1
|
Wang C, Miller N, Vines D, Severns PM, Momany M, Brewer MT. Azole resistance mechanisms and population structure of the human pathogen Aspergillus fumigatus on retail plant products. Appl Environ Microbiol 2024; 90:e0205623. [PMID: 38651929 PMCID: PMC11107156 DOI: 10.1128/aem.02056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprotroph and human-pathogenic fungus that is life-threatening to the immunocompromised. Triazole-resistant A. fumigatus was found in patients without prior treatment with azoles, leading researchers to conclude that resistance had developed in agricultural environments where azoles are used against plant pathogens. Previous studies have documented azole-resistant A. fumigatus across agricultural environments, but few have looked at retail plant products. Our objectives were to determine if azole-resistant A. fumigatus is prevalent in retail plant products produced in the United States (U.S.), as well as to identify the resistance mechanism(s) and population genetic structure of these isolates. Five hundred twenty-five isolates were collected from retail plant products and screened for azole resistance. Twenty-four isolates collected from compost, soil, flower bulbs, and raw peanuts were pan-azole resistant. These isolates had the TR34/L98H, TR46/Y121F/T289A, G448S, and H147Y cyp51A alleles, all known to underly pan-azole resistance, as well as WT alleles, suggesting that non-cyp51A mechanisms contribute to pan-azole resistance in these isolates. Minimum spanning networks showed two lineages containing isolates with TR alleles or the F46Y/M172V/E427K allele, and discriminant analysis of principle components identified three primary clusters. This is consistent with previous studies detecting three clades of A. fumigatus and identifying pan-azole-resistant isolates with TR alleles in a single clade. We found pan-azole resistance in U.S. retail plant products, particularly compost and flower bulbs, which indicates a risk of exposure to these products for susceptible populations and that highly resistant isolates are likely distributed worldwide on these products.IMPORTANCEAspergillus fumigatus has recently been designated as a critical fungal pathogen by the World Health Organization. It is most deadly to people with compromised immune systems, and with the emergence of antifungal resistance to multiple azole drugs, this disease carries a nearly 100% fatality rate without treatment or if isolates are resistant to the drugs used to treat the disease. It is important to determine the relatedness and origins of resistant A. fumigatus isolates in the environment, including plant-based retail products, so that factors promoting the development and propagation of resistant isolates can be identified.
Collapse
Affiliation(s)
- Caroline Wang
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Natalie Miller
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Douglas Vines
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Paul M. Severns
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Michelle Momany
- Fungal Biology Group, Plant Biology Department, University of Georgia, Athens, Georgia, USA
| | - Marin T. Brewer
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Celia-Sanchez BN, Mangum B, Gómez Londoño LF, Wang C, Shuman B, Brewer MT, Momany M. Pan-azole- and multi-fungicide-resistant Aspergillus fumigatus is widespread in the United States. Appl Environ Microbiol 2024; 90:e0178223. [PMID: 38557086 PMCID: PMC11022549 DOI: 10.1128/aem.01782-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Aspergillus fumigatus is an important global fungal pathogen of humans. Azole drugs are among the most effective treatments for A. fumigatus infection. Azoles are also widely used in agriculture as fungicides against fungal pathogens of crops. Azole-resistant A. fumigatus has been increasing in Europe and Asia for two decades where clinical resistance is thought to be driven by agricultural use of azole fungicides. The most prevalent mechanisms of azole resistance in A. fumigatus are tandem repeats (TR) in the cyp51A promoter coupled with mutations in the coding region which result in resistance to multiple azole drugs (pan-azole resistance). Azole-resistant A. fumigatus has been isolated from patients in the United States (U.S.), but little is known about its environmental distribution. To better understand the distribution of azole-resistant A. fumigatus in the U.S., we collected isolates from agricultural sites in eight states and tested 202 isolates for sensitivity to azoles. We found azole-resistant A. fumigatus in agricultural environments in seven states showing that it is widespread in the U.S. We sequenced environmental isolates representing the range of U.S. sample sites and compared them with publicly available environmental worldwide isolates in phylogenetic, principal component, and ADMIXTURE analyses. We found worldwide isolates fell into three clades, and TR-based pan-azole resistance was largely in a single clade that was strongly associated with resistance to multiple agricultural fungicides. We also found high levels of gene flow indicating recombination between clades highlighting the potential for azole-resistance to continue spreading in the U.S.IMPORTANCEAspergillus fumigatus is a fungal pathogen of humans that causes over 250,000 invasive infections each year. It is found in soils, plant debris, and compost. Azoles are the first line of defense antifungal drugs against A. fumigatus. Azoles are also used as agricultural fungicides to combat other fungi that attack plants. Azole-resistant A. fumigatus has been a problem in Europe and Asia for 20 years and has recently been reported in patients in the United States (U.S.). Until this study, we did not know much about azole-resistant A. fumigatus in agricultural settings in the U.S. In this study, we isolated azole-resistant A. fumigatus from multiple states and compared it to isolates from around the world. We show that A. fumigatus which is resistant to azoles and to other strictly agricultural fungicides is widespread in the U.S.
Collapse
Affiliation(s)
| | - B. Mangum
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | | | - C. Wang
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - B. Shuman
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - M. T. Brewer
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - M. Momany
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Konkel Neabore L. Wake-up Call: Rapid Increase in Human Fungal Diseases under Climate Change. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:42001. [PMID: 38648197 PMCID: PMC11034633 DOI: 10.1289/ehp14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
Rising temperatures and extreme weather are setting the stage for increases in fungal diseases. As new pathogenic fungi emerge and known threats spread and evolve, scientists and decision makers are responding.
Collapse
|
4
|
Uehara S, Takahashi Y, Iwakoshi K, Nishino Y, Wada K, Ono A, Hagiwara D, Chiba T, Yokoyama K, Sadamasu K. Isolation of azole-resistant Aspergillus spp. from food products. Med Mycol 2024; 62:myae026. [PMID: 38490745 DOI: 10.1093/mmy/myae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 03/17/2024] Open
Abstract
The prevalence of azole-resistant Aspergillus fumigatus is increasing worldwide and is speculated to be related to the use of azole pesticides. Aspergillus spp., the causative agent of aspergillosis, could be brought into domestic dwellings through food. However, studies on azole-resistant Aspergillus spp. in food products are limited. Therefore, we aimed to isolate Aspergillus spp. from processed foods and commercial agricultural products and performed drug susceptibility tests for azoles. Among 692 food samples, we isolated 99 strains of Aspergillus spp. from 50 food samples, including vegetables (22.9%), citrus fruits (26.3%), cereals (25.5%), and processed foods (1.8%). The isolates belonged to 18 species across eight sections: Aspergillus, Candidi, Clavati, Flavi, Fumigati, Nidulantes, Nigri, and Terrei. The most frequently isolated section was Fumigati with 39 strains, followed by Nigri with 28 strains. Aspergillus fumigatus and A. welwitschiae were the predominant species. Ten A. fumigatus and four cryptic strains, four A. niger cryptic strains, two A. flavus, and four A. terreus strains exceeded epidemiological cutoff values for azoles. Aspergillus tubingensis, A. pseudoviridinutans, A. lentulus, A. terreus, and N. hiratsukae showed low susceptibility to multi-azoles. Foods containing agricultural products were found to be contaminated with Aspergillus spp., with 65.3% of isolates having minimal inhibitory concentrations below epidemiological cutoff values. Additionally, some samples harbored azole-resistant strains of Aspergillus spp. Our study serves as a basis for elucidating the relationship between food, environment, and clinically important Aspergillus spp.
Collapse
Affiliation(s)
- Satomi Uehara
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Yumi Takahashi
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Keiko Iwakoshi
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, Japan
| | - Yukari Nishino
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Kotono Wada
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Asuka Ono
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental Sciences, University of Tsukuba MiCS, University of Tsukuba, Japan
| | - Takashi Chiba
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Keiko Yokoyama
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| |
Collapse
|
5
|
Hui ST, Gifford H, Rhodes J. Emerging Antifungal Resistance in Fungal Pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2024; 11:43-50. [PMID: 38725545 PMCID: PMC11076205 DOI: 10.1007/s40588-024-00219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 05/12/2024]
Abstract
Purpose of Review Over recent decades, the number of outbreaks caused by fungi has increased for humans, plants (including important crop species) and animals. Yet this problem is compounded by emerging antifungal drug resistance in pathogenic species. Resistance develops over time when fungi are exposed to drugs either in the patient or in the environment. Recent Findings Novel resistant variants of fungal pathogens that were previously susceptible are evolving (such as Aspergillus fumigatus) as well as newly emerging fungal species that are displaying antifungal resistance profiles (e.g. Candida auris and Trichophyton indotineae). Summary This review highlights the important topic of emerging antifungal resistance in fungal pathogens and how it evolved, as well as how this relates to a growing public health burden.
Collapse
Affiliation(s)
- Sui Ting Hui
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Hugh Gifford
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
- Department of Medical Microbiology, Radboudumc, the Netherlands
| |
Collapse
|
6
|
Ravenel K, Guegan H, Gastebois A, Bouchara JP, Gangneux JP, Giraud S. Fungal Colonization of the Airways of Patients with Cystic Fibrosis: the Role of the Environmental Reservoirs. Mycopathologia 2024; 189:19. [PMID: 38407729 DOI: 10.1007/s11046-023-00818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/23/2023] [Indexed: 02/27/2024]
Abstract
Filamentous fungi frequently colonize the airways of patients with cystic fibrosis and may cause severe diseases, such as the allergic bronchopulmonary aspergillosis. The most common filamentous fungi capable to chronically colonize the respiratory tract of the patients are Aspergillus fumigatus and Scedosporium species. Defining the treatment strategy may be challenging, the number of available drugs being limited and some of the causative agents being multiresistant microorganisms. The knowledge of the fungal niches in the outdoor and indoor environment is needed for understanding the origin of the contamination of the patients. In light of the abundance of some of the causative molds in compost, agricultural and flower fields, occupational activities related to such environments should be discouraged for patients with cystic fibrosis (CF). In addition, the microbiological monitoring of their indoor environment, including analysis of air and dust on surfaces, is essential to propose preventive measures aiming to reduce the exposure to environmental molds. Nevertheless, some specific niches were also identified in the indoor environment, in relation with humidity which favors the growth of thermotolerant molds. Potted plants were reported as indoor reservoirs for Scedosporium species. Likewise, Exophiala dermatitidis may be spread in the kitchen via dishwashers. However, genotype studies are still required to establish the link between dishwashers and colonization of the airways of CF patients by this black yeast. Moreover, as nothing is known regarding the other filamentous fungi associated with CF, further studies should be conducted to identify other potential specific niches in the habitat.
