1
|
Torres-Dowdall J, Karagic N, Prabhukumar F, Meyer A. Differential Regulation of Opsin Gene Expression in Response to Internal and External Stimuli. Genome Biol Evol 2024; 16:evae125. [PMID: 38860496 DOI: 10.1093/gbe/evae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024] Open
Abstract
Determining how internal and external stimuli interact to determine developmental trajectories of traits is a challenge that requires the integration of different subfields of biology. Internal stimuli, such as hormones, control developmental patterns of phenotypic changes, which might be modified by external environmental cues (e.g. plasticity). Thyroid hormone (TH) modulates the timing of opsin gene expression in developing Midas cichlid fish (Amphilophus citrinellus). Moreover, fish reared in red light accelerate this developmental timing compared to fish reared in white light. Hence, we hypothesized that plasticity caused by variation in light conditions has coopted the TH signaling pathway to induce changes in opsin gene expression. We treated Midas cichlids with TH and crossed this treatment with two light conditions, white and red. We observed that not only opsin expression responded similarly to TH and red light but also that, at high TH levels, there is limited capacity for light-induced plasticity. Transcriptomic analysis of the eye showed that genes in the TH pathway were affected by TH, but not by light treatments. Coexpression network analyses further suggested that response to light was independent of the response to TH manipulations. Taken together, our results suggest independent mechanisms mediating development and plasticity during development of opsin gene expression, and that responses to environmental stimuli may vary depending on internal stimuli. This conditional developmental response to external factors depending on internal ones (e.g. hormones) might play a fundamental role in the patterns of phenotypic divergence observed in Midas cichlids and potentially other organisms.
Collapse
Affiliation(s)
- Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Nidal Karagic
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Femina Prabhukumar
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Ruthsatz K, Dahlke F, Alter K, Wohlrab S, Eterovick PC, Lyra ML, Gippner S, Cooke SJ, Peck MA. Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations. GLOBAL CHANGE BIOLOGY 2024; 30:e17318. [PMID: 38771091 DOI: 10.1111/gcb.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Amphibians and fishes play a central role in shaping the structure and function of freshwater environments. These organisms have a limited capacity to disperse across different habitats and the thermal buffer offered by freshwater systems is small. Understanding determinants and patterns of their physiological sensitivity across life history is, therefore, imperative to predicting the impacts of climate change in freshwater systems. Based on a systematic literature review including 345 experiments with 998 estimates on 96 amphibian (Anura/Caudata) and 93 freshwater fish species (Teleostei), we conducted a quantitative synthesis to explore phylogenetic, ontogenetic, and biogeographic (thermal adaptation) patterns in upper thermal tolerance (CTmax) and thermal acclimation capacity (acclimation response ratio, ARR) as well as the influence of the methodology used to assess these thermal traits using a conditional inference tree analysis. We found globally consistent patterns in CTmax and ARR, with phylogeny (taxa/order), experimental methodology, climatic origin, and life stage as significant determinants of thermal traits. The analysis demonstrated that CTmax does not primarily depend on the climatic origin but on experimental acclimation temperature and duration, and life stage. Higher acclimation temperatures and longer acclimation times led to higher CTmax values, whereby Anuran larvae revealed a higher CTmax than older life stages. The ARR of freshwater fishes was more than twice that of amphibians. Differences in ARR between life stages were not significant. In addition to phylogenetic differences, we found that ARR also depended on acclimation duration, ramping rate, and adaptation to local temperature variability. However, the amount of data on early life stages is too small, methodologically inconsistent, and phylogenetically unbalanced to identify potential life cycle bottlenecks in thermal traits. We, therefore, propose methods to improve the robustness and comparability of CTmax/ARR data across species and life stages, which is crucial for the conservation of freshwater biodiversity under climate change.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Animal Cell and Systems Biology, Universität Hamburg, Hamburg, Germany
