1
|
Borowiec BG, Firth BL, Craig PM. Oxygen consumption rate during recovery from loss of equilibrium induced by warming, hypoxia, or exhaustive exercise in rainbow darter (Etheostoma caeruleum). JOURNAL OF FISH BIOLOGY 2024; 105:23-33. [PMID: 38599790 DOI: 10.1111/jfb.15756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/03/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Animals routinely encounter environmental (e.g., high temperatures and hypoxia) as well as physiological perturbations (e.g., exercise and digestion) that may threaten homeostasis. However, comparing the relative threat or "disruptiveness" imposed by different stressors is difficult, as stressors vary in their mechanisms, effects, and timescales. We exploited the fact that several acute stressors can induce the loss of equilibrium (LOE) in fish to (i) compare the metabolic recovery profiles of three environmentally relevant stressors and (ii) test the concept that LOE could be used as a physiological calibration for the intensity of different stressors. We focused on Etheostoma caeruleum, a species that routinely copes with environmental fluctuations in temperature and oxygen and that relies on burst swimming to relocate and avoid predators, as our model. Using stop-flow (intermittent) respirometry, we tracked the oxygen consumption rate (MO2) as E. caeruleum recovered from LOE induced by hypoxia (PO2 at LOE), warming (critical thermal maximum, CTmax), or exhaustive exercise. Regardless of the stressor used, E. caeruleum recovered rapidly, returning to routine MO2 within ~3 h. Fish recovering from hypoxia and warming had similar maximum MO2, aerobic scopes, recovery time, and total excess post-hypoxia or post-warming oxygen consumption. Though exhaustive exercise induced a greater maximum MO2 and corresponding higher aerobic scope than warming or hypoxia, its recovery profile was otherwise similar to the other stressors, suggesting that "calibration" to a physiological state such as LOE may be a viable conceptual approach for investigators interested in questions related to multiple stressors, cross tolerance, and how animals cope with challenges to homeostasis.
Collapse
Affiliation(s)
| | - Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Rees BB, Reemeyer JE, Binning SA, Brieske SD, Clark TD, De Bonville J, Eisenberg RM, Raby GD, Roche D, Rummer JL, Zhang Y. Estimating maximum oxygen uptake of fishes during swimming and following exhaustive chase - different results, biological bases and applications. J Exp Biol 2024; 227:jeb246439. [PMID: 38819376 DOI: 10.1242/jeb.246439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The maximum rate at which animals take up oxygen from their environment (ṀO2,max) is a crucial aspect of their physiology and ecology. In fishes, ṀO2,max is commonly quantified by measuring oxygen uptake either during incremental swimming tests or during recovery from an exhaustive chase. In this Commentary, we compile recent studies that apply both techniques to the same fish and show that the two methods typically yield different mean estimates of ṀO2,max for a group of individuals. Furthermore, within a group of fish, estimates of ṀO2,max determined during swimming are poorly correlated with estimates determined during recovery from chasing (i.e. an individual's ṀO2,max is not repeatable across methods). One explanation for the lack of agreement is that these methods measure different physiological states, each with their own behavioural, anatomical and biochemical determinants. We propose that these methods are not directly interchangeable but, rather, each is suited to address different questions in fish biology. We suggest that researchers select the method that reflects the biological contexts of their study, and we advocate for the use of accurate terminology that acknowledges the technique used to elevate ṀO2 (e.g. peak ṀO2,swim or peak ṀO2,recovery). If the study's objective is to estimate the 'true' ṀO2,max of an individual or species, we recommend that pilot studies compare methods, preferably using repeated-measures designs. We hope that these recommendations contribute new insights into the causes and consequences of variation in ṀO2,max within and among fish species.