Collapse
Affiliation(s)
- Kévin Ravenel
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Hélène Guegan
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Amandine Gastebois
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Philippe Bouchara
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Pierre Gangneux
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Sandrine Giraud
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France.
| |
Collapse
|
7
|
Lockhart SR, Chowdhary A, Gold JAW. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat Rev Microbiol 2023; 21:818-832. [PMID: 37648790 DOI: 10.1038/s41579-023-00960-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
During recent decades, the emergence of pathogenic fungi has posed an increasing public health threat, particularly given the limited number of antifungal drugs available to treat invasive infections. In this Review, we discuss the global emergence and spread of three emerging antifungal-resistant fungi: Candida auris, driven by global health-care transmission and possibly facilitated by climate change; azole-resistant Aspergillus fumigatus, driven by the selection facilitated by azole fungicide use in agricultural and other settings; and Trichophyton indotineae, driven by the under-regulated use of over-the-counter high-potency corticosteroid-containing antifungal creams. The diversity of the fungi themselves and the drivers of their emergence make it clear that we cannot predict what might emerge next. Therefore, vigilance is critical to monitoring fungal emergence, as well as the rise in overall antifungal resistance.
Collapse
Affiliation(s)
- Shawn R Lockhart
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Jeremy A W Gold
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
8
|
Tang R, Tan H, Dai Y, Li L, Huang Y, Yao H, Cai Y, Yu G. Application of antimicrobial peptides in plant protection: making use of the overlooked merits. FRONTIERS IN PLANT SCIENCE 2023; 14:1139539. [PMID: 37538059 PMCID: PMC10394246 DOI: 10.3389/fpls.2023.1139539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/07/2023] [Indexed: 08/05/2023]
Abstract
Pathogen infection is one of the major causes of yield loss in the crop field. The rapid increase of antimicrobial resistance in plant pathogens has urged researchers to develop both new pesticides and management strategies for plant protection. The antimicrobial peptides (AMPs) showed potential on eliminating plant pathogenic fungi and bacteria. Here, we first summarize several overlooked advantages and merits of AMPs, which includes the steep dose-response relations, fast killing ability, broad synergism, slow resistance selection. We then discuss the possible application of AMPs for plant protection with above merits, and highlight how AMPs can be incorporated into a more efficient integrated management system that both increases the crop yield and reduce resistance evolution of pathogens.
Collapse
|
9
|
Martins-Santana L, Rezende CP, Rossi A, Martinez-Rossi NM, Almeida F. Addressing Microbial Resistance Worldwide: Challenges over Controlling Life-Threatening Fungal Infections. Pathogens 2023; 12:pathogens12020293. [PMID: 36839565 PMCID: PMC9961291 DOI: 10.3390/pathogens12020293] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Fungal infections are a serious global concern because of their ability to spread and colonize host tissues in immunocompromised individuals. Such infections have been frequently reported worldwide and are currently gaining clinical research relevance owing to their resistant character, representing a bottleneck in treating affected people. Resistant fungi are an emergent public health threat. The upsurge of such pathogens has led to new research toward unraveling the destructive potential evoked by these species. Some fungi-grouped into Candida, Aspergillus, and Cryptococcus-are causative agents of severe and systemic infections. They are associated with high mortality rates and have recently been described as sources of coinfection in COVID-hospitalized patients. Despite the efforts to elucidate the challenges of colonization, dissemination, and infection severity, the immunopathogenesis of fungal diseases remains a pivotal characteristic in fungal burden elimination. The struggle between the host immune system and the physiological strategies of the fungi to maintain cellular viability is complex. In this brief review, we highlight the relevance of drug resistance phenotypes in fungi of clinical significance, taking into consideration their physiopathology and how the scientific community could orchestrate their efforts to avoid fungal infection dissemination and deaths.
Collapse
Affiliation(s)
- Leonardo Martins-Santana
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Caroline Patini Rezende
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Nilce Maria Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
- Correspondence:
| |
Collapse
|
10
|
Verweij PE, Arendrup MC, Alastruey-Izquierdo A, Gold JAW, Lockhart SR, Chiller T, White PL. Dual use of antifungals in medicine and agriculture: How do we help prevent resistance developing in human pathogens? Drug Resist Updat 2022; 65:100885. [PMID: 36283187 PMCID: PMC10693676 DOI: 10.1016/j.drup.2022.100885] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
Abstract
Azole resistance in Aspergillus fumigatus is a One Health resistance threat, where azole fungicide exposure compromises the efficacy of medical azoles. The use of the recently authorized fungicide ipflufenoquin, which shares its mode-of-action with a new antifungal olorofim, underscores the need for risk assessment for dual use of antifungals.
Collapse
Affiliation(s)
- Paul E Verweij
- Department of Medical Microbiology and Radboudumc-CWZ Center of Expertise for Mycology, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Maiken C Arendrup
- Unit for Mycology, Statens Serum Insitut, Copenhagen, Denmark; Department of Medical Microbiology, University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | | | - Jeremy A W Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, USA
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, USA
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, USA
| | - P Lewis White
- Public Health Wales Mycology Reference Laboratory, Cardiff, United Kingdom
| |
Collapse
|
11
|
Fisher MC, Alastruey-Izquierdo A, Berman J, Bicanic T, Bignell EM, Bowyer P, Bromley M, Brüggemann R, Garber G, Cornely OA, Gurr SJ, Harrison TS, Kuijper E, Rhodes J, Sheppard DC, Warris A, White PL, Xu J, Zwaan B, Verweij PE. Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol 2022; 20:557-571. [PMID: 35352028 PMCID: PMC8962932 DOI: 10.1038/s41579-022-00720-1] [Citation(s) in RCA: 373] [Impact Index Per Article: 186.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Invasive fungal infections pose an important threat to public health and are an under-recognized component of antimicrobial resistance, an emerging crisis worldwide. Across a period of profound global environmental change and expanding at-risk populations, human-infecting pathogenic fungi are evolving resistance to all licensed systemic antifungal drugs. In this Review, we highlight the main mechanisms of antifungal resistance and explore the similarities and differences between bacterial and fungal resistance to antimicrobial control. We discuss the research and innovation topics that are needed for risk reduction strategies aimed at minimizing the emergence of resistance in pathogenic fungi. These topics include links between the environment and One Health, surveillance, diagnostics, routes of transmission, novel therapeutics and methods to mitigate hotspots for fungal adaptation. We emphasize the global efforts required to steward our existing antifungal armamentarium, and to direct the research and development of future therapies and interventions.
Collapse
Affiliation(s)
- Matthew C Fisher
- MRC Centre for Global Infectious Disease Outbreak Analysis, Imperial College London, London, UK.
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Tihana Bicanic
- Institute of Infection and Immunity, St George's University London, London, UK
| | - Elaine M Bignell
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Michael Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Roger Brüggemann
- Department of Pharmacy, Radboudumc Institute for Health Sciences and Radboudumc - CWZ Centre of Expertise for Mycology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Gary Garber
- Department of Medicine and the School of Public Health and Epidemiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | | | - Thomas S Harrison
- Institute of Infection and Immunity, St George's University London, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Ed Kuijper
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Outbreak Analysis, Imperial College London, London, UK
| | - Donald C Sheppard
- Infectious Disease in Global Health Program and McGill Interdisciplinary Initiative in Infection and Immunity, McGill University Health Centre, Montreal, Québec, Canada
| | - Adilia Warris
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - P Lewis White
- Public Health Wales Mycology Reference Laboratory, University Hospital of Wales, Cardiff, UK
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Bas Zwaan
- Department of Plant Science, Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| | - Paul E Verweij
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.
- Department of Medical Microbiology and Radboudumc - CWZ Centre of Expertise for Mycology, Radboud University Medical Centre, Nijmegen, Netherlands.
| |
Collapse
|
12
|
Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment. Nat Microbiol 2022; 7:663-674. [PMID: 35469019 PMCID: PMC9064804 DOI: 10.1038/s41564-022-01091-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Infections caused by the fungal pathogen Aspergillus fumigatus are increasingly resistant to first-line azole antifungal drugs. However, despite its clinical importance, little is known about how susceptible patients acquire infection from drug-resistant genotypes in the environment. Here, we present a population genomic analysis of 218 A. fumigatus isolates from across the UK and Ireland (comprising 153 clinical isolates from 143 patients and 65 environmental isolates). First, phylogenomic analysis shows strong genetic structuring into two clades (A and B) with little interclade recombination and the majority of environmental azole resistance found within clade A. Second, we show occurrences where azole-resistant isolates of near-identical genotypes were obtained from both environmental and clinical sources, indicating with high confidence the infection of patients with resistant isolates transmitted from the environment. Third, genome-wide scans identified selective sweeps across multiple regions indicating a polygenic basis to the trait in some genetic backgrounds. These signatures of positive selection are seen for loci containing the canonical genes encoding fungicide resistance in the ergosterol biosynthetic pathway, while other regions under selection have no defined function. Lastly, pan-genome analysis identified genes linked to azole resistance and previously unknown resistance mechanisms. Understanding the environmental drivers and genetic basis of evolving fungal drug resistance needs urgent attention, especially in light of increasing numbers of patients with severe viral respiratory tract infections who are susceptible to opportunistic fungal superinfections.