| | - Flemming Dahlke
- Ecology of Living Marine Resources, Universität Hamburg, Hamburg, Germany
| | - Katharina Alter
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Sylke Wohlrab
- Alfred Wegner Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Paula C Eterovick
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mariana L Lyra
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Research on Biodiversity Dynamics and Climate Change, State University of São Paulo-UNESP, Rio Claro, Brazil
| | - Sven Gippner
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Marine Animal Ecology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
3
|
Li X, Li J, Li K, Zhang Z, Wang H. Effects of perchlorate and exogenous T4 exposures on body condition and endochondral ossification of Rana chensinensis tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106767. [PMID: 37972501 DOI: 10.1016/j.aquatox.2023.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/14/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Perchlorate, as an endocrine-disrupting chemical (EDC), is largely produced and used in the military, fireworks, fertilizers, and other industries and widely exists in water. Although perchlorate is known to destroy the normal function of thyroid hormones (THs) in amphibians and interfere with their growth and development, the impact of TH levels caused by sodium perchlorate (NaClO4) on endochondral ossification and skeletal development is poorly investigated, and the underlying molecular mechanism has not been clarified. The present study aimed to explore the potential effects of NaClO4 and exogenous thyroxine (T4) on the skeletal development of Rana chensinensis tadpoles and elucidate the related molecular mechanisms. Our results showed that histological changes occurred to the femur and tibia-fibula of tadpoles raised in 250 μg/L NaClO4 and 5 μg/L exogenous T4, and the length of their hindlimbs was significantly reduced. In addition, exogenous T4 exposure significantly interfered with the expression of Dio3, TRβ, MMP9, MMP13, and Runx2, inhibiting the endochondral ossification process. Therefore, we provide robust evidence that the changes in TH levels caused by NaClO4 and exogenous T4 will adversely affect the endochondral ossification and skeletal development of R. chensinensis tadpoles.
Collapse
Affiliation(s)
- Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jiayi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Kaiyue Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhiqin Zhang
- Basic Experimental Teaching Center, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Grott SC, Israel NG, Lima D, Velasquez Bastolla CL, Carneiro F, Alves TC, Bitschinski D, Dias Bainy AC, Barbosa da Silva E, Coelho de Albuquerque CA, Alves de Almeida E. Effects of the herbicide ametryn on development and thyroidogenesis of bullfrog tadpoles (Aquarana catesbeiana) under different temperatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121159. [PMID: 36716946 DOI: 10.1016/j.envpol.2023.121159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Thyroid hormones (TH) are essential for the metamorphosis of amphibians and their production can be influenced by environmental stressors, such as temperature fluctuations, and exposure to aquatic pollutants, such as herbicides. In the present study we evaluated the influence of different temperatures (25 and 32 °C) on the effects of the herbicide ametryn (AMT, 0 - control, 10, 50 and 200 ng.L-1) for 16 days on thyroidogenesis of bullfrog tadpoles. Higher temperature and AMT exposure caused a delay in the development of tadpoles, despite no differences were noted in weight gain and total length of the animals. Levels of triiodothyronine (T3) and thyroxine (T4) were not altered neither by AMT nor by temperature, but the highest temperature caused a decrease in total area and number of follicles in the thyroid gland. Transcript levels of thyroid hormone receptors alpha and beta (TRα and TRβ) and iodothyronine deiodinase 3 (DIO3) were lower at 32 °C, which is consistent with developmental delay at the higher temperature. Tadpoles exposed to 200 ng.L-1 of AMT at 25 °C also presented delayed development, which was consistent with lower TRα and DIO3 transcript levels. Lower levels of estradiol were noted in tadpoles exposed to AMT at the higher temperature, being also possibly related to a developmental delay. This study demonstrates that higher temperature and AMT exposure impair thyroidgenesis in bullfrog tadpoles, disrupting metamorphosis.
