1
|
Park K, Kim J, Noh J, Kim SG, Cho HK, Kim K, Seo YR, Lim T, Lee S, Lee J, Lim SI, Joo YH, Lee B, Yun SH, Park C, Kim WK, Song JW. Epidemiological surveillance and phylogenetic diversity of Orthohantavirus hantanense using high-fidelity nanopore sequencing, Republic of Korea. PLoS Negl Trop Dis 2025; 19:e0012859. [PMID: 39919119 DOI: 10.1371/journal.pntd.0012859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Orthohantavirus hantanense (HTNV) poses a substantial global public health threat due to its role in causing hemorrhagic fever with renal syndrome (HFRS). HTNV outbreaks are particularly prevalent in the Gyeonggi and Gangwon Provinces of the Republic of Korea (ROK). This study aimed to evaluate the application of advanced nanopore sequencing and bioinformatics to generate complete genome sequences of HTNV, with the objective of accurately identifying infection sources and analyzing their genetic diversity. METHODOLOGY/PRINCIPAL FINDINGS In 2022 and 2023, we collected 579 small mammals from 11 distinct locations across Gyeonggi and Gangwon Provinces, as well as in Gwangju Metropolitan City, ROK. Among these, 498 Apodemus agrarius specimens were subjected to an epidemiological survey to investigate HTNV infections. The serological and molecular positivity of HTNV were found to be 65/498 (13.1%) and 17/65 (26.2%), respectively. Furthermore, 15 whole-genome sequences of HTNV were obtained from rodents in Gyeonggi and Gangwon Provinces. We developed a novel amplicon-based nanopore sequencing approach to acquire high-fidelity and precise genomic sequences of HTNV. Genome exchange analysis revealed three reassortant candidates, including heterogeneous L segments, from Paju-si and Yeoncheon-gun in Gyeonggi Province. CONCLUSION/SIGNIFICANCE Our findings enhance the resolution of the spatiotemporal genomic surveillance of HTNV by consistently providing new viral sequences and epidemiological data from HFRS-endemic regions in the ROK. This report signifies a notable advancement in nanopore sequencing techniques and bioinformatics, offering a robust platform for genome-based diagnostics and sophisticated phylogenetic analyses of orthohantaviruses, which are essential for public health strategies aimed at controlling HFRS.
Collapse
Affiliation(s)
- Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Juyoung Noh
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kijin Kim
- Faculty of Health Sciences, Centre for Infectious Disease Genomics and One Health, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Ye-Rin Seo
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Taehun Lim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Seonghyeon Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jaeyeon Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung In Lim
- The Fifth Preventive Medicine Unit of Republic of Korea Army, Pocheon, Republic of Korea
| | - Young Hoon Joo
- The First Preventive Medicine Unit of Republic of Korea Army, Goyang, Republic of Korea
| | - Buddle Lee
- The Third Preventive Medicine Unit of Republic of Korea Army, Inje, Republic of Korea
| | - Seok Hyeon Yun
- The Second Preventive Medicine Unit of Republic of Korea Army, Chuncheon, Republic of Korea
| | - Changbo Park
- Republic of Korea Army Headquarters, Daejeon, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Park K, No JS, Prayitno SP, Seo YR, Lee SH, Noh J, Kim J, Kim SG, Cho HK, Natasha A, Kim B, Park J, Kim WK, Song JW. Epidemiological Surveillance and Genomic Characterization of Soochong Virus From Apodemus Species Using Multiplex PCR-Based Next-Generation Sequencing, Republic of Korea. J Med Virol 2024; 96:e70077. [PMID: 39588784 DOI: 10.1002/jmv.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024]
Abstract
Orthohantavirus hantanense causes hemorrhagic fever with renal syndrome in Eurasia, posing a substantial public health threat. Although the Hantaan virus is the primary etiological agent in the Republic of Korea (ROK), evidence suggests the potential zoonotic transmission of the Amur virus (AMRV), closely related to the Soochong virus (SOOV), to humans in China and Russia. This study examined 31 Apodemus spp. captured from six regions in Gangwon Province, ROK, between 2015 and 2018. Of these, 5/31 (16.1%) tested positive for anti-SOOV immunoglobulin G and SOOV RNA, with 3/6 (50%) in Hongcheon-gun and 2/5 (40%) in Pyeongchang-gun. Utilizing a multiplex polymerase chain reaction-based next-generation sequencing approach, we achieved complete genomic sequencing of SOOV from rodent lung tissues, with coverage rates of 90.3%-98.2% for the S segment, 92.3%-98.1% for the M segment, and 88.1%-93.0% for the L segment. Five novel whole-genome sequences of SOOV were obtained from rodents in Hongcheon-gun and Pyeongchang-gun, representing the first documented SOOV in Pyeongchang-gun. The evolutionary rate analysis of SOOV tripartite genomes demonstrated lower divergence in the S segment. Phylogenetic analysis revealed a well-supported divergence of the SOOV and AMRV lineages across the ROK, China, and Russia, with incongruences suggesting differential segment evolution. Co-divergence analysis indicated the inter-species transmission of SOOV Aa18-104 from Apodemus agrarius in Pyeongchang-gun. The high zoonotic potential of all SOOV strains underscores the need for extensive monitoring and surveillance. This report provides crucial insights for the development of effective control strategies against hantaviral outbreaks in the ROK.
Collapse
Affiliation(s)
- Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun No
- Division of High-Risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Sara P Prayitno
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ye-Rin Seo
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ho Lee
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Juyoung Noh
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Augustine Natasha
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Bohyeon Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jieun Park
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Prayitno SP, Natasha A, Lee S, Kim CM, Lee YM, Park K, Kim J, Kim SG, Park J, Rajoriya S, Palacios G, Oh Y, Song JW, Kim DM, Kim WK. Etiological agent and clinical characteristics of haemorrhagic fever with renal syndrome in the southern Republic of Korea: a genomic surveillance study. Clin Microbiol Infect 2024; 30:795-802. [PMID: 38402954 DOI: 10.1016/j.cmi.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVES High incidences of haemorrhagic fever with renal syndrome (HFRS) have been reported in the southern Republic of Korea (ROK). A distinct southern genotype of Orthohantavirus hantanense (HTNV) was identified in Apodemus agrarius chejuensis on Jeju Island. However, its association with HFRS cases in southern ROK remains elusive. We investigated the potential of the southern HTNV genotype as an etiological agent of HFRS. METHODS Samples from 22 patients with HFRS and 193 small mammals were collected in the southern ROK. The clinical characteristics of patients infected with the southern HTNV genotype were analysed. Amplicon-based MinION sequencing was employed for southern HTNV from patients and rodents, facilitating subsequent analyses involving phylogenetics and genetic reassortment. RESULTS High-throughput sequencing of HTNV exhibited higher coverage with a cycle of threshold value below 32, acquiring nearly whole-genome sequences from six patients with HFRS and seven A. agrarius samples. The phylogenetic pattern of patient-derived HTNV demonstrated genetic clustering with HTNV from Apodemus species on Jeju Island and the southern Korean peninsula, revealing genetic reassortment in a single clinical sample between the M and S segments. DISCUSSION These findings imply that the southern HTNV genotype has the potential to induce HFRS in humans. The phylogenetic inference demonstrates the diverse and dynamic characteristics of the southern HTNV tripartite genomes. Therefore, this study highlights the significance of active surveillance and amplicon sequencing for detecting orthohantavirus infections. It also raises awareness and caution for physicians regarding the emergence of a southern HTNV genotype as a cause of HFRS in the ROK.