Collapse
|
13
|
Current Knowledge on Biomaterials for Orthopedic Applications Modified to Reduce Bacterial Adhesive Ability. Antibiotics (Basel) 2022; 11:antibiotics11040529. [PMID: 35453280 PMCID: PMC9024841 DOI: 10.3390/antibiotics11040529] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
A significant challenge in orthopedics is the design of biomaterial devices that are able to perform biological functions by substituting or repairing various tissues and controlling bone repair when required. This review presents an overview of the current state of our recent research into biomaterial modifications to reduce bacterial adhesive ability, compared with previous reviews and excellent research papers, but it is not intended to be exhaustive. In particular, we investigated biomaterials for replacement, such as metallic materials (titanium and titanium alloys) and polymers (ultra-high-molecular-weight polyethylene), and biomaterials for regeneration, such as poly(ε-caprolactone) and calcium phosphates as composites. Biomaterials have been designed, developed, and characterized to define surface/bulk features; they have also been subjected to bacterial adhesion assays to verify their potential capability to counteract infections. The addition of metal ions (e.g., silver), natural antimicrobial compounds (e.g., essential oils), or antioxidant agents (e.g., vitamin E) to different biomaterials conferred strong antibacterial properties and anti-adhesive features, improving their capability to counteract prosthetic joint infections and biofilm formation, which are important issues in orthopedic surgery. The complexity of biological materials is still far from being reached by materials science through the development of sophisticated biomaterials. However, close interdisciplinary work by materials scientists, engineers, microbiologists, chemists, physicists, and orthopedic surgeons is indeed necessary to modify the structures of biomaterials in order to achieve implant integration and tissue regeneration while avoiding microbial contamination.
Collapse
|
14
|
Shelton JMG, Collins R, Uzzell CB, Alghamdi A, Dyer PS, Singer AC, Fisher MC. Citizen Science Surveillance of Triazole-Resistant Aspergillus fumigatus in United Kingdom Residential Garden Soils. Appl Environ Microbiol 2022; 88:e0206121. [PMID: 34986003 PMCID: PMC8862786 DOI: 10.1128/aem.02061-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022] Open
Abstract
Compost is an ecological niche for Aspergillus fumigatus due to its role as a decomposer of organic matter and its ability to survive the high temperatures associated with the composting process. Subsequently, composting facilities are associated with high levels of A. fumigatus spores that are aerosolized from compost and cause respiratory illness in workers. In the UK, gardening is an activity enjoyed by individuals of all ages, and it is likely that they are being exposed to A. fumigatus spores when handling commercial compost or compost they have produced themselves. In the present study, 246 citizen scientists collected 509 soil samples from locations in their gardens in the UK, from which were cultured 5,174 A. fumigatus isolates. Of these isolates, 736 (14%) were resistant to tebuconazole: the third most-sprayed triazole fungicide in the UK, which confers cross-resistance to the medical triazoles used to treat A. fumigatus lung infections in humans. These isolates were found to contain the common resistance mechanisms in the A. fumigatus cyp51A gene TR34/L98H or TR46/Y121F/T289A, as well as the less common resistance mechanisms TR34, TR53, TR46/Y121F/T289A/S363P/I364V/G448S, and (TR46)2/Y121F/M172I/T289A/G448S. Regression analyses found that soil samples containing compost were significantly more likely to grow tebuconazole-susceptible and tebuconazole-resistant A. fumigatus strains than those that did not and that compost samples grew significantly higher numbers of A. fumigatus than other samples. IMPORTANCE The findings presented here highlight compost as a potential health hazard to individuals with predisposing factors to A. fumigatus lung infections and as a potential health hazard to immunocompetent individuals who could be exposed to sufficiently high numbers of spores to develop infection. Furthermore, we found that 14% of A. fumigatus isolates in garden soils were resistant to an agricultural triazole, which confers cross-resistance to medical triazoles used to treat A. fumigatus lung infections. This raises the question of whether compost bags should carry additional health warnings regarding inhalation of A. fumigatus spores, whether individuals should be advised to wear facemasks while handling compost, or whether commercial producers should be responsible for sterilizing compost before shipping. The findings support increasing public awareness of the hazard posed by compost and investigating measures that can be taken to reduce the exposure risk.
Collapse
Affiliation(s)
- Jennifer M. G. Shelton
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- UK Centre for Ecology & Hydrology, Wallingford, UK
| | | | - Christopher B. Uzzell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Asmaa Alghamdi
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Paul S. Dyer
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Matthew C. Fisher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| |
Collapse
|
15
|
Kakeya H. Medical Mycology Seen Through a One Health Approach. Med Mycol J 2022; 63:11-15. [DOI: 10.3314/mmj.22.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hiroshi Kakeya
- Department of Infection Control Science, Osaka City University Graduate School of Medicine
| |
Collapse
|
16
|
Rivelli Zea SM, Toyotome T. Azole-resistant Aspergillus fumigatus as an emerging worldwide pathogen. Microbiol Immunol 2021; 66:135-144. [PMID: 34870333 DOI: 10.1111/1348-0421.12957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022]
Abstract
Aspergillus fumigatus, a ubiquitous pathogen, causes aspergillosis in humans, especially in immunodeficient patients. Azoles are frontline antifungal drugs for treating aspergillosis. The recent global emergence of azole resistance in A. fumigatus has become a serious problem worldwide. It has arisen through two routes: long-term azole medical therapy, called the patient route, and the use of azole fungicides in its habitats especially for agricultural activities, called the environmental route. Resistant strains developed through the latter route show cross-resistance to medical azoles because of the identical molecular target Cyp51A between azole compounds used for medical treatment and agricultural disease control. In azole-resistant strains arising through the environmental route, A. fumigatus is observed frequently possessing mutations in the cyp51A gene linked to tandem repeats in the promoter region such as TR34 /L98H and TR46 /Y121F/T289A. Results of microsatellite genotyping analyses of resistant A. fumigatus strains have suggested a transboundary spread of this microorganism in many countries. Diverse actors are involved in the global highway of transmission. Therefore, the matter must be addressed as a "One Health" issue. This review presents a background of azole resistance in A. fumigatus and introduces newly discovered difficulties generated as this pathogen spreads worldwide. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Takahito Toyotome
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine.,Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine.,Medical Mycology Research Center, Chiba University
| |
Collapse
|
17
|
Bastos RW, Rossato L, Goldman GH, Santos DA. Fungicide effects on human fungal pathogens: Cross-resistance to medical drugs and beyond. PLoS Pathog 2021; 17:e1010073. [PMID: 34882756 PMCID: PMC8659312 DOI: 10.1371/journal.ppat.1010073] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fungal infections are underestimated threats that affect over 1 billion people, and Candida spp., Cryptococcus spp., and Aspergillus spp. are the 3 most fatal fungi. The treatment of these infections is performed with a limited arsenal of antifungal drugs, and the class of the azoles is the most used. Although these drugs present low toxicity for the host, there is an emergence of therapeutic failure due to azole resistance. Drug resistance normally develops in patients undergoing azole long-term therapy, when the fungus in contact with the drug can adapt and survive. Conversely, several reports have been showing that resistant isolates are also recovered from patients with no prior history of azole therapy, suggesting that other routes might be driving antifungal resistance. Intriguingly, antifungal resistance also happens in the environment since resistant strains have been isolated from plant materials, soil, decomposing matter, and compost, where important human fungal pathogens live. As the resistant fungi can be isolated from the environment, in places where agrochemicals are extensively used in agriculture and wood industry, the hypothesis that fungicides could be driving and selecting resistance mechanism in nature, before the contact of the fungus with the host, has gained more attention. The effects of fungicide exposure on fungal resistance have been extensively studied in Aspergillus fumigatus and less investigated in other human fungal pathogens. Here, we discuss not only classic and recent studies showing that environmental azole exposure selects cross-resistance to medical azoles in A. fumigatus, but also how this phenomenon affects Candida and Cryptococcus, other 2 important human fungal pathogens found in the environment. We also examine data showing that fungicide exposure can select relevant changes in the morphophysiology and virulence of those pathogens, suggesting that its effect goes beyond the cross-resistance.
Collapse
Affiliation(s)
- Rafael W. Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Luana Rossato
- Federal University of Grande Dourados, Dourados-MS, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Daniel A. Santos
- Laboratory of Mycology, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| |
Collapse
|
18
|
Doughty KJ, Sierotzki H, Semar M, Goertz A. Selection and Amplification of Fungicide Resistance in Aspergillus fumigatus in Relation to DMI Fungicide Use in Agronomic Settings: Hotspots versus Coldspots. Microorganisms 2021; 9:2439. [PMID: 34946041 PMCID: PMC8704312 DOI: 10.3390/microorganisms9122439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprophytic fungus. Inhalation of A. fumigatus spores can lead to Invasive Aspergillosis (IA) in people with weakened immune systems. The use of triazole antifungals with the demethylation inhibitor (DMI) mode of action to treat IA is being hampered by the spread of DMI-resistant "ARAf" (azole-resistant Aspergillus fumigatus) genotypes. DMIs are also used in the environment, for example, as fungicides to protect yield and quality in agronomic settings, which may lead to exposure of A. fumigatus to DMI residues. An agronomic setting can be a "hotspot" for ARAf if it provides a suitable substrate and favourable conditions for the growth of A. fumigatus in the presence of DMI fungicides at concentrations capable of selecting ARAf genotypes at the expense of the susceptible wild-type, followed by the release of predominantly resistant spores. Agronomic settings that do not provide these conditions are considered "coldspots". Identifying and mitigating hotspots will be key to securing the agronomic use of DMIs without compromising their use in medicine. We provide a review of studies of the prevalence of ARAf in various agronomic settings and discuss the mitigation options for confirmed hotspots, particularly those relating to the management of crop waste.