Collapse
Affiliation(s)
- Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Francisco Carneiro
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Daiane Bitschinski
- Biodiversity Post-graduate Program, University of Blumenau, Blumenau, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | | | | | - Eduardo Alves de Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
5
|
Abstract
Rising temperatures represent a significant threat to the survival of ectothermic animals. As such, upper thermal limits represent an important trait to assess the vulnerability of ectotherms to changing temperatures. For instance, one may use upper thermal limits to estimate current and future thermal safety margins (i.e., the proximity of upper thermal limits to experienced temperatures), use this trait together with other physiological traits in species distribution models, or investigate the plasticity and evolvability of these limits for buffering the impacts of changing temperatures. While datasets on thermal tolerance limits have been previously compiled, they sometimes report single estimates for a given species, do not present measures of data dispersion, and are biased towards certain parts of the globe. To overcome these limitations, we systematically searched the literature in seven languages to produce the most comprehensive dataset to date on amphibian upper thermal limits, spanning 3,095 estimates across 616 species. This resource will represent a useful tool to evaluate the vulnerability of amphibians, and ectotherms more generally, to changing temperatures.
Collapse
|
6
|
Pottier P, Burke S, Zhang RY, Noble DWA, Schwanz LE, Drobniak SM, Nakagawa S. Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecol Lett 2022; 25:2245-2268. [PMID: 36006770 DOI: 10.1111/ele.14083] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Understanding the factors affecting thermal tolerance is crucial for predicting the impact climate change will have on ectotherms. However, the role developmental plasticity plays in allowing populations to cope with thermal extremes is poorly understood. Here, we meta-analyse how thermal tolerance is initially and persistently impacted by early (embryonic and juvenile) thermal environments by using data from 150 experimental studies on 138 ectothermic species. Thermal tolerance only increased by 0.13°C per 1°C change in developmental temperature and substantial variation in plasticity (~36%) was the result of shared evolutionary history and species ecology. Aquatic ectotherms were more than three times as plastic as terrestrial ectotherms. Notably, embryos expressed weaker but more heterogenous plasticity than older life stages, with numerous responses appearing as non-adaptive. While developmental temperatures did not have persistent effects on thermal tolerance overall, persistent effects were vastly under-studied, and their direction and magnitude varied with ontogeny. Embryonic stages may represent a critical window of vulnerability to changing environments and we urge researchers to consider early life stages when assessing the climate vulnerability of ectotherms. Overall, our synthesis suggests that developmental changes in thermal tolerance rarely reach levels of perfect compensation and may provide limited benefit in changing environments.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha Burke
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Rose Y Zhang
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Ginal P, Kruger N, Wagener C, Araspin L, Mokhatla M, Secondi J, Herrel A, Measey J, Rödder D. More time for aliens? Performance shifts lead to increased activity time budgets propelling invasion success. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIn the Grinnellian niche concept, the realized niche and potential distribution is characterized as an interplay among the fundamental niche, biotic interactions and geographic accessibility. Climate is one of the main drivers for this concept and is essential to predict a taxon’s distribution. Mechanistic approaches can be useful tools, which use fitness-related aspects like locomotor performance and critical thermal limits to predict the potential distribution of an organism. These mechanistic approaches allow the inclusion key ecological processes like local adaptation and can account for thermal performance traits of different life-history stages. The African Clawed Frog, Xenopus laevis, is a highly invasive species occurring on five continents. The French population is of special interest due to an ongoing expansion for 40 years and a broad base of knowledge. We hypothesize that (1) the French population exhibits increased activity time in the invasive European range that could be devoted to fitness-relevant activity and (2) tadpoles may have less activity time available than adult frogs from the same range. We investigate how thermal performance traits translate into activity time budgets and how local adaptation and differences in the thermal responses of life-history stages may boost the European Xenopus invasion. We use a mechanistic approach based on generalized additive mixed models, where thermal performance curves were used to predict the hours of activity and to compare the potential activity time budgets for two life-history stages of native and invasive populations. Our results show that adult French frogs have more activity time available in Europe compared to South African frogs, which might be an advantage in searching for prey or escaping from predators. However, French tadpoles do not have more activity time in Europe compared to the native South African populations suggesting that tadpoles do not suffer the same strong selective pressure as adult frogs.
