vaccine is derived from Vibrio cholerae O1 and is administered in a single dose. Cholera is a
toxin-mediated bacterial gastrointestinal illness caused by
toxigenic V. cholerae serogroup O1 or, uncommonly,
O139. Up to 10% of infections manifest as severe cholera (i.e., cholera
gravis), profuse watery diarrhea that can cause severe dehydration and
death within hours. Fluid replacement therapy can reduce the fatality
rate to <1%. Risk factors for cholera gravis include high dose
exposure, blood group O, increased gastric pH (e.g., from antacid
therapy), and partial gastrectomy. Cholera is rare in the United States,
but cases occur among travelers to countries where cholera is endemic or
epidemic and associated with unsafe water and inadequate sanitation.
Travelers might be at increased risk for poor outcomes from cholera if
they cannot readily access medical services or if they have a medical
condition that would be worsened by dehydration, such as cardiovascular
or kidney disease. This report describes previously published ACIP
recommendations about use of CVD 103-HgR for adults aged 18–64
years and introduces a new recommendation for use in children and
adolescents aged 2–17 years. ACIP recommends CVD 103-HgR, the
only cholera vaccine licensed for use in the United States, for
prevention of cholera among travelers aged 2–64 years to an area
with active cholera transmission. Health care providers can use these
guidelines to develop the pretravel consultation for persons traveling
to areas with active cholera transmission.
Collapse
|
33
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
34
|
Sztein MB, Booth JS. Controlled human infectious models, a path forward in uncovering immunological correlates of protection: Lessons from enteric fevers studies. Front Microbiol 2022; 13:983403. [PMID: 36204615 PMCID: PMC9530043 DOI: 10.3389/fmicb.2022.983403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Enteric infectious diseases account for more than a billion disease episodes yearly worldwide resulting in approximately 2 million deaths, with children under 5 years old and the elderly being disproportionally affected. Enteric pathogens comprise viruses, parasites, and bacteria; the latter including pathogens such as Salmonella [typhoidal (TS) and non-typhoidal (nTS)], cholera, Shigella and multiple pathotypes of Escherichia coli (E. coli). In addition, multi-drug resistant and extensively drug-resistant (XDR) strains (e.g., S. Typhi H58 strain) of enteric bacteria are emerging; thus, renewed efforts to tackle enteric diseases are required. Many of these entero-pathogens could be controlled by oral or parenteral vaccines; however, development of new, effective vaccines has been hampered by lack of known immunological correlates of protection (CoP) and limited knowledge of the factors contributing to protective responses. To fully comprehend the human response to enteric infections, an invaluable tool that has recently re-emerged is the use of controlled human infection models (CHIMs) in which participants are challenged with virulent wild-type (wt) organisms. CHIMs have the potential to uncover immune mechanisms and identify CoP to enteric pathogens, as well as to evaluate the efficacy of therapeutics and vaccines in humans. CHIMs have been used to provide invaluable insights in the pathogenesis, host-pathogen interaction and evaluation of vaccines. Recently, several Oxford typhoid CHIM studies have been performed to assess the role of multiple cell types (B cells, CD8+ T, Tregs, MAIT, Monocytes and DC) during S. Typhi infection. One of the key messages that emerged from these studies is that baseline antigen-specific responses are important in that they can correlate with clinical outcomes. Additionally, volunteers who develop typhoid disease (TD) exhibit higher levels and more activated cell types (e.g., DC and monocytes) which are nevertheless defective in discrete signaling pathways. Future critical aspects of this research will involve the study of immune responses to enteric infections at the site of entry, i.e., the intestinal mucosa. This review will describe our current knowledge of immunity to enteric fevers caused byS. Typhi and S. Paratyphi A, with emphasis on the contributions of CHIMs to uncover the complex immunological responses to these organisms and provide insights into the determinants of protective immunity.