Collapse
Affiliation(s)
- Kevin J. Doughty
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| | - Helge Sierotzki
- Syngenta Crop Protection, Schaffhauserstrasse 101, 4332 Stein, Switzerland;
| | - Martin Semar
- BASF SE, Speyerer Strasse 2, 67117 Limburgerhof, Germany;
| | - Andreas Goertz
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| |
Collapse
|
19
|
Fraaije BA, Atkins SL, Santos RF, Hanley SJ, West JS, Lucas JA. Epidemiological Studies of Pan-Azole Resistant Aspergillus fumigatus Populations Sampled during Tulip Cultivation Show Clonal Expansion with Acquisition of Multi-Fungicide Resistance as Potential Driver. Microorganisms 2021; 9:2379. [PMID: 34835504 PMCID: PMC8618125 DOI: 10.3390/microorganisms9112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
Pan-azole resistant isolates are found in clinical and environmental Aspergillus fumigatus (Af) populations. Azole resistance can evolve in both settings, with Af directly targeted by antifungals in patients and, in the environment, Af unintendedly exposed to fungicides used for material preservation and plant disease control. Resistance to non-azole fungicides, including methyl benzimidazole carbamates (MBCs), quinone outside inhibitors (QoIs) and succinate dehydrogenase inhibitors (SDHIs), has recently been reported. These fungicide groups are not used in medicine but can play an important role in the further spread of pan-azole resistant genotypes. We investigated the multi-fungicide resistance status and the genetic diversity of Af populations sampled from tulip field soils, tulip peel waste and flower compost heaps using fungicide sensitivity testing and a range of genotyping tools, including STRAf typing and sequencing of fungicide resistant alleles. Two major clones were present in the tulip bulb population. Comparisons with clinical isolates and literature data revealed that several common clonal lineages of TR34/L98H and TR46/Y121F/T289A strains that have expanded successfully in the environment have also acquired resistance to MBC, QoI and/or SDHI fungicides. Strains carrying multiple fungicide resistant alleles have a competitive advantage in environments where residues of multiple fungicides belonging to different modes of action are present.
Collapse
Affiliation(s)
- Bart A. Fraaije
- NIAB, Cambridge CB3 0LE, UK;
- Rothamsted Research, Harpenden AL5 2Q, UK; (S.J.H.); (J.S.W.); (J.A.L.)
| | | | - Ricardo F. Santos
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Steven J. Hanley
- Rothamsted Research, Harpenden AL5 2Q, UK; (S.J.H.); (J.S.W.); (J.A.L.)
| | - Jonathan S. West
- Rothamsted Research, Harpenden AL5 2Q, UK; (S.J.H.); (J.S.W.); (J.A.L.)
| | - John A. Lucas
- Rothamsted Research, Harpenden AL5 2Q, UK; (S.J.H.); (J.S.W.); (J.A.L.)
| |
Collapse
|
20
|
Rocchi S, Sewell TR, Valot B, Godeau C, Laboissiere A, Millon L, Fisher MC. Molecular Epidemiology of Azole-Resistant Aspergillus fumigatus in France Shows Patient and Healthcare Links to Environmentally Occurring Genotypes. Front Cell Infect Microbiol 2021; 11:729476. [PMID: 34660341 PMCID: PMC8512841 DOI: 10.3389/fcimb.2021.729476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/09/2021] [Indexed: 01/14/2023] Open
Abstract
Resistance of the human pathogenic fungus Aspergillus fumigatus to antifungal agents is on the rise. However, links between patient infections, their potential acquisition from local environmental sources, and links to global diversity remain cryptic. Here, we used genotyping analyses using nine microsatellites in A. fumigatus, in order to study patterns of diversity in France. In this study, we genotyped 225 local A. fumigatus isolates, 112 azole susceptible and 113 azole resistant, collected from the Bourgogne-Franche-Comté region (Eastern France) and sampled from both clinical (n = 34) and environmental (n = 191) sources. Azole-resistant clinical isolates (n = 29) were recovered mainly from cystic fibrosis patients and environmental isolates (n = 84) from market gardens and sawmills. In common with previous studies, the TR34/L98H allele predominated and comprised 80% of resistant isolates. The genotypes obtained for these local TR34/L98H isolates were integrated into a broader analysis including all genotypes for which data are available worldwide. We found that dominant local TR34/L98H genotypes were isolated in different sample types at different dates (different patients and types of environments) with hospital air and patient's isolates linked. Therefore, we are not able to rule out the possibility of some nosocomial transmission. We also found genotypes in these same environments to be highly diverse, emphasizing the highly mixed nature of A. fumigatus populations. Identical clonal genotypes were found to occur both in the French Eastern region and in the rest of the world (notably Australia), while others have not yet been observed and could be specific to our region. Our study demonstrates the need to integrate patient, healthcare, and environmental sampling with global databases in order to contextualize the local-scale epidemiology of antifungal resistant aspergillosis.
Collapse
Affiliation(s)
- Steffi Rocchi
- Department of Parasitology and Mycology, Centre Hospitalier Universitaire, Besançon, France.,Chrono-Environnement Research Team UMR/CNRS-6249, Bourgogne-Franche-Comté University, Besançon, France
| | - Thomas R Sewell
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial School of Public Health, Imperial College London, London, United Kingdom
| | - Benoit Valot
- Chrono-Environnement Research Team UMR/CNRS-6249, Bourgogne-Franche-Comté University, Besançon, France
| | - Chloé Godeau
- Chrono-Environnement Research Team UMR/CNRS-6249, Bourgogne-Franche-Comté University, Besançon, France
| | - Audrey Laboissiere
- Chrono-Environnement Research Team UMR/CNRS-6249, Bourgogne-Franche-Comté University, Besançon, France
| | - Laurence Millon
- Department of Parasitology and Mycology, Centre Hospitalier Universitaire, Besançon, France.,Chrono-Environnement Research Team UMR/CNRS-6249, Bourgogne-Franche-Comté University, Besançon, France
| | - Matthew C Fisher
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Takahashi H, Oiki S, Kusuya Y, Urayama S, Hagiwara D. Intimate genetic relationships and fungicide resistance in multiple strains of Aspergillus fumigatus isolated from a plant bulb. Environ Microbiol 2021; 23:5621-5638. [PMID: 34464008 PMCID: PMC9292267 DOI: 10.1111/1462-2920.15724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Fungal infections are increasingly dangerous because of environmentally dispersed resistance to antifungal drugs. Azoles are commonly used antifungal drugs, but they are also used as fungicides in agriculture, which may enable enrichment of azole-resistant strains of the human pathogen Aspergillus fumigatus in the environment. Understanding of environmental dissemination and enrichment of genetic variation associated with azole resistance in A. fumigatus is required to suppress resistant strains. Here, we focused on eight strains of azole-resistant A. fumigatus isolated from a single tulip bulb for sale in Japan. This set includes strains with TR34 /L98H/T289A/I364V/G448S and TR46 /Y121F/T289A/S363P/I364V/G448S mutations in the cyp51A gene, which showed higher tolerance to several azoles than strains harbouring TR46 /Y121F/T289A mutation. The strains were typed by microsatellite typing, single nucleotide polymorphism profiles, and mitochondrial and nuclear genome analyses. The strains grouped differently using each typing method, suggesting historical genetic recombination among the strains. Our data also revealed that some strains isolated from the tulip bulb showed tolerance to other classes of fungicides, such as QoI and carbendazim, followed by related amino acid alterations in the target proteins. Considering spatial-temporal factors, plant bulbs are an excellent environmental niche for fungal strains to encounter partners, and to obtain and spread resistance-associated mutations.
Collapse
Affiliation(s)
- Hiroki Takahashi
- Medical Mycology Research CenterChiba University, 1‐8‐1 InohanaChuo‐kuChiba260‐8673Japan
- Molecular Chirality Research CenterChiba University, 1‐33 Yayoi‐choInage‐kuChiba263‐8522Japan
- Plant Molecular Science CenterChiba University, 1‐8‐1 InohanaChuo‐kuChiba260‐8675Japan
| | - Sayoko Oiki
- Faculty of Life and Environmental SciencesUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
| | - Yoko Kusuya
- Medical Mycology Research CenterChiba University, 1‐8‐1 InohanaChuo‐kuChiba260‐8673Japan
| | - Syun‐ichi Urayama
- Faculty of Life and Environmental SciencesUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
- Microbiology Research Center for SustainabilityUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental SciencesUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
- Microbiology Research Center for SustainabilityUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
| |
Collapse
|
22
|
Burks C, Darby A, Gómez Londoño L, Momany M, Brewer MT. Azole-resistant Aspergillus fumigatus in the environment: Identifying key reservoirs and hotspots of antifungal resistance. PLoS Pathog 2021; 17:e1009711. [PMID: 34324607 PMCID: PMC8321103 DOI: 10.1371/journal.ppat.1009711] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic human pathogen that causes aspergillosis, a spectrum of environmentally acquired respiratory illnesses. It has a cosmopolitan distribution and exists in the environment as a saprotroph on decaying plant matter. Azoles, which target Cyp51A in the ergosterol synthesis pathway, are the primary class of drugs used to treat aspergillosis. Azoles are also used to combat plant pathogenic fungi. Recently, an increasing number of azole-naive patients have presented with pan-azole-resistant strains of A. fumigatus. The TR34/L98H and TR46/Y121F/T289A alleles in the cyp51A gene are the most common ones conferring pan-azole resistance. There is evidence that these mutations arose in agricultural settings; therefore, numerous studies have been conducted to identify azole resistance in environmental A. fumigatus and to determine where resistance is developing in the environment. Here, we summarize the global occurrence of azole-resistant A. fumigatus in the environment based on available literature. Additionally, we have created an interactive world map showing where resistant isolates have been detected and include information on the specific alleles identified, environmental settings, and azole fungicide use. Azole-resistant A. fumigatus has been found on every continent, except for Antarctica, with the highest number of reports from Europe. Developed environments, specifically hospitals and gardens, were the most common settings where azole-resistant A. fumigatus was detected, followed by soils sampled from agricultural settings. The TR34/L98H resistance allele was the most common in all regions except South America where the TR46/Y121F/T289A allele was the most common. A major consideration in interpreting this survey of the literature is sampling bias; regions and environments that have been extensively sampled are more likely to show greater azole resistance even though resistance could be more prevalent in areas that are under-sampled or not sampled at all. Increased surveillance to pinpoint reservoirs, as well as antifungal stewardship, is needed to preserve this class of antifungals for crop protection and human health.