Collapse
Affiliation(s)
- Sara P Prayitno
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Augustine Natasha
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Seonghyeon Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Choon-Mee Kim
- Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - You Mi Lee
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Kyungmin Park
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea; BK21 Graduate Program, Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea; BK21 Graduate Program, Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea; BK21 Graduate Program, Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jieun Park
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Shivani Rajoriya
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yeonsu Oh
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea; BK21 Graduate Program, Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dong-Min Kim
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea; Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
4
|
Mustonen J, Henttonen H, Vaheri A. Hantavirus Infections among Military Forces. Mil Med 2024; 189:551-555. [PMID: 37428512 PMCID: PMC10898924 DOI: 10.1093/milmed/usad261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
INTRODUCTION Hantaviruses cause two kinds of clinical syndromes. Hemorrhagic fever with renal syndrome is caused by Hantaan virus in Asia, Puumala virus (PUUV) and Dobrava virus in Europe, and Seoul virus worldwide. Hantavirus cardiopulmonary syndrome is caused by Sin Nombre virus in North America and Andes virus and related viruses in Latin America. All hantaviruses are carried by rodents and insectivores. Humans are infected via inhaled aerosols of rodent excreta. In the history, there are several epidemics of acute infectious diseases during many wars, which have been suggested or proven to be caused by various hantaviruses. MATERIALS AND METHODS Literature review of 41 original publications and reviews published between 1943 and 2022 was performed. Among them, 23 publications handle hantavirus infections among military forces, and the rest 17 hantavirus infections themselves. RESULTS A large epidemic during World War II in 1942 among German and Finnish soldiers in Northern Finland with more than 1,000 patients was most probably caused by PUUV. During Korean War in 1951-1954,∼ 3,200 cases occurred among United Nations soldiers in an epidemic caused by Hantaan virus. During Balkan war from 1991 to 1995, numerous soldiers got ill because of hantavirus infection caused by PUUV and Dobrava virus. Several other reports of cases of various hantavirus infections especially among U.S. soldiers acting in South Korea, Germany, Bosnia, and Kosovo have been described in the literature. CONCLUSIONS Military maneuvers usually include soil removal, spreading, digging with accompanied dust, and living in field and other harsh conditions, which easily expose soldiers to rodents and their excreta. Therefore, the risks of hantavirus infections in military context are obvious. All military infections have been caused by hantaviruses leading to hemorrhagic fever with renal syndrome.
Collapse
Affiliation(s)
- Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere 33520, Finland
| | - Heikki Henttonen
- Wildlife Ecology, Natural Resources Institute Finland, Helsinki 00790, Finland
| | - Antti Vaheri
- Department of Virology, Medicum,, University of Helsinki, Helsinki 00290, Finland
| |
Collapse
|
5
|
Zhao Y, Che L, Pan M, Huang Y, Fang S, Wang M, Sui L, Wang ZD, Du F, Hou Z, Liu Q. Hantaan virus inhibits type I interferon response by targeting RLR signaling pathways through TRIM25. Virology 2024; 589:109942. [PMID: 38048647 DOI: 10.1016/j.virol.2023.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Hantaan virus (HTNV) is responsible for hemorrhagic fever with renal syndrome (HFRS), primarily due to its ability to inhibit host innate immune responses, such as type I interferon (IFN-I). In this study, we conducted a transcriptome analysis to identify host factors regulated by HTNV nucleocapsid protein (NP) and glycoprotein. Our findings demonstrate that NP and Gc proteins inhibit host IFN-I production by manipulating the retinoic acid-induced gene I (RIG-I)-like receptor (RLR) pathways. Further analysis reveals that HTNV NP and Gc proteins target upstream molecules of MAVS, such as RIG-I and MDA-5, with Gc exhibiting stronger inhibition of IFN-I responses than NP. Mechanistically, NP and Gc proteins interact with tripartite motif protein 25 (TRIM25) to competitively inhibit its interaction with RIG-I/MDA5, suppressing RLR signaling pathways. Our study unveils a cross-talk between HTNV NP/Gc proteins and host immune response, providing valuable insights into the pathogenic mechanism of HTNV.
Collapse
Affiliation(s)
- Yinghua Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China; Department of Infectious Diseases and Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Lihe Che
- Department of Infectious Diseases and Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Mingming Pan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China
| | - Yuan Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China
| | - Shu Fang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China
| | - Mengmeng Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China
| | - Liyan Sui
- Department of Infectious Diseases and Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Ze-Dong Wang
- Department of Infectious Diseases and Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Fang Du
- Department of Neurology, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China.
| | - Quan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China; Department of Infectious Diseases and Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin Province, China; School of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, China.
| |
Collapse
|
6
|
Kim J, Park K, Kim K, Noh J, Kim SG, Yang E, Cho HK, Lee SH, No JS, Lee GY, Lee D, Song DH, Gu SH, Park MS, Cho NH, Jeong ST, Kim WK, Song JW. High-resolution phylogeographical surveillance of Hantaan orthohantavirus using rapid amplicon-based Flongle sequencing, Republic of Korea. J Med Virol 2024; 96:e29346. [PMID: 38178580 DOI: 10.1002/jmv.29346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Orthohantaviruses, etiological agents of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome, pose a critical public health threat worldwide. Hantaan orthohantavirus (HTNV) outbreaks are particularly endemic in Gyeonggi Province in northern area of the Republic of Korea (ROK). Small mammals were collected from three regions in the Gyeonggi Province during 2017 and 2018. Serological and molecular prevalence of HTNV was 25/201 (12.4%) and 10/25 (40%), respectively. A novel nanopore-based diagnostic assay using a cost-efficient Flongle chip was developed to rapidly and sensitively detect HTNV infection in rodent specimens within 3 h. A rapid phylogeographical surveillance of HTNV at high-resolution phylogeny was established using the amplicon-based Flongle sequencing. In total, seven whole-genome sequences of HTNV were newly obtained from wild rodents collected in Paju-si (Gaekhyeon-ri) and Yeoncheon-gun (Hyeonga-ri and Wangnim-ri), Gyeonggi Province. Phylogenetic analyses revealed well-supported evolutionary divergence and genetic diversity, enhancing the resolution of the phylogeographic map of orthohantaviruses in the ROK. Incongruences in phylogenetic patterns were identified among HTNV tripartite genomes, suggesting differential evolution for each segment. These findings provide crucial insights into on-site diagnostics, genome-based surveillance, and the evolutionary dynamics of orthohantaviruses to mitigate hantaviral outbreaks in HFRS-endemic areas in the ROK.