Collapse
Affiliation(s)
- Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Marcelo B. Sztein,
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Jayaum S. Booth,
| |
Collapse
|
35
|
Bernshtein B, Ndungo E, Cizmeci D, Xu P, Kováč P, Kelly M, Islam D, Ryan ET, Kotloff KL, Pasetti MF, Alter G. Systems approach to define humoral correlates of immunity to Shigella. Cell Rep 2022; 40:111216. [PMID: 35977496 PMCID: PMC9396529 DOI: 10.1016/j.celrep.2022.111216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/22/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Shigella infection is the second leading cause of death due to diarrheal disease in young children worldwide. With the rise of antibiotic resistance, initiatives to design and deploy a safe and effective Shigella vaccine are urgently needed. However, efforts to date have been hindered by the limited understanding of immunological correlates of protection against shigellosis. We applied systems serology to perform a comprehensive analysis of Shigella-specific antibody responses in sera obtained from volunteers before and after experimental infection with S. flexneri 2a in a series of controlled human challenge studies. Polysaccharide-specific antibody responses are infrequent prior to infection and evolve concomitantly with disease severity. In contrast, pre-existing antibody responses to type 3 secretion system proteins, particularly IpaB, consistently associate with clinical protection from disease. Linked to particular Fc-receptor binding patterns, IpaB-specific antibodies leverage neutrophils and monocytes, and complement and strongly associate with protective immunity. IpaB antibody-mediated functions improve with a subsequent rechallenge resulting in complete clinical protection. Collectively, our systems serological analyses indicate protein-specific functional correlates of immunity against Shigella in humans. Serological profiling of Shigella human challenge studies indicates protective markers Pre-existing IpaB-specific functional antibodies associate with less severe disease OPS immune responses post challenge are linked to less severe disease Shigella rechallenge boosts IpaB but not OPS functional antibody responses
Collapse
Affiliation(s)
| | - Esther Ndungo
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, Harvard and MIT, Cambridge, MA, USA
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Dilara Islam
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen L Kotloff
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcela F Pasetti
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Galit Alter
- Ragon Institute of MGH, Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
36
|
Sharma A, Apte A, Rajappa M, Vaz M, Vaswani V, Goenka S, Malhotra S, Sangoram R, Lakshminarayanan S, Jayaram S, Mathaiyan J, Farseena K, Mukerjee P, Jaswal S, Dongre A, Timms O, Shafiq N, Aggarwal R, Kaur M, Juvekar S, Sekhar A, Kang G. Perceptions about controlled human infection model (CHIM) studies among members of ethics committees of Indian medical institutions: A qualitative exploration. Wellcome Open Res 2022; 7:209. [PMID: 36969719 PMCID: PMC10031138 DOI: 10.12688/wellcomeopenres.17968.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction: Controlled Human Infection Model (CHIM) studies provide a unique platform for studying the pathophysiology of infectious diseases and accelerated testing of vaccines and drugs in controlled settings. However, ethical issues shroud them as the disease-causing pathogen is intentionally inoculated into healthy consenting volunteers, and effective treatment may or may not be available. We explored the perceptions of the members of institutional ethics committees (IECs) in India about CHIM studies. Methods: This qualitative exploratory study, conducted across seven sites in India, included 11 focused group discussions (FGD) and 31 in-depth interviews (IDI). A flexible approach was used with the aid of a topic guide. The data were thematically analyzed using grounded theory and an inductive approach. Emerging themes and sub-themes were analyzed, and major emergent themes were elucidated. Results: Seventy-two IEC members participated in the study including 21 basic medical scientists, 29 clinicians, 9 lay people, 6 legal experts and 7 social scientists. Three major themes emerged from this analysis-apprehensions about conduct of CHIM studies in India, a perceived need for CHIM studies in India and risk mitigation measures needed to protect research participants and minimize the associated risks. Conclusion: Development of a specific regulatory and ethical framework, training of research staff and ethics committee members, and ensuring specialized research infrastructure along with adequate community sensitization were considered essential before initiation of CHIM studies in India.