Collapse
Affiliation(s)
- Caroline Burks
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Alexandria Darby
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Luisa Gómez Londoño
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Michelle Momany
- Plant Biology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Marin T. Brewer
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
23
|
Brackin AP, Shelton JMG, Abdolrasouli A, Fisher MC, Sewell TR. A Low-Cost Tebuconazole-Based Screening Test for Azole-Resistant Aspergillus fumigatus. ACTA ACUST UNITED AC 2021; 58:e112. [PMID: 32857921 DOI: 10.1002/cpmc.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The global emergence of azole resistance in Aspergillus fumigatus is resulting in health and food security concerns. Rapid diagnostics and environmental surveillance methods are key to understanding the distribution and prevalence of azole resistance. However, such methods are often associated with high costs and are not always applicable to laboratories based in the least-developed countries. Here, we present and validate a low-cost screening protocol that can be used to differentiate between azole-susceptible "wild-type" and azole-resistant A. fumigatus isolates. © 2020 The Authors. Basic Protocol 1: Preparation of Tebucheck multi-well plates Basic Protocol 2: Inoculation of Tebucheck multi-well plates.
Collapse
Affiliation(s)
- Amelie P Brackin
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Jennifer M G Shelton
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Alireza Abdolrasouli
- Diagnostic Mycology Service, Department of Medical Microbiology, North West London Pathology, Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Thomas R Sewell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Toda M, Beer KD, Kuivila KM, Chiller TM, Jackson BR. Trends in Agricultural Triazole Fungicide Use in the United States, 1992-2016 and Possible Implications for Antifungal-Resistant Fungi in Human Disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:55001. [PMID: 33949891 PMCID: PMC8098123 DOI: 10.1289/ehp7484] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND The fungus Aspergillus fumigatus (A. fumigatus) is the leading cause of invasive mold infections, which cause severe disease and death in immunocompromised people. Use of triazole antifungal medications in recent decades has improved patient survival; however, triazole-resistant infections have become common in parts of Europe and are emerging in the United States. Triazoles are also a class of fungicides used in plant agriculture, and certain triazole-resistant A. fumigatus strains found causing disease in humans have been linked to environmental fungicide use. OBJECTIVES We examined U.S. temporal and geographic trends in the use of triazole fungicides using U.S. Geological Survey agricultural pesticide use estimates. DISCUSSION Based on our analysis, overall tonnage of triazole fungicide use nationwide was relatively constant during 1992-2005 but increased >4-fold during 2006-2016 to 2.9 million kg in 2016. During 1992-2005, triazole fungicide use occurred mostly in orchards and grapes, wheat, and other crops, but recent increases in use have occurred primarily in wheat, corn, soybeans, and other crops, particularly in Midwest and Southeast states. We conclude that, given the chemical similarities between triazole fungicides and triazole antifungal drugs used in human medicine, increased monitoring for environmental and clinical triazole resistance in A. fumigatus would improve overall understanding of these interactions, as well as help identify strategies to mitigate development and spread of resistance. https://doi.org/10.1289/EHP7484.
Collapse
Affiliation(s)
- Mitsuru Toda
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Karlyn D. Beer
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kathryn M. Kuivila
- U.S. Geological Survey Oregon Water Science Center, Portland, Oregon, USA
| | - Tom M. Chiller
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brendan R. Jackson
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Rocchi S, Godeau C, Scherer E, Reboux G, Millon L. One year later: The effect of changing azole-treated bulbs for organic tulips bulbs in hospital environment on the azole-resistant Aspergillus fumigatus rate. Med Mycol 2021; 59:741-743. [PMID: 33690850 DOI: 10.1093/mmy/myab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Azole-treated plant bulbs have already been evoked as a potential explanation of the worldwide spread of azole-resistant Aspergillus fumigatus (ARAf). We previously pointed out the presence of a high rate of ARAf (71% of A. fumigatus detected on azole-supplemented media) in flower beds containing azole-treated bulbs at the hospital's surroundings. We show here that planting organic bulbs can be a solution to reduce ARAf burden (from 71% rate to below 3%). The results suggest that replacing treated bulbs with organic bulbs may be sufficient to regain a population that is predominantly susceptible in just 1 year. LAY SUMMARY Antifungal resistance is increasingly observed in fungal pathogens. This study argues that planting organic bulbs in hospitals' outdoor surroundings could be a good alternative to continue to beautify green spaces, without the risk of dissipating antifungal-resistant fungal pathogens.
Collapse
Affiliation(s)
- Steffi Rocchi
- Parasitology-Mycology Department, University Hospital, 25000, Besançon, France.,Chrono-Environnement UMR 6249 CNRS, Bourgogne Franche-Comté University, 25000, Besançon, France
| | - Chloé Godeau
- Chrono-Environnement UMR 6249 CNRS, Bourgogne Franche-Comté University, 25000, Besançon, France
| | - Emeline Scherer
- Parasitology-Mycology Department, University Hospital, 25000, Besançon, France.,Chrono-Environnement UMR 6249 CNRS, Bourgogne Franche-Comté University, 25000, Besançon, France
| | - Gabriel Reboux
- Parasitology-Mycology Department, University Hospital, 25000, Besançon, France.,Chrono-Environnement UMR 6249 CNRS, Bourgogne Franche-Comté University, 25000, Besançon, France
| | - Laurence Millon
- Parasitology-Mycology Department, University Hospital, 25000, Besançon, France.,Chrono-Environnement UMR 6249 CNRS, Bourgogne Franche-Comté University, 25000, Besançon, France
| |
Collapse
|
26
|
Nasri S, Bayat M, Kochia K. Strategies for synthesis of 1,2,4-triazole-containing scaffolds using 3-amino-1,2,4-triazole. Mol Divers 2021; 26:717-739. [PMID: 33608844 DOI: 10.1007/s11030-021-10197-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
1,2,4-Triazole-containing scaffolds are unique heterocyclic compounds present in an array of pharmaceuticals and biologically important compounds used in the drug-discovery studies against cancer cells, microbes, and various types of disease in the human body. This review article summarizes the pharmacological significance of the 1,2,4-triazole-containing scaffolds and highlights the latest strategies for the synthesis of these privileged scaffolds using 3-amino-1,2,4-triazole. This review stimulates further research to find new and efficient methodologies for accessing new 1,2,4-triazole-containing scaffolds which would be very useful for the discover of new drug candidates.
Collapse
Affiliation(s)
- Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Khudaidad Kochia
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
27
|
Fraaije B, Atkins S, Hanley S, Macdonald A, Lucas J. The Multi-Fungicide Resistance Status of Aspergillus fumigatus Populations in Arable Soils and the Wider European Environment. Front Microbiol 2020; 11:599233. [PMID: 33384673 PMCID: PMC7770239 DOI: 10.3389/fmicb.2020.599233] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
The evolution and spread of pan-azole resistance alleles in clinical and environmental isolates of Aspergillus fumigatus is a global human health concern. The identification of hotspots for azole resistance development in the wider environment can inform optimal measures to counteract further spread by minimizing exposure to azole fungicides and reducing inoculum build-up and pathogen dispersal. We investigated the fungicide sensitivity status of soil populations sampled from arable crops and the wider environment and compared these with urban airborne populations. Low levels of azole resistance were observed for isolates carrying the CYP51A variant F46Y/M172V/E427K, all belonging to a cluster of related cell surface protein (CSP) types which included t07, t08, t13, t15, t19, and t02B, a new allele. High levels of resistance were found in soil isolates carrying CYP51A variants TR34/L98H and TR46/Y121F/T289A, all belonging to CSP types t01, t02, t04B, or t11. TR46/Y121F/M172V/T289A/G448S (CSP t01) and TR46/Y121F/T289A/S363P/I364V/G448S (CSP t01), a new haplotype associated with high levels of resistance, were isolated from Dutch urban air samples, indicating azole resistance evolution is ongoing. Based on low numbers of pan-azole resistant isolates and lack of new genotypes in soils of fungicide-treated commercial and experimental wheat crops, we consider arable crop production as a coldspot for azole resistance development, in contrast to previously reported flower bulb waste heaps. This study also shows that, in addition to azole resistance, several lineages of A. fumigatus carrying TR-based CYP51A variants have also developed acquired resistance to methyl benzimidazole carbamate, quinone outside inhibitor and succinate dehydrogenase (Sdh) inhibitor fungicides through target-site alterations in the corresponding fungicide target proteins; beta-tubulin (F200Y), cytochrome b (G143A), and Sdh subunit B (H270Y and H270R), respectively. Molecular typing showed that several multi-fungicide resistant strains found in agricultural soils in this study were clonal as identical isolates have been found earlier in the environment and/or in patients. Further research on the spread of different fungicide-resistant alleles from the wider environment to patients and vice versa can inform optimal practices to tackle the further spread of antifungal resistance in A. fumigatus populations and to safeguard the efficacy of azoles for future treatment of invasive aspergillosis.
