1
|
Bhardwaj S, Grewal AK, Singh S, Dhankar V, Jindal A. An insight into the concept of neuroinflammation and neurodegeneration in Alzheimer's disease: targeting molecular approach Nrf2, NF-κB, and CREB. Inflammopharmacology 2024; 32:2943-2960. [PMID: 38951436 DOI: 10.1007/s10787-024-01502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) is a most prevalent neurologic disorder characterized by cognitive dysfunction, amyloid-β (Aβ) protein accumulation, and excessive neuroinflammation. It affects various life tasks and reduces thinking, memory, capability, reasoning and orientation ability, decision, and language. The major parts responsible for these abnormalities are the cerebral cortex, amygdala, and hippocampus. Excessive inflammatory markers release, and microglial activation affect post-synaptic neurotransmission. Various mechanisms of AD pathogenesis have been explored, but still, there is a need to debate the role of NF-κB, Nrf2, inflammatory markers, CREB signaling, etc. In this review, we have briefly discussed the signaling mechanisms and function of the NF-ĸB signaling pathway, inflammatory mediators, microglia activation, and alteration of autophagy. NF-κB inhibition is a current strategy to counter neuroinflammation and neurodegeneration in the brain of individuals with AD. In clinical trials, numbers of NF-κB modulators are being examined. Recent reports revealed that molecular and cellular pathways initiate complex pathological competencies that cause AD. Moreover, this review will provide extensive knowledge of the cAMP response element binding protein (CREB) and how these nuclear proteins affect neuronal plasticity.
Collapse
Affiliation(s)
- Shaveta Bhardwaj
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Vaibhav Dhankar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Anu Jindal
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| |
Collapse
|
2
|
Lorant V, Klein M, Garçon D, Sotin T, Frey S, Cheminant MA, Ayer A, Croyal M, Flet L, Rimbert A, Colas L, Cariou B, Bouchaud G, Le May C. PCSK9 inhibition protects mice from food allergy. Transl Res 2024; 272:151-161. [PMID: 38471633 DOI: 10.1016/j.trsl.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
The Proprotein Convertase Subtilisin Kexin of type 9 (PCSK9) has been identified in 2003 as the third gene involved in familial hypercholesterolemia. PCSK9 binds to the membrane low-density lipoprotein receptor (LDLR) and promotes its cellular internalization and lysosomal degradation. Beyond this canonical role, PCSK9 was recently described to be involved in several immune responses. However, to date, the contribution of PCSK9 in food allergy remains unknown. Here, we showed that Pcsk9 deficiency or pharmacological inhibition of circulating PCSK9 with a specific monoclonal antibody (m-Ab) protected mice against symptoms of gliadin-induced-food allergy, such as increased intestinal transit time and ear oedema. Furthermore, specific PCSK9 inhibition during the elicitation steps of allergic process was sufficient to ensure anti-allergic effects in mice. Interestingly, the protective effect of PCSK9 inhibition against food allergy symptoms was independent of the LDLR as PCSK9 inhibitors remained effective in Ldlr deficient mice. In vitro, we showed that recombinant gain of function PCSK9 (PCSK9 D374Y) increased the percentage of mature bone marrow derived dendritic cells (BMDCs), promoted naïve T cell proliferation and potentiated the gliadin induced basophils degranulation. Altogether, our data demonstrate that PCSK9 inhibition is protective against gliadin induced food allergy in a LDLR-independent manner.
Collapse
Affiliation(s)
- Victoria Lorant
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Martin Klein
- Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada
| | - Damien Garçon
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Thibaud Sotin
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Samuel Frey
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Marie-Aude Cheminant
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Audrey Ayer
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Mikaël Croyal
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France; CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
| | - Laurent Flet
- Department of Pharmacy, CHU Nantes, Nantes Université, Nantes, France
| | - Antoine Rimbert
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Luc Colas
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes F-44000, France; CHU Nantes, Nantes Université, Plateforme transversale d'allergologie et d'immunologie clinique, clinique dermatologique, Nantes, France
| | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | | | - Cédric Le May
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France.
| |
Collapse
|
3
|
Gu S, Wang R, Zhang W, Wen C, Chen C, Liu S, Lei Q, Zhang P, Zeng S. The production, function, and clinical applications of IL-33 in type 2 inflammation-related respiratory diseases. Front Immunol 2024; 15:1436437. [PMID: 39301028 PMCID: PMC11410612 DOI: 10.3389/fimmu.2024.1436437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Epithelial-derived IL-33 (Interleukin-33), as a member of alarm signals, is a chemical substance produced under harmful stimuli that can promote innate immunity and activate adaptive immune responses. Type 2 inflammation refers to inflammation primarily mediated by Type 2 helper T cells (Th2), Type 2 innate lymphoid cells (ILC2), and related cytokines. Type 2 inflammation manifests in various forms in the lungs, with diseases such as asthma and chronic obstructive pulmonary disease chronic obstructive pulmonary disease (COPD) closely associated with Type 2 inflammation. Recent research suggests that IL-33 has a promoting effect on Type 2 inflammation in the lungs and can be regarded as an alarm signal for Type 2 inflammation. This article provides an overview of the mechanisms and related targets of IL-33 in the development of lung diseases caused by Type 2 inflammation, and summarizes the associated treatment methods. Analyzing lung diseases from a new perspective through the alarm of Type 2 inflammation helps to gain a deeper understanding of the pathogenesis of these related lung diseases. This, in turn, facilitates a better understanding of the latest treatment methods and potential therapeutic targets for diseases, with the expectation that targeting lL-33 can propose new strategies for disease prevention.
Collapse
Affiliation(s)
- Shiyao Gu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruixuan Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wantian Zhang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cen Wen
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Su Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Zhang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Si Zeng
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Munteanu C, Schwartz B. Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer. Int J Mol Sci 2024; 25:8250. [PMID: 39125822 PMCID: PMC11311432 DOI: 10.3390/ijms25158250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the population of beneficial bacteria in the intestinal lumen post-consumption, which has a positive impact on human health. In addition, dietary fibers serve as a significant energy source for bacteria inhabiting the cecum and colon. Research articles and reviews sourced from various global databases were systematically analyzed using specific phrases and keywords to investigate these relationships. There is a clear association between dietary fiber intake and improved colon function, gut motility, and reduced colorectal cancer (CRC) risk. Moreover, the state of health is reflected in the reciprocal and bidirectional relationships among food, dietary antioxidants, inflammation, and body composition. They are known for their antioxidant properties and their ability to inhibit angiogenesis, metastasis, and cell proliferation. Additionally, they promote cell survival, modulate immune and inflammatory responses, and inactivate pro-carcinogens. These actions collectively contribute to their role in cancer prevention. In different investigations, antioxidant supplements containing vitamins have been shown to lower the risk of specific cancer types. In contrast, some evidence suggests that taking antioxidant supplements can increase the risk of developing cancer. Ultimately, collaborative efforts among immunologists, clinicians, nutritionists, and dietitians are imperative for designing well-structured nutritional trials to corroborate the clinical efficacy of dietary therapy in managing inflammation and preventing carcinogenesis. This review seeks to explore the interrelationships among dietary antioxidants, dietary fiber, and the gut microbiome, with a particular focus on their potential implications in inflammation and cancer.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Wei Y, Xiao Y, Liu Q, Du Z, Xiao T. Preliminary study of BF/C2 on immune mechanism of grass carp against GCRV infection. BMC Genomics 2024; 25:715. [PMID: 39048939 PMCID: PMC11271160 DOI: 10.1186/s12864-024-10609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
BF/C2 is a crucial molecule in the coagulation complement cascade pathway and plays a significant role in the immune response of grass carp through the classical, alternative, and lectin pathways during GCRV infection. In vivo experiments demonstrated that the mRNA expression levels of BF/C2 (A, B) in grass carp positively correlated with GCRV viral replication at various stages of infection. Excessive inflammation leading to death coincided with peak levels of BF/C2 (A, B) mRNA expression and GCRV viral replication. Correspondingly, BF/C2 (A, B) recombinant protein, CIK cells and GCRV co-incubation experiments yielded similar findings. Therefore, 3 h (incubation period) and 9 h (death period) were selected as critical points for this study. Transcriptome sequencing analysis revealed significant differences in the expression of BF/C2A and BF/C2B during different stages of CIK infection with GCRV and compared to the blank control group (PBS). Specifically, the BF/C2A_3 and BF/C2A_9 groups exhibited 2729 and 2228 differentially expressed genes (DEGs), respectively, with 1436 upregulated and 1293 downregulated in the former, and 1324 upregulated and 904 downregulated in the latter. The BF/C2B_3 and BF/C2B_9 groups showed 2303 and 1547 DEGs, respectively, with 1368 upregulated and 935 downregulated in the former, and 818 upregulated and 729 downregulated in the latter. KEGG functional enrichment analysis of these DEGs identified shared pathways between BF/C2A and PBS groups at 3 and 9 h, including the C-type lectin receptor signaling pathway, protein processing in the endoplasmic reticulum, Toll-like receptor signaling pathway, Salmonella infection, apoptosis, tight junction, and adipocytokine signaling pathway. Additionally, the BF/C2B groups at 3 and 9 h shared pathways related to protein processing in the endoplasmic reticulum, glycolysis/gluconeogenesis, and biosynthesis of amino acids. The mRNA levels of these DEGs were validated in cellular models, confirming consistency with the sequencing results. In addition, the mRNA expression levels of these candidate genes (mapk1, il1b, rela, nfkbiab, akt3a, hyou1, hsp90b1, dnajc3a et al.) in the head kidney, kidney, liver and spleen of grass carp immune tissue were significantly different from those of the control group by BF/C2 (A, B) protein injection in vivo. These candidate genes play an important role in the response of BF/C2 (A, B) to GCRV infection and it also further confirmed that BF/C2 (A, B) of grass carp plays an important role in coping with GCRV infection.
Collapse
Affiliation(s)
- Yuling Wei
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Qiaolin Liu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
6
|
Guo B, Yan L, Tang Y, Du J, Dai Z, Liu J, Lei M, Hou Z, Zhu H. Green Light Mitigates Cyclic Chronic Heat-Stress-Induced Liver Oxidative Stress and Inflammation via NF-κB Pathway Inhibition in Geese. Antioxidants (Basel) 2024; 13:772. [PMID: 39061842 PMCID: PMC11274274 DOI: 10.3390/antiox13070772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Heat stress (HS) induces various physiological disorders in poultry, negatively impacting feed intake, feed efficiency, and growth performance. Considering the documented anti-stress and growth-promoting benefits of monochromatic green light in poultry, we aimed to investigate its effects on cyclic chronic HS-induced oxidative stress (OS) and inflammation in geese. We established three treatment groups-geese exposed to white light (W), white light with HS treatment (WH), and green light with HS treatment (GH)-treated over a six-week period with daily HS sessions. The results revealed that cyclic chronic HS induced liver OS and inflammation, leading to hepatocellular injury and reduced growth performance and feed intake. In comparison, the growth performance of geese under green light significantly improved. Additionally, liver index, serum, liver malondialdehyde (MDA), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumour necrosis factor-α (TNF-α) levels were reduced. Serum total antioxidant capacity (T-AOC), liver catalase (CAT), and superoxide dismutase (SOD) activity were enhanced, reducing hepatic OS and inflammation. Liver transcriptomic analysis indicated that green light alleviates cyclic chronic HS-induced liver injury and promotes geese growth performance by suppressing NF-κB pathway activation.
Collapse
Affiliation(s)
- Binbin Guo
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (L.Y.); (Y.T.); (Z.D.); (J.L.); (M.L.)
- Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Leyan Yan
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (L.Y.); (Y.T.); (Z.D.); (J.L.); (M.L.)
- Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yi Tang
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (L.Y.); (Y.T.); (Z.D.); (J.L.); (M.L.)
- Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Life Science, Jiangsu University, Zhenjiang 212000, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong 212400, China;
| | - Zichun Dai
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (L.Y.); (Y.T.); (Z.D.); (J.L.); (M.L.)
- Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jie Liu
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (L.Y.); (Y.T.); (Z.D.); (J.L.); (M.L.)
- Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mingming Lei
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (L.Y.); (Y.T.); (Z.D.); (J.L.); (M.L.)
- Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhuocheng Hou
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huanxi Zhu
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (L.Y.); (Y.T.); (Z.D.); (J.L.); (M.L.)
- Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
7
|
Qin Z, Xie L, Li W, Wang C, Li Y. New Insights into Mechanisms Traditional Chinese Medicine for Allergic Rhinitis by Regulating Inflammatory and Oxidative Stress Pathways. J Asthma Allergy 2024; 17:97-112. [PMID: 38405022 PMCID: PMC10888064 DOI: 10.2147/jaa.s444923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Allergy rhinitis (AR) is becoming more common and has serious medical and societal consequences. Sneezing, paroxysmal nasal blockage, nasal itching, mucosal edema, coughing, and rhinorrhea are symptoms of this type I allergic immunological illness. Immunoglobulin E-mediated inflammation is the cause of it. Because AR is prone to recurrent attacks, extended medication therapy may impair its effectiveness. In addition to negatively affecting the patients' physical health, this can also negatively impact their mental health. During AR development, there are inflammatory and oxidative stress responses that are linked to problems in a number of signal transduction pathways. By using the terms "allergic rhinitis", "traditional Chinese medicine", "inflammation", and "oxidative stress", we screened for pertinent research published over the previous five years in databases like PubMed. We saw that NF-KB, TLR, IL-33/ST2, PI3K/AKT, MAPK, and Nrf2 are some of the most important inflammatory and oxidative stress pathways in AR. Studies have revealed that antioxidant and anti-inflammatory therapy reduced the risk of AR and was therapeutic; however, the impact of the therapy varies widely. The Chinese medical system places a high value on traditional Chinese medicine (TCM), which has been there for virtually all of China's 5000-year history. By influencing signaling pathways related to inflammation and oxidative stress, Chinese herbal medicine and its constituent compounds have been shown to prevent allergic rhinitis. This review will focus on this evidence and provide references for clinical treatment and scientific research applications.
Collapse
Affiliation(s)
- Zhu Qin
- Department of Otolaryngology, Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Liangzhen Xie
- Department of Otolaryngology, Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Wentao Li
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Chao Wang
- Department of Otolaryngology, Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Yan Li
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
8
|
Liu P, Zhang Z, Chen H, Chen Q. Pyroptosis: Mechanisms and links with diabetic cardiomyopathy. Ageing Res Rev 2024; 94:102182. [PMID: 38182080 DOI: 10.1016/j.arr.2023.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycaemia that seriously affects human health. Diabetic cardiomyopathy (DCM) is a major cardiovascular complication and one of the main causes of death in patients with DM. Although DCM attracts great attention, and new therapeutic methods are continuously developed, there is a lack of effective treatment strategies. Therefore, exploring and targeting new signalling pathways related to the evolution of DCM becomes a hotspot and difficulty in the prevention and treatment of DCM. Pyroptosis is a newly discovered regulated cell death that is heavily dependent on the formation of plasma membrane pores by members of the gasdermin protein family and is reported to be involved in the occurrence, development, and pathogenesis of DCM. In this review, we focus on the molecular mechanisms of pyroptosis, its involvement in the relevant signalling pathways of DCM, and potential pyroptosis-targeting therapeutic strategies for the treatment of DCM. Our review provides new insights into the use of pyroptosis as a useful tool for the prevention and treatment of DCM and clarifies future research directions.
Collapse
Affiliation(s)
- Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, PR China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, PR China; Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, PR China
| | - Huizhen Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, PR China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, PR China.
| |
Collapse
|
9
|
Wang R, Zeng J, Chen L, Sun L, Wang Y, Xu J, He X. Diterpenoid WT-29 isolated from Wedelia exerted anti-inflammatory and anti-allergic activities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117265. [PMID: 37783409 DOI: 10.1016/j.jep.2023.117265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wedelia (Sphagneticola trilobata) is a traditional anti-inflammatory herb native to tropical America. It is commonly used to treat some inflammatory related diseases clinically, such as pertussis, pharyngitis, etc. However, its specific anti-inflammatory mechanism is still unclear. AIM OF THE STUDY WT-29 (3α-angeloyloxy-9β-hydroxyent-kaura-16-en-19-oic acid) is a main bioactive diterpenoid isolated and purified from Wedelia. This study aims to explore the potential anti-inflammatory and anti-allergic properties of WT-29 on RAW264.7 cells stimulated with LPS and P815 cells induced by C48/80, as well as investigating their underlying molecular mechanisms. METHODS The anti-inflammatory mechanism of WT-29 was analyzed and predicted using network pharmacology, and then verified through experiments. The Griess reagent assay was employed to evaluate the impact of WT-29 on the generation of nitric oxide (NO) in RAW264.7 cells induced by LPS, the expression of various inflammatory cytokines and the release of histamine in cells were measured through qRT-PCR and ELISA techniques. The impact of WT-29 on the translocation of the NF-κB p65 protein to the nucleus was assessed through immunofluorescence staining. Western blot technique was utilized to investigate protein expression in inflammation, allergy, and autophagy pathways. RESULTS The study found that WT-29 can reduce the secretion of inflammatory factors (NO, iNOS, COX-2, IL-6, IL-1β and TNF-α), inhibit NF-κB activation and MAPK family phosphorylation, and induce autophagy in RAW264.7 cells stimulated with LPS. In addition, it demonstrated that WT-29 could inhibit histamine release and degranulation, as well as inhibit the MAPK family in C48/80-induced P815 cells. CONCLUSION WT-29 isolated from Wedelia exerts anti-inflammatory and anti-allergic effects mainly through NF-κB, Nrf2/Keap-1, MAPK pathways and regulating of autophagy, suggesting that it might be a potential anti-inflammatory and anti-allergic agent and could be used as medicine or health benefit product.
Collapse
Affiliation(s)
- Ru Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| | - Jia Zeng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lu Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| | - Lianlian Sun
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Alipourgivi F, Motolani A, Qiu AY, Qiang W, Yang GY, Chen S, Lu T. Genetic Alterations of NF-κB and Its Regulators: A Rich Platform to Advance Colorectal Cancer Diagnosis and Treatment. Int J Mol Sci 2023; 25:154. [PMID: 38203325 PMCID: PMC10779007 DOI: 10.3390/ijms25010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer mortality in the United States, with an estimated 52,000 deaths in 2023. Though significant progress has been made in both diagnosis and treatment of CRC in recent years, genetic heterogeneity of CRC-the culprit for possible CRC relapse and drug resistance, is still an insurmountable challenge. Thus, developing more effective therapeutics to overcome this challenge in new CRC treatment strategies is imperative. Genetic and epigenetic changes are well recognized to be responsible for the stepwise development of CRC malignancy. In this review, we focus on detailed genetic alteration information about the nuclear factor (NF)-κB signaling, including both NF-κB family members, and their regulators, such as protein arginine methyltransferase 5 (PRMT5), and outer dynein arm docking complex subunit 2 (ODAD2, also named armadillo repeat-containing 4, ARMC4), etc., in CRC patients. Moreover, we provide deep insight into different CRC research models, with a particular focus on patient-derived xenografts (PDX) and organoid models, and their potential applications in CRC research. Genetic alterations on NF-κB signaling components are estimated to be more than 50% of the overall genetic changes identified in CRC patients collected by cBioportal for Cancer Genomics; thus, emphasizing its paramount importance in CRC progression. Consequently, various genetic alterations on NF-κB signaling may hold great promise for novel therapeutic development in CRC. Future endeavors may focus on utilizing CRC models (e.g., PDX or organoids, or isogenic human embryonic stem cell (hESC)-derived colonic cells, or human pluripotent stem cells (hPSC)-derived colonic organoids, etc.) to further uncover the underpinning mechanism of these genetic alterations in NF-κB signaling in CRC progression. Moreover, establishing platforms for drug discovery in dishes, and developing Biobanks, etc., may further pave the way for the development of innovative personalized medicine to treat CRC in the future.
Collapse
Affiliation(s)
- Faranak Alipourgivi
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (F.A.); (A.M.)
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Aishat Motolani
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (F.A.); (A.M.)
| | - Alice Y. Qiu
- Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; (A.Y.Q.); (W.Q.)
| | - Wenan Qiang
- Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; (A.Y.Q.); (W.Q.)
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA;
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guang-Yu Yang
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA;
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA;
| | - Tao Lu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (F.A.); (A.M.)
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Wang Y, Chu T, Pan X, Bian Y, Li J. Escin ameliorates inflammation via inhibiting mechanical stretch and chemically induced Piezo1 activation in vascular endothelial cells. Eur J Pharmacol 2023; 956:175951. [PMID: 37541373 DOI: 10.1016/j.ejphar.2023.175951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/15/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Escin is an active ingredient used in the treatment of phlebitis. However, the pharmacological mechanism of escin remains largely unclear. Here, we aimed to determine the molecular basis for the therapeutic effect of escin. Human umbilical vein endothelial cells (HUVECs) were subjected to shear-stress assays with or without escin. Intracellular Ca2+ levels, inflammatory factors and the activity of NF-κB were measured in endothelial cells (ECs) after mechanical-stretch or Yoda1 activation. Isometric tensions in aortic rings were identified. In addition, murine liver endothelial cells (MLECs) isolated from Piezo1 endothelial specific knockout mice (Piezo1△ EC) were used to explore the role of Piezo1. Our results showed that escin inhibited inflammatory factors, intracellular Ca2+ levels and Yoda1-evoked relaxation of thoracic aorta rings. Cell alignment induced by shear stress was inhibited by escin in HUVECs, and Piezo1 siRNA was used to show that this effect was dependent on Piezo1 channels. Moreover, escin reduced the inflammation and inhibited the activity of NF-κB in ECs with mechanical-stretch, which were insensitive to Piezo1 deletion. SN50, an NF-κB antagonist, significantly inhibited the mechanical stretch-induced inflammatory response. In addition, escin reduced inflammation in ECs subjected to mechanical-stretch, which was insensitive after using NF-κB antagonist. Collectively, our results demonstrate that escin inhibits the mechanical stretch-induced inflammatory response via a Piezo1-mediated NF-κB pathway. This study improves our understanding of a molecular target of escin that mediates its effect on chronic vascular inflammation.
Collapse
Affiliation(s)
- Yuman Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong Province, China
| | - Tianjiao Chu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong Province, China
| | - Xianmei Pan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong Province, China.
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong Province, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
| |
Collapse
|
12
|
Rahimi-Tari M, Sadeghi AA, Motamedi-Sedeh F, Aminafshar M, Chamani M. Hematological parameters, antioxidant status, and gene expression of γ-INF and IL-1β in vaccinated lambs fed different type of lipids. Trop Anim Health Prod 2023; 55:168. [PMID: 37084030 DOI: 10.1007/s11250-023-03585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
This study was aimed to evaluate the effects of vegetable oils as calcium salt on immune responses and the expression of immune-related genes in vaccinated lambs. Twenty-four lambs (35 kg body weight, 6 months old) were assigned to four treatments with six replicates in a completely randomized design for 40 days. Four concentrates were formulated in which the calcium salts of palm oil, canola oil, corn oil, and flaxseed oil were used. On day 30 of the experiment, lambs were vaccinated by a dose of foot-and-mouth disease virus. The blood samples were collected from jugular vein 10 days after vaccination. The level of malondialdehyde and the activity of liver enzymes were the highest in lambs receiving corn oil and the lowest in lambs receiving flaxseed oil. The highest lymphocytes and the lowest neutrophil percentages were observed in lambs receiving flaxseed oil. There was a significant difference among treatments for the relative genes expression. Flaxseed oil significantly upregulated interferon-γ and corn oil upregulated interleukin-1β. The highest titer against foot-and-mouth disease virus was related to lambs receiving flaxseed oil, and the lowest titer was related to lambs that received corn oil. Flaxseed oil had more beneficial effects on immune response than other oils.