Collapse
|
8
|
Ruthsatz K, Bartels F, Stützer D, Eterovick PC. Timing of parental breeding shapes sensitivity to nitrate pollution in the common frog Rana temporaria. J Therm Biol 2022; 108:103296. [DOI: 10.1016/j.jtherbio.2022.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
|
9
|
Sinai N, Glos J, Mohan AV, Lyra ML, Riepe M, Thöle E, Zummach C, Ruthsatz K. Developmental plasticity in amphibian larvae across the world: Investigating the roles of temperature and latitude. J Therm Biol 2022; 106:103233. [DOI: 10.1016/j.jtherbio.2022.103233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/23/2022] [Accepted: 03/26/2022] [Indexed: 01/04/2023]
|
10
|
Liu Y, Wang H, Chai L, Li X, Wu M, Wang H. Effects of perchlorate and exogenous T4 exposures on development, metamorphosis and endochondral ossification in Bufo gargarizans larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106036. [PMID: 34818595 DOI: 10.1016/j.aquatox.2021.106036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Several endocrine-disrupting chemicals (EDCs) have been proven to interfere with the physiological function of thyroid hormone (TH), which affected growth and development. However, few studies have investigated the effects of EDCs on TH axis with consequence for skeletal development in amphibians. This study thus examined the potential role of perchlorate and T4 in growth, development and endochondral ossification during metamorphosis of Bufo gargarizans. Our studies showed that NaClO₄ treatment caused weight gain and delayed the developmental stage in B. gargarizans tadpoles, while T4 decreased body size and survival rate, accelerated metamorphic duration and increased the risk of early death. Histological sections suggested that NaClO₄ and T4 treatments caused damages to thyroid tissue, such as decreased thyroid gland size, follicle size, colloid area, the height of follicular epithelial cells and the number of follicles. In addition, the double skeletal staining and RT-qPCR showed that NaClO₄ and T4 treatments inhibited the endochondral ossification by regulating TH synthesis (TRs, Dios) and endochondral ossification-related genes (MMPs, Runxs, VEGFs and VEGFRs) expression levels, which might affect terrestrial locomotion and terrestrial life. Altogether, these thyroid injury and gene expression changes as caused by NaClO₄ and T4 may have an influence on development and endochondral ossification during the metamorphosis of amphibians.
Collapse
Affiliation(s)
- Yutian Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hemei Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710062, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
11
|
Longhini LS, Zena LA, Polymeropoulos ET, Rocha ACG, da Silva Leandro G, Prado CPA, Bícego KC, Gargaglioni LH. Thermal Acclimation to the Highest Natural Ambient Temperature Compromises Physiological Performance in Tadpoles of a Stream-Breeding Savanna Tree Frog. Front Physiol 2021; 12:726440. [PMID: 34690802 PMCID: PMC8531205 DOI: 10.3389/fphys.2021.726440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Amphibians may be more vulnerable to climate-driven habitat modification because of their complex life cycle dependence on land and water. Considering the current rate of global warming, it is critical to identify the vulnerability of a species by assessing its potential to acclimate to warming temperatures. In many species, thermal acclimation provides a reversible physiological adjustment in response to temperature changes, conferring resilience in a changing climate. Here, we investigate the effects of temperature acclimation on the physiological performance of tadpoles of a stream-breeding savanna tree frog (Bokermannohyla ibitiguara) in relation to the thermal conditions naturally experienced in their microhabitat (range: 18.8-24.6°C). We quantified performance measures such as routine and maximum metabolic rate at different test (15, 20, 25, 30, and 34°C) and acclimation temperatures (18 and 25°C). We also measured heart rate before and after autonomic blockade with atropine and sotalol at the respective acclimation temperatures. Further, we determined the critical thermal maximum and warming tolerance (critical thermal maximum minus maximum microhabitat temperature), which were not affected by acclimation. Mass-specific routine and mass-specific maximum metabolic rate, as well as heart rate, increased with increasing test temperatures; however, acclimation elevated mass-specific routine metabolic rate while not affecting mass-specific maximum metabolic rate. Heart rate before and after the pharmacological blockade was also unaffected by acclimation. Aerobic scope in animals acclimated to 25°C was substantially reduced, suggesting that physiological performance at the highest temperatures experienced in their natural habitat is compromised. In conclusion, the data suggest that the tadpoles of B. ibitiguara, living in a thermally stable environment, have a limited capacity to physiologically adjust to the highest temperatures found in their micro-habitat, making the species more vulnerable to future climate change.