Collapse
Affiliation(s)
- Abhishek Sharma
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Aditi Apte
- KEM Hospital Research Centre, Pune, Maharashtra, 411011, India
| | - Medha Rajappa
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Manjulika Vaz
- St John's Medical College, Bengaluru, Karnataka, 560034, India
| | - Vina Vaswani
- Yenepoya University, Mangalore, Karnataka, 575018, India
| | - Shifalika Goenka
- Centre for Chronic Disease Control (CCDC), Delhi, Delhi, 110016, India
| | - Samir Malhotra
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Rashmi Sangoram
- KEM Hospital Research Centre, Pune, Maharashtra, 411011, India
| | - Subitha Lakshminarayanan
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Suganya Jayaram
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Jayanthi Mathaiyan
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | | | - Prarthna Mukerjee
- Centre for Chronic Disease Control (CCDC), Delhi, Delhi, 110016, India
| | - Surinder Jaswal
- Tata Institute of Social Sciences, Mumbai, Maharashtra, 400088, India
| | - Amol Dongre
- Pramukhswami Medical College, Karamsad, Gujarat, 388325, India
| | - Olinda Timms
- St John's Medical College, Bengaluru, Karnataka, 560034, India
| | - Nusrat Shafiq
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Rakesh Aggarwal
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Manmeet Kaur
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Sanjay Juvekar
- KEM Hospital Research Centre, Pune, Maharashtra, 411011, India
| | - Amrita Sekhar
- Translational Health Science and Technology Institute, Faridabad, Haryana, 101213, India
| | - Gagandeep Kang
- Christian Medical College, Vellore, Tamil Nadu, 632004, India
| |
Collapse
|
37
|
Abstract
Cholera is a severe diarrheal disease caused by the bacterium Vibrio cholerae and constitutes a significant public health threat in many areas of the world. V. cholerae infection elicits potent and long-lasting immunity, and efforts to develop cholera vaccines have been ongoing for more than a century. Currently available inactivated two-dose oral cholera vaccines are increasingly deployed to both prevent and actively curb cholera outbreaks, and they are key components of the global effort to eradicate cholera. However, these killed whole-cell vaccines have several limitations, and a variety of new oral and nonoral cholera vaccine platforms have recently been developed. Here, we review emerging concepts in cholera vaccine design and implementation that have been driven by insights from human and animal studies. As a prototypical vaccine-preventable disease, cholera continues to be an excellent target for the development and application of cutting-edge technologies and platforms that may transform vaccinology. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Brandon Sit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA; .,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bolutife Fakoya
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA; .,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA; .,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Massachusetts, USA.,Howard Hughes Medical Institute, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Barnes E, Cooke GS, Lauer GM, Chung RT. Implementation of a controlled human infection model for evaluation of HCV vaccine candidates. Hepatology 2022; 77:1757-1772. [PMID: 35736236 DOI: 10.1002/hep.32632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/08/2022]
Abstract
Hepatitis C virus (HCV) remains a major global health concern. Directly acting antiviral (DAA) drugs have transformed the treatment of HCV. However, it has become clear that, without an effective HCV vaccine, it will not be possible to meet the World Health Organization targets of HCV viral elimination. Promising new vaccine technologies that generate high magnitude antiviral T and B cell immune responses and significant new funding have recently become available, stimulating the HCV vaccine pipeline. In the absence of an immune competent animal model for HCV, the major block in evaluating new HCV vaccine candidates will be the assessment of vaccine efficacy in humans. The development of a controlled human infection model (CHIM) for HCV could overcome this block, enabling the head-to-head assessment of vaccine candidates. The availability of highly effective DAA means that a CHIM for HCV is possible for the first time. In this review, we highlight the challenges and issues with currently available strategies to assess HCV vaccine efficacy including HCV "at-risk" cohorts and animal models. We describe the development of CHIM in other infections that are increasingly utilized by trialists and explore the ethical and safety concerns specific for an HCV CHIM. Finally, we propose an HCV CHIM study design including the selection of volunteers, the development of an infectious inoculum, the evaluation of host immune and viral parameters, and the definition of study end points for use in an HCV CHIM. Importantly, the study design (including number of volunteers required, cost, duration of study, and risk to volunteers) varies significantly depending on the proposed mechanism of action (sterilizing/rapid viral clearance vs. delayed viral clearance) of the vaccine under evaluation. We conclude that an HCV CHIM is now realistic, that safety and ethical concerns can be addressed with the right study design, and that, without an HCV CHIM, it is difficult to envisage how the development of an HCV vaccine will be possible.
Collapse
Affiliation(s)
- Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, UK
| | - Graham S Cooke
- Department of Infectious Disease, Imperial College London, Oxford, UK
| | - Georg M Lauer
- Liver Center, GI Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond T Chung
- Liver Center, GI Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
MacLennan CA, Talaat KR, Kaminski RW, Cohen D, Riddle MS, Giersing BK. Critical Needs in Advancing Shigella Vaccines for Global Health. J Infect Dis 2022; 225:1500-1503. [PMID: 34558631 PMCID: PMC9071279 DOI: 10.1093/infdis/jiab462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 09/22/2021] [Indexed: 11/14/2022] Open
Abstract
Advancing new O-antigen-based Shigella vaccines is critically dependent on development of an international standard serum and harmonized ELISA, demonstration of field efficacy in young children in low- and middle-income countries, and early engagement with regulators and policy makers.
