1
|
Márquez-Borrás F, Sewell MA. Long-term study of the combined effects of ocean acidification and warming on the mottled brittle star, Ophionereis fasciata. J Exp Biol 2024; 227:jeb249426. [PMID: 39318332 DOI: 10.1242/jeb.249426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
The global ocean is rapidly changing, posing a substantial threat to the viability of marine populations due to the co-occurrence of multiple drivers, such as ocean warming (OW) and ocean acidification (OA). To persist, marine species must undergo some combination of acclimation and adaptation in response to these changes. Understanding such responses is essential to measure and project the magnitude and direction of current and future vulnerabilities in marine ecosystems. Echinoderms have been recognised as a model in studies of OW-OA effects on marine biota. However, despite their global diversity, vulnerability and ecological importance in most marine habitats, brittle stars (ophiuroids) are poorly studied. A long-term mesocosm experiment was conducted on adult mottled brittle star (Ophionereis fasciata) as a case study to investigate the physiological response and trade-offs of marine organisms to ocean acidification, ocean warming and the combined effect of these two drivers. Long-term exposure of O. fasciata to high temperature and low pH affected survival, respiration and regeneration rates, growth rate, calcification/dissolution and righting response. Higher temperatures increased stress and respiration, and decreased regeneration and growth rates as well as survival. Conversely, changes in pH had more subtle or no effect, affecting only respiration and calcification. Our results indicate that exposure to a combination of high temperature and low pH produces complex responses for respiration, righting response and calcification. We address the knowledge gap of the impact of a changing ocean on ophiuroids in the context of echinoderm studies, proposing this class as an ideal alternative echinoderm for future research.
Collapse
Affiliation(s)
- Francisco Márquez-Borrás
- School of Biological Sciences , University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mary A Sewell
- School of Biological Sciences , University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
2
|
Andreyeva AY, Kukhareva TA, Gostyukhina OL, Vialova OY, Tkachuk AA, Chelebieva ES, Podolskaya MS, Borovkov AB, Bogacheva EA, Lavrichenko DS, Kladchenko ES. Impacts of ocean acidification and hypoxia on cellular immunity, oxygen consumption and antioxidant status in Mediterranean mussel. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109932. [PMID: 39343062 DOI: 10.1016/j.fsi.2024.109932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
There is growing recognition that the hypoxic regions of the ocean are also becoming more acidic due to increasing levels of global carbon dioxide emissions. The impact of water acidification on marine life is largely unknown, as most previous studies have not taken into account the effects of hypoxia, which may affect how organisms respond to low pH levels. In this study, we experimentally examined the consequences of water acidification in combination with normoxic or hypoxic conditions on cellular immune parameters in Mediterranean mussels. We measured total hemocyte counts in hemolymph, the cellular composition of hemolymph, phagocytosis, reactive oxygen species (ROS) production. General response of the organism was evaluated on the basis of the activity of antioxidant enzymes in the hepatopancreas, as well as respiratory rates over an 8-day exposure period. The mussels were exposed to low pH conditions (7.3), either under normoxic conditions (dissolved oxygen concentration of 8 mg/L) or hypoxic conditions (dissolved oxygen concentration of 2 mg/L). The parameters were assessed at days 1, 3, 6, and 8 of the experiment. Experimental acidification under normoxic conditions reduced THC and ROS production by hemocytes during later stages of exposure, but phagocytic activity (PA) only decreased at day 3 and then recovered. Combined acidification and hypoxia suppressed PA in hemocytes at the beginning of exposure, while hemocyte ROS production and THC decreased by the end of the experiment. The hemolymph cellular composition and activity of antioxidant enzymes were unaffected by acidified conditions under different oxygen regimes, but mussel respiratory rate (RR) decreased with a more significant reduction in oxygen consumption under hypoxia. Mussels showed a relatively high tolerance to acidification in combination with various dissolved oxygen levels, although prolonged acidification exposure led to increased detrimental effects on immunity and metabolism.