Collapse
Affiliation(s)
- Morteza Rahimi-Tari
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Asghar Sadeghi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Farahnaz Motamedi-Sedeh
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj, Iran
| | - Mehdi Aminafshar
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Navarese EP, Podhajski P, Gurbel PA, Grzelakowska K, Ruscio E, Tantry U, Magielski P, Kubica A, Niezgoda P, Adamski P, Junik R, Przybylski G, Pilaczyńska-Cemel M, Rupji M, Specchia G, Pinkas J, Gajda R, Gorog DA, Andreotti F, Kubica J. PCSK9 Inhibition During the Inflammatory Stage of SARS-CoV-2 Infection. J Am Coll Cardiol 2023; 81:224-234. [PMID: 36653090 PMCID: PMC9842071 DOI: 10.1016/j.jacc.2022.10.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND The intensity of inflammation during COVID-19 is related to adverse outcomes. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is involved in low-density lipoprotein receptor homeostasis, with potential influence on vascular inflammation and on COVID-19 inflammatory response. OBJECTIVES The goal of this study was to investigate the impact of PCSK9 inhibition vs placebo on clinical and laboratory outcomes in patients with severe COVID-19. METHODS In this double-blind, placebo-controlled, multicenter pilot trial, 60 patients hospitalized for severe COVID-19, with ground-glass opacity pneumonia and arterial partial oxygen pressure to fraction of inspired oxygen ratio ≤300 mm Hg, were randomized 1:1 to receive a single 140-mg subcutaneous injection of evolocumab or placebo. The primary endpoint was death or need for intubation at 30 days. The main secondary endpoint was change in circulating interleukin (IL)-6 at 7 and 30 days from baseline. RESULTS Patients randomized to receive the PCSK9 inhibitor had lower rates of death or need for intubation within 30 days vs placebo (23.3% vs 53.3%, risk difference: -30%; 95% CI: -53.40% to -6.59%). Serum IL-6 across time was lower with the PCSK9 inhibitor than with placebo (30-day decline: -56% vs -21%). Patients with baseline IL-6 above the median had lower mortality with PCSK9 inhibition vs placebo (risk difference: -37.50%; 95% CI: -68.20% to -6.70%). CONCLUSIONS PCSK9 inhibition compared with placebo reduced the primary endpoint of death or need for intubation and IL-6 levels in severe COVID-19. Patients with more intense inflammation at randomization had better survival with PCSK9 inhibition vs placebo, indicating that inflammatory intensity may drive therapeutic benefits. (Impact of PCSK9 Inhibition on Clinical Outcome in Patients During the Inflammatory Stage of the COVID-19 [IMPACT-SIRIO 5]; NCT04941105).
Collapse
Affiliation(s)
- Eliano P. Navarese
- Interventional Cardiology and Cardiovascular Medicine Research, Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland,Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada,SIRIO MEDICINE Research Network, Bydgoszcz, Poland,Address for correspondence: Prof Eliano P. Navarese, Interventional Cardiology and Cardiovascular Medicine Research, Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Przemysław Podhajski
- Interventional Cardiology and Cardiovascular Medicine Research, Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland,SIRIO MEDICINE Research Network, Bydgoszcz, Poland
| | - Paul A. Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health, Baltimore, Maryland, USA
| | - Klaudyna Grzelakowska
- Interventional Cardiology and Cardiovascular Medicine Research, Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland,SIRIO MEDICINE Research Network, Bydgoszcz, Poland
| | - Eleonora Ruscio
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Udaya Tantry
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health, Baltimore, Maryland, USA
| | - Przemysław Magielski
- Interventional Cardiology and Cardiovascular Medicine Research, Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Aldona Kubica
- Department of Health Promotion, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Piotr Niezgoda
- Interventional Cardiology and Cardiovascular Medicine Research, Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Piotr Adamski
- Interventional Cardiology and Cardiovascular Medicine Research, Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Roman Junik
- Department of Endocrinology and Diabetology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Grzegorz Przybylski
- Department of Lung Diseases, Neoplasms and Tuberculosis, Faculty of Medicine, Nicolaus Copernicus University, Toruń, Poland
| | - Marta Pilaczyńska-Cemel
- Department of Lung Diseases, Neoplasms and Tuberculosis, Faculty of Medicine, Nicolaus Copernicus University, Toruń, Poland
| | - Manali Rupji
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | | | - Jarosław Pinkas
- Center of Postgraduate Medical Education, School of Public Health, Warsaw, Poland
| | - Robert Gajda
- Gajda-Med Medical Center in Pułtusk, Pułtusk, Poland
| | - Diana A. Gorog
- School of Life and Medical Sciences, Postgraduate Medical School, University of Hertfordshire, Hertfordshire, United Kingdom,Faculty of Medicine, National Heart & Lung Institute, Imperial College, London, United Kingdom
| | - Felicita Andreotti
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,Direzione Scientifica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jacek Kubica
- Interventional Cardiology and Cardiovascular Medicine Research, Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland,SIRIO MEDICINE Research Network, Bydgoszcz, Poland
| |
Collapse
|
14
|
Norda S, Papadantonaki R. Regulation of cells of the arterial wall by hypoxia and its role in the development of atherosclerosis. VASA 2023; 52:6-21. [PMID: 36484144 DOI: 10.1024/0301-1526/a001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell's response to hypoxia depends on stabilization of the hypoxia-inducible factor 1 complex and transactivation of nuclear factor kappa-B (NF-κB). HIF target gene transcription in cells resident to atherosclerotic lesions adjoins a complex interplay of cytokines and mediators of inflammation affecting cholesterol uptake, migration, and inflammation. Maladaptive activation of the HIF-pathway and transactivation of nuclear factor kappa-B causes monocytes to invade early atherosclerotic lesions, maintaining inflammation and aggravating a low-oxygen environment. Meanwhile HIF-dependent upregulation of the ATP-binding cassette transporter ABCA1 causes attenuation of cholesterol efflux and ultimately macrophages becoming foam cells. Hypoxia facilitates neovascularization by upregulation of vascular endothelial growth factor (VEGF) secreted by endothelial cells and vascular smooth muscle cells lining the arterial wall destabilizing the plaque. HIF-knockout animal models and inhibitor studies were able to show beneficial effects on atherogenesis by counteracting the HIF-pathway in the cell wall. In this review the authors elaborate on the up-to-date literature on regulation of cells of the arterial wall through activation of HIF-1α and its effect on atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Stephen Norda
- Department of Cardiovascular Medicine, University Hospital Münster, Germany
| | - Rosa Papadantonaki
- Emergency Department, West Middlesex University Hospital, Chelsea and Westminster NHS Trust, London, United Kingdom
| |
Collapse
|
15
|
Signaling Pathways in Inflammation and Cardiovascular Diseases: An Update of Therapeutic Strategies. IMMUNO 2022. [DOI: 10.3390/immuno2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inflammatory processes represent a pivotal element in the development and complications of cardiovascular diseases (CVDs). Targeting these processes can lead to the alleviation of cardiomyocyte (CM) injury and the increase of reparative mechanisms. Loss of CMs from inflammation-associated cardiac diseases often results in heart failure (HF). Evidence of the crosstalk between nuclear factor-kappa B (NF-κB), Hippo, and mechanistic/mammalian target of rapamycin (mTOR) has been reported in manifold immune responses and cardiac pathologies. Since these signaling cascades regulate a broad array of biological tasks in diverse cell types, their misregulation is responsible for the pathogenesis of many cardiac and vascular disorders, including cardiomyopathies and atherosclerosis. In response to a myriad of proinflammatory cytokines, which induce reactive oxygen species (ROS) production, several molecular mechanisms are activated within the heart to inaugurate the structural remodeling of the organ. This review provides a global landscape of intricate protein–protein interaction (PPI) networks between key constituents of NF-κB, Hippo, and mTOR signaling pathways as quintessential targetable candidates for the therapy of cardiovascular and inflammation-related diseases.
Collapse
|
16
|
Shen D, Peng H, Xia C, Deng Z, Tong X, Wang G, Qian K. The Role of Long Non-Coding RNAs in Epithelial-Mesenchymal Transition-Related Signaling Pathways in Prostate Cancer. Front Mol Biosci 2022; 9:939070. [PMID: 35923466 PMCID: PMC9339612 DOI: 10.3389/fmolb.2022.939070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common male malignancies with frequent remote invasion and metastasis, leading to high mortality. Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development and plays a key role in tumor proliferation, invasion and metastasis. Numerous long non-coding RNAs (lncRNAs) could regulate the occurrence and development of EMT through various complex molecular mechanisms involving multiple signaling pathways in PCa. Given the importance of EMT and lncRNAs in the progression of tumor metastasis, we recapitulate the research progress of EMT-related signaling pathways regulated by lncRNAs in PCa, including AR signaling, STAT3 signaling, Wnt/β-catenin signaling, PTEN/PI3K/AKT signaling, TGF-β/Smad and NF-κB signaling pathways. Furthermore, we summarize four modes of how lncRNAs participate in the EMT process of PCa via regulating relevant signaling pathways.
Collapse
Affiliation(s)
- Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Hongwei Peng
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Caixia Xia
- President’s Office, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xi Tong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| |
Collapse
|
17
|
Brazão V, Colato RP, Santello FH, Duarte A, Goulart A, Sampaio PA, Pacheco Silva CB, Tirapelli CR, Costa RM, Tostes RC, do Prado JC. Melatonin regulates antioxidant defense and inflammatory response by activating Nrf2-dependent mechanisms and inhibiting NFkappaB expression in middle-aged T. cruzi infected rats. Exp Gerontol 2022; 167:111895. [PMID: 35843349 DOI: 10.1016/j.exger.2022.111895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Oxidative stress with higher levels of leptin and inflammatory response are key processes related to pathogenesis of both T. cruzi infection and aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) controls the expression of several genes implicated in the oxidative stress response in many pathological conditions. Melatonin is a pleiotropic hormone with, antioxidant, anti-inflammatory and anti-aging actions. Then, we hypothesized that Nrf2 response is impaired during the acute T. cruzi (9 days) infection and that melatonin rescues Nrf2 responses. Young (5 weeks-old) and middle-aged (18 months-old) male Wistar rats were infected with T. cruzi. Nrf2 translocation and markers of inflammation and oxidative stress were analyzed in blood and spleen. Increased apoptosis levels and oxidative stress indicators were observed in the rat spleen during T. cruzi infection. These responses were accompanied by decreased Nrf2 expression and increased expression of nuclear factor kappa B (NFκB). Melatonin (5 mg/kg/day; p.o. gavage) attenuated the superoxide anion (O2-) and hydrogen peroxide (H2O2) production induced by T. cruzi infection. Increased expressions of catalase and superoxide dismutase (SOD) were detected in the spleen of melatonin-treated rats infected with T. cruzi. Melatonin treatment inhibited the spleen NF-κB activation and downregulates the levels of circulating interleukin (IL)-4, IL-10 and tumor necrosis factor (TNF)-α in T. cruzi middle-aged infected rats. Increased levels of the chemokine CXCL1 in middle-aged control rats was observed, confirming that aging alters the production of this chemokine. In T. cruzi infected young animals, CXCL1 was up-regulated when compared to non-infected young ones. For young or middle-aged animals, melatonin treatment had no significant effect on CXCL1 levels. Our findings demonstrate an important role for Nrf2/NF-kB regulation as a possible mechanism by which melatonin attenuates oxidative stress, and provide new insights for further studies of this indoleamine as a therapeutic co-adjuvant agent against T. cruzi infection.