Collapse
Affiliation(s)
| | - Kawsar R Talaat
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Robert W Kaminski
- Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Dani Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mark S Riddle
- University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | | |
Collapse
|
40
|
Fakoya B, Hullahalli K, Rubin DHF, Leitner DR, Chilengi R, Sack DA, Waldor MK. Nontoxigenic Vibrio cholerae Challenge Strains for Evaluating Vaccine Efficacy and Inferring Mechanisms of Protection. mBio 2022; 13:e0053922. [PMID: 35389261 PMCID: PMC9040834 DOI: 10.1128/mbio.00539-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
Human challenge studies are instrumental for testing cholera vaccines, but these studies use outdated strains and require inpatient facilities. Here, we created next-generation isogenic Ogawa and Inaba O1 V. cholerae challenge strains (ZChol strains) derived from a contemporary Zambian clinical isolate representative of current dominant pandemic V. cholerae. Since the primary mechanism of immune protection against cholera is thought to be antibody responses that limit V. cholerae colonization and not the diarrheagenic actions of cholera toxin, these strains were rendered nontoxigenic. In infant mice, the ZChol strains did not cause diarrhea and proved to accurately gauge reduction in intestinal colonization mediated by effective vaccination. ZChol strains were also valuable as targets for measuring vibriocidal antibody responses. Using barcoded ZChol strains, we discovered that vaccination and passive immunity in the infant mouse model tightens the infection bottleneck without restricting pathogen expansion during intestinal infection. Collectively, our findings suggest that ZChol strains have the potential to enhance the safety, relevance, and scope of future cholera vaccine challenge studies and be valuable reagents for studies of immunity to cholera. IMPORTANCE Human challenge studies are a valuable method for testing the efficacy of cholera vaccines. However, challenge studies cannot be performed in countries of cholera endemicity due to safety concerns; also, contemporary pandemic Vibrio cholerae strains are not used in current challenge studies. To facilitate cholera research, we derived nontoxigenic challenge strains of both V. cholerae serotypes from a 2016 clinical isolate from Zambia and demonstrated how they can be used to gauge cholera immunity accurately and safely. These strains were also genetically barcoded, adding the potential for analyses of V. cholerae population dynamics to challenge studies. Preclinical analyses presented here suggest that these strains have the potential to enhance the safety, relevance, and scope of future cholera vaccine challenge studies and be valuable reagents for studies of immunity to cholera.
Collapse
Affiliation(s)
- Bolutife Fakoya
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| | - Daniel H. F. Rubin
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| | - Deborah R. Leitner
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| | - Roma Chilengi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - David A. Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Balasingam S, Meillon S, Chui C, Mann A, La C, Weller CL, King DF, Smith E. Human infection studies: Key considerations for challenge agent development and production. Wellcome Open Res 2022; 7:140. [PMID: 35505774 PMCID: PMC9034172 DOI: 10.12688/wellcomeopenres.17869.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Human infection (or challenge) studies involve the intentional administration of a pathogen (challenge agent) to volunteers. The selection, isolation, development and production of the challenge agent is one of the first steps in developing a challenge study and critical for minimising the risk to volunteers. Regulatory oversight for this production differs globally. Manufacturing agents within a Good Manufacturing Practice (GMP) facility reduces the risk of the manufacturing process by including processes such as confirming the identity of the challenge agent and ascertaining that it's pure and free from impurities. However, in some cases it's not possible or feasible to manufacture to GMP standards, for example where the challenge agent requires an intermediate vector for growth. There is lack of clear guidance on what the minimum requirements for high-quality safe manufacture outside of GMP facilities should be and here we describe the development of a considerations document for the selection and production of challenge agents to meet this need.
Collapse
Affiliation(s)
| | - Sarah Meillon
- Infectious Diseases
- Prevention, Wellcome Trust, UK, London, N1 2BE, UK
| | | | - Alex Mann
- Global Health Innovative Technology Fund, Tokyo 106-0032, Japan
| | - Carine La
- Global Health Innovative Technology Fund, Tokyo 106-0032, Japan
| | | | - Deborah F. King
- Infectious Diseases
- Prevention, Wellcome Trust, UK, London, N1 2BE, UK
| | - Emma Smith
- HIC-Vac, Imperial College London, National Heart & Lung Institute (NHLI), London, W2 1PG, UK
| |
Collapse
|
42
|
Kanungo S, Azman AS, Ramamurthy T, Deen J, Dutta S. Cholera. Lancet 2022; 399:1429-1440. [PMID: 35397865 DOI: 10.1016/s0140-6736(22)00330-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Cholera was first described in the areas around the Bay of Bengal and spread globally, resulting in seven pandemics during the past two centuries. It is caused by toxigenic Vibrio cholerae O1 or O139 bacteria. Cholera is characterised by mild to potentially fatal acute watery diarrhoeal disease. Prompt rehydration therapy is the cornerstone of management. We present an overview of cholera and its pathogenesis, natural history, bacteriology, and epidemiology, while highlighting advances over the past 10 years in molecular epidemiology, immunology, and vaccine development and deployment. Since 2014, the Global Task Force on Cholera Control, a WHO coordinated network of partners, has been working with several countries to develop national cholera control strategies. The global roadmap for cholera control focuses on stopping transmission in cholera hotspots through vaccination and improved water, sanitation, and hygiene, with the aim to reduce cholera deaths by 90% and eliminate local transmission in at least 20 countries by 2030.