Collapse
Affiliation(s)
- Bart Fraaije
- NIAB, Cambridge, United Kingdom.,Rothamsted Research, Harpenden, United Kingdom
| | | | | | | | - John Lucas
- Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
28
|
Effects of Agricultural Fungicide Use on Aspergillus fumigatus Abundance, Antifungal Susceptibility, and Population Structure. mBio 2020; 11:mBio.02213-20. [PMID: 33234685 PMCID: PMC7701986 DOI: 10.1128/mbio.02213-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Antibiotic resistance is an increasing threat to human health. In the case of Aspergillus fumigatus, which is both an environmental saprobe and an opportunistic human fungal pathogen, resistance is suggested to arise from fungicide use in agriculture, as the azoles used for plant protection share the same molecular target as the frontline antifungals used clinically. However, limiting azole fungicide use on crop fields to preserve their activity for clinical use could threaten the global food supply via a reduction in yield. In this study, we clarify the link between azole fungicide use on crop fields and resistance in a prototypical human pathogen through systematic soil sampling on farms in Germany and surveying fields before and after fungicide application. We observed a reduction in the abundance of A. fumigatus on fields following fungicide treatment in 2017, a finding that was not observed on an organic control field with only natural plant protection agents applied. However, this finding was less pronounced during our 2018 sampling, indicating that the impact of fungicides on A. fumigatus population size is variable and influenced by additional factors. The overall resistance frequency among agricultural isolates is low, with only 1 to 3% of isolates from 2016 to 2018 displaying resistance to medical azoles. Isolates collected after the growing season and azole exposure show a subtle but consistent decrease in susceptibility to medical and agricultural azoles. Whole-genome sequencing indicates that, despite the alterations in antifungal susceptibility, fungicide application does not significantly affect the population structure and genetic diversity of A. fumigatus in fields. Given the low observed resistance rate among agricultural isolates as well the lack of genomic impact following azole application, we do not find evidence that azole use on crops is significantly driving resistance in A. fumigatus in this context.IMPORTANCE Antibiotic resistance is an increasing threat to human health. In the case of Aspergillus fumigatus, which is an environmental fungus that also causes life-threatening infections in humans, antimicrobial resistance is suggested to arise from fungicide use in agriculture, as the chemicals used for plant protection are almost identical to the antifungals used clinically. However, removing azole fungicides from crop fields threatens the global food supply via a reduction in yield. In this study, we survey crop fields before and after fungicide application. We find a low overall azole resistance rate among agricultural isolates, as well as a lack of genomic and population impact following fungicide application, leading us to conclude azole use on crops does not significantly contribute to resistance in A. fumigatus.
Collapse
|
29
|
A One Health Perspective to Recognize Fusarium as Important in Clinical Practice. J Fungi (Basel) 2020; 6:jof6040235. [PMID: 33092120 PMCID: PMC7711799 DOI: 10.3390/jof6040235] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Any strategy that proposes solutions to health-related problems recognizes that people, animals, and the environment are interconnected. Fusarium is an example of this interaction because it is capable of infecting plants, animals, and humans. This review provides information on various aspects of these relations and proposes how to approach fusariosis with a One Health methodology (a multidisciplinary, and multisectoral approach that can address urgent, ongoing, or potential health threats to humans, animals, and the environment). Here, we give a framework to understand infection pathogenesis, through the epidemiological triad, and explain how the broad utilization of fungicides in agriculture may play a role in the treatment of human fusariosis. We assess how plumbing systems and hospital environments might play a role as a reservoir for animal and human infections. We explain the role of antifungal resistance mechanisms in both humans and agriculture. Our review emphasizes the importance of developing interdisciplinary research studies where aquatic animals, plants, and human disease interactions can be explored through coordination and collaborative actions.
Collapse
|
30
|
Ahangarkani F, Badali H, Abbasi K, Nabili M, Khodavaisy S, de Groot T, Meis JF. Clonal Expansion of Environmental Triazole Resistant Aspergillus fumigatus in Iran. J Fungi (Basel) 2020; 6:E199. [PMID: 33019714 PMCID: PMC7712205 DOI: 10.3390/jof6040199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
Azole-resistance in Aspergillus fumigatus is a worldwide medical concern complicating the management of aspergillosis (IA). Herein, we report the clonal spread of environmental triazole resistant A. fumigatus isolates in Iran. In this study, 63 A. fumigatus isolates were collected from 300 compost samples plated on Sabouraud dextrose agar supplemented with itraconazole (ITR) and voriconazole (VOR). Forty-four isolates had the TR34/L98H mutation and three isolates a TR46/Y121F/T289A resistance mechanism, while two isolates harbored a M172V substitution in cyp51A. Fourteen azole resistant isolates had no mutations in cyp51A. We found that 41 out of 44 A. fumigatus strains with the TR34/L98H mutation, isolated from compost in 13 different Iranian cities, shared the same allele across all nine examined microsatellite loci. Clonal expansion of triazole resistant A. fumigatus in this study emphasizes the importance of establishing antifungal resistance surveillance studies to monitor clinical Aspergillus isolates in Iran, as well as screening for azole resistance in environmental A. fumigatus isolates.
Collapse
Affiliation(s)
- Fatemeh Ahangarkani
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; (F.A.); (T.d.G.)
- Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, 4815733971 Sari, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, 4815733971 Sari, Iran;
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kiana Abbasi
- Department of Microbiology, Zanjan Branch, Islamic Azad University, 4515658145 Zanjan, Iran;
| | - Mojtaba Nabili
- Department of Medical Sciences, Sari Branch, Islamic Azad University, 4815733971 Sari, Iran;
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, 1411734143 Tehran, Iran;
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; (F.A.); (T.d.G.)
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; (F.A.); (T.d.G.)
- ECMM Excellence Center for Medical Mycology, Centre of Expertise in Mycology Radboudumc, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, 80010 Curitiba, Paraná, Brazil
| |
Collapse
|
31
|
Waqas S, Dunne K, Talento AF, Wilson G, Martin-Loeches I, Keane J, Rogers TR. Prospective observational study of respiratory Aspergillus colonization or disease in patients with various stages of chronic obstructive pulmonary disease utilizing culture versus nonculture techniques. Med Mycol 2020; 59:myaa077. [PMID: 32926151 DOI: 10.1093/mmy/myaa077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) patients have been recognized to be at increased risk of Aspergillus spp. colonization, which may progress to invasive pulmonary aspergillosis (IPA). The objective of this study was to determine the frequency of Aspergillus colonization, or disease, in a cohort of COPD patients. A prospective observational study was undertaken to determine Aspergillus colonization, or disease, in consecutive COPD patients undergoing bronchoscopy. Fungal culture as well as galactomannan antigen (GM) and Aspergillus nucleic acid detection (PCR) were performed on bronchoalveolar lavage fluid (BAL) samples. One hundred and fifty patients were recruited. One hundred and twelve (74.7%) were outpatients, 38 (25.33%) were inpatients, of whom 6 (4%) were in the intensive care unit. Most patients (N = 122, 81.3%) were either COPD GOLD (Global Initiative for Chronic Obstructive Lung Disease) stages 1 or 2. Nine (6%) patients were on systemic steroids, 64 (42.7%) on inhaled steroids, and 9 (6%) on both. Seventeen patients (11.3%) had at least one positive test for Aspergillus detection (culture ± galactomannan ± polymerase chain reaction [PCR]), 13 (76.4%) of whom were COPD GOLD stages 1 or 2. Five patients had probable or putative IPA. Aspergillus sp. was detected in five patients (3.3%) by culture, but detection increased to 17 (11.3%) by the additional testing for GM or Aspergillus DNA. The frequency of Aspergillus detection in this cohort of COPD patients may reflect the predominance of early GOLD stages among the study population but deserves further investigation to determine its relevance as a predictive risk factor for IPA. LAY SUMMARY COPD is a risk factor for Aspergillus spp. colonization. Bronchoalveolar lavage samples of 150 COPD patients were tested for presence of Aspergillus fumigatus, which was detected in five patients (3.3%) by culture, but detection of Aspergillus increased to 17 (11.3%) by additional GM and PCR testing.
Collapse
Affiliation(s)
- Sarmad Waqas
- Department of Clinical Medicine, Trinity College Dublin, Ireland
| | - Katie Dunne
- Department of Clinical Microbiology, Trinity College Dublin, Ireland
| | - Alida Fe Talento
- Department of Clinical Microbiology, Trinity College Dublin, Ireland
- Department of Microbiology, St. James's Hospital, Dublin 8, Ireland
| | - Graham Wilson
- Department of Radiology, St. James's Hospital, Dublin 8, Ireland
| | - Ignacio Martin-Loeches
- Department of Clinical Medicine, Trinity College Dublin, Ireland
- Department of Intensive Care Medicine, St. James's Hospital, Dublin 8, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity College Dublin, Ireland
- Department of Respiratory Medicine, St. James's Hospital, Dublin 8, Ireland
| | - Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, Ireland
- Department of Microbiology, St. James's Hospital, Dublin 8, Ireland
| |
Collapse
|
32
|
Hagiwara D. Isolation of azole-resistant Aspergillus fumigatus from imported plant bulbs in Japan and the effect of fungicide treatment. JOURNAL OF PESTICIDE SCIENCE 2020; 45:147-150. [PMID: 32913417 PMCID: PMC7453303 DOI: 10.1584/jpestics.d20-017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Increasing numbers of azole-resistant Aspergillus fumigatus (ARAf) in the environment have become a global public health issue. We surveyed tulip bulbs that were imported from the Netherlands and found that 6.3-15.8% of bulbs were contaminated by ARAf with a tandem-repeat mutation in the promoter region of the cyp51A gene. We also showed that fungicide treatment of the tulip bulbs by benomyl or prochloraz effectively reduced the rate of isolation. This is the first report demonstrating a method of eliminating human fungal pathogens from plant bulbs.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Faculty of Life and Environmental Sciences, University of Tsukuba
- MiCS, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
33
|
Nakano Y, Tashiro M, Urano R, Kikuchi M, Ito N, Moriya E, Shirahige T, Mishima M, Takazono T, Miyazaki T, Izumikawa K. Characteristics of azole-resistant Aspergillus fumigatus attached to agricultural products imported to Japan. J Infect Chemother 2020; 26:1021-1025. [PMID: 32576436 DOI: 10.1016/j.jiac.2020.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
Due to the increase in the number of azole-resistant Aspergillus fumigatus, there is an urgent need of data to predict future trends and prevent further spreading. The intercountry transfer of resistant A. fumigatus on plant bulbs have been reported. We investigated existence and characteristics of resistant isolates attached to agricultural products imported to Japan. We purchased 292 samples in Japan. All samples were screened for the existence of azole-resistant A. fumigatus. For positive isolates, minimum inhibitory concentrations of the drugs were determined. We also analyzed Cyp51A, Hmg1, and Erg6 mutations of these isolates and conducted microsatellite genotyping. Fourteen azole-resistant isolates were detected, of which 13 were cultured from flower bulbs imported from the Netherlands. Among them 5 were from 11 bulbs of Hippeastrum (45.5%), 5 were from 24 bulbs of Gladiolus (20.8%), 2 were from 4 bulbs of Ixia (50.0%), and 1 was from 22 bulbs of Tulipa (4.5%). Only 1 resistant isolate was cultured from the 10 bulbs of Narcissus (10.0%) originating in Japan. Various novel mutations including Y121F/T289A in Cyp51A with no tandem repeat in promoter region were discovered from imported strains. Our study provides important data showing that agricultural imports provide a possible route for their intercontinental spread and raises the concern that strains harboring highly diverse Cyp51A mutations might increase in clinical settings in the future.