Collapse
Affiliation(s)
- Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kijin Kim
- Centre for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Juyoung Noh
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunyoung Yang
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ho Lee
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Jin Sun No
- Division of High-Risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Geum-Young Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Daesang Lee
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Dong-Hyun Song
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Se Hun Gu
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seong Tae Jeong
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Cintron R, Whitmer SLM, Moscoso E, Campbell EM, Kelly R, Talundzic E, Mobley M, Chiu KW, Shedroff E, Shankar A, Montgomery JM, Klena JD, Switzer WM. HantaNet: A New MicrobeTrace Application for Hantavirus Classification, Genomic Surveillance, Epidemiology and Outbreak Investigations. Viruses 2023; 15:2208. [PMID: 38005885 PMCID: PMC10675615 DOI: 10.3390/v15112208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Hantaviruses zoonotically infect humans worldwide with pathogenic consequences and are mainly spread by rodents that shed aerosolized virus particles in urine and feces. Bioinformatics methods for hantavirus diagnostics, genomic surveillance and epidemiology are currently lacking a comprehensive approach for data sharing, integration, visualization, analytics and reporting. With the possibility of hantavirus cases going undetected and spreading over international borders, a significant reporting delay can miss linked transmission events and impedes timely, targeted public health interventions. To overcome these challenges, we built HantaNet, a standalone visualization engine for hantavirus genomes that facilitates viral surveillance and classification for early outbreak detection and response. HantaNet is powered by MicrobeTrace, a browser-based multitool originally developed at the Centers for Disease Control and Prevention (CDC) to visualize HIV clusters and transmission networks. HantaNet integrates coding gene sequences and standardized metadata from hantavirus reference genomes into three separate gene modules for dashboard visualization of phylogenetic trees, viral strain clusters for classification, epidemiological networks and spatiotemporal analysis. We used 85 hantavirus reference datasets from GenBank to validate HantaNet as a classification and enhanced visualization tool, and as a public repository to download standardized sequence data and metadata for building analytic datasets. HantaNet is a model on how to deploy MicrobeTrace-specific tools to advance pathogen surveillance, epidemiology and public health globally.
Collapse
Affiliation(s)
- Roxana Cintron
- Laboratory Branch, Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA (A.S.); (W.M.S.)
| | - Shannon L. M. Whitmer
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA (M.M.); (E.S.); (J.D.K.)
| | - Evan Moscoso
- General Dynamics Information Technology, Atlanta, GA 30329, USA; (E.M.); (R.K.)
| | - Ellsworth M. Campbell
- Laboratory Branch, Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA (A.S.); (W.M.S.)
| | - Reagan Kelly
- General Dynamics Information Technology, Atlanta, GA 30329, USA; (E.M.); (R.K.)
| | - Emir Talundzic
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA (M.M.); (E.S.); (J.D.K.)
| | - Melissa Mobley
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA (M.M.); (E.S.); (J.D.K.)
| | - Kuo Wei Chiu
- General Dynamics Information Technology, Atlanta, GA 30329, USA; (E.M.); (R.K.)
| | - Elizabeth Shedroff
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA (M.M.); (E.S.); (J.D.K.)
| | - Anupama Shankar
- Laboratory Branch, Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA (A.S.); (W.M.S.)
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA (M.M.); (E.S.); (J.D.K.)
| | - John D. Klena
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA (M.M.); (E.S.); (J.D.K.)
| | - William M. Switzer
- Laboratory Branch, Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA (A.S.); (W.M.S.)
| |
Collapse
|
8
|
Park K, Lee SH, Kim J, Lee J, Lee GY, Cho S, Noh J, Choi J, Park J, Song DH, Gu SH, Yun H, Kim JE, Lee D, Hwang IU, Kim WK, Song JW. A Portable Diagnostic Assay, Genetic Diversity, and Isolation of Seoul Virus from Rattus norvegicus Collected in Gangwon Province, Republic of Korea. Pathogens 2022; 11:1047. [PMID: 36145479 PMCID: PMC9503505 DOI: 10.3390/pathogens11091047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Seoul virus (SEOV), an etiological agent for hemorrhagic fever with renal syndrome, poses a significant public health threat worldwide. This study evaluated the feasibility of a mobile Biomeme platform for facilitating rapid decision making of SEOV infection. A total of 27 Rattus norvegicus were collected from Seoul Metropolitan City and Gangwon Province in Republic of Korea (ROK), during 2016-2020. The serological and molecular prevalence of SEOV was 5/27 (18.5%) and 2/27 (7.4%), respectively. SEOV RNA was detected in multiple tissues of rodents using the Biomeme device, with differences in Ct values ranging from 0.6 to 2.1 cycles compared to a laboratory benchtop system. Using amplicon-based next-generation sequencing, whole-genome sequences of SEOV were acquired from lung tissues of Rn18-1 and Rn19-5 collected in Gangwon Province. Phylogenetic analysis showed a phylogeographical diversity of rat-borne orthohantavirus collected in Gangwon Province. We report a novel isolate of SEOV Rn19-5 from Gangwon Province. Our findings demonstrated that the Biomeme system can be applied for the molecular diagnosis of SEOV comparably to the laboratory-based platform. Whole-genome sequencing of SEOV revealed the phylogeographical diversity of orthohantavirus in the ROK. This study provides important insights into the field-deployable diagnostic assays and genetic diversity of orthohantaviruses for the rapid response to hantaviral outbreaks in the ROK.