Collapse
Affiliation(s)
- Suman Kanungo
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Andrew S Azman
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA; Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Jaqueline Deen
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines-Manila, Manila, Philippines
| | - Shanta Dutta
- National Institute of Cholera and Enteric Diseases, Kolkata, India.
| |
Collapse
|
43
|
Msusa KP, Rogalski-Salter T, Mandi H, Clemens R. Critical success factors for conducting human challenge trials for vaccine development in low- and middle-income countries. Vaccine 2022; 40:1261-1270. [PMID: 35101267 DOI: 10.1016/j.vaccine.2022.01.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Owing to the globalization of vaccine clinical trials, as well as advances in technologies, improved research accountability, and robust regulatory and ethical scrutiny, the choice to perform human challenge trials has become evident, and one of the most significant applications of human challenge trials is the assessment of vaccine efficacy. While human challenge trials have largely been conducted in high-income countries, the concept is relatively new in many low- and middle-income countries. Thus, the aim of this study was to identify the critical success factors for conducting human challenge trials for vaccine development in low- and middle-income countries. METHODOLOGY Using a two-step methodology, we first carried out a systematic literature review that was centered on identifying low- and middle-income countries that are either establishing a framework for, have conducted, or are conducting human challenge trials for vaccine development; secondly, we conducted a descriptive cross-sectional survey using a standardized semi-structured online questionnaire administered to eligible stakeholders, to identify the critical success factors for conducting human challenge trials for vaccine development in low- and middle-income countries. Seventeen low- and middle-income countries were identified and included in the survey. RESULTS The most cited critical success factors for conducting human challenge trials for vaccine development in low- and middle-income countries were Informed Consent, Risk Compensation and/or Reimbursement, Participant Safety and/or Public Protection, Community Engagement, Infrastructural Capacity, and Ethical and Regulatory Frameworks. CONCLUSION From an empirical perspective, this study provides a list of critical success factors that form the basic structure to guide the design and implementation of further human challenge trials in low- and middle-income countries. Further studies are needed to establish a standardized conceptual framework to aid in the review, approval and overall conduct of human challenge trials in low- and middle-income countries.
Collapse
Affiliation(s)
- Keiko Pempho Msusa
- University of Siena, Institute for Global Health, Santa Chiara Lab, Via Val di Montone, 1, 53100 Siena, SI, Italy.
| | - Taryn Rogalski-Salter
- Bill and Melinda Gates Medical Research Institute (Gates MRI), Cambridge, MA, United States
| | - Henshaw Mandi
- Coalition for Epidemic Preparedness Innovations (CEPI), Marcus Thranes Gate 2, 0473 Oslo, Norway
| | - Ralf Clemens
- University of Siena, Institute for Global Health, Santa Chiara Lab, Via Val di Montone, 1, 53100 Siena, SI, Italy
| |
Collapse
|
44
|
Barker C, Collet K, Gbesemete D, Piggin M, Watson D, Pristerà P, Lawerence W, Smith E, Bahrami-Hessari M, Johnson H, Baker K, Qavi A, McGrath C, Chiu C, Read RC, Ward H. Public attitudes to a human challenge study with SARS-CoV-2: a mixed-methods study. Wellcome Open Res 2022; 7:49. [PMID: 35321005 PMCID: PMC8921687 DOI: 10.12688/wellcomeopenres.17516.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Human challenge studies involve the deliberate exposure of healthy volunteers to an infectious micro-organism in a highly controlled and monitored way. They are used to understand infectious diseases and have contributed to the development of vaccines. In early 2020, the UK started exploring the feasibility of establishing a human challenge study with SARS-CoV-2. Given the significant public interest and the complexity of the potential risks and benefits, it is vital that public views are considered in the design and approval of any such study and that investigators and ethics boards remain accountable to the public. Methods: Mixed methods study comprising online surveys conducted with 2,441 UK adults and in-depth virtual focus groups with 57 UK adults during October 2020 to explore the public's attitudes to a human challenge study with SARS-CoV-2 taking place in the UK. Results: There was overall agreement across the surveys and focus groups that a human challenge study with SARS-CoV-2 should take place in the UK. Transparency of information, trust and the necessity to provide clear information on potential risks to study human challenge study participants were important. The perceived risks of taking part included the risk of developing long-term effects from COVID, impact on personal commitments and mental health implications of isolation. There were a number of practical realities to taking part that would influence a volunteer's ability to participate (e.g. Wi-Fi, access to exercise, outside space and work, family and pet commitments). Conclusions: The results identified practical considerations for teams designing human challenge studies. Recommendations were grouped: 1) messaging to potential study participants, 2) review of the protocol and organisation of the study, and 3) more broadly, making the study more inclusive and relevant. This study highlights the value of public consultation in research, particularly in fields attracting public interest and scrutiny .