Collapse
Affiliation(s)
- Yuichiro Nakano
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masato Tashiro
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Nagasaki University Infection Control and Education Centre, Nagasaki University Hospital, Nagasaki, Japan.
| | - Ryo Urano
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Minori Kikuchi
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Ito
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Eriko Moriya
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoyuki Shirahige
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Maki Mishima
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Taiga Miyazaki
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Nagasaki University Infection Control and Education Centre, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
34
|
Azole-resistant Aspergillus fumigatus in the hospital: Surveillance from flower beds to corridors. Am J Infect Control 2020; 48:702-704. [PMID: 31753549 DOI: 10.1016/j.ajic.2019.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
Screening has been performed for azole-resistant Aspergillus fumigatus in the indoor air of the hospital since 2015 and in soil and dust samples since January 2019. In total, 83 azole-resistant A fumigatus isolates with a TR34/L98H mutation have been obtained: 1 from the air of the intensive care unit, 16 from the main corridors, 59 from pots of tulips imported from the Netherlands, and 5 from the soil of trees grown in pots.
Collapse
|
35
|
Hortschansky P, Misslinger M, Mörl J, Gsaller F, Bromley MJ, Brakhage AA, Groll M, Haas H, Huber EM. Structural basis of HapE P88L-linked antifungal triazole resistance in Aspergillus fumigatus. Life Sci Alliance 2020; 3:3/7/e202000729. [PMID: 32467317 PMCID: PMC7266990 DOI: 10.26508/lsa.202000729] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 01/27/2023] Open
Abstract
Azoles are first-line therapeutics for human and plant fungal infections, but their broad use has promoted the development of resistances. Recently, a pan-azole-resistant clinical Aspergillus fumigatus isolate was identified to carry the mutation P88L in subunit HapE of the CCAAT-binding complex (CBC), a conserved eukaryotic transcription factor. Here, we define the mechanistic basis for resistance in this isolate by showing that the HapEP88L mutation interferes with the CBC's ability to bend and sense CCAAT motifs. This failure leads to transcriptional derepression of the cyp51A gene, which encodes the target of azoles, the 14-α sterol demethylase Cyp51A, and ultimately causes drug resistance. In addition, we demonstrate that the CBC-associated transcriptional regulator HapX assists cyp51A repression in low-iron environments and that this iron-dependent effect is lost in the HapEP88L mutant. Altogether, these results indicate that the mutation HapEP88L confers increased resistance to azoles compared with wt A. fumigatus, particularly in low-iron clinical niches such as the lung.
Collapse
Affiliation(s)
- Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), and Friedrich Schiller University Jena, Jena, Germany
| | - Matthias Misslinger
- Institute of Molecular Biology/Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Jasmin Mörl
- Institute of Molecular Biology/Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Fabio Gsaller
- Institute of Molecular Biology/Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Michael J Bromley
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), and Friedrich Schiller University Jena, Jena, Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich at the Department Chemistry, Technical University of Munich, Garching, Germany
| | - Hubertus Haas
- Institute of Molecular Biology/Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Eva M Huber
- Center for Integrated Protein Science Munich at the Department Chemistry, Technical University of Munich, Garching, Germany
| |
Collapse
|
36
|
Prevalence and Therapeutic Challenges of Fungal Drug Resistance: Role for Plants in Drug Discovery. Antibiotics (Basel) 2020; 9:antibiotics9040150. [PMID: 32244276 PMCID: PMC7235788 DOI: 10.3390/antibiotics9040150] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance is a global issue that threatens the effective practice of modern medicine and global health. The emergence of multidrug-resistant (MDR) fungal strains of Candida auris and azole-resistant Aspergillus fumigatus were highlighted in the Centers for Disease Control and Prevention’s (CDC) 2019 report, Antibiotic Resistance Threats in the United States. Conventional antifungals used to treat fungal infections are no longer as effective, leading to increased mortality. Compounding this issue, there are very few new antifungals currently in development. Plants from traditional medicine represent one possible research path to addressing the issue of MDR fungal pathogens. In this commentary piece, we discuss how medical ethnobotany—the study of how people use plants in medicine—can be used as a guide to identify plant species for the discovery and development of novel antifungal therapies.
Collapse
|
37
|
Abstract
Aspergillus fumigatus, an opportunistic pathogenic fungus, is common in the environment. Azole-resistant strains of A. fumigatus have recently been discovered in the environment. Acquisition of azole resistance has been considered to occur through unexpected selection due to fungicide use in agriculture. This review discusses the relationships of humans with A. fumigatus in the environment and the importance of anthropogenic activities in the spread of A. fumigatus worldwide.
Collapse
Affiliation(s)
- Takahito Toyotome
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine.,Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine.,Medical Mycology Research Center, Chiba University
| |
Collapse
|
38
|
Rauseo AM, Coler-Reilly A, Larson L, Spec A. Hope on the Horizon: Novel Fungal Treatments in Development. Open Forum Infect Dis 2020; 7:ofaa016. [PMID: 32099843 PMCID: PMC7031074 DOI: 10.1093/ofid/ofaa016] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
The treatment of invasive fungal infections remains challenging due to limitations in currently available antifungal therapies including toxicity, interactions, restricted routes of administration, and drug resistance. This review focuses on novel therapies in clinical development, including drugs and a device. These drugs have novel mechanisms of action to overcome resistance, and some offer new formulations providing distinct advantages over current therapies to improve safety profiles and reduce interactions. Among agents that target the cell wall, 2 glucan synthesis inhibitors are discussed (rezafungin and ibrexafungerp), as well as fosmanogepix and nikkomycin Z. Agents that target the cell membrane include 3 fourth-generation azoles, oral encochleated amphotericin B, and aureobasidin A. Among agents with intracellular targets, we will review olorofim, VL-2397, T-2307, AR-12, and MGCD290. In addition, we will describe neurapheresis, a device used as adjunctive therapy for cryptococcosis. With a field full of novel treatments for fungal infections, the future looks promising.
Collapse
Affiliation(s)
- Adriana M Rauseo
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Lindsey Larson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrej Spec
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
39
|
|
40
|
Elevated Prevalence of Azole-Resistant Aspergillus fumigatus in Urban versus Rural Environments in the United Kingdom. Antimicrob Agents Chemother 2019; 63:AAC.00548-19. [PMID: 31235621 DOI: 10.1128/aac.00548-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
Azole resistance in the opportunistic pathogen Aspergillus fumigatus is increasing, dominated primarily by the following two environmentally associated resistance alleles: TR34/L98H and TR46/Y121F/T289A. By sampling soils across the South of England, we assess the prevalence of azole-resistant A. fumigatus (ARAf) in samples collected in both urban and rural locations. We characterize the susceptibility profiles of the resistant isolates to three medical azoles, identify the underlying genetic basis of resistance, and investigate their genetic relationships. ARAf was detected in 6.7% of the soil samples, with a higher prevalence in urban (13.8%) than rural (1.1%) locations. Twenty isolates were confirmed to exhibit clinical breakpoints for resistance to at least one of three medical azoles, with 18 isolates exhibiting resistance to itraconazole, 6 to voriconazole, and 2 showing elevated minimum inhibitory concentrations to posaconazole. Thirteen of the resistant isolates harbored the TR34/L98H resistance allele, and six isolates carried the TR46/Y121F/T289A allele. The 20 azole-resistant isolates were spread across five csp1 genetic subtypes, t01, t02, t04B, t09, and t18 with t02 being the predominant subtype. Our study demonstrates that ARAf can be easily isolated in the South of England, especially in urban city centers, which appear to play an important role in the epidemiology of environmentally linked drug-resistant A. fumigatus.
Collapse
|
41
|
Emerging Fungal Infections: New Patients, New Patterns, and New Pathogens. J Fungi (Basel) 2019; 5:jof5030067. [PMID: 31330862 PMCID: PMC6787706 DOI: 10.3390/jof5030067] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/13/2023] Open
Abstract
The landscape of clinical mycology is constantly changing. New therapies for malignant and autoimmune diseases have led to new risk factors for unusual mycoses. Invasive candidiasis is increasingly caused by non-albicans Candida spp., including C. auris, a multidrug-resistant yeast with the potential for nosocomial transmission that has rapidly spread globally. The use of mould-active antifungal prophylaxis in patients with cancer or transplantation has decreased the incidence of invasive fungal disease, but shifted the balance of mould disease in these patients to those from non-fumigatus Aspergillus species, Mucorales, and Scedosporium/Lomentospora spp. The agricultural application of triazole pesticides has driven an emergence of azole-resistant A. fumigatus in environmental and clinical isolates. The widespread use of topical antifungals with corticosteroids in India has resulted in Trichophyton mentagrophytes causing recalcitrant dermatophytosis. New dimorphic fungal pathogens have emerged, including Emergomyces, which cause disseminated mycoses globally, primarily in HIV infected patients, and Blastomyceshelicus and B. percursus, causes of atypical blastomycosis in western parts of North America and in Africa, respectively. In North America, regions of geographic risk for coccidioidomycosis, histoplasmosis, and blastomycosis have expanded, possibly related to climate change. In Brazil, zoonotic sporotrichosis caused by Sporothrix brasiliensis has emerged as an important disease of felines and people.