Collapse
Affiliation(s)
- Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabricia Helena Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andressa Duarte
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Amanda Goulart
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro Alexandre Sampaio
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carla B Pacheco Silva
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Rafael M Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil; Special Academic Unit of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
18
|
Yang Y, Zhang Y, Chen X, Su Z, Deng Y, Zhao Q. Khasianine ameliorates psoriasis-like skin inflammation and represses TNF-α/NF-κB axis mediated transactivation of IL-17A and IL-33 in keratinocytes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115124. [PMID: 35183690 DOI: 10.1016/j.jep.2022.115124] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Khasianine is recently identified as a bioactive compound from Solanum nigrum L. (SNL) which is a traditional Chinese herb (named LongKui in China) and has been clinically applied for treating psoriasis in China but with limited knowledge about the active ingredients. AIM OF THE STUDY This study tried to explore the bioactivity of Khasianine and showed that Khasianine possessed highly anti-inflammatory bioactivity which rapidly alleviated psoriasis-like mice skin inflammation. MATERIALS AND METHODS Imiquimod induced psoriasis-like mouse model, and human keratinocytes were employed in this study. In vivo, immunohistochemistry and immunofluorescence were performed to evaluate the pathological improvement in psoriatic lesions after Khasianine treatment. In vitro, tumor necrosis factor α (TNF-α) treated HaCaT cells with or without Khasianine, were used to analyze the expression and cellular location of NF-κB p65, the expression of IL-17A and IL-33, and the binding intensity of NF-κB p65 on the promoter of IL-17A and IL-33 to understand the molecular mechanism of Khasianine mediated anti-inflammatory effect. RESULTS Khasianine reduced infiltration of CD4+ T helper cells (Th cells) and macrophages in mice psoriatic lesions. Immunohistochemistry analysis revealed that Khasianine reduced TNF-α levels in lesions and suppressed NF-κB p65 activation as well as expression of IL-17A and IL-33 in mice epidermal keratinocytes. Further studies in human keratinocytes demonstrated that Khasianine inhibited TNF-α-induced transcriptional activation (transactivation) of NF-κB p65 such as evicting NF-κB p65 binding from the promoter regions of IL-17A and IL-33 and preventing NF-κB nuclear translocation. CONCLUSIONS Our results suggested that Khasianine is a potent anti-inflammatory compound with the bioactivity of NF-κB inhibition and is a promising candidate for psoriasis topical therapy.
Collapse
Affiliation(s)
- Yixi Yang
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yujin Zhang
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xun Chen
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhou Su
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yu Deng
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| | - Qi Zhao
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
19
|
Chen R, Huang L, Zheng W, Zhang M, Xin Z, Liu L, Chen Z. Lactoferrin ameliorates myocardial fibrosis by inhibiting inflammatory response via the AMPK/NF-κB pathway in aged mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Hur GH, Ryu AR, Kim YW, Lee MY. The Potential Anti-Photoaging Effect of Photodynamic Therapy Using Chlorin e6-Curcumin Conjugate in UVB-Irradiated Fibroblasts and Hairless Mice. Pharmaceutics 2022; 14:pharmaceutics14050968. [PMID: 35631555 PMCID: PMC9143416 DOI: 10.3390/pharmaceutics14050968] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Photodynamic therapy (PDT) has been used to treat cancers and non-malignant skin diseases. In this study, a chlorin e6–curcumin conjugate (Ce6-PEG-Cur), a combination of chlorin e6 (Ce6) and curcumin via a PEG linker, was used as a photosensitizer. The in vitro and in vivo effects of PDT using Ce6-PEG-Cur were analyzed in UVB-irradiated fibroblasts and hairless mice. The UVB-induced expression of MMPs was reduced in Hs68 fibroblast cells, and procollagen type Ⅰ expression was enhanced by Ce6-PEG-Cur-mediated PDT on a Western blotting gel. Moreover, UVB-induced collagen levels were restored upon application of Ce6-PEG-Cur-mediated PDT. Ce6-PEG-Cur-mediated PDT inhibited the expression of phosphorylated p38 in the MAPK signaling pathway, and it reduced the expression of phosphorylated NF-κB. In animal models, Ce6-PEG-Cur-mediated PDT inhibited the expression of MMPs, whereas procollagen type Ⅰ levels were enhanced in the dorsal skin of UVB-irradiated mice. Moreover, UVB-induced dorsal roughness was significantly reduced following Ce6-PEG-Cur-mediated PDT treatment. H&E staining and Masson’s trichrome staining showed that the thickness of the epidermal region was reduced, and the density of collagen fibers increased. Taken together, Ce6-PEG-Cur-mediated PDT might delay and improve skin photoaging by ultraviolet light, suggesting its potential for use as a more effective photo-aging treatment.
Collapse
Affiliation(s)
- Ga-Hee Hur
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
| | - A-Reum Ryu
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea;
| | - Yong-Wan Kim
- Dongsung Bio Pharmaceutical Co., Ltd., Seoul 01340, Korea;
| | - Mi-Young Lee
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea;
- Correspondence: ; Tel.: +82-41-530-1355
| |
Collapse
|
21
|
Chen SJ, Zhang CY, Yu D, Lin CJ, Xu HJ, Hu CM. Selenium Alleviates Inflammation in Staphylococcus aureus-Induced Mastitis via MerTK-Dependent Activation of the PI3K/Akt/mTOR Pathway in Mice. Biol Trace Elem Res 2022; 200:1750-1762. [PMID: 34185276 DOI: 10.1007/s12011-021-02794-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/11/2021] [Indexed: 11/29/2022]
Abstract
Mastitis caused by Staphylococcus aureus infection not only causes serious economic losses, but also affects human health. Se plays an important role in body immunity. However, the mechanisms by which Se regulates mastitis induced by S. aureus are still principally unknown. The purpose of this study is to investigate whether Se can inhibit mastitis induced by S. aureus through regulation of MerTK. Sixty BALB/c female mice were fed low, normal, or high Se concentrations for 7 weeks and then randomly divided into six groups (Se-Low Control group (LSN), Se-Normal Control group (NSN), Se-High Control group (HSN), Se-Low S. aureus group (LSS), Se-Normal S. aureus group (NSS), Se-High S. aureus group (HSS)). The regulation of Se on MerTK was detected via histopathological staining, western blot analysis, enzyme-linked immunosorbent assay, and qRT-PCR. With increased selenium concentrations, the levels of IL-1β, IL-6, and TNF-α decreased, while the phosphorylation levels of MerTK, PI3K, AKT, and mTOR increased. Therefore, this study showed that Se could alleviate S. aureus mastitis by activating MerTK and PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Si-Jie Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chen-Yuan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Di Yu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chang-Jie Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hao-Jun Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chang-Min Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
22
|
Nizioł M, Ościłowska I, Baszanowska W, Pałka J, Besio R, Forlino A, Miltyk W. Recombinant Prolidase Activates EGFR-Dependent Cell Growth in an Experimental Model of Inflammation in HaCaT Keratinocytes. Implication for Wound Healing. Front Mol Biosci 2022; 9:876348. [PMID: 35433830 PMCID: PMC9006112 DOI: 10.3389/fmolb.2022.876348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
This study was conducted to investigate the proliferative capacity of recombinant human prolidase (rhPEPD) in a human model of inflammation induced by IL-1β in HaCaT keratinocytes. In this report, we provide evidence that IL-1β stimulates keratinocyte proliferation, and rhPEPD significantly augmented this process through activation of epidermal growth factor receptor (EGFR) and downstream signaling proteins as phosphorylated Akt, ERK1/2, and STAT3, which are implicated in keratinocyte migration, proliferation, and epithelialization during the wound healing process. Inhibition of PEPD-dependent EGFR signaling by gefitinib supported the finding. Moreover, during activation of EGFR in the presence of IL-1β the epithelial-to-mesenchymal transition (EMT) occurred via downregulation of E-cadherin and upregulation of N-cadherin. The phenomenon was accompanied by an increase in the activity of matrix metalloproteinase-9 (MMP-9), suggesting extracellular matrix (ECM) remodeling during the inflammatory process. MMP-9 activation may result from nuclear translocation of NF-κB through IKK-mediated IκBα degradation. Interestingly, some mutated variants of PEPD (rhPEPD-G448R, rhPEPD-231delY, and rhPEPD-E412K) evoked the ability to induce EGFR-dependent HaCaT cell proliferation. To the best of our knowledge, this is the first report on the cross-talk between PEPD and IL-1β in the process of keratinocyte proliferation. The data suggest that both enzymatically active and inactive rhPEPD may activate EGFR-dependent cell growth in an experimental model of inflammation in HaCaT keratinocytes and the knowledge may be useful for further approaches for therapy of wound healing disorders.
Collapse
Affiliation(s)
- Magdalena Nizioł
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Bialystok, Poland
| | - Ilona Ościłowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Weronika Baszanowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Jerzy Pałka
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Roberta Besio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Wojciech Miltyk,
| |
Collapse
|
23
|
Kim SR, Park Y, Li M, Kim YK, Lee S, Son SY, Lee S, Lee JS, Lee CH, Park HH, Lee JY, Hong S, Cho YC, Kim JW, Yoo HM, Cho N, Lee HS, Lee SH. Anti-inflammatory effect of Ailanthus altissima (Mill.) Swingle leaves in lipopolysaccharide-stimulated astrocytes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114258. [PMID: 34271112 DOI: 10.1016/j.jep.2021.114258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Activated astrocytes are involved in the progression of neurodegenerative diseases. Traditionally, Ailanthus altissima (Mill.) Swingle, widely distributed in East Asia, has been used as a medicine for the treatment of fever, gastric diseases, and inflammation. Although A. altissima has been reported to play an anti-inflammatory role in peripheral tissues or cells, its role in the central nervous system (CNS) remains unclear. AIM OF THE STUDY In the present study, we investigated the anti-inflammatory effects and mechanism of action of A. altissima in primary astrocytes stimulated by lipopolysaccharide (LPS). MATERIALS AND METHODS A nitrite assay was used to measure nitric oxide (NO) production, and the tetrazolium salt 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was performed to determine cytotoxicity. The expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and mitogen-activated protein kinase (MAPK) were determined with western blotting. Reverse-transcription PCR was used to assess the expression of inflammatory cytokines. The levels of reactive oxygen species were measured using 2,7-dichlorodihydrofluorescein diacetate. Luciferase assay and immunocytochemistry were used for assessing nuclear factor-kappa B (NF-κB) transcription and p65 localization, respectively. Memory and social interaction were analyzed using the Y-maze and three-chamber tests, respectively. RESULTS The ethanol extract of A. altissima leaves (AAE) inhibited iNOS and COX-2 expression in LPS-stimulated astrocytes. Moreover, AAE reduced the transcription of various proinflammatory mediators, hindered NF-κB activation, and suppressed extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activation without p38 activation. Ultra-high performance liquid chromatography with mass spectrometry analysis revealed that AAE comprised ethyl gallate, quercetin, and kaempferol, along with luteolin, which has anti-inflammatory properties, and repressed LPS-induced nitrite levels and the nuclear translocation of p65. Finally, oral administration of AAE attenuated LPS-induced memory and social impairment in mice and repressed LPS-induced ERK and JNK activation in the cortices of mice. CONCLUSION AAE could have therapeutic uses in the treatment of neuroinflammatory diseases via suppression of astrocyte activation.