Collapse
Affiliation(s)
- Caroline Barker
- NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- NIHR Applied Research Collaboration Wessex, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK, UK
| | - Katharine Collet
- NIHR Imperial Biomedical Research Centre, Patient Experience Research Centre, Imperial College London, London, W2 1NY, UK
| | - Diane Gbesemete
- NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- School of Clinical and Experimental Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, S016 6YD, UK
| | - Maria Piggin
- NIHR Imperial Biomedical Research Centre, Patient Experience Research Centre, Imperial College London, London, W2 1NY, UK
| | - Daniella Watson
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, S016 6YD, UK
| | - Philippa Pristerà
- NIHR Imperial Biomedical Research Centre, Patient Experience Research Centre, Imperial College London, London, W2 1NY, UK
| | - Wendy Lawerence
- NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- Global Health Research Institute, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Emma Smith
- National Heart and Lung Institute, Imperial College London, London, W2 1NY, UK
| | - Michael Bahrami-Hessari
- NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Halle Johnson
- NIHR Imperial Biomedical Research Centre, Patient Experience Research Centre, Imperial College London, London, W2 1NY, UK
| | - Katherine Baker
- NIHR Applied Research Collaboration Wessex, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK, UK
| | - Ambar Qavi
- NIHR Imperial Biomedical Research Centre, Patient Experience Research Centre, Imperial College London, London, W2 1NY, UK
| | - Carmel McGrath
- NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- School of Clinical and Experimental Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, S016 6YD, UK
| | - Christopher Chiu
- Department of Infectious Diseases, Imperial College London, London, W2 1NY, UK
| | - Robert C. Read
- NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- School of Clinical and Experimental Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, S016 6YD, UK
| | - Helen Ward
- NIHR Imperial Biomedical Research Centre, Patient Experience Research Centre, Imperial College London, London, W2 1NY, UK
| |
Collapse
|
45
|
Anderson J, Imran S, Frost HR, Azzopardi KI, Jalali S, Novakovic B, Osowicki J, Steer AC, Licciardi PV, Pellicci DG. Immune signature of acute pharyngitis in a Streptococcus pyogenes human challenge trial. Nat Commun 2022; 13:769. [PMID: 35140232 PMCID: PMC8828729 DOI: 10.1038/s41467-022-28335-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
Streptococcus pyogenes causes at least 750 million infections and more than 500,000 deaths each year. No vaccine is currently available for S. pyogenes and the use of human challenge models offer unique and exciting opportunities to interrogate the immune response to infectious diseases. Here, we use high-dimensional flow cytometric analysis and multiplex cytokine and chemokine assays to study serial blood and saliva samples collected during the early immune response in human participants following challenge with S. pyogenes. We find an immune signature of experimental human pharyngitis characterised by: 1) elevation of serum IL-1Ra, IL-6, IFN-γ, IP-10 and IL-18; 2) increases in peripheral blood innate dendritic cell and monocyte populations; 3) reduced circulation of B cells and CD4+ T cell subsets (Th1, Th17, Treg, TFH) during the acute phase; and 4) activation of unconventional T cell subsets, γδTCR + Vδ2+ T cells and MAIT cells. These findings demonstrate that S. pyogenes infection generates a robust early immune response, which may be important for host protection. Together, these data will help advance research to establish correlates of immune protection and focus the evaluation of vaccines.