Collapse
Affiliation(s)
- Leonardo S. Longhini
- Departamento de Morfologia e Fisiologia Animal, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| | - Lucas A. Zena
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Aline C. G. Rocha
- Departamento de Morfologia e Fisiologia Animal, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| | - Gabriela da Silva Leandro
- Departamento de Morfologia e Fisiologia Animal, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| | - Cynthia P. A. Prado
- Departamento de Morfologia e Fisiologia Animal, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| | - Kênia C. Bícego
- Departamento de Morfologia e Fisiologia Animal, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| | - Luciane H. Gargaglioni
- Departamento de Morfologia e Fisiologia Animal, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| |
Collapse
|
12
|
Ruthsatz K, Dausmann KH, Paesler K, Babos P, Sabatino NM, Peck MA, Glos J. Shifts in sensitivity of amphibian metamorphosis to endocrine disruption: the common frog ( Rana temporaria) as a case study. CONSERVATION PHYSIOLOGY 2020; 8:coaa100. [PMID: 33343902 PMCID: PMC7735370 DOI: 10.1093/conphys/coaa100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 06/01/2023]
Abstract
Effective conservation actions require knowledge on the sensitivity of species to pollution and other anthropogenic stressors. Many of these stressors are endocrine disruptors (EDs) that can impair the hypothalamus-pituitary-thyroid axis and thus alter thyroid hormone (TH) levels with physiological consequences to wildlife. Due to their specific habitat requirements, amphibians are often sentinels of environmental degradation. We investigated how altered TH levels affected the bioenergetics of growth and development (i.e. age, size, metabolism, cardiac function and energy stores) before, during and after metamorphosis in the European common frog (Rana temporaria). We also determined how ontogenetic stage affected susceptibility to endocrine disruption and estimated juvenile performance. TH levels significantly affected growth and energetics at all developmental stages. Tadpoles and froglets exposed to high TH levels were significantly younger, smaller and lighter at all stages compared to those in control and low TH groups, indicating increased developmental and reduced growth rates. Across all ontogenetic stages tested, physiological consequences were rapidly observed after exposure to EDs. High TH increased heart rate by an average of 86% and reduced energy stores (fat content) by 33% compared to controls. Effects of exposure were smallest after the completion of metamorphosis. Our results demonstrate that both morphological and physiological traits of the European common frog are strongly impacted by endocrine disruption and that ontogenetic stage modulates the sensitivity of this species to endocrine disruption. Since endocrine disruption during metamorphosis can impair the physiological stress response in later life stages, long-term studies examining carry-over effects will be an important contribution to the conservation physiology of amphibians.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Kathrin H Dausmann
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Katharina Paesler
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Patricia Babos
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Nikita M Sabatino
- Department of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany
| | - Myron A Peck
- Institute of Marine Ecosystems and Fisheries Science, Universität Hamburg, Große Elbstraße 133, 22767 Hamburg, Germany
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59 1790, AB Den Burg, Netherlands
| | - Julian Glos
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| |
Collapse
|
13
|
Ruthsatz K, Dausmann KH, Reinhardt S, Robinson T, Sabatino NM, Peck MA, Glos J. Post-metamorphic carry-over effects of altered thyroid hormone level and developmental temperature: physiological plasticity and body condition at two life stages in Rana temporaria. J Comp Physiol B 2020; 190:297-315. [PMID: 32144506 DOI: 10.1007/s00360-020-01271-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 01/08/2023]
Abstract