Collapse
Affiliation(s)
- Sung Rae Kim
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Yongun Park
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Mo Li
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Yeong Kyeong Kim
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Su Young Son
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, 42 Hwangyeong-ro, Seo-gu, Incheon, 22755, Republic of Korea
| | - Jong Seok Lee
- National Institute of Biological Resources, Environmental Research Complex, 42 Hwangyeong-ro, Seo-gu, Incheon, 22755, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyun Ho Park
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ji-Yun Lee
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sungguan Hong
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hee Min Yoo
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung Hoon Lee
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
24
|
van Rensburg D, Lindeque Z, Harvey BH, Steyn SF. Reviewing the mitochondrial dysfunction paradigm in rodent models as platforms for neuropsychiatric disease research. Mitochondrion 2022; 64:82-102. [DOI: 10.1016/j.mito.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
|
25
|
Pandey P, Al Rumaih Z, Kels MJT, Ng E, Kc R, Chaudhri G, Karupiah G. Targeting ectromelia virus and TNF/NF-κB or STAT3 signaling for effective treatment of viral pneumonia. Proc Natl Acad Sci U S A 2022; 119:e2112725119. [PMID: 35177474 PMCID: PMC8872766 DOI: 10.1073/pnas.2112725119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
Viral causes of pneumonia pose constant threats to global public health, but there are no specific treatments currently available for the condition. Antivirals are ineffective when administered late after the onset of symptoms. Pneumonia is caused by an exaggerated inflammatory cytokine response to infection, but tissue necrosis and damage caused by virus also contribute to lung pathology. We hypothesized that viral pneumonia can be treated effectively if both virus and inflammation are simultaneously targeted. Combined treatment with the antiviral drug cidofovir and etanercept, which targets tumor necrosis factor (TNF), down-regulated nuclear factor kappa B-signaling and effectively reduced morbidity and mortality during respiratory ectromelia virus (ECTV) infection in mice even when treatment was initiated after onset of clinical signs. Treatment with cidofovir alone reduced viral load, but animals died from severe lung pathology. Treatment with etanercept had no effect on viral load but diminished levels of inflammatory cytokines and chemokines including TNF, IL-6, IL-1β, IL-12p40, TGF-β, and CCL5 and dampened activation of the STAT3 cytokine-signaling pathway, which transduces signals from multiple cytokines implicated in lung pathology. Consequently, combined treatment with a STAT3 inhibitor and cidofovir was effective in improving clinical disease and lung pathology in ECTV-infected mice. Thus, the simultaneous targeting of virus and a specific inflammatory cytokine or cytokine-signaling pathway is effective in the treatment of pneumonia. This approach might be applicable to pneumonia caused by emerging and re-emerging viruses, like seasonal and pandemic influenza A virus strains and severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Pratikshya Pandey
- Viral Immunology and Immunopathology Group, Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Zahrah Al Rumaih
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Ma Junaliah Tuazon Kels
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Esther Ng
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Rajendra Kc
- Viral Immunology and Immunopathology Group, Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Geeta Chaudhri
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Gunasegaran Karupiah
- Viral Immunology and Immunopathology Group, Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia;
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
26
|
Ao M, Zhang J, Qian Y, Li B, Wang X, Chen J, Zhang Y, Cao Y, Qiu Y, Xu Y, Wu Z, Fang M. Design and synthesis of adamantyl-substituted flavonoid derivatives as anti-inflammatory Nur77 modulators: Compound B7 targets Nur77 and improves LPS-induced inflammation in vitro and in vivo. Bioorg Chem 2022; 120:105645. [PMID: 35121551 DOI: 10.1016/j.bioorg.2022.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
Abstract
In continuing our study on discovering new Nur77-targeting anti-inflammatory agents with natural skeletons, we combined adamantyl group and hydroxamic acid moiety with flavonoid nucleus, synthesized three series of flavonoid derivatives with a similar structure like CD437, and evaluated their activities against LPS-induced inflammation. Compound B7 was found to be an excellent Nur77 binder (Kd = 3.55 × 10-7 M) and a potent inhibitor of inflammation, which significantly decreased the production of cytokines in vitro, such as NO, IL-6, IL-1β, and TNF-α, at concentrations of 1.25, 2.5, and 5 μM. Mechanistically, B7 modulated the colocalization of Nur77 at mitochondria and inhibited the lipopolysaccharides (LPS)-induced inflammation via the blockade of NF-κB activation in a Nur77-dependent manner. Additionally, B7 showed in vivo anti-inflammatory activity in the LPS-induced mice model of acute lung injury (ALI). These data suggest that the Nur77-targeting flavonoid derivatives can be particularly useful for further pharmaceutical development for the treatment of inflammatory diseases such as ALI.
Collapse
Affiliation(s)
- Mingtao Ao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Chemistry and Chemical Engineering, Xiamen University, South Xiang-An Road, Xiamen 361102, China; School of Pharmacy, Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Hubei University of Science and Technology, Xianning, Hubei 437100 China
| | - Jianyu Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Chemistry and Chemical Engineering, Xiamen University, South Xiang-An Road, Xiamen 361102, China; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yuqing Qian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Chemistry and Chemical Engineering, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Boqun Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Chemistry and Chemical Engineering, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Xiumei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Chemistry and Chemical Engineering, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Jun Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Chemistry and Chemical Engineering, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Yuxiang Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Chemistry and Chemical Engineering, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Yin Cao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Chemistry and Chemical Engineering, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Yingkun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Chemistry and Chemical Engineering, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Yang Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Chemistry and Chemical Engineering, Xiamen University, South Xiang-An Road, Xiamen 361102, China.
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Chemistry and Chemical Engineering, Xiamen University, South Xiang-An Road, Xiamen 361102, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Chemistry and Chemical Engineering, Xiamen University, South Xiang-An Road, Xiamen 361102, China.
| |
Collapse
|
27
|
Alidoust M, Shamshiri AK, Tajbakhsh A, Gheibihayat SM, Mazloom SM, Alizadeh F, Pasdar A. The significant role of a functional polymorphism in the NF-κB1 gene in breast cancer: evidence from an Iranian cohort. Future Oncol 2021; 17:4895-4905. [PMID: 34730002 DOI: 10.2217/fon-2021-0197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aims: Breast cancer (BC) is one of the most common cancers among women. The influence of genetic variations on BC risk has been thus far assessed via genome-wide association studies. NF-κB has been recognized as a major player in BC progression. In this study, the association between rs28362491 and BC was evaluated in a population from northeastern Iran. Materials & methods: This study was conducted on 476 patients with BC and 524 healthy controls. The genotyping method used was an amplification-refractory mutation system. Results: The INS/DEL genotype conferred a statistically significant increased risk in patients in comparison with controls. Additionally, in the recessive model, INS/INS + INS/DEL versus DEL/DEL was statistically significant (OR = 0.34; 95% CI: 0.12-0.96; p = 0.042). Conclusion: This study found that rs28362491, as a susceptibility genetic factor, may affect BC risk in the Iranian population.
Collapse
Affiliation(s)
- Maryam Alidoust
- Department of Medical Genetics & Molecular Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 17345-1583, Iran
| | - Asma Khorshid Shamshiri
- Department of Medical Genetics & Molecular Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 17345-1583, Iran
| | - Amir Tajbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 17345-1583, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8915167426, Iran
| | - Seyed Mostafa Mazloom
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad 91779-48944, Iran
| | - Farzaneh Alizadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 17345-1583, Iran
| | - Alireza Pasdar
- Department of Medical Genetics & Molecular Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.,Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.,Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Lee JM, Kim H, Baek SH. Unraveling the physiological roles of retinoic acid receptor-related orphan receptor α. Exp Mol Med 2021; 53:1278-1286. [PMID: 34588606 PMCID: PMC8492739 DOI: 10.1038/s12276-021-00679-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
Retinoic acid receptor-related orphan receptor-α (RORα) is a member of the orphan nuclear receptor family and functions as a transcriptional activator in response to circadian changes. Circadian rhythms are complex cellular mechanisms regulating diverse metabolic, inflammatory, and tumorigenic gene expression pathways that govern cyclic cellular physiology. Disruption of circadian regulators, including RORα, plays a critical role in tumorigenesis and facilitates the development of inflammatory hallmarks. Although RORα contributes to overall fitness among anticancer, anti-inflammatory, lipid homeostasis, and circadian clock mechanisms, the molecular mechanisms underlying the mode of transcriptional regulation by RORα remain unclear. Nonetheless, RORα has important implications for pharmacological prevention of cancer, inflammation, and metabolic diseases, and understanding context-dependent RORα regulation will provide an innovative approach for unraveling the functional link between cancer metabolism and rhythm changes.
Collapse
Affiliation(s)
- Ji Min Lee
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea. .,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
29
|
Ge S, Duo L, Wang J, Yang J, Li Z, Tu Y. A unique understanding of traditional medicine of pomegranate, Punica granatum L. and its current research status. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113877. [PMID: 33515685 DOI: 10.1016/j.jep.2021.113877] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pomegranate, Punica granatum L., has been used in traditional medicine in China and several regions of the world including Ayurveda, Islamic, and Persian for the treatment of atherosclerosis, diabetes, hypertension, hyperlipidemia, and several types of cancer, as well as for peptic ulcer and oral diseases for hundreds of years. Presently, pomegranate is treated as both a "medicine food homology" herbal medicine and a healthy food supplemental product. AIM OF THE STUDY The aim of this work is to develop an overview of pomegranate in the context of the status of its traditional medicine theories, the spread along the Silk Road, ethnopharmacological uses, chemical compositions, pharmacological activities, toxicology, and the involved pathways. MATERIALS AND METHODS Information on P. granatum L. was acquired from published materials, including monographs on medicinal plants, ancient and modern recorded classical texts; and pharmacopoeias and electronic databases (PubMed, Science Direct, Web of Science, Google Scholar, CNKI, and Wanfang Data). RESULTS Pomegranate has been used in many traditional medical systems throughout history. It is widely cultivated in Central Asia and spread throughout China along the Silk Road. Many phytochemicals, such as tannins, organic acids, flavonoids, alkaloids, and volatile oils have been identified from different parts of pomegranate, these compounds have a wide range of activities, including antioxidant, antimicrobial, and anti-oncogenic properties, as well as conferring resistance to cerebrovascular disease. Furthermore, A summary of the four promising pharmacological pathways is provided. CONCLUSIONS The traditional uses, chemical compositions, pharmacological activities, and signaling pathways of pomegranate are summarized comprehensively in the review. It can be treated as a guidance for the future clinical and basic research. The information provided in this review will be very useful for further studies to develop novel therapeutic directions for application of pomegranate.
Collapse
Affiliation(s)
- Shasha Ge
- Medical Research Center, China Academy of Chinese Medical Science, Beijing, China; Development Research Center of TCM, China Academy of Chinese Medical Science, Beijing, China
| | - Lan Duo
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Junqi Wang
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Jingfan Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhiyong Li
- School of Pharmacy, Minzu University of China, Beijing, China.
| | - Ya Tu
- Medical Research Center, China Academy of Chinese Medical Science, Beijing, China; Development Research Center of TCM, China Academy of Chinese Medical Science, Beijing, China.
| |
Collapse
|
30
|
Diet-Derived Antioxidants and Their Role in Inflammation, Obesity and Gut Microbiota Modulation. Antioxidants (Basel) 2021; 10:antiox10050708. [PMID: 33946864 PMCID: PMC8146040 DOI: 10.3390/antiox10050708] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
It is generally accepted that gut microbiota, inflammation and obesity are linked to the development of cardiovascular diseases and other chronic/non-communicable pathological conditions, including cancer, neurodegenerative diseases and ageing-related disorders. In this scenario, oxidative stress plays a pivotal role. Evidence suggests that the global dietary patterns may represent a tool in counteracting oxidative stress, thus preventing the onset of diseases related to oxidative stress. More specifically, dietary patterns based on the regular consumption of fruits and vegetables (i.e., Mediterranean diet) have been licensed by various national nutritional guidelines in many countries for their health-promoting effects. Such patterns, indeed, result in being rich in specific components, such as fiber, minerals, vitamins and antioxidants, whose beneficial effects on human health have been widely reported. This suggests a potential nutraceutical power of specific dietary components. In this manuscript, we summarize the most relevant evidence reporting the impact of dietary antioxidants on gut microbiota composition, inflammation and obesity, and we underline that antioxidants are implicated in a complex interplay between gut microbiota, inflammation and obesity, thus suggesting their possible role in the development and modulation of chronic diseases related to oxidative stress and in the maintenance of wellness. Do all roads lead to Rome?