Collapse
|
42
|
Alvarez-Moreno C, Lavergne RA, Hagen F, Morio F, Meis JF, Le Pape P. Fungicide-driven alterations in azole-resistant Aspergillus fumigatus are related to vegetable crops in Colombia, South America. Mycologia 2019; 111:217-224. [PMID: 30896313 DOI: 10.1080/00275514.2018.1557796] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aspergillus fumigatus resistant to azole as first-line therapy has been reported in azole-naïve patients. This worldwide resistance phenomenon has been linked to fungicide-driven alterations in the cyp51A gene and its promoter region (such as TR34/L98H and TR46/Y121F/T289A). Azole-resistant A. fumigatus related to the use of triazole fungicides in flower fields was recently reported In Colombia. The purpose of this study was to investigate the presence of azole-resistant A. fumigatus in soil samples from vegetable crops such as carrots, potatoes, maize, strawberries, and pea, and from prepared farming land surrounding the city of Bogotá. Species identification was based on sequencing of the β-tubulin and calmodulin genes. All A. fumigatus strains were screened for azole resistance on agar supplemented with itraconazole or voriconazole. Among the 60 soil samples, 34 (56.6%) were positive for A. fumigatus and 15 samples exhibited strains (n = 18) that grew on agar supplemented with itraconazole or voriconazole. Triazole-resistant strains were isolated from soil samples associated with carrot, potato, maize, and pea crops. Sequencing of the cyp51A gene and its promoter region indicated polymorphism, mainly with the presence of TR46/Y121F/T289A (n = 8), TR34/L98H, and TR53. Eight resistant isolates exhibited cyp51A wild type without alterations in the promoter region. Our study showed evidence of dissemination of azole-resistant A. fumigatus, with high genetic diversity, in vegetable crops in Colombia. These data underline the need to determine the prevalence of azole resistance in A. fumigatus in clinical and environmental settings for other regions of Colombia as well as Latin America.
Collapse
Affiliation(s)
- Carlos Alvarez-Moreno
- a Departamento de Medicina Interna, Facultad de Medicina , Universidad Nacional de Colombia , Bogotá , Colombia.,b Departamento Enfermedades Infecciosas , Clínica Universitaria Colombia, Colsanitas, Keralty group, Bogotá , Colombia.,c Département de Parasitologie et Mycologie Médicale , Université de Nantes, Nantes Atlantique Universités, EA1155-IICiMed, Institut de recherche en Santé 2 , Nantes , France
| | - Rose-Anne Lavergne
- c Département de Parasitologie et Mycologie Médicale , Université de Nantes, Nantes Atlantique Universités, EA1155-IICiMed, Institut de recherche en Santé 2 , Nantes , France.,d Laboratoire de Parasitologie-Mycologie, Institut de Biologie , Centre Hospitalier Universitaire de Nantes , France
| | - Ferry Hagen
- e Department of Medical Microbiology and Infectious Diseases , Canisius Wilhelmina Hospital , Nijmegen , The Netherlands
| | - Florent Morio
- d Laboratoire de Parasitologie-Mycologie, Institut de Biologie , Centre Hospitalier Universitaire de Nantes , France
| | - Jacques F Meis
- e Department of Medical Microbiology and Infectious Diseases , Canisius Wilhelmina Hospital , Nijmegen , The Netherlands.,f Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital , Nijmegen , The Netherlands
| | - Patrice Le Pape
- c Département de Parasitologie et Mycologie Médicale , Université de Nantes, Nantes Atlantique Universités, EA1155-IICiMed, Institut de recherche en Santé 2 , Nantes , France.,d Laboratoire de Parasitologie-Mycologie, Institut de Biologie , Centre Hospitalier Universitaire de Nantes , France
| |
Collapse
|
43
|
Prigitano A, Esposto MC, Romanò L, Auxilia F, Tortorano AM. Azole-resistant Aspergillus fumigatus in the Italian environment. J Glob Antimicrob Resist 2019; 16:220-224. [DOI: 10.1016/j.jgar.2018.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 02/02/2023] Open
|
44
|
Resendiz Sharpe A, Lagrou K, Meis JF, Chowdhary A, Lockhart SR, Verweij PE. Triazole resistance surveillance in Aspergillus fumigatus. Med Mycol 2018. [PMID: 29538741 DOI: 10.1093/mmy/myx144] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Triazole resistance is an increasing concern in the opportunistic mold Aspergillus fumigatus. Resistance can develop through exposure to azole compounds during azole therapy or in the environment. Resistance mutations are commonly found in the Cyp51A-gene, although other known and unknown resistance mechanisms may be present. Surveillance studies show triazole resistance in six continents, although the presence of resistance remains unknown in many countries. In most countries, resistance mutations associated with the environment dominate, but it remains unclear if these resistance traits predominately migrate or arise locally. Patients with triazole-resistant aspergillus disease may fail to antifungal therapy, but only a limited number of cohort studies have been performed that show conflicting results. Treatment failure might be due to diagnostic delay or due to the limited number of alternative treatment options. The ISHAM/ECMM Aspergillus Resistance Surveillance working group was set up to facilitate surveillance studies and stimulate international collaborations. Important aims are to determine the resistance epidemiology in countries where this information is currently lacking, to gain more insight in the clinical implications of triazole resistance through a registry and to unify nomenclature through consensus definitions.
Collapse
Affiliation(s)
- Agustin Resendiz Sharpe
- Department of Laboratory Medicine, University Hospitals Leuven, and Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Laboratory Medicine, University Hospitals Leuven, and Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Disease, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, the Netherlands
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Paul E Verweij
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, the Netherlands.,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | |
Collapse
|
45
|
Beer KD, Farnon EC, Jain S, Jamerson C, Lineberger S, Miller J, Berkow EL, Lockhart SR, Chiller T, Jackson BR. Multidrug-Resistant Aspergillus fumigatus Carrying Mutations Linked to Environmental Fungicide Exposure - Three States, 2010-2017. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT 2018; 67:1064-1067. [PMID: 30260939 PMCID: PMC6188124 DOI: 10.15585/mmwr.mm6738a5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
46
|
Emerging Antifungal Drug Resistance in Aspergillus fumigatus and Among Other Species of Aspergillus. CURRENT FUNGAL INFECTION REPORTS 2018. [DOI: 10.1007/s12281-018-0318-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Ashu EE, Xu J. Strengthening the One Health Agenda: The Role of Molecular Epidemiology in Aspergillus Threat Management. Genes (Basel) 2018; 9:genes9070359. [PMID: 30029491 PMCID: PMC6071254 DOI: 10.3390/genes9070359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
The United Nations’ One Health initiative advocates the collaboration of multiple sectors within the global and local health authorities toward the goal of better public health management outcomes. The emerging global health threat posed by Aspergillus species is an example of a management challenge that would benefit from the One Health approach. In this paper, we explore the potential role of molecular epidemiology in Aspergillus threat management and strengthening of the One Health initiative. Effective management of Aspergillus at a public health level requires the development of rapid and accurate diagnostic tools to not only identify the infecting pathogen to species level, but also to the level of individual genotype, including drug susceptibility patterns. While a variety of molecular methods have been developed for Aspergillus diagnosis, their use at below-species level in clinical settings has been very limited, especially in resource-poor countries and regions. Here we provide a framework for Aspergillus threat management and describe how molecular epidemiology and experimental evolution methods could be used for predicting resistance through drug exposure. Our analyses highlight the need for standardization of loci and methods used for molecular diagnostics, and surveillance across Aspergillus species and geographic regions. Such standardization will enable comparisons at national and global levels and through the One Health approach, strengthen Aspergillus threat management efforts.
Collapse
Affiliation(s)
- Eta E Ashu
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, Ontario, ON L8S 4K1, Canada.
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, Ontario, ON L8S 4K1, Canada.
- Public Research Laboratory, Hainan Medical University, Haikou, Hainan 571199, China.
| |
Collapse
|
48
|
Talento AF, Dunne K, Murphy N, O'Connell B, Chan G, Joyce EA, Hagen F, Meis JF, Fahy R, Bacon L, Vandenberge E, Rogers TR. Post-influenzal triazole-resistant aspergillosis following allogeneic stem cell transplantation. Mycoses 2018; 61:570-575. [PMID: 29570855 DOI: 10.1111/myc.12770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
Influenza virus infection is now recognised as a risk factor for invasive pulmonary aspergillosis (IPA). Delays in diagnosis contribute to delayed commencement of antifungal therapy. In addition, the emergence of resistance to first-line triazole antifungal agents puts emphasis on early detection to prevent adverse outcomes. We present 2 allogeneic stem cell transplant patients who developed IPA due to triazole-resistant Aspergillus fumigatus following influenza infection. We underline the challenges faced in the management of these cases, the importance of early diagnosis and need for surveillance given the emergence of triazole resistance.
Collapse
Affiliation(s)
- Alida Fe Talento
- Department of Clinical Microbiology, Trinity College Dublin, Dublin 8, Ireland.,Microbiology Department, St. James's Hospital, Dublin 8, Ireland
| | - Katie Dunne
- Department of Clinical Microbiology, Trinity College Dublin, Dublin 8, Ireland
| | - Niamh Murphy
- Microbiology Department, St. James's Hospital, Dublin 8, Ireland
| | - Brian O'Connell
- Microbiology Department, St. James's Hospital, Dublin 8, Ireland
| | - Grace Chan
- Microbiology Department, St. James's Hospital, Dublin 8, Ireland
| | | | - Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, ECMM Excellence Center for Medical Mycology, Canisius Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands.,Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands.,Department Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, ECMM Excellence Center for Medical Mycology, Canisius Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands.,Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Ruairi Fahy
- Respiratory Medicine, St. James's Hospital, Dublin 8, Ireland
| | - Larry Bacon
- Haematology Department, St. James's Hospital, Dublin 8, Ireland
| | | | - Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, Dublin 8, Ireland.,Microbiology Department, St. James's Hospital, Dublin 8, Ireland
| |
Collapse
|
49
|
Chowdhary A, Meis JF. Emergence of azole resistant Aspergillus fumigatus and One Health: time to implement environmental stewardship. Environ Microbiol 2018; 20:1299-1301. [PMID: 29393565 DOI: 10.1111/1462-2920.14055] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands.,Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| |
Collapse
|
50
|
|