Collapse
Affiliation(s)
- Bernard B Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | | | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, CanadaH2V 0B3
| | - Samantha D Brieske
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Timothy D Clark
- School of Life and Environmental Science, Deakin University, Geelong, Victoria, Australia3216
| | - Jeremy De Bonville
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, CanadaH2V 0B3
| | - Rachel M Eisenberg
- Department of Zoology, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, ON, CanadaK9L 0G2
| | - Dominique Roche
- Social Sciences and Humanities Research Council of Canada, Ottawa, ON, CanadaK1R 0E3
| | - Jodie L Rummer
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Yangfan Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Eisenberg RM, Sandrelli RM, Gamperl AK. Comparing methods for determining the metabolic capacity of lumpfish (Cyclopterus lumpus Linnaeus 1758). JOURNAL OF FISH BIOLOGY 2024; 104:1813-1823. [PMID: 38486407 DOI: 10.1111/jfb.15716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/16/2024] [Accepted: 02/20/2024] [Indexed: 06/27/2024]
Abstract
Lumpfish (Cyclopterus lumpus) mortalities have been reported during the summer at some North Atlantic salmon cage-sites where they serve as "cleaner fish." To better understand this species' physiology and whether limitations in their metabolic capacity and thermal tolerance can explain this phenomenon, we compared the aerobic scope (AS) of 6°C-acclimated lumpfish (~50 g and 8.8 cm in length at the beginning of experiments) when all individuals (N = 12) were given a chase to exhaustion, a critical swim speed (Ucrit) test, and a critical thermal maximum (CTMax) test (rate of warming 2°C h-1). The Ucrit and CTMax of the lumpfish were 2.36 ± 0.08 body lengths per second and 20.6 ± 0.3°C. The AS of lumpfish was higher during the Ucrit test (206.4 ± 8.5 mg O2 kg-1 h-1) versus that measured in either the CTMax test or after the chase to exhaustion (141.0 ± 15.0 and 124.7 ± 15.5 mg O2 kg-1 h-1, respectively). Maximum metabolic rate (MMR), AS, and "realistic" AS (ASR) measured using the three different protocols were not significantly correlated, indicating that measurements of metabolic capacity using one of these methods cannot be used to estimate values that would be obtained using another method. Additional findings include that (1) the lumpfish's metabolic capacity is comparable to that of Atlantic cod, suggesting that they are not as "sluggish" as previously suggested in the literature, and (2) their CTMax (20.6°C when acclimated to 6°C), in combination with their recently determined ITMax (20.6°C when acclimated to 10°C), indicates that high sea-cage temperatures are unlikely to be the primary cause of lumpfish mortalities at salmon sea-cages during the summer.
Collapse
Affiliation(s)
- Rachel M Eisenberg
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Anthony Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
4
|
Brieske SD, Mullen SC, Rees BB. Method dependency of maximum oxygen uptake rate and its repeatability in the Gulf killifish, Fundulus grandis. JOURNAL OF FISH BIOLOGY 2024; 104:1537-1547. [PMID: 38403734 DOI: 10.1111/jfb.15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/18/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
The maximum rate at which fish can take up oxygen from their environment to fuel aerobic metabolism is an important feature of their physiology and ecology. Methods to quantify maximum oxygen uptake rate (ṀO2), therefore, should reliably and reproducibly estimate the highest possible ṀO2 by an individual or species under a given set of conditions (peak ṀO2). This study determined peak ṀO2 and its repeatability in Gulf killifish, Fundulus grandis, subjected to three methods to elevate metabolism: swimming at increasing water speeds, during recovery after an exhaustive chase, and after ingestion of a large meal. Estimates of peak ṀO2 during swimming and after an exhaustive chase were repeatable across two trials, whereas peak ṀO2 after feeding was not. Peak ṀO2 determined by the three methods was significantly different from one another, being highest during swimming, lowest after an exhaustive chase, and intermediate after feeding. In addition, peak ṀO2 during recovery from an exhaustive chase depended on the length of time of recovery: in nearly 60% of the trials, values within the first hour of the chase were lower than those measured later. A novel and important finding was that an individual's peak ṀO2 was not repeatable when compared across methods. Therefore, the peak ṀO2 estimated for a group of fish, as well as the ranking of individual ṀO2 within that group, depends on the method used to elevate aerobic metabolism.