Collapse
Affiliation(s)
- Kyungmin Park
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Seung-Ho Lee
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon 34186, Korea
| | - Jongwoo Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jingyeong Lee
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Geum-Young Lee
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Seungchan Cho
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Juyoung Noh
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jeewan Choi
- Republic of Korea Armed Forces Medical Command, Seongnam 13415, Korea
| | - Juwon Park
- The Fifth Preventive Medicine Unit of Republic of Korea Army, Pocheon 11132, Korea
| | - Dong-Hyun Song
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon 34186, Korea
| | - Se Hun Gu
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon 34186, Korea
| | - Hyeongseok Yun
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon 34186, Korea
| | - Jung-Eun Kim
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon 34186, Korea
| | - Daesang Lee
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon 34186, Korea
| | - Il-Ung Hwang
- Department of Orthopaedic Surgery, Sheikh Khalifa Specialty Hospital, Seoul National University Hospital, Seoul 02841, Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jin-Won Song
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea
| |
Collapse
|
9
|
Lee J, Park K, Kim J, Lee SH, Lee GY, Cho S, Kim HC, Klein TA, Kim JA, Choi J, Park J, Song DH, Gu SH, Yun H, Kim JE, Lee D, Hur GH, Jeong ST, Hwang IU, Kim WK, Song JW. Whole-genome sequencing and genetic diversity of severe fever with thrombocytopenia syndrome virus using multiplex PCR-based nanopore sequencing, Republic of Korea. PLoS Negl Trop Dis 2022; 16:e0010763. [PMID: 36094957 PMCID: PMC9499217 DOI: 10.1371/journal.pntd.0010763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/22/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Whole-genome sequencing plays a critical role in the genomic epidemiology intended to improve understanding the spread of emerging viruses. Dabie bandavirus, causing severe fever with thrombocytopenia syndrome (SFTS), is a zoonotic tick-borne virus that poses a significant public health threat. We aimed to evaluate a novel amplicon-based nanopore sequencing tool to obtain whole-genome sequences of Dabie bandavirus, also known as SFTS virus (SFTSV), and investigate the molecular prevalence in wild ticks, Republic of Korea (ROK).
Principal findings
A total of 6,593 ticks were collected from Gyeonggi and Gangwon Provinces, ROK in 2019 and 2020. Quantitative polymerase chain reaction revealed the presence of SFSTV RNA in three Haemaphysalis longicornis ticks. Two SFTSV strains were isolated from H. longicornis captured from Pocheon and Cheorwon. Multiplex polymerase chain reaction-based nanopore sequencing provided nearly full-length tripartite genome sequences of SFTSV within one hour running. Phylogenetic and reassortment analyses were performed to infer evolutionary relationships among SFTSVs. Phylogenetic analysis grouped SFTSV Hl19-31-4 and Hl19-31-13 from Pocheon with sub-genotype B-1 in all segments. SFTSV Hl20-8 was found to be a genomic organization compatible with B-1 (for L segment) and B-2 (for M and S segments) sub-genotypes, indicating a natural reassortment between sub-genotypes.
Conclusion/Significance
Amplicon-based next-generation sequencing is a robust tool for whole-genome sequencing of SFTSV using the nanopore platform. The molecular prevalence and geographical distribution of SFTSV enhanced the phylogeographic map at high resolution for sophisticated prevention of emerging SFTS in endemic areas. Our findings provide important insights into the rapid whole-genome sequencing and genetic diversity for the genome-based diagnosis of SFTSV in the endemic outbreak.
Collapse
Affiliation(s)
- Jingyeong Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ho Lee
- Chem-Bio Technology Center, Agency for Defense Development, Yuseong, Daejeon, Republic of Korea
| | - Geum-Young Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seungchan Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Heung-Chul Kim
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281, United States of America
| | - Terry A. Klein
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281, United States of America
| | - Jeong-Ah Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jeewan Choi
- Republic of Korea Armed Forces Medical Command, Seongnam, Republic of Korea
| | - Juwan Park
- The Fifth Preventive Medicine Unit of Republic of Korea Army, Pocheon, Republic of Korea
| | - Dong-Hyun Song
- Chem-Bio Technology Center, Agency for Defense Development, Yuseong, Daejeon, Republic of Korea
| | - Se Hun Gu
- Chem-Bio Technology Center, Agency for Defense Development, Yuseong, Daejeon, Republic of Korea
| | - Hyeongseok Yun
- Chem-Bio Technology Center, Agency for Defense Development, Yuseong, Daejeon, Republic of Korea
| | - Jung-Eun Kim
- Chem-Bio Technology Center, Agency for Defense Development, Yuseong, Daejeon, Republic of Korea
| | - Daesang Lee
- Chem-Bio Technology Center, Agency for Defense Development, Yuseong, Daejeon, Republic of Korea
| | - Gyeung Haeng Hur
- Chem-Bio Technology Center, Agency for Defense Development, Yuseong, Daejeon, Republic of Korea
| | - Seong Tae Jeong
- Chem-Bio Technology Center, Agency for Defense Development, Yuseong, Daejeon, Republic of Korea
| | - Il-Ung Hwang
- Department of Orthopaedic Surgery, Sheikh Khalifa Specialty Hospital, Seoul National University Hospital, Seoul, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
10
|
Goodfellow SM, Nofchissey RA, Schwalm KC, Cook JA, Dunnum JL, Guo Y, Ye C, Mertz GJ, Chandran K, Harkins M, Domman DB, Dinwiddie DL, Bradfute SB. Tracing Transmission of Sin Nombre Virus and Discovery of Infection in Multiple Rodent Species. J Virol 2021; 95:e0153421. [PMID: 34549977 PMCID: PMC8577387 DOI: 10.1128/jvi.01534-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
Sin Nombre orthohantavirus (SNV), a negative-sense, single-stranded RNA virus that is carried and transmitted by the North American deer mouse Peromyscus maniculatus, can cause infection in humans through inhalation of aerosolized excreta from infected rodents. This infection can lead to hantavirus cardiopulmonary syndrome (HCPS), which has an ∼36% case-fatality rate. We used reverse transcriptase quantitative PCR (RT-qPCR) to confirm SNV infection in a patient and identified SNV in lung tissues in wild-caught rodents from potential sites of exposure. Using viral whole-genome sequencing (WGS), we identified the likely site of transmission and discovered SNV in multiple rodent species not previously known to carry the virus. Here, we report, for the first time, the use of SNV WGS to pinpoint a likely site of human infection and identify SNV simultaneously in multiple rodent species in an area of known host-to-human transmission. These results will impact epidemiology and infection control for hantaviruses by tracing zoonotic transmission and investigating possible novel host reservoirs. IMPORTANCE Orthohantaviruses cause severe disease in humans and can be lethal in up to 40% of cases. Sin Nombre orthohantavirus (SNV) is the main cause of hantavirus disease in North America. In this study, we sequenced SNV from an infected patient and wild-caught rodents to trace the location of infection. We also discovered SNV in rodent species not previously known to carry SNV. These studies demonstrate for the first time the use of virus sequencing to trace the transmission of SNV and describe infection in novel rodent species.