Collapse
|
31
|
Romero-Nava R, Alarcón-Aguilar FJ, Giacoman-Martínez A, Blancas-Flores G, Aguayo-Cerón KA, Ballinas-Verdugo MA, Sánchez-Muñoz F, Huang F, Villafaña-Rauda S, Almanza-Pérez JC. Glycine is a competitive antagonist of the TNF receptor mediating the expression of inflammatory cytokines in 3T3-L1 adipocytes. Inflamm Res 2021; 70:605-618. [PMID: 33877377 DOI: 10.1007/s00011-021-01462-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/16/2021] [Accepted: 04/05/2021] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To determine the involvement of TNF-α and glycine receptors in the inhibition of pro-inflammatory adipokines in 3T3-L1 cells. METHODS RT-PCR evidenced glycine receptors in 3T3-L1 adipocytes. 3T3-L1 cells were transfected with siRNA for the glycine (Glrb) and TNF1a (Tnfrsf1a) receptors and confirmed by confocal microscopy. Transfected cells were treated with glycine (10 mM). The expressions of TNF-α and IL-6 mRNA were measured by qRT-PCR, while concentrations were quantified by ELISA. RESULTS Glycine decreased the expression and concentration of TNF-α and IL-6; this effect did not occur in the absence of TNF-α receptor due to siRNA. In contrast, glycine produced only slight changes in the expression of TNF-α and IL-6 in the absence of the glycine receptor due to siRNA. A docking analysis confirmed the possibility of binding glycine to the TNF-α1a receptor. CONCLUSION These findings support the idea that glycine could partially inhibit the binding of TNF-α to its receptor and provide clues about the mechanisms by which glycine inhibits the secretion of pro-inflammatory adipokines in adipocytes through the TNF-α receptor.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipocytes/metabolism
- Adiponectin/genetics
- Animals
- Cytokines/genetics
- Cytokines/metabolism
- Gene Expression
- Glycine/pharmacology
- Mice
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Receptors, Glycine/genetics
- Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type II/genetics
Collapse
Affiliation(s)
- Rodrigo Romero-Nava
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C.P. 09340, Mexico City, Mexico
- Departamento de Farmacología y Toxicología, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Sección de Posgrado, Laboratorio de Señalización Intracelular, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisco J Alarcón-Aguilar
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - Abraham Giacoman-Martínez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - Gerardo Blancas-Flores
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - Karla A Aguayo-Cerón
- Sección de Posgrado, Laboratorio de Señalización Intracelular, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Martha A Ballinas-Verdugo
- Departamento de Inmunología, Instituto Nacional de Cardiología (Ignacio Chávez), Mexico City, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología (Ignacio Chávez), Mexico City, Mexico
| | - Fengyang Huang
- Departamento de Farmacología y Toxicología, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Santiago Villafaña-Rauda
- Sección de Posgrado, Laboratorio de Señalización Intracelular, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Julio C Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C.P. 09340, Mexico City, Mexico.
| |
Collapse
|
32
|
Tiftik RN, Temiz-Reşitoğlu M, Güden DS, Bayrak G, Ün İ, Yılmaz ŞN, Şahan-Fırat S. Involvement of Rho-kinase/IκB-α/NF-κB activation in IL-1β-induced inflammatory response and oxidative stress in human chondrocytes. Can J Physiol Pharmacol 2021; 99:418-426. [PMID: 33769089 DOI: 10.1139/cjpp-2020-0305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been clearly indicated that osteoarthritis (OA) is an inflammatory and degenerative disease that could be promoted by Rho-kinase (ROCK); however, little is known about the role of ROCK/inhibitor κB alpha (IκB-α)/nuclear factor-κB (NF-κB) p65 pathway activation in interleukin-1β (IL-1β) induced inflammatory response and oxidative stress in primary human chondrocytes. To test this hypothesis, we focused on determining ROCK-II, IκB-α, p-IκB-α, NF-κB p65, p-NF-κB p65, IL-6, tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2), p22phox, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subtype 4 (NOX4) protein expression, ROCK-II activity, NADPH oxidase levels, and total antioxidant capacity (TAC) in the presence and absence of ROCK-inhibitor fasudil. IL-1β (2 ng·mL-1, 24 h) increased the expression of ROCK-II, p-IκB-α, NF-κB p65, p-NF-κB p65, IL-6, TNF-α, COX-2, and p22phox proteins, and decreased the expression of IκB-α, and the NOX4 protein level did not alter. ROCK activity and NADPH oxidase levels were increased, whereas the TAC was decreased by IL-1β. Fasudil (10-5-10-7 M) reversed all these changes induced by IL-1β. These results demonstrate that ROCK/IκB-α/NF-κB p65 pathway activation contributes to the IL-1β-induced inflammatory response and oxidative stress, and thus, ROCK inhibition might be a beneficial treatment option for OA patients mainly based on its anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Rukiye Nalan Tiftik
- Department of Medical Pharmacology, Medical Faculty, Mersin University, Mersin, Turkey
| | | | - Demet Sinem Güden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Gülsen Bayrak
- Department of Histology and Embryology, Medical Faculty, Mersin University, Mersin, Turkey
| | - İsmail Ün
- Department of Medical Pharmacology, Medical Faculty, Mersin University, Mersin, Turkey
| | - Şakir Necat Yılmaz
- Department of Histology and Embryology, Medical Faculty, Mersin University, Mersin, Turkey
| | - Seyhan Şahan-Fırat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
33
|
Olgierd B, Kamila Ż, Anna B, Emilia M. The Pluripotent Activities of Caffeic Acid Phenethyl Ester. Molecules 2021; 26:molecules26051335. [PMID: 33801469 PMCID: PMC7958844 DOI: 10.3390/molecules26051335] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is a strong antioxidant extracted from honey bee-hive propolis. The mentioned compound, a well-known NF-κB inhibitor, has been used in traditional medicine as a potent anti-inflammatory agent. CAPE has a broad spectrum of biological properties including anti-viral, anti-bacterial, anti-cancer, immunomodulatory, and wound-healing activities. This review characterizes published data about CAPE biological properties and potential therapeutic applications, that can be used in various diseases.
Collapse
Affiliation(s)
- Batoryna Olgierd
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
- Correspondence: or ; Tel.: +48-602-689-347
| | - Żyła Kamila
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Banyś Anna
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Morawiec Emilia
- Department of Microbiology, Faculty of Medicine in Zabrze, University of Technology in Katowice, 40-555 Katowice, Poland;
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
- Department of Histology, Cytophysiology and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, 40-555 Katowice, Poland
| |
Collapse
|
34
|
Lim JY, Lee JH, Yun DH, Lee YM, Kim DK. Inhibitory effects of nodakenin on inflammation and cell death in lipopolysaccharide-induced liver injury mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153411. [PMID: 33310307 DOI: 10.1016/j.phymed.2020.153411] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/06/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nodakenin, a coumarin glucoside isolated from the roots of Angelica biserrata, has been reported to have anti-inflammatory, antibacterial, anticancer effects. However, despite these studies, the potential liver protective effects of nodakenin in inflammatory liver injury models have not been reported. METHODS A mouse model of inflammatory liver injury was induced by injection of lipopolysaccharide (LPS) (15 mg/kg, intraperitoneally (i.p)). Liver tissue AST, ALT, ROS, T-GSH and T-SOD were analyzed by ELISA. The concentrations of TNF-α, IL-6, and IL-1β in serum of LPS-induced inflammatory liver injury mice were analyzed. The mRNA expression levels of GPx1, catalase, SOD1, SOD2, TNF-α, IL-6, IL-1β, iNOS and COX-2 were analyzed using real-time PCR. The expressions of MAPK, IRF3, NF-κB, Nrf2, HO-1, caspase-3 and caspase-7 were analyzed using western blotting. Liver tissue was stained with IHC to confirm NF-κB, Nrf-2, HO-1, caspase-3, Bax, and Bcl2. Tunnel analysis was performed to confirm the fragmented nuclear DNA characteristics of apoptosis. RESULTS The administration of nodakenin (10 and 30 mg/kg) reduced serum aminotransferase levels compared to LPS-induced liver damage and significantly improved the oxidative state of liver tissue and pathological damage. Moreover, inhibited the phosphorylation of transforming growth factor beta (TGF-β)-activated kinase (TAK)-1 in LPS-induced inflammatory liver injury model, and significantly inhibited the transcriptional of nuclear factor-kappa B (NF-kB) and the secretion of pro-inflammatory mediators. In addition nodakenin pre-treatment also attenuated hepatocyte death by regulating apoptosis-related mitochondrial proteins, such as cysteinyl aspartate specific proteinase 3 (caspase 3), poly (ADP-ribose) polymerase (PARP), B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X (Bax). CONCLUSION Our findings suggest that nodakenin has anti-inflammatory, anti-oxidant and anti-apoptotic activity and may be an adjunctive prevention agent for liver injury.
Collapse
Affiliation(s)
- Ji-Ye Lim
- Department of Immunology and Institute of Medical Sciences, Medical School, Jeonbuk (Chonbuk) National University, Jeonju, Jeonbuk, 54907, South Korea
| | - Ji-Hyun Lee
- Department of Immunology and Institute of Medical Sciences, Medical School, Jeonbuk (Chonbuk) National University, Jeonju, Jeonbuk, 54907, South Korea
| | - Dae-Ho Yun
- Department of Health Care Administration, Seoyeong University, Paju, Gyeonggi-do, 10843, South Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University and Wonkwang-Oriental Medicines Research Institute, Iksan 54538, South Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Medical School, Jeonbuk (Chonbuk) National University, Jeonju, Jeonbuk, 54907, South Korea.
| |
Collapse
|
35
|
Zhang YM, Qu XY, Tao LN, Zhai JH, Gao H, Song YQ, Zhang SX. XingNaoJing injection ameliorates cerebral ischaemia/reperfusion injury via SIRT1-mediated inflammatory response inhibition. PHARMACEUTICAL BIOLOGY 2020; 58:16-24. [PMID: 31854225 PMCID: PMC6968491 DOI: 10.1080/13880209.2019.1698619] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Context: XingNaoJing injection (XNJ), extracted from a traditional compound Chinese medicine Angong niuhuang pill, is well known for treating stroke in the clinic, but the specific effects and mechanisms remain unclear.Objective: We investigated the mechanistic basis for the protective effect of XNJ on cerebral ischaemia/reperfusion (I/R) injury.Materials and methods: Five groups of 10 SD rats underwent 2 h of middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. XNJ at 10 and 15 mL/kg was intraperitoneally administered 24 h before ischaemia and at the onset of reperfusion respectively. The silent information regulator 1 (SIRT1) inhibitor EX527 was intracerebroventricularly injected 0.5 h before reperfusion. Cerebral infarction size, neurological scores, morphological changes, and expression levels of inflammatory mediators and SIRT1 were measured. Furthermore, human brain microvascular endothelial cells (HBMECs) were subjected to 3 h oxygen and glucose deprivation (OGD) followed by 24 h reoxygenation to mimic cerebral I/R in vitro. EX527 pre-treatment occurred 1 h before OGD. SIRT1 and inflammatory mediator levels were analyzed.Results: Both XNJ doses significantly decreased cerebral infarct area (40.11% vs. 19.66% and 9.87%) and improved neurological scores and morphological changes. Inflammatory mediator levels were remarkably decreased in both model systems after XNJ treatment. XNJ also enhanced SIRT1 expression. Notably, the SIRT1 inhibitor EX527 attenuated the XNJ-mediated decrease in inflammation in vivo and in vitro.Conclusions: XNJ improved cerebral I/R injury through inhibiting the inflammatory response via the SIRT1 pathway, which may be a useful target in treating cerebral I/R injury.