Collapse
Affiliation(s)
- Jeremy Anderson
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Samira Imran
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Hannah R Frost
- Murdoch Children's Research Institute, Melbourne, Australia
| | | | - Sedigheh Jalali
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Joshua Osowicki
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.
| | - Andrew C Steer
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.
| | - Paul V Licciardi
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - Daniel G Pellicci
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
46
|
Martin P, Alaimo C. The Ongoing Journey of a Shigella Bioconjugate Vaccine. Vaccines (Basel) 2022; 10:vaccines10020212. [PMID: 35214671 PMCID: PMC8878964 DOI: 10.3390/vaccines10020212] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022] Open
Abstract
Shigellosis is a serious disease with a major impact, especially in low-income countries where mortality and morbidity are high. In addition, shigellosis among travelers and military personnel is a cause of significant morbidity and contributes to the increase in antimicrobial resistance. The World Health Organization (WHO) considers the development of a Shigella vaccine a priority for public health. Over the past 60 years, several efforts to develop a Shigella vaccine have been pursued, without success. The principle of preventing shigellosis with a conjugate vaccine was demonstrated in the 1990′s, but this vaccine was not further developed. Bioconjugation is an innovative technology that allows the production of conjugate vaccines in a biological environment to preserve native immunogenic structures. In this review, we describe the journey of the bioconjugate Shigella vaccine, one of the most advanced clinical programs for a Shigella vaccine.
Collapse
|
47
|
McCarty J, Bedell L, De Lame PA, Cassie D, Lock M, Bennett S, Haney D. Update on CVD 103-HgR single-dose, live oral cholera vaccine. Expert Rev Vaccines 2021; 21:9-23. [PMID: 34775892 DOI: 10.1080/14760584.2022.2003709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cholera remains endemic in >50 countries, putting millions at risk, especially young children for whom killed vaccines offer limited protection. An oral, live attenuated vaccine - CVD 103-HgR (Vaxchora vaccine) - was licensed by the US FDA in 2016 for adults aged 18-64 years traveling to endemic regions, based on clinical trials in human volunteers showing the vaccine was well tolerated and conferred 90% efficacy within 10 days. The evidence base for Vaxchora vaccine has expanded with additional clinical trial data, in older adults (aged 46-64 years) and children (aged 2-17 years), demonstrating that the vaccine produces a strong vibriocidal antibody response. Over 68,000 doses have been administered in the United States, with no new safety signals. The dose volume has been reduced in children to improve acceptability, and cold chain requirements are less st ringent, at +2°C─+8°C. The vaccine has recently been licensed in the Untied States for children aged 2-17 years, in Europe for individuals aged ≥2 years, and for home administration in Europe. Next steps include a Phase 4 study in infants (6-23 months). Additional information is needed regarding duration of immunity, the need for and timing of revaccination, and efficacy data from lower-middle-income countries.
Collapse
Affiliation(s)
- James McCarty
- Stanford University School of Medicine, 291 Campus Drive, Stanford, California, USA
| | - Lisa Bedell
- Emergent Travel Health, Redwood City, California, USA
| | | | - David Cassie
- Emergent Travel Health, Redwood City, California, USA
| | - Michael Lock
- Emergent Travel Health, Redwood City, California, USA
| | - Sean Bennett
- Adjuvance Technologies, Inc., Lincoln, Nebraska, USA
| | - Douglas Haney
- Emergent Travel Health, Redwood City, California, USA
| |
Collapse
|
48
|
Macbeth JC, Liu R, Alavi S, Hsiao A. A dysbiotic gut microbiome suppresses antibody mediated-protection against Vibrio cholerae. iScience 2021; 24:103443. [PMID: 34877500 PMCID: PMC8633975 DOI: 10.1016/j.isci.2021.103443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Cholera is a severe diarrheal disease that places a significant burden on global health. Cholera's high morbidity demands effective prophylactic strategies, but oral cholera vaccines exhibit variable efficacy in human populations. One contributor of variance in human populations is the gut microbiome, which in cholera-endemic areas is modulated by malnutrition, cholera, and non-cholera diarrhea. We conducted fecal transplants from healthy human donors and model communities of either human gut microbes that resemble healthy individuals or those of individuals recovering from diarrhea in various mouse models. We show microbiome-specific effects on host antibody responses against Vibrio cholerae, and that dysbiotic human gut microbiomes representative of cholera-endemic areas suppress the immune response against V. cholerae via CD4+ lymphocytes. Our findings suggest that gut microbiome composition at time of infection or vaccination may be pivotal for providing robust mucosal immunity, and suggest a target for improved prophylactic and therapeutic strategies for cholera.