Collapse
Affiliation(s)
- Samuel M. Goodfellow
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Robert A. Nofchissey
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Kurt C. Schwalm
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Joseph A. Cook
- Museum of Southwestern Biology, Biology Department, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jonathan L. Dunnum
- Museum of Southwestern Biology, Biology Department, University of New Mexico, Albuquerque, New Mexico, USA
| | - Yan Guo
- Comprehensive Cancer Center, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Chunyan Ye
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Gregory J. Mertz
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Kartik Chandran
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York, USA
| | - Michelle Harkins
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Daryl B. Domman
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Darrell L. Dinwiddie
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Steven B. Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
11
|
Cho S, Kim WK, No JS, Lee SH, Jung J, Yi Y, Park HC, Lee GY, Park K, Kim JA, Kim J, Lee J, Lee D, Song DH, Gu SH, Jeong ST, Song JW. Urinary genome detection and tracking of Hantaan virus from hemorrhagic fever with renal syndrome patients using multiplex PCR-based next-generation sequencing. PLoS Negl Trop Dis 2021; 15:e0009707. [PMID: 34582439 PMCID: PMC8478167 DOI: 10.1371/journal.pntd.0009707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background Hantavirus infection occurs through the inhalation of aerosolized excreta, including urine, feces, and saliva of infected rodents. The presence of Hantaan virus (HTNV) RNA or infectious particles in urine specimens of patient with hemorrhagic fever with renal syndrome (HFRS) remains to be investigated. Methodology/Principal findings We collected four urine and serum specimens of Republic of Korea Army (ROKA) patients with HFRS. We performed multiplex PCR-based next-generation sequencing (NGS) to obtain the genome sequences of clinical HTNV in urine specimens containing ultra-low amounts of viral genomes. The epidemiological and phylogenetic analyses of HTNV demonstrated geographically homogenous clustering with those in Apodemus agrarius captured in highly endemic areas, indicating that phylogeographic tracing of HTNV genomes reveals the potential infection sites of patients with HFRS. Genetic exchange analyses showed a genetic configuration compatible with HTNV L segment exchange in nature. Conclusion/Significance Our results suggest that whole or partial genome sequences of HTNV from the urine enabled to track the putative infection sites of patients with HFRS by phylogeographically linking to the zoonotic HTNV from the reservoir host captured at endemic regions. This report raises awareness among physicians for the presence of HTNV in the urine of patients with HFRS. Hantavirus transmission to humans occurs via inhalation of aerosolized excreta, including urine, feces, and saliva of infected rodents. Currently, no report for the etiological evidence associated with urinary Hantaan virus (HTNV) from patients with hemorrhagic fever with renal syndrome (HFRS) is available. Here, we conducted multiplex PCR-based next-generation sequencing (NGS) using urine and serum specimens from four Republic of Korea Army (ROKA) patients with HFRS. The epidemiological and phylogenetic analyses using whole or partial genome sequences of HTNV from urine and serum demonstrated homogenous genetic clustering with HTNV from clinical specimens, circulating at highly endemic sites of patient infection. Among the sequences from ROKA patients, the genomic configuration of ROKA16-10 demonstrated occurrences of the genetic reassortment. Our results suggest that whole or partial genome sequences of HTNV from the urine enabled to track the putative infection sites of patients with HFRS by phylogeographically linking to the zoonotic HTNV from the reservoir host captured at endemic regions. This result provides new insights into presence of HTNV in the urine of patients with HFRS among physicians.
Collapse
Affiliation(s)
- Seungchan Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin Sun No
- Division of High-risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Seung-Ho Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jaehun Jung
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yongjin Yi
- Division of Nephrology, Department of Internal Medicine, Dankook University Hospital, Cheonan, Republic of Korea
| | - Hayne Cho Park
- Department of Internal Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Geum-Young Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Ah Kim
- Division of High-risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jingyeong Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Daesang Lee
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Dong Hyun Song
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Se Hun Gu
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Seong Tae Jeong
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Multiplex PCR-Based Nanopore Sequencing and Epidemiological Surveillance of Hantaan orthohantavirus in Apodemus agrarius, Republic of Korea. Viruses 2021; 13:v13050847. [PMID: 34066592 PMCID: PMC8148566 DOI: 10.3390/v13050847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
Whole-genome sequencing of infectious agents enables the identification and characterization of emerging viruses. The MinION device is a portable sequencer that allows real-time sequencing in fields or hospitals. Hantaan orthohantavirus (Hantaan virus, HTNV), harbored by Apodemus agrarius, causes hemorrhagic fever with renal syndrome (HFRS) and poses a critical public health threat worldwide. In this study, we aimed to evaluate the feasibility of using nanopore sequencing for whole-genome sequencing of HTNV from samples having different viral copy numbers. Amplicon-based next-generation sequencing was performed in A. agrarius lung tissues collected from the Republic of Korea. Genomic sequences of HTNV were analyzed based on the viral RNA copy numbers. Amplicon-based nanopore sequencing provided nearly full-length genomic sequences of HTNV and showed sufficient read depth for phylogenetic analysis after 8 h of sequencing. The average identity of the HTNV genome sequences for the nanopore sequencer compared to those of generated from Illumina MiSeq revealed 99.8% (L and M segments) and 99.7% (S segment) identities, respectively. This study highlights the potential of the portable nanopore sequencer for rapid generation of accurate genomic sequences of HTNV for quicker decision making in point-of-care testing of HFRS patients during a hantavirus outbreak.