Environmental stress induced by natural and anthropogenic processes including climate change may threaten the productivity of species and persistence of populations. Ectotherms can potentially cope with stressful conditions such as extremes in temperature by exhibiting physiological plasticity. Amphibian larvae experiencing stressful environments display altered thyroid hormone (TH) status with potential implications for physiological traits and acclimation capacity. We investigated how developmental temperature (Tdev) and altered TH levels (simulating proximate effects of environmental stress) influence the standard metabolic rate (SMR), body condition (BC), and thermal tolerance in metamorphic and post-metamorphic anuran larvae of the common frog (Rana temporaria) reared at five constant temperatures (14-28 °C). At metamorphosis, larvae that developed at higher temperatures had higher maximum thermal limits but narrower ranges in thermal tolerance. Mean CTmax was 37.63 °C ± 0.14 (low TH), 36.49 °C ± 0.31 (control), and 36.43 °C ± 0.68 (high TH) in larvae acclimated to different temperatures. Larvae were able to acclimate to higher Tdev by adjusting their thermal tolerance, but not their SMR, and this effect was not impaired by altered TH levels. BC was reduced by 80% (metamorphic) and by 85% (post-metamorphic) at highest Tdev. The effect of stressful larval conditions (i.e., different developmental temperatures and, to some extent, altered TH levels) on SMR and particularly on BC at the onset of metamorphosis was carried over to froglets at the end of metamorphic climax. This has far reaching consequences, since body condition at metamorphosis is known to determine metamorphic success and, thus, is indirectly linked to individual fitness in later life stages.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| | - Kathrin H Dausmann
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Steffen Reinhardt
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Tom Robinson
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Nikita M Sabatino
- Department of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Myron A Peck
- Institute of Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, 22767, Hamburg, Germany
| | - Julian Glos
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| |
Collapse
|
14
|
Weerathunga WAMT, Rajapaksa G. The impact of elevated temperature and CO 2 on growth, physiological and immune responses of Polypedates cruciger (common hourglass tree frog). Front Zool 2020; 17:3. [PMID: 31956329 PMCID: PMC6958743 DOI: 10.1186/s12983-019-0348-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/23/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Amphibians are one of the most susceptible groups to climate change as their development occurs in aquatic environments or in microhabitats with high humidity. Accordingly, our primary objective was to investigate the chronic physiological responses seen in early larval to adult stages of Polypedates cruciger (Common hourglass tree frog) to future climate change based on continuous exposure to elevated temperature and elevated CO2 -induced low water pH. Free-swimming and free-feeding tadpoles were observed until metamorphosis under four experimental treatments; two elevated temperatures, one elevated CO2 (reduced pH) and a control maintained at ambient temperature (29 °C ± 1 °C) and CO2 (pH = 7). Elevated temperature treatments were maintained at 32 °C ± 0.5 °C and 34 °C ± 0.5 °C to represent respectively, the future climate scenarios RCP2.6 (Representative Concentration Pathway 2.6, the 'base-case' scenario) and RCP8.5 ('business-as-usual' scenario) according to the 5th Assessment Report of the IPCC. Elevated CO2 treatment was maintained within the pH range of 5.5-5.6 representing the range expected between RCP8.5 and RCP2.6. RESULTS Compared to the control, elevated CO2 accelerated phenological progression of tadpoles through Gosner stages, thus resulting in lower body size at metamorphosis. Both elevated temperatures significantly delayed the development and reduced the growth of tadpoles. 