Collapse
Affiliation(s)
- Samantha D Brieske
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Sylvia C Mullen
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Bernard B Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
5
|
Yoon GR, Thorstensen MJ, Bugg WS, Bouyoucos IA, Deslauriers D, Anderson WG. Comparison of metabolic rate between two genetically distinct populations of lake sturgeon. Ecol Evol 2023; 13:e10470. [PMID: 37664502 PMCID: PMC10468615 DOI: 10.1002/ece3.10470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Environmental temperatures differ across latitudes in the temperate zone, with relatively lower summer and fall temperatures in the north leading to a shorter growing season prior to winter. As an adaptive response, during early life stages, fish in northern latitudes may grow faster than their conspecifics in southern latitudes, which potentially manifests as different allometric relationships between body mass and metabolic rate. In the present study, we examined if population or year class had an effect on the variation of metabolic rate and metabolic scaling of age-0 lake sturgeon (Acipenser fulvescens) by examining these traits in both a northern (Nelson River) and a southern (Winnipeg River) population. We compiled 6 years of data that used intermittent flow respirometry to measure metabolic rate within the first year of life for developing sturgeon that were raised in the same environment at 16°C. We then used a Bayesian modeling approach to examine the impacts of population and year class on metabolic rate and mass-scaling of metabolic rate. Despite previous reports of genetic differences between populations, our results showed that there were no significant differences in standard metabolic rate, routine metabolic rate, maximum metabolic rate, and metabolic scaling between the two geographically separated populations at a temperature of 16°C. Our analysis implied that the lack of metabolic differences between populations could be due to family effects/parental contribution, or the rearing temperature used in the study. The present research provided insights for conservation and reintroduction strategies for these populations of lake sturgeon, which are endangered or threatened across most of their natural range.
Collapse
Affiliation(s)
- Gwangseok R. Yoon
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Matt J. Thorstensen
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - William S. Bugg
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
- Pacific Salmon FoundationVancouverBritish ColumbiaCanada
| | - Ian A. Bouyoucos
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - David Deslauriers
- Institut des sciences de la mer de RimouskiUniversité du Québec à RimouskiRimouskiQuébecCanada
| | - W. Gary Anderson
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
6
|
Van Wert JC, Hendriks B, Ekström A, Patterson DA, Cooke SJ, Hinch SG, Eliason EJ. Population variability in thermal performance of pre-spawning adult Chinook salmon. CONSERVATION PHYSIOLOGY 2023; 11:coad022. [PMID: 37152448 PMCID: PMC10157787 DOI: 10.1093/conphys/coad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Climate change is causing large declines in many Pacific salmon populations. In particular, warm rivers are associated with high levels of premature mortality in migrating adults. The Fraser River watershed in British Columbia, Canada, supports some of the largest Chinook salmon (Oncorhynchus tshawytscha) runs in the world. However, the Fraser River is warming at a rate that threatens these populations at critical freshwater life stages. A growing body of literature suggests salmonids are locally adapted to their thermal migratory experience, and thus, population-specific thermal performance information can aid in management decisions. We compared the thermal performance of pre-spawning adult Chinook salmon from two populations, a coastal fall-run from the Chilliwack River (125 km cooler migration) and an interior summer-run from the Shuswap River (565 km warmer migration). We acutely exposed fish to temperatures reflecting current (12°C, 18°C) and future projected temperatures (21°C, 24°C) in the Fraser River and assessed survival, aerobic capacity (resting and maximum metabolic rates, absolute aerobic scope (AAS), muscle and ventricle citrate synthase), anaerobic capacity (muscle and ventricle lactate dehydrogenase) and recovery capacity (post-exercise metabolism, blood physiology, tissue lactate). Chilliwack Chinook salmon performed worse at high temperatures, indicated by elevated mortality, reduced breadth in AAS, enhanced plasma lactate and potassium levels and elevated tissue lactate concentrations compared with Shuswap Chinook salmon. At water temperatures exceeding the upper pejus temperatures (Tpejus, defined here as 80% of maximum AAS) of Chilliwack (18.7°C) and Shuswap (20.2°C) Chinook salmon populations, physiological performance will decline and affect migration and survival to spawn. Our results reveal population differences in pre-spawning Chinook salmon performance across scales of biological organization at ecologically relevant temperatures. Given the rapid warming of rivers, we show that it is critical to consider the intra-specific variation in thermal physiology to assist in the conservation and management of Pacific salmon.