Collapse
|
13
|
Park K, Kim WK, Lee SH, Kim J, Lee J, Cho S, Lee GY, No JS, Lee KH, Song JW. A novel genotype of Hantaan orthohantavirus harbored by Apodemus agrarius chejuensis as a potential etiologic agent of hemorrhagic fever with renal syndrome in Republic of Korea. PLoS Negl Trop Dis 2021; 15:e0009400. [PMID: 33979351 PMCID: PMC8143423 DOI: 10.1371/journal.pntd.0009400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/24/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Orthohantaviruses, causing hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome, pose a significant public health threat worldwide. Despite the significant mortality and morbidity, effective antiviral therapeutics for orthohantavirus infections are currently unavailable. This study aimed to investigate the prevalence of HFRS-associated orthohantaviruses and identify the etiological agent of orthohantavirus outbreaks in southern Republic of Korea (ROK). METHODOLOGY/PRINCIPAL FINDINGS We collected small mammals on Jeju Island during 2018-2020. We detected the Hantaan virus (HTNV)-specific antibodies and RNA using an indirect immunofluorescence assay test and reverse transcription-polymerase chain reaction on Apodemus agrarius chejuensis (A. chejuensis). The prevalence of anti-HTNV antibodies among rodents was 14.1%. A total of six seropositive mouse harbored HTNV RNA. The amplicon-based next-generation sequencing provided nearly full-length tripartite genomic sequences of six HTNV harbored by A. chejuensis. Phylogenetic and tanglegram analyses were conducted for inferring evolutionary relationships between orthohantaviruses with their reservoir hosts. Phylogenetic analysis showed a novel distinct HTNV genotype. The detected HTNV genomic sequences were phylogenetically related to a viral sequence derived from HFRS patient in southern ROK. Tanglegram analysis demonstrated the segregation of HTNV genotypes corresponding to Apodemus spp. divergence. CONCLUSIONS/SIGNIFICANCE Our results suggest that A. chejuensis-borne HTNV may be a potential etiological agent of HFRS in southern ROK. Ancestral HTNV may infect A. chejuensis prior to geological isolation between the Korean peninsula and Jeju Island, supporting the co-evolution of orthohantaviruses and rodents. This study arises awareness among physicians for HFRS outbreaks in southern ROK.
Collapse
Affiliation(s)
- Kyungmin Park
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Seung-Ho Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jingyeong Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seungchan Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Geum-Young Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun No
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Division of High-risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Keun Hwa Lee
- Department of Microbiology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Jin-Won Song
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Cho S, Allison JC, Park K, No JS, Lee SH, Park K, Kim J, Klein TA, Kim HC, Kim WK, Song JW. A Clinical Case of Scrub Typhus in the United States Forces Korea Patient with Eschar and Genetic Identification of Orientia tsutsugamushi Using Multiplex PCR-Based Next-Generation Sequencing. Pathogens 2021; 10:pathogens10040424. [PMID: 33918345 PMCID: PMC8067027 DOI: 10.3390/pathogens10040424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
An epidemiological investigation was conducted for a scrub typhus case reported in a U.S. Forces Korea military patient in the Republic of Korea in November 2018. The patient had a fever, maculopapular rash, and an eschar. The full-length sequence of Orientia tsutsugamushi 56-kDa type-specific antigen (TSA) gene was obtained from eschar tissue by multiplex PCR-based Next Generation Sequencing for genetic identification. Based on the 56-kDa TSA gene, the O. tsutsugamushi aligned most closely with the Boryong strain.
Collapse
Affiliation(s)
- Seungchan Cho
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea; (S.C.); (K.P.); (J.S.N.); (S.-H.L.); (K.P.); (J.K.)
| | - Jon C. Allison
- Force Health Protection and Preventive Medicine, MEDDAC-Korea, 65th Medical Brigade, Unit 15281, APO AP 96251-5281, USA; (J.C.A.); (T.A.K.); (H.-C.K.)
| | - Kkothanahreum Park
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea; (S.C.); (K.P.); (J.S.N.); (S.-H.L.); (K.P.); (J.K.)
| | - Jin Sun No
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea; (S.C.); (K.P.); (J.S.N.); (S.-H.L.); (K.P.); (J.K.)
| | - Seung-Ho Lee
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea; (S.C.); (K.P.); (J.S.N.); (S.-H.L.); (K.P.); (J.K.)
| | - Kyungmin Park
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea; (S.C.); (K.P.); (J.S.N.); (S.-H.L.); (K.P.); (J.K.)
| | - Jongwoo Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea; (S.C.); (K.P.); (J.S.N.); (S.-H.L.); (K.P.); (J.K.)
| | - Terry A. Klein
- Force Health Protection and Preventive Medicine, MEDDAC-Korea, 65th Medical Brigade, Unit 15281, APO AP 96251-5281, USA; (J.C.A.); (T.A.K.); (H.-C.K.)
| | - Heung-Chul Kim
- Force Health Protection and Preventive Medicine, MEDDAC-Korea, 65th Medical Brigade, Unit 15281, APO AP 96251-5281, USA; (J.C.A.); (T.A.K.); (H.-C.K.)
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea;
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea; (S.C.); (K.P.); (J.S.N.); (S.-H.L.); (K.P.); (J.K.)
- Correspondence: ; Tel.: +82-2-920-6353; Fax: +82-2-923-3645
| |
Collapse
|
15
|
Kim WK, Cho S, Lee SH, No JS, Lee GY, Park K, Lee D, Jeong ST, Song JW. Genomic Epidemiology and Active Surveillance to Investigate Outbreaks of Hantaviruses. Front Cell Infect Microbiol 2021; 10:532388. [PMID: 33489927 PMCID: PMC7819890 DOI: 10.3389/fcimb.2020.532388] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging and re-emerging RNA viruses pose significant public health, economic, and societal burdens. Hantaviruses (genus Orthohantavirus, family Hantaviridae, order Bunyavirales) are enveloped, negative-sense, single-stranded, tripartite RNA viruses that are emerging zoonotic pathogens harbored by small mammals such as rodents, bats, moles, and shrews. Orthohantavirus infections cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome in humans (HCPS). Active targeted surveillance has elucidated high-resolution phylogeographic relationships between patient- and rodent-derived orthohantavirus genome sequences and identified the infection source by temporally and spatially tracking viral genomes. Active surveillance of patients with HFRS entails 1) recovering whole-genome sequences of Hantaan virus (HTNV) using amplicon (multiplex PCR-based) next-generation sequencing, 2) tracing the putative infection site of a patient by administering an epidemiological questionnaire, and 3) collecting HTNV-positive rodents using targeted rodent trapping. Moreover, viral genome tracking has been recently performed to rapidly and precisely characterize an outbreak from the emerging virus. Here, we reviewed genomic epidemiological and active surveillance data for determining the emergence of zoonotic RNA viruses based on viral genomic sequences obtained from patients and natural reservoirs. This review highlights the recent studies on tracking viral genomes for identifying and characterizing emerging viral outbreaks worldwide. We believe that active surveillance is an effective method for identifying rodent-borne orthohantavirus infection sites, and this report provides insights into disease mitigation and preparedness for managing emerging viral outbreaks.