Collapse
Affiliation(s)
- John C Macbeth
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.,Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA
| | - Salma Alavi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
49
|
Oral Cholera Vaccine Efficacy and Effectiveness. Vaccines (Basel) 2021; 9:vaccines9121482. [PMID: 34960228 PMCID: PMC8708586 DOI: 10.3390/vaccines9121482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Although measuring vaccine efficacy through the conventional phase III study design, randomized, double-blinded controlled trial serves as the "gold standard", effectiveness studies, conducted in the context of a public health program, seek to broaden the understanding of the impact of a vaccine in a real world setting including both individual and population level impacts. Cholera is an acute diarrheal infection caused by the ingestion of food or water contaminated with the bacterium Vibrio cholerae. Since the 1980s, either killed or live oral cholera vaccines (OCVs) have been developed and efficacy and effectiveness studies have been conducted on OCV. Although the results of OCV effectiveness studies sometimes showed outliers, the tendency seen is for effectiveness of the vaccine used in public health settings to be somewhat higher than estimated in randomized controlled trials due to the influence of indirect herd protection. Efficacy and Effectiveness studies both generate important information about the vaccine performance characteristics and its impact when used in real world populations at risk for the disease.
Collapse
|
50
|
Erdem R, Ambler G, Al-Ibrahim M, Fraczek K, Dong SD, Gast C, Mercer LD, Raine M, Tennant SM, Chen WH, de Hostos EL, Choy RKM. A Phase 2a randomized, single-center, double-blind, placebo-controlled study to evaluate the safety and preliminary efficacy of oral iOWH032 against cholera diarrhea in a controlled human infection model. PLoS Negl Trop Dis 2021; 15:e0009969. [PMID: 34793441 PMCID: PMC8639072 DOI: 10.1371/journal.pntd.0009969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/02/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
Cholera remains a major cause of infectious diarrhea globally. Despite the increased availability of cholera vaccines, there is still an urgent need for other effective interventions to reduce morbidity and mortality. Furthermore, increased prevalence of antibiotic-resistant Vibrio cholerae threatens the use of many drugs commonly used to treat cholera. We developed iOWH032, a synthetic small molecule inhibitor of the cystic fibrosis transmembrane conductance regulator chloride channel, as an antisecretory, host-directed therapeutic for cholera. In the study reported here, we tested iOWH032 in a Phase 2a cholera controlled human infection model. Forty-seven subjects were experimentally infected with V. cholerae El Tor Inaba strain N16961 in an inpatient setting and randomized to receive 500 mg iOWH032 or placebo by mouth every 8 hours for 3 days to determine the safety and efficacy of the compound as a potential treatment for cholera. We found that iOWH032 was generally safe and achieved a mean (± standard deviation) plasma level of 4,270 ng/mL (±2,170) after 3 days of oral dosing. However, the median (95% confidence interval) diarrheal stool output rate for the iOWH032 group was 25.4 mL/hour (8.9, 58.3), compared to 32.6 mL/hour (15.8, 48.2) for the placebo group, a reduction of 23%, which was not statistically significant. There was also no significant decrease in diarrhea severity and number or frequency of stools associated with iOWH032 treatment. We conclude that iOWH032 does not merit future development for treatment of cholera and offer lessons learned for others developing antisecretory therapeutic candidates that seek to demonstrate proof of principle in a cholera controlled human infection model study. Trial registration: This study is registered with ClinicalTrials.gov as NCT04150250. Cholera, a disease caused by infection with the bacterium Vibrio cholerae, remains a major cause of diarrheal illness and death, particularly in settings with poor sanitation and hygiene. We developed a synthetic chemical, named “iOWH032,” as a potential treatment for cholera, which is administered as oral tablets. The chemical acts by blocking secretions from cells in the intestine, and thereby was expected to prevent fluid loss and dehydration caused by cholera illness. We tested iOWH032 in a clinical study using a cholera human challenge model. Study volunteers were intentionally infected with V. cholerae in an inpatient clinic setting to better study the effects of iOWH032 on infected individuals. This challenge model had been used previously to test cholera vaccine candidates, but this study represents the first test of a potential cholera treatment using the model. We found that treatment of individuals with iOWH032 was safe, but did not result in a significant reduction of cholera illness, based on several different measurements of diarrheal symptoms and severity. This study demonstrates how human challenge models incorporating a relatively small number of subjects can help support decision-making about potential new therapeutics and other interventions for infectious diseases.
Collapse
Affiliation(s)
- Rahsan Erdem
- PATH, Seattle, Washington, United States of America
| | - Gwen Ambler
- PATH, Seattle, Washington, United States of America
| | | | | | | | | | | | | | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Wilbur H. Chen
- Center for Vaccine Development and Global Health, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | | | | |
Collapse
|