Collapse
Affiliation(s)
- Jacey C Van Wert
- Corresponding author: Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA.
| | - Brian Hendriks
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andreas Ekström
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden
| | - David A Patterson
- Fisheries and Oceans Canada, Science Branch, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Erika J Eliason
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA
| |
Collapse
|
7
|
Enders EC, Durhack TC. Metabolic rate and critical thermal maximum CTmax estimates for westslope cutthroat trout, Oncorhynchus clarkii lewisi. CONSERVATION PHYSIOLOGY 2022; 10:coac071. [PMID: 36570737 PMCID: PMC9773365 DOI: 10.1093/conphys/coac071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/23/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Global warming is changing the thermal habitat of cold-water freshwater fishes, which can lead to decreased fitness and survival and cause shifts in species distributions. The Alberta population of westslope cutthroat trout (Oncorhynchus clarkii lewisi) is listed as 'Threatened' under the Canadian Species at Risk Act. The major threats to the species are the alteration in habitat and water flow, competition and hybridization with non-native trout species and climate change. Here, we conducted (i) intermittent-flow respirometry experiments with adult native westslope cutthroat trout and non-native rainbow trout (Oncorhynchus mykiss) and (ii) critical thermal maximum experiments (CTmax ) with adult westslope cutthroat trout to obtain valuable input data for species distribution models. For both species, standard metabolic rate (SMR) was lower at 10°C compared to 15°C and westslope cutthroat trout had higher SMR than rainbow trout. Although there were inter-specific differences in SMR, forced aerobic scope (using a standardized chase protocol) was different at 10°C, but no significant differences were observed at 15°C because of relative smaller differences in maximum metabolic rate between the species. CTmax of westslope cutthroat trout acclimated to 10°C was 27.0 ± 0.8°C and agitation temperature was 25.2 ± 1.0°C. The results from this study will inform and parametrize cumulative effects assessments and bioenergetics habitat modelling for the recovery planning of the species.
Collapse
Affiliation(s)
- Eva C Enders
- Corresponding author: Institute National de la Recherche Scientifique, Centre Eau Terre Environnement, Québec, Québec, G1K 9A9, Canada.
| | - Travis C Durhack
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg Manitoba, R3T 2N6, Canada
| |
Collapse
|
8
|
Prokkola JM, Åsheim ER, Morozov S, Bangura P, Erkinaro J, Ruokolainen A, Primmer CR, Aykanat T. Genetic coupling of life-history and aerobic performance in Atlantic salmon. Proc Biol Sci 2022; 289:20212500. [PMID: 35078367 PMCID: PMC8790367 DOI: 10.1098/rspb.2021.2500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/24/2021] [Indexed: 11/12/2022] Open
Abstract
A better understanding of the genetic and phenotypic architecture underlying life-history variation is a longstanding aim in biology. Theories suggest energy metabolism determines life-history variation by modulating resource acquisition and allocation trade-offs, but the genetic underpinnings of the relationship and its dependence on ecological conditions have rarely been demonstrated. The strong genetic determination of age-at-maturity by two unlinked genomic regions (vgll3 and six6) makes Atlantic salmon (Salmo salar) an ideal model to address these questions. Using more than 250 juveniles in common garden conditions, we quantified the covariation between metabolic phenotypes-standard and maximum metabolic rates (SMR and MMR), and aerobic scope (AS)-and the life-history genomic regions, and tested if food availability modulates the relationships. We found that the early maturation genotype in vgll3 was associated with higher MMR and consequently AS. Additionally, MMR exhibited physiological epistasis; it was decreased when late maturation genotypes co-occurred in both genomic regions. Contrary to our expectation, the life-history genotypes had no effects on SMR. Furthermore, food availability had no effect on the genetic covariation, suggesting a lack of genotype-by-environment interactions. Our results provide insights on the key organismal processes that link energy use at the juvenile stage to age-at-maturity, indicating potential mechanisms by which metabolism and life-history can coevolve.