Collapse
Affiliation(s)
- Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Seungchan Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea
| | - Seung-Ho Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea
| | - Jin Sun No
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea
| | - Geum-Young Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea
| | - Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Daesang Lee
- 4th R&D Institute, Agency for Defense Development, Daejeon, South Korea
| | - Seong Tae Jeong
- 4th R&D Institute, Agency for Defense Development, Daejeon, South Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Taylor MK, Williams EP, Wongsurawat T, Jenjaroenpun P, Nookaew I, Jonsson CB. Amplicon-Based, Next-Generation Sequencing Approaches to Characterize Single Nucleotide Polymorphisms of Orthohantavirus Species. Front Cell Infect Microbiol 2020; 10:565591. [PMID: 33163416 PMCID: PMC7591466 DOI: 10.3389/fcimb.2020.565591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
Whole-genome sequencing (WGS) of viruses from patient or environmental samples can provide tremendous insight into the epidemiology, drug resistance or evolution of a virus. However, we face two common hurdles in obtaining robust sequence information; the low copy number of viral genomes in specimens and the error introduced by WGS techniques. To optimize detection and minimize error in WGS of hantaviruses, we tested four amplification approaches and different amplicon pooling methods for library preparation and examined these preparations using two sequencing platforms, Illumina MiSeq and Oxford Nanopore Technologies MinION. First, we tested and optimized primers used for whole segment PCR or one kilobase amplicon amplification for even coverage using RNA isolated from the supernatant of virus-infected cells. Once optimized we assessed two sources of total RNA, virus-infected cells and supernatant from the virus-infected cells, with four variations of primer pooling for amplicons, and six different amplification approaches. We show that 99-100% genome coverage was obtained using a one-step RT-PCR reaction with one forward and reverse primer. Using a two-step RT-PCR with three distinct tiling approaches for the three genomic segments (vRNAs), we optimized primer pooling approaches for PCR amplification to achieve a greater number of aligned reads, average depth of genome, and genome coverage. The single nucleotide polymorphisms identified from MiSeq and MinION sequencing suggested intrinsic mutation frequencies of ~10-5-10-7 per genome and 10-4-10-5 per genome, respectively. We noted no difference in the coverage or accuracy when comparing WGS results with amplicons amplified from RNA extracted from infected cells or supernatant of these infected cells. Our results show that high-throughput diagnostics requiring the identification of hantavirus species or strains can be performed using MiSeq or MinION using a one-step approach. However, the two-step MiSeq approach outperformed the MinION in coverage depth and accuracy, and hence would be superior for assessment of genomes for epidemiology or evolutionary questions using the methods developed herein.
Collapse
Affiliation(s)
- Mariah K. Taylor
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
17
|
Lee GY, Kim WK, Park K, Lee SH, Hwang J, No JS, Cho S, Lee D, Song DH, Gu SH, Park MS, Jeong ST, Kim YS, Song JW. Phylogeographic diversity and hybrid zone of Hantaan orthohantavirus collected in Gangwon Province, Republic of Korea. PLoS Negl Trop Dis 2020; 14:e0008714. [PMID: 33035222 PMCID: PMC7588125 DOI: 10.1371/journal.pntd.0008714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/26/2020] [Accepted: 08/14/2020] [Indexed: 01/03/2023] Open
Abstract
Background Hantaan orthohantavirus (Hantaan virus, HTNV), harbored by Apodemus agrarius (the striped field mouse), causes hemorrhagic fever with renal syndrome (HFRS) in humans. Viral genome-based surveillance at new expansion sites to identify HFRS risks plays a critical role in tracking the infection source of orthohantavirus outbreak. In the Republic of Korea (ROK), most studies demonstrated the serological prevalence and genetic diversity of orthohantaviruses collected from HFRS patients or rodents in Gyeonggi Province. Gangwon Province is a HFRS-endemic area with a high incidence of patients and prevalence of infected rodents, ROK. However, the continued epidemiology and surveillance of orthohantavirus remain to be investigated. Methodology/Principal findings Whole-genome sequencing of HTNV was accomplished in small mammals collected in Gangwon Province during 2015–2018 by multiplex PCR-based next-generation sequencing. To elucidate the geographic distribution and molecular diversity of viruses, we conducted phylogenetic analyses of HTNV tripartite genomes. We inferred the hybrid zone using cline analysis to estimate the geographic contact between two different HTNV lineages in the ROK. The graph incompatibility based reassortment finder performed reassortment analysis. A total of 12 HTNV genome sequences were completely obtained from A. agrarius newly collected in Gangwon Province. The phylogenetic and cline analyses demonstrated the genetic diversity and hybrid zone of HTNV in the ROK. Genetic exchange analysis suggested the possibility of reassortments in Cheorwon-gun, a highly HFRS-endemic area. Conclusions/Significance The prevalence and distribution of HTNV in HFRS-endemic areas of Gangwon Province enhanced the phylogeographic map for orthohantavirus outbreak monitoring in ROK. This study revealed the hybrid zone reflecting the genetic diversity and evolutionary dynamics of HTNV circulating in Gangwon Province. The results arise awareness of rodent-borne orthohantavirus diseases for physicians in the endemic area of ROK. The genetic and molecular epidemiological studies on small mammals derived from hemorrhagic fever with renal syndrome (HFRS)-endemic areas have consistently conducted for the public health surveillance and mitigation of orthohantavirus outbreak in the Republic of Korea (ROK). Implementing viral genome-based surveillance at new expansion sites that may identify HFRS risks is critical for tracking the location of orthohantavirus infections and diagnosing HFRS. In the present study, whole-genome sequences of Hantaan virus (HTNV) from small mammals in Gangwon Province were recovered using multiplex PCR-based next-generation sequencing during 2015–2018. In HFRS-endemic regions including Cheorwon-gun, Chuncheon-si, and Hwacheon-gun, additional HTNV genome sequences contribute to establish a high-resolution phylogeographic map for tracking emerging orthohantavirus-induced diseases. The cline analysis revealed a remarkable hybrid zone by showing spatial contact regions of HTNV at two sites (Cheorwon-gun and Hwacheon-gun) and the spatial separation and sequence divergence across genome segments of HTNV in Gangwon Province. These results demonstrate the genetic diversity and hybrid zone of HTNV circulating in Gangwon Province. These findings increase an awareness raising about HFRS in the endemic area of ROK.