Collapse
Affiliation(s)
- Yue-Ming Zhang
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Xiao-Yu Qu
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Li-Na Tao
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Jing-Hui Zhai
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Huan Gao
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Yan-Qing Song
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
- CONTACT Yan-Qing Song
| | - Si-Xi Zhang
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
- Si-Xi Zhang Department of Pharmacy, the First Hospital of Jilin University, 71# Xinmin Street, Changchun130021, Jilin Province, PR China
| |
Collapse
|
36
|
Fang H, Zhang J, Ao M, He F, Chen W, Qian Y, Zhang Y, Xu Y, Fang M. Synthesis and discovery of ω-3 polyunsaturated fatty acid- alkanolamine (PUFA-AA) derivatives as anti-inflammatory agents targeting Nur77. Bioorg Chem 2020; 105:104456. [PMID: 33217634 DOI: 10.1016/j.bioorg.2020.104456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/07/2020] [Accepted: 11/01/2020] [Indexed: 12/16/2022]
Abstract
In this work, three series of ω-3 polyunsaturated fatty acid-alkanolamine derivatives (PUFA-AAs) were synthesized, characterized and their anti-inflammatory activity in vivo was evaluated. Compounds 4a, 4f, and 4k exhibited marked anti-inflammatory activity in LPS-stimulated RAW 264.7 cells. The most promising compound 4k dose-dependently suppressed the cytokines with IC50 values in the low micromolar range. Further, 4k exhibited potential in vitro Nur77-binding affinity (Kd = 6.99 × 10-6 M) which is consistent with the result of docking studies. Next, the anti-inflammatory mechanism of 4k was found to be through NF-κB signal pathway in a Nur77-dependent manner. Moreover, we also observed 4k significantly inhibited LPS-induced expression of cytokines (IL-6, TNF-α, and IL-1β) through suppressing NF-κB activation and attenuated LPS-induced inflammation in mouse acute lung injury (ALI) model. In conclusion, the study strongly suggests that the PUFA-AA derivatives can be particularly as new Nur77 mediators for further treatment in inflammatory diseases.
Collapse
Affiliation(s)
- Hua Fang
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, China
| | - Jianyu Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Mingtao Ao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Fengming He
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Weizhu Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, China
| | - Yuqing Qian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yuxiang Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yang Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
37
|
Functional variations of NFKB1 and NFKB1A in inflammatory disorders and their implication for therapeutic approaches. ASIAN BIOMED 2020. [DOI: 10.1515/abm-2020-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) is a sophisticated transcription factor that is particularly important in the inflammatory response, but it regulates more than 400 individual and dependent genes for parts of the apoptotic, angiogenic, and proliferative, differentiative, and cell adhesion pathways. NF-κB function is directly inhibited by the binding of inhibitor of κB (IκB), and the imbalance between NF-κB and IκB has been linked to the development and progression of cancer and a variety of inflammatory disorders. These observations might broaden the horizon of current knowledge, particularly on the pathogenesis of inflammatory diseases considering the roles of NF-κB and IκB. In this context, we focus this narrative review on a comparative discussion of our findings with other literature regarding variations of NFKB1 and NFKB1A and their association with susceptibility to widespread inflammatory disorders (such as atherosclerosis, morbid obesity, Behçet syndrome, Graves disease, Hashimoto disease) and common cancers (such as gliomas).
Collapse
|
38
|
Momtazi-Borojeni AA, Sabouri-Rad S, Gotto AM, Pirro M, Banach M, Awan Z, Barreto GE, Sahebkar A. PCSK9 and inflammation: a review of experimental and clinical evidence. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2020; 5:237-245. [PMID: 31236571 DOI: 10.1093/ehjcvp/pvz022] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/28/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
Proprotein convertase subtilisin/kexin Type 9 (PCSK9) is now identified as an important and major player in hypercholesterolaemia and atherosclerosis pathophysiology. PCSK9, through promoting lysosomal degradation of hepatic low-density lipoprotein (LDL) receptor, can decrease the clearance of plasma LDLs, leading to hypercholesterolaemia and consequent atherosclerotic plaque formation. Hypercholesterolaemia has been found to promote systemic and vascular inflammation, which can cause atherosclerotic lesion formation and progression and subsequent incidence of cardiovascular disease. Recent studies have shown the involvement of PCSK9 in the inflammatory pathway of atherosclerosis. Although trials with PCSK9 inhibitors have not shown any alteration in plasma C-reactive protein levels, there is accumulating evidence showing lessened inflammatory response in the arterial wall that could attenuate atherosclerotic plaque development beyond the established LDL-lowering effect of PCSK9 inhibition. In this review, we represent mounting evidence indicating that PCSK9 can locally increase vascular inflammation and contribute to atherosclerotic plaque progression in patients with hypercholesterolaemia.
Collapse
Affiliation(s)
- Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Zuhier Awan
- Department of Clinical Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Lin WC, Chen LH, Hsieh YC, Yang PW, Lai LC, Chuang EY, Lee JM, Tsai MH. miR-338-5p inhibits cell proliferation, colony formation, migration and cisplatin resistance in esophageal squamous cancer cells by targeting FERMT2. Carcinogenesis 2020; 40:883-892. [PMID: 30576425 DOI: 10.1093/carcin/bgy189] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
Esophageal cancer is one of the leading causes of cancer death in the male population of Eastern Asia. In addition, esophageal squamous cell carcinoma (ESCC) is the major type of esophageal cancer among the world. Owing to the poor overall 5-year survival rate, novel effective treatment strategies are needed. MicroRNAs are important gene regulators that are dysregulated in many cancer types. In our previous study, we applied next-generation sequencing to demonstrate that miR-338-5p was downregulated in the tumor tissue of patients with versus without recurrence. In this study, we further studied the roles of miR-338-5p in ESCC. The expression of endogenous miR-338-5p was at lower levels in ESCC cells compared with normal cells. Functional assays showed that miR-338-5p reduced cell proliferation, colony formation, migration and cisplatin resistance in an ESCC cell line, CE-81T. Potential target genes of miR-338-5p were identified by microarray and prediction tools, and 31 genes were selected. Among these, Fermitin family homolog 2 (FERMT2) plays an oncogenic role in ESCC, so it was chosen for further study. Luciferase assays showed the direct binding between miR-338-5p and the 3' untranslated region of FERMT2. Silencing of FERMT2 inhibited cell proliferation, colony formation, migration and cisplatin resistance. Pathway analysis revealed that the integrin-linked protein kinase signaling pathway, in which FERMT2 participates, was significantly affected by a miR-338-5p mimic. Our results suggest that miR-338-5p may play an antioncogenic role in ESCC via repressing FERMT2.
Collapse
Affiliation(s)
- Wen-Chun Lin
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica, Taipei, Taiwan
| | - Li-Han Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yao-Chin Hsieh
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Pei-Wen Yang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, NTU Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, NTU Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jang-Ming Lee
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Mong-Hsun Tsai
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica, Taipei, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, NTU Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
40
|
Gu H, Han SM, Park KK. Therapeutic Effects of Apamin as a Bee Venom Component for Non-Neoplastic Disease. Toxins (Basel) 2020; 12:E195. [PMID: 32204567 PMCID: PMC7150898 DOI: 10.3390/toxins12030195] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Bee venom is a natural toxin produced by honeybees and plays an important role in defending bee colonies. Bee venom has several kinds of peptides, including melittin, apamin, adolapamine, and mast cell degranulation peptides. Apamin accounts for about 2%-3% dry weight of bee venom and is a peptide neurotoxin that contains 18 amino acid residues that are tightly crosslinked by two disulfide bonds. It is well known for its pharmacological functions, which irreversibly block Ca2+-activated K+ (SK) channels. Apamin regulates gene expression in various signal transduction pathways involved in cell development. The aim of this study was to review the current understanding of apamin in the treatment of apoptosis, fibrosis, and central nervous system diseases, which are the pathological processes of various diseases. Apamin's potential therapeutic and pharmacological applications are also discussed.
Collapse
Affiliation(s)
- Hyemin Gu
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Sang Mi Han
- National Academy of Agricultural Science, Jeonjusi, Jeonbuk 54875, Korea;
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| |
Collapse
|
41
|
Ma Y, Liu Y, Ma Y, Jiang N, Wang L, Wang B, Niu W, Hu Y, Lin Q, Yu B. Mangiferin Relieves Lipopolysaccharide-Induced Injury by Up-Regulating miR-181a via Targeting PTEN in ATDC5 Cells. Front Pharmacol 2020; 11:137. [PMID: 32210798 PMCID: PMC7066527 DOI: 10.3389/fphar.2020.00137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/31/2020] [Indexed: 01/17/2023] Open
Abstract
Background Mangiferin (MF) was reported to possess anti-inflammatory activity. This investigation tried to probe into the underlying mechanism of MF in osteoarthritis. Methods ATDC5 cells were pretreated with series concentrations of MF (0.1, 1, 5, 10, 15, 20 μM) for 2 h and then were exposed to lipopolysaccharide (LPS) (5 μg/ml) for 12 h to construct the inflammatory injury model. The cell viability, productions of pro-inflammatory cytokines and enzymes were respectively measured by employing CCK-8 assay, western blot, ELISA, and quantitative reverse-transcription (qRT)-PCR. miR-181a expression was altered by employing cell transfection. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) method was employed for detection of reactive oxygen species (ROS) generation. Dual luciferase activity assay was conducted for analyzing the relationship between miR-181a and PTEN. The underlying mechanism was determined by employing western blot. Results High doses of MF treatment (15 and 20 μM) noticeably induced inflammatory injury exhibiting as increased the productions of pro-inflammatory cytokines, enzymes and ROS, activated NF-κB pathway and deactivated PTEN/PI3K/AKT pathway in ATDC5 cells. Besides, MF treatment notably remitted LPS-induced inflammatory injury through deactivation of NF-κB pathway and activation of PTEN/PI3K/AKT pathway. PTEN was a target of miR-181a. Inhibition of miR-181a remarkably reversed MF-triggered impacts on ATDC5 cells. Conclusion MF attenuated LPS-induced inflammatory damage through miR-181a/PTEN axis and thereby inhibiting NF-κB pathway and activating PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yunfei Ma
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Liu
- Department of Orthopaedic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yunyan Ma
- Department of Obstetrics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Nan Jiang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bowei Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanting Niu
- Tissue Engineering Laboratories, VA Boston Healthcare System, Boston, MA, United States.,Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yanjun Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingrong Lin
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Abstract
Cancer is a multi-step process during which cells acquire mutations that eventually lead to uncontrolled cell growth and division and evasion of programmed cell death. The oncogenes such as Ras and c-Myc may be responsible in all three major stages of cancer i.e., early, intermediate, and late. The NF-κB has been shown to control the expression of genes linked with tumor pathways such as chronic inflammation, tumor cell survival, anti-apoptosis, proliferation, invasion, and angiogenesis. In the last few decades, various biomarker pathways have been identified that play a critical role in carcinogenesis such as Ras, NF-κB and DNA damage.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India.,Department of Nano-Therapeutics, Institute of Nano Science and Technology (INST), Habitat Centre, Mohali, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
43
|
Saha S, Kiran M, Kuscu C, Chatrath A, Wotton D, Mayo MW, Dutta A. Long Noncoding RNA DRAIC Inhibits Prostate Cancer Progression by Interacting with IKK to Inhibit NF-κB Activation. Cancer Res 2020; 80:950-963. [PMID: 31900260 DOI: 10.1158/0008-5472.can-19-3460] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
Abstract
DRAIC is a 1.7 kb spliced long noncoding RNA downregulated in castration-resistant advanced prostate cancer. Decreased DRAIC expression predicts poor patient outcome in prostate and seven other cancers, while increased DRAIC represses growth of xenografted tumors. Here, we show that cancers with decreased DRAIC expression have increased NF-κB target gene expression. DRAIC downregulation increased cell invasion and soft agar colony formation; this was dependent on NF-κB activation. DRAIC interacted with subunits of the IκB kinase (IKK) complex to inhibit their interaction with each other, the phosphorylation of IκBα, and the activation of NF-κB. These functions of DRAIC mapped to the same fragment containing bases 701-905. Thus, DRAIC lncRNA inhibits prostate cancer progression through suppression of NF-κB activation by interfering with IKK activity. SIGNIFICANCE: A cytoplasmic tumor-suppressive lncRNA interacts with and inhibits a major kinase that activates an oncogenic transcription factor in prostate cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/5/950/F1.large.jpg.