Collapse
Affiliation(s)
- Jenni M. Prokkola
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Eirik R. Åsheim
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Sergey Morozov
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Paul Bangura
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | | | - Annukka Ruokolainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Craig R. Primmer
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tutku Aykanat
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Doherty CLJ, Fisk AT, Cooke SJ, Pitcher TE, Raby GD. Exploring relationships between oxygen consumption and biologger-derived estimates of heart rate in two warmwater piscivores. JOURNAL OF FISH BIOLOGY 2022; 100:99-106. [PMID: 34636030 DOI: 10.1111/jfb.14923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Estimating metabolic rate in wild, free-swimming fish is inherently challenging. Here, we explored using surgically implanted heart rate biologgers to estimate metabolic rate in two warmwater piscivores, bowfin Amia calva (Linneaus 1766) and largemouth bass Micropterus salmoides (Lacepède 1802). Fish were surgically implanted with heart rate loggers, allowed to recover for 24 h, exposed to a netting and air exposure challenge, and then placed into respirometry chambers so that oxygen consumption rate (ṀO2 ) could be measured in parallel to heart rate (fH ) for a minimum of 20 h (ca. 20 estimates of ṀO2 ). Heart rate across the duration of the experiment (at 19°C) was significantly higher in largemouth bass (mean ± s.d., 45 ± 14 beats min-1 , range 18-86) than in bowfin (27 ± 9 bpm, range 16-98). Standard metabolic rate was also higher in largemouth bass (1.06 ± 0.19 mg O2 kg-1 min-1 , range 0.46-1.36) than in bowfin (0.89 ± 0.17 mg O2 kg-1 min-1 , range 0.61-1.28). There were weak relationships between fH and ṀO2 , with heart rate predicting 28% of the variation in oxygen consumption in bowfin and 23% in largemouth bass. The shape of the relationship differed somewhat between the two species, which is perhaps unsurprising given their profound differences in physiology and life history, illustrating the need to carry out species-specific validations. Both species showed some potential for a role of fH in efforts to estimate field metabolic rates, although further validation experiments with a wider range of conditions (e.g., digestive states, swimming activity) would likely help improve the strength of the ṀO2 -fH relationship for use in field applications.
Collapse
Affiliation(s)
- Claire L J Doherty
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
| | - Steven J Cooke
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Trevor E Pitcher
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
10
|
Hvas M, Bui S. Energetic costs of ectoparasite infection in Atlantic salmon. J Exp Biol 2021; 225:273811. [PMID: 34931653 DOI: 10.1242/jeb.243300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022]
Abstract
Parasites are widespread in nature where they affect energy budgets of hosts, and depending on the imposed pathogenic severity, this may reduce host fitness. However, the energetic costs of parasite infections are rarely quantified. In this study, we measured metabolic rates in recently seawater adapted Atlantic salmon (Salmo salar) infected with the ectoparasitic copepod Lepeophtheirus salmonis and used an aerobic scope framework to assess the potential ecological impact of this parasite-host interaction. The early chalimus stages of L. salmonis did not affect either standard or maximum metabolic rates. However, the later mobile pre-adult stages caused an increase in both standard and maximum metabolic rate yielding a preserved aerobic scope. Notably, standard metabolic rates were elevated by 26%, presumably caused by increased osmoregulatory burdens and costs of mobilizing immune responses. The positive impact on maximum metabolic rates was unexpected and suggests that fish are able to transiently overcompensate energy production to endure the burden of parasites and thus allow for continuation of normal activities. However, infected fish are known to suffer reduced growth, and this suggests that a trade-off exists in acquisition and assimilation of resources despite of an uncompromised aerobic scope. As such, when assessing impacts of environmental or biotic factors, we suggest that elevated routine costs may be a stronger predictor of reduced fitness than the available aerobic scope. Furthermore, studying effects on parasitized fish in an ecophysiological context deserves more attention, especially considering interacting effects of other stressors in the Anthropocene.