Collapse
Affiliation(s)
- Geum-Young Lee
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Kyungmin Park
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seung-Ho Lee
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jusun Hwang
- Wildlife Ecology & Genomics Laboratory, College of Forest & Environmental Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin Sun No
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seungchan Cho
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daesang Lee
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Dong-Hyun Song
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Se Hun Gu
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seong Tae Jeong
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Young-Su Kim
- Infectious Disease Research Department, Gangwon Institute of Health and Environment, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
18
|
Maljkovic Berry I, Rutvisuttinunt W, Voegtly LJ, Prieto K, Pollett S, Cer RZ, Kugelman JR, Bishop-Lilly KA, Morton L, Waitumbi J, Jarman RG. A Department of Defense Laboratory Consortium Approach to Next Generation Sequencing and Bioinformatics Training for Infectious Disease Surveillance in Kenya. Front Genet 2020; 11:577563. [PMID: 33101395 PMCID: PMC7546821 DOI: 10.3389/fgene.2020.577563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022] Open
Abstract
Epidemics of emerging and re-emerging infectious diseases are a danger to civilian and military populations worldwide. Health security and mitigation of infectious disease threats is a priority of the United States Government and the Department of Defense (DoD). Next generation sequencing (NGS) and Bioinformatics (BI) enhances traditional biosurveillance by providing additional data to understand transmission, identify resistance and virulence factors, make predictions, and update risk assessments. As more and more laboratories adopt NGS and BI technologies they encounter challenges in building local capacity. In addition to choosing the right sequencing platform and approach, considerations must also be made for the complexity of bioinformatics analyses, data storage, as well as personnel and computational requirements. To address these needs, a comprehensive training program was developed covering wet lab and bioinformatics approaches to NGS. The program is meant to be modular and adaptive to meet both common and individualized needs of medical research and public health laboratories across the DoD. The training program was first deployed internationally to the Basic Science Laboratory of the US Army Medical Research Directorate-Africa in Kisumu, Kenya, which is an overseas Lab of the Walter Reed Army Institute of Research (WRAIR). A week-long workshop with intensive focus on targeted sequencing and the bioinformatics of genome assembly (n = 24 participants) was held. Post-workshop self-assessment (completed by 21 participants) noted significant median gains in knowledge domains related to NGS targeted sequencing, bioinformatics for genome assembly, and sequence quality assessment. The participants also reported that the information on study design, sample preparation, sequencing quality control, data quality assessment, reporting, and basic and advanced bioinformatics analysis were the most useful information presented in the training. While longer-term evaluations are planned, the training resulted in significant short-term improvement of a laboratory’s self-reported wet lab and bioinformatics capabilities. This framework can be used for future DoD laboratory development in the area of NGS and BI for infectious disease surveillance, ultimately enhancing this global DoD capability.
Collapse
Affiliation(s)
- Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Wiriya Rutvisuttinunt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Office of Genomics and Advanced Technologies National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Logan J Voegtly
- Genomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD, United States.,Leidos, Reston, VA, United States
| | - Karla Prieto
- College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States.,Center for Genomic Studies, United States Army Medical Research Institute for Infectious Diseases, Frederick, MD, United States
| | - Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Regina Z Cer
- Genomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD, United States.,Leidos, Reston, VA, United States
| | - Jeffrey R Kugelman
- Center for Genomic Studies, United States Army Medical Research Institute for Infectious Diseases, Frederick, MD, United States
| | - Kimberly A Bishop-Lilly
- Genomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD, United States
| | - Lindsay Morton
- Global Emerging Infections Surveillance, Armed Forces Health Surveillance Branch, Silver Spring, MD, United States
| | - John Waitumbi
- Basic Science Laboratory, US Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
19
|
Li N, Li A, Liu Y, Wu W, Li C, Yu D, Zhu Y, Li J, Li D, Wang S, Liang M. Genetic diversity and evolution of Hantaan virus in China and its neighbors. PLoS Negl Trop Dis 2020; 14:e0008090. [PMID: 32817670 PMCID: PMC7462299 DOI: 10.1371/journal.pntd.0008090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/01/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hantaan virus (HTNV; family Hantaviridae, order Bunyavirales) causes hemorrhagic fever with renal syndrome (HFRS), which has raised serious concerns in Eurasia, especially in China, Russia, and South Korea. Previous studies reported genetic diversity and phylogenetic features of HTNV in different parts of China, but the analyses from the holistic perspective are rare. METHODOLOGY AND PRINCIPAL FINDINGS To better understand HTNV genetic diversity and gene evolution, we analyzed all available complete sequences derived from the small (S) and medium (M) segments with bioinformatic tools. Eleven phylogenetic groups were defined and showed geographic clustering; 42 significant amino acid variant sites were found, and 19 of them were located in immune epitopes; nine recombinant events and eight reassortments with highly divergent sequences were found and analyzed. We found that sequences from Guizhou showed high genetic divergence, contributing to multiple lineages of the phylogenetic tree and also to the recombination and reassortment events. Bayesian stochastic search variable selection analysis revealed that Heilongjiang, Shaanxi, and Guizhou played important roles in HTNV evolution and migration; the virus may originate from Zhejiang Province in the eastern part of China; and the virus population size expanded from the 1980s to 1990s. CONCLUSIONS/SIGNIFICANCE These findings revealed the original and evolutionary features of HTNV, which will help to illustrate hantavirus epidemic trends, thus aiding in disease control and prevention.
Collapse
Affiliation(s)
- Naizhe Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Aqian Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Liu
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Wu
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuan Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongyang Yu
- Department of Microbiology, Anhui Medical University, Hefei, China
| | - Yu Zhu
- Department of Microbiology, Anhui Medical University, Hefei, China
| | - Jiandong Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dexin Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shiwen Wang
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- China CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, P. R. China
- * E-mail: (SW); (ML)
| | - Mifang Liang
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- China CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, P. R. China
- * E-mail: (SW); (ML)
| |
Collapse
|
20
|
The Needs for Developing Experiments on Reservoirs in Hantavirus Research: Accomplishments, Challenges and Promises for the Future. Viruses 2019; 11:v11070664. [PMID: 31331096 PMCID: PMC6669540 DOI: 10.3390/v11070664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/29/2022] Open
Abstract
Due to their large geographic distribution and potential high mortality rates in human infections, hantaviruses constitute a worldwide threat to public health. As such, they have been the subject of a large array of clinical, virological and eco-evolutionary studies. Many experiments have been conducted in vitro or on animal models to identify the mechanisms leading to pathogenesis in humans and to develop treatments of hantavirus diseases. Experimental research has also been dedicated to the understanding of the relationship between hantaviruses and their reservoirs. However, these studies remain too scarce considering the diversity of hantavirus/reservoir pairs identified, and the wide range of issues that need to be addressed. In this review, we present a synthesis of the experimental studies that have been conducted on hantaviruses and their reservoirs. We aim at summarizing the knowledge gathered from this research, and to emphasize the gaps that need to be filled. Despite the many difficulties encountered to carry hantavirus experiments, we advocate for the need of such studies in the future, at the interface of evolutionary ecology and virology. They are critical to address emerging areas of research, including hantavirus evolution and the epidemiological consequences of individual variation in infection outcomes.
Collapse
|