100% mortality was observed in 34 °C treatment before metamorphosis (before Gosner stage 36) while all the tadpoles died after metamorphosis (at Gosner stage 46) in 32 °C treatment. Elevated CO2 increased tadpole activity, in terms of their swimming speed, while both of the elevated temperatures reduced it compared to the control. Catalase activity increased at elevated CO2. Ammonia excretion by tadpoles was decreased by elevated CO2, but increased under temperature elevation. Both Elevated CO2 and temperature treatments reduced the white blood cell count and its percentage of thrombocytes. Percentages of lymphocytes, monocytes and neutrophils were increased at 32 °C, while lymphocyte percentage and lysozyme activity were increased at elevated CO2. Several deformities were observed in tadpoles at elevated temperature and CO2. CONCLUSIONS Elevated temperatures and reduced pH due to elevated CO2, being major features of climate change, increase the vulnerability of amphibians, who are already one of the most threatened vertebrate groups. Based on our observations on the model amphibian species P. cruciger, increased vulnerability to climate change occurs by reducing their growth, body size and motility while also reducing their immunity and inducing physical deformities. These impacts are highly-likely to reduce the foraging, competitive and reproductive capabilities in their natural habitats. We conclude further that even the 'best-case' scenario of future climate change can impose significant physiological impacts that could threaten amphibian populations on broader spatial and temporal scales. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- W. A. Manasee T. Weerathunga
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka
| | - Gayani Rajapaksa
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka
| |
Collapse
|
15
|
Ruthsatz K, Dausmann KH, Reinhardt S, Robinson T, Sabatino NM, Peck MA, Glos J. Endocrine Disruption Alters Developmental Energy Allocation and Performance in Rana temporaria. Integr Comp Biol 2019; 59:70-88. [PMID: 31095322 DOI: 10.1093/icb/icz041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Environmental change exposes wildlife to a wide array of environmental stressors that arise from both anthropogenic and natural sources. Many environmental stressors with the ability to alter endocrine function are known as endocrine disruptors, which may impair the hypothalamus-pituitary-thyroid axis resulting in physiological consequences to wildlife. In this study, we investigated how the alteration of thyroid hormone (TH) levels due to exposure to the environmentally relevant endocrine disruptor sodium perchlorate (SP; inhibitory) and exogenous L-thyroxin (T4; stimulatory) affects metabolic costs and energy allocation during and after metamorphosis in a common amphibian (Rana temporaria). We further tested for possible carry-over effects of endocrine disruption during larval stage on juvenile performance. Energy allocated to development was negatively related to metabolic rate and thus, tadpoles exposed to T4 could allocate 24% less energy to development during metamorphic climax than control animals. Therefore, the energy available for metamorphosis was reduced in tadpoles with increased TH level by exposure to T4. We suggest that differences in metabolic rate caused by altered TH levels during metamorphic climax and energy allocation to maintenance costs might have contributed to a reduced energetic efficiency in tadpoles with high TH levels. Differences in size and energetics persisted beyond the metamorphic boundary and impacted on juvenile performance. Performance differences are mainly related to strong size-effects, as altered TH levels by exposure to T4 and SP significantly affected growth and developmental rate. Nevertheless, we assume that juvenile performance is influenced by a size-independent effect of achieved TH. Energetic efficiency varied between treatments due to differences in size allocation of internal macronutrient stores. Altered TH levels as caused by several environmental stressors lead to persisting effects on metamorphic traits and energetics and, thus, caused carry-over effects on performance of froglets. We demonstrate the mechanisms through which alterations in abiotic and biotic environmental factors can alter phenotypes at metamorphosis and reduce lifetime fitness in these and likely other amphibians.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Kathrin H Dausmann
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Steffen Reinhardt
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Tom Robinson
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Nikita M Sabatino
- Department of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, Hamburg, 21033, Germany
| | - Myron A Peck
- Institute of Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, Hamburg, 22767, Germany
| | - Julian Glos
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| |
Collapse
|