Collapse
Affiliation(s)
- Malthe Hvas
- Animal Welfare Research Group, Institute of Marine Research, Matre, Norway
| | - Samantha Bui
- Animal Welfare Research Group, Institute of Marine Research, Matre, Norway
| |
Collapse
|
11
|
Borowiec BG, Scott GR. Rapid and reversible modulation of blood haemoglobin content during diel cycles of hypoxia in killifish (Fundulus heteroclitus). Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111054. [PMID: 34384878 DOI: 10.1016/j.cbpa.2021.111054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
We investigated whether fish can make dynamic haematological adjustments to support aerobic metabolism during repeated cycles of hypoxia-reoxygenation. Killifish were acclimated to normoxia, constant hypoxia (2 kPa O2), or intermittent cycles of nocturnal hypoxia (12 h of normoxia: 12 h of 2 kPa O2 hypoxia) for 28 days. Normoxia-acclimated fish were sampled in the daytime in normoxia and after exposure to a single bout of nocturnal hypoxia. Each hypoxia acclimation group were sampled at the PO2 experienced during acclimation during both the day and night. All acclimation groups had increased blood haemoglobin content and haematocrit and reduced spleen mass during nocturnal hypoxia compared to normoxic controls. Blood haemoglobin content was negatively correlated with spleen mass at both the individual and group level. Fish acclimated to intermittent hypoxia rapidly reversed these changes during diurnal reoxygenation. The concentrations of haemoglobin, ATP, and GTP within erythrocytes did not vary substantially between groups. We also measured resting O2 consumption rate (MO2) and maximum MO2 (induced by an exhaustive chase) in hypoxia in each acclimation group. Fish acclimated to intermittent hypoxia maintained higher resting MO2 than other groups in hypoxia, comparable to the resting MO2 of normoxia-acclimated controls measured in normoxia. Differences in resting MO2 in hypoxia did not result from variation in O2 transport capacity, because maximal MO2 in hypoxia always exceeded resting MO2. Therefore, reversible modulation of blood haemoglobin content along with metabolic adjustments help killifish cope with intermittent cycles of hypoxia in the estuarine environment.
Collapse
Affiliation(s)
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
McArley TJ, Morgenroth D, Zena LA, Ekström AT, Sandblom E. Normoxic limitation of maximal oxygen consumption rate, aerobic scope and cardiac performance in exhaustively exercised rainbow trout (Oncorhynchus mykiss). J Exp Biol 2021; 224:271087. [PMID: 34323276 DOI: 10.1242/jeb.242614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/25/2021] [Indexed: 01/22/2023]
Abstract
In fish, maximum O2 consumption rate (ṀO2,max) and aerobic scope can be expanded following exhaustive exercise in hyperoxia; however, the mechanisms explaining this are yet to be identified. Here, in exhaustively exercised rainbow trout (Oncorhynchus mykiss), we assessed the influence of hyperoxia on ṀO2,max, aerobic scope, cardiac function and blood parameters to address this knowledge gap. Relative to normoxia, ṀO2,max was 33% higher under hyperoxia, and this drove a similar increase in aerobic scope. Cardiac output was significantly elevated under hyperoxia at ṀO2,max because of increased stroke volume, indicating that hyperoxia released a constraint on cardiac contractility apparent with normoxia. Thus, hyperoxia improved maximal cardiac performance, thereby enhancing tissue O2 delivery and allowing a higher ṀO2,max. Venous blood O2 partial pressure (PvO2) was elevated in hyperoxia at ṀO2,max, suggesting a contribution of improved luminal O2 supply in enhanced cardiac contractility. Additionally, despite reduced haemoglobin and higher PvO2, hyperoxia treated fish retained a higher arterio-venous O2 content difference at ṀO2,max. This may have been possible because of hyperoxia offsetting declines in arterial oxygenation that are known to occur following exhaustive exercise in normoxia. If this occurs, increased contractility at ṀO2,max with hyperoxia may also relate to an improved O2 supply to the compact myocardium via the coronary artery. Our findings show ṀO2,max and aerobic scope may be limited in normoxia following exhaustive exercise as a result of constrained maximal cardiac performance and highlight the need to further examine whether or not exhaustive exercise protocols are suitable for eliciting ṀO2,max and estimating aerobic scope in rainbow trout.
Collapse
Affiliation(s)
- Tristan J McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Lucas A Zena
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Andreas T Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| |
Collapse
|
13
|
Durhack TC, Mochnacz NJ, Macnaughton CJ, Enders EC, Treberg JR. Life through a wider scope: Brook Trout (Salvelinus fontinalis) exhibit similar aerobic scope across a broad temperature range. J Therm Biol 2021; 99:102929. [DOI: 10.1016/j.jtherbio.2021.102929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/28/2021] [Accepted: 03/29/2021] [Indexed: 01/19/2023]
|