Collapse
Affiliation(s)
- Shekhar Saha
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Manjari Kiran
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Canan Kuscu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ajay Chatrath
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - David Wotton
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Marty W Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
44
|
Targeting Inflammation by Flavonoids: Novel Therapeutic Strategy for Metabolic Disorders. Int J Mol Sci 2019; 20:ijms20194957. [PMID: 31597283 PMCID: PMC6801776 DOI: 10.3390/ijms20194957] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
A balanced metabolic profile is essential for normal human physiological activities. Disproportions in nutrition give rise to imbalances in metabolism that are associated with aberrant immune function and an elevated risk for inflammatory-associated disorders. Inflammation is a complex process, and numerous mediators affect inflammation-mediated disorders. The available clinical modalities do not effectively address the underlying diseases but rather relieve the symptoms. Therefore, novel targeted agents have the potential to normalize the metabolic system and, thus, provide meaningful therapy to the underlying disorder. In this connection, polyphenols, the well-known and extensively studied phytochemical moieties, were evaluated for their effective role in the restoration of metabolism via various mechanistic signaling pathways. The various flavonoids that we observed in this comprehensive review interfere with the metabolic events that induce inflammation. The mechanisms via which the polyphenols, in particular flavonoids, act provide a promising treatment option for inflammatory disorders. However, detailed clinical studies of such molecules are required to decide their clinical fate.
Collapse
|
45
|
Krupa P, Svobodova B, Dubisova J, Kubinova S, Jendelova P, Machova Urdzikova L. Nano-formulated curcumin (Lipodisq™) modulates the local inflammatory response, reduces glial scar and preserves the white matter after spinal cord injury in rats. Neuropharmacology 2019; 155:54-64. [DOI: 10.1016/j.neuropharm.2019.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
|
46
|
Zhang L, Wang H. Long Non-coding RNA in CNS Injuries: A New Target for Therapeutic Intervention. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:754-766. [PMID: 31437654 PMCID: PMC6709344 DOI: 10.1016/j.omtn.2019.07.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022]
Abstract
CNS injuries, such as traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), and cerebral ischemic stroke, are important causes of death and long-term disability worldwide. As an important class of pervasive genes involved in many pathophysiological processes, long non-coding RNAs (lncRNAs) have received attention in the past decades. Multiple studies indicate that lncRNAs are abundant in the CNS and have a key role in brain function as well as many neurological disorders, especially in CNS injuries. Several investigations have deciphered that regulation of lncRNAs exert pro-angiogenesis, anti-apoptosis, and anti-inflammation effects in CNS injury via different molecules and pathways, including microRNA (miRNA), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT), Notch, and p53. Thus, lncRNAs show great promise as molecular targets in CNS injuries. In this article, we provide an updated review of the current state of our knowledge about the relationship between lncRNAs and CNS injuries, highlighting the specific roles of lncRNAs in CNS injuries.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
47
|
Den Hartogh DJ, Tsiani E. Health Benefits of Resveratrol in Kidney Disease: Evidence from In Vitro and In Vivo Studies. Nutrients 2019; 11:nu11071624. [PMID: 31319485 PMCID: PMC6682908 DOI: 10.3390/nu11071624] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Different diseases and disorders that affect the kidneys include, but are not limited to, glomerulonephritis, diabetic nephropathy, polycystic kidney disease, kidney stones, renal fibrosis, sepsis, and renal cell carcinoma. Kidney disease tends to develop over many years, making it difficult to identify until much later when kidney function is severely impaired and undergoing kidney failure. Although conservative care, symptom management, medication, dialysis, transplantation, and aggressive renal cancer therapy are some of the current strategies/approaches to kidney disease treatment, new preventative targeted therapies are needed. Epidemiological studies have suggested that a diet rich in fruits and vegetables is associated with health benefits including protection against kidney disease and renal cancer. Resveratrol, a polyphenol found in grapes and berries, has been reported to have antioxidant, anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective, and anti-cancer properties. The current review summarizes the existing in vitro and in vivo animal and human studies examining the nephroprotective effects of resveratrol.
Collapse
Affiliation(s)
- Danja J Den Hartogh
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
48
|
Makhdoumi P, Hossini H, Ashraf GM, Limoee M. Molecular Mechanism of Aniline Induced Spleen Toxicity and Neuron Toxicity in Experimental Rat Exposure: A Review. Curr Neuropharmacol 2019; 17:201-213. [PMID: 30081786 PMCID: PMC6425079 DOI: 10.2174/1570159x16666180803164238] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/17/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023] Open
Abstract
Aniline exposure leads to neuron and spleen toxicity specifically and makes diverse neurological effects and sar-coma that is defined by splenomegaly, hyperplasia, and fibrosis and tumors formation at the end. However, the molecular mechanism(s) of aniline-induced spleen toxicity is not understood well, previous studies have represented that aniline expo-sure results in iron overload and initiation of oxidative/nitrosative disorder stress and oxidative damage to proteins, lipids and DNA subsequently, in the spleen. Elevated expression of cyclins, cyclin-dependent kinases (CDKs) and phosphorylation of pRB protein along with increases in A, B and CDK1 as a cell cycle regulatory proteins cyclins, and reduce in CDK inhibitors (p21 and p27) could be critical in cell cycle regulation, which contributes to tumorigenic response after aniline exposure. Aniline-induced splenic toxicity is corre-lated to oxidative DNA damage and initiation of DNA glycosylases expression (OGG1, NEIL1/2, NTH1, APE1 and PNK) for removal of oxidative DNA lesions in rat. Oxidative stress causes transcriptional up-regulation of fibrogenic/inflammatory factors (cytokines, IL-1, IL-6 and TNF-α) via induction of nuclear factor-kappa B, AP-1 and redox-sensitive transcription factors, in aniline treated-rats. The upstream signalling events as phosphorylation of IκB kinases (IKKα and IKKβ) and mito-gen-activated protein kinases (MAPKs) could potentially be the causes of activation of NF-κB and AP-1. All of these events could initiate a fibrogenic and/or tumorigenic response in the spleen. The spleen toxicity of aniline is studied more and the different mechanisms are suggested. This review summarizes those events following aniline exposure that induce spleen tox-icity and neurotoxicity.
Collapse
Affiliation(s)
- Pouran Makhdoumi
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hooshyar Hossini
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mojtaba Limoee
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
49
|
Liang Y, Chen G, Yang Y, Li Z, Chen T, Sun W, Yu M, Pan K, Guo W, Tian W. Effect of canonical NF-κB signaling pathway on the differentiation of rat dental epithelial stem cells. Stem Cell Res Ther 2019; 10:139. [PMID: 31109359 PMCID: PMC6528379 DOI: 10.1186/s13287-019-1252-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nuclear factor-κB (NF-κB), an important transcription factor, participates in many physiological and pathological processes such as growth, differentiation, organogenesis, apoptosis, inflammation, and immune response, including tooth development. However, it is still unknown whether NF-κB participates in the regulation of dental epithelial stem cells (DESCs) in postnatal rat incisors. Here, we investigated the specific differentiation regulatory mechanisms of the canonical NF-κB signaling pathway in DESCs and provided the mechanism of cross-talk involved in DESC differentiation. METHODS After adding the activator or inhibitor of the NF-κB signaling pathway, Western blot and quantitative real-time PCR were used to analyze the expressions of amelogenesis-related genes and proteins and canonical transforming growth factor-β (TGF-β) signaling. In addition, we used amelogenesis induction in vitro by adding the activator or inhibitor of the NF-κB signaling pathway to the amelogenesis-induction medium, respectively. Recombinant TGF-β was used to activate the TGF-β pathway, and SMAD7 siRNA was used to downregulate the expression of SMAD7 in DESCs. RESULTS We found that the expression of amelogenesis-related genes and proteins as well as TGF-β signaling were downregulated, while SMAD7 expression was increased in NF-κB-activated DESCs. In addition, NF-κB-inhibited DESCs exhibited opposite results compared with NF-κB-activated DESCs. Furthermore, the canonical NF-κB signaling pathway suppressed the canonical TGF-β-SMAD signaling by inducing SMAD7 expression involved in the regulation of DESC differentiation. CONCLUSIONS These results indicate that the canonical NF-κB signaling pathway participated in the regulation of DESC differentiation, which was through upregulating SMAD7 expression and further suppressing the canonical TGF-β-SMAD signaling pathway.
Collapse
Affiliation(s)
- Yan Liang
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Renmin South Road, Chengdu, 610041, People's Republic of China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Guoqing Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yuzhi Yang
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Pediatric Dentistry, West China College of Stomatology, Sichuan University, No.14, 3rd Section, Renmin South Road, Chengdu, 610041, People's Republic of China
| | - Ziyue Li
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Tian Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wenhua Sun
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mei Yu
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Kuangwu Pan
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Renmin South Road, Chengdu, 610041, People's Republic of China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China. .,Department of Pediatric Dentistry, West China College of Stomatology, Sichuan University, No.14, 3rd Section, Renmin South Road, Chengdu, 610041, People's Republic of China.
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Renmin South Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
50
|
Kanigur Sultuybek G, Soydas T, Yenmis G. NF-κB as the mediator of metformin's effect on ageing and ageing-related diseases. Clin Exp Pharmacol Physiol 2019; 46:413-422. [PMID: 30754072 DOI: 10.1111/1440-1681.13073] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023]
Abstract
Ageing can be defined as the progressive failure of repair and maintenance systems with a consequent accumulation of cellular damage in nucleic acids, proteins, and lipids. These various types of damage promote ageing by driving cellular senescence and apoptosis. The nuclear factor-kappa B (NF-kB) pathway is one of the key mediators of ageing and this pathway is activated by genotoxic, oxidative and inflammatory stress, and regulates expression of cytokines, growth factors, and genes that regulate apoptosis, cell-cycle progression, and inflammation. Therefore, NF-kB is increased in a variety of tissues with ageing, thus the inhibition of NF-kB leads to delayed onset of ageing-related symptoms and pathologies such as diabetes, atherosclerosis, and cancer. Metformin is often used as an anti-diabetic medication in type 2 diabetes throughout the world and appears to be a potential anti-ageing agent. Owing to its antioxidant, anticancer, cardio-protective and anti-inflammatory properties, metformin has become a potential candidate drug, improving in the context of ageing and ageing-related diseases. An inappropriate NF-kB activation is associated with diseases and pathologic conditions which can impair the activity of genes involved in cell senescence, apoptosis, immunity, and inflammation. Metformin, inhibiting the expression of NF-kB gene, eliminates the susceptibility to common diseases. This review underlines the pleiotropic effects of metformin in ageing and different ageing-related diseases and attributes its effects to the modulation of NF-kB.
Collapse
Affiliation(s)
- Gönül Kanigur Sultuybek
- Medical Faculty, Department of Medical Biology and Genetics, Istanbul Aydin University, Istanbul, Turkey
| | - Tugba Soydas
- Medical Faculty, Department of Medical Biology and Genetics, Istanbul Aydin University, Istanbul, Turkey.,Cerrahpasa Faculty of Medicine, Department of Medical Biology, Istanbul University, Istanbul, Turkey
| | - Guven Yenmis
- Acıbadem Healthcare Services, Labgen Genetic Diagnosis Center, Istanbul, Turkey.,Department of Child Development, Institute of Health Sciences, Istanbul Bilgi University, Istanbul, Turkey
| |
Collapse
|