Collapse
Affiliation(s)
- Alexandra Y Andreyeva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Tatyana A Kukhareva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Olga L Gostyukhina
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Oksana Y Vialova
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Anastasia A Tkachuk
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Elina S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Maria S Podolskaya
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Andrey B Borovkov
- Department of Biotechnology and Phytoresources, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Elizaveta A Bogacheva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Daria S Lavrichenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Ekaterina S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia.
| |
Collapse
|
3
|
Cretini CP, Galloway KA. Acidic Apple Snails: Effects of Climate Change on the Mechanical Properties of an Invasive Gastropod. Integr Comp Biol 2024; 64:270-278. [PMID: 38702853 DOI: 10.1093/icb/icae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 05/06/2024] Open
Abstract
Climate change can directly and indirectly affect species distribution. Warming may allow for invasive species, such as apple snails, to migrate to higher latitudes where temperatures are more conducive to their survival and invasion success. Higher temperatures and lower pH ranges have been previously documented to affect the form and function of calcium carbonate shells, which serve many functions, including protection from predators and thermoregulation. This study aimed to quantify differences in the morphology and mechanical properties of invasive apple snail, Pomacea maculata, shells after altering temperature and pH. We mechanically tested shells among three five-week treatments: control, higher temperature, and lower pH. Ultimate Strength increased in shells that were exposed to higher temperatures, but Young's Modulus and Peak Load did not differ among control, temperature, and pH treatments. Apple snails in higher temperature tanks increased their shell length over the five-week trials. Although snail morphometrics did not differ between sexes, male shells exhibited a higher Peak Load, Young's Modulus, and Ultimate Strength compared to female shells. Our findings are consistent with previous gastropod studies, in that a lower pH is associated with a decrease in shell size, and higher temperatures yield larger snail shells with a higher ultimate strength. Peak Load did not significantly differ among treatments, which suggests that the cross-sectional area is relatively important when considering this species mechanical performance today and in future climates. Due to the intense nutritional and calcium demands of egg production, female snails may be more susceptible to weakened shells due to low pH environments caused by climate change.
Collapse
Affiliation(s)
- Cody P Cretini
- Department of Biological Sciences, Nicholls State University, 906 E 1st St, Thibodaux, LA 70301, USA
| | - Katherine A Galloway
- Department of Biological Sciences, Nicholls State University, 906 E 1st St, Thibodaux, LA 70301, USA
| |
Collapse
|
4
|
Sordo L, Esteves E, Valente JFA, Aníbal J, Duarte C, Alves N, Baptista T, Gaspar MB. Ocean acidification will not affect the shell strength of juveniles of the commercial clam species Chamelea gallina: Implications of the local alkalinization of seawater. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106746. [PMID: 39299140 DOI: 10.1016/j.marenvres.2024.106746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ocean acidification (OA) is expected to decrease the strength of bivalves' shells, especially during the early stages of development, with negative consequences to the resilience of natural populations and the economy. The objectives of the present study were to assess the long-term effect of increasing pCO2 after 217 days of exposure under controlled conditions of pH of ∼8.2, 8.0, and 7.7 on the strength and integrity of shells of juveniles of the commercial striped venus clam Chamelea gallina. Shell strength was estimated through compression tests and integrity through scanning electron microscopy (SEM) and dispersive X-ray analyses (EDX). The results showed that under increasing pCO2 the shell strength of juveniles is unaffected, which could be related to the locally elevated total alkalinity of seawater with respect to other parts of the coastal lagoon. However, despite this, it was also observed that the juvenile clams exposed to elevated pCO2 decreased their shell thickness and increased the porosity of their prismatic layer. Under future OA conditions, these changes could eventually compromise the integrity of the shells, becoming more vulnerable to the attack of predators and breakable during fishing operations. Future studies should address the plasticity of the organisms and the effect of the alkalinization of seawater on the resilience of shellfish juveniles under global change conditions.
Collapse
Affiliation(s)
- Laura Sordo
- Instituto Português Do Mar e da Atmosfera (IPMA, I.P.), Avenida 5 de Outubro S/n, 8700-305, Olhão, Portugal; Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Eduardo Esteves
- Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; Departamento de Engenharia Alimentar, Instituto Superior de Engenharia, Universidade Do Algarve, 8005-139, Faro, Portugal
| | - Joana F A Valente
- Centro para o Desenvolvimento Rápido e Sustentado Do Produto, Instituto Politécnico de Leiria, 2430-028, Marinha Grande, Portugal
| | - Jaime Aníbal
- Departamento de Engenharia Alimentar, Instituto Superior de Engenharia, Universidade Do Algarve, 8005-139, Faro, Portugal; CIMA - Centro de Investigação Marinha e Ambiental & ARNET, Universidade Do Algarve, 8005-139, Faro, Portugal
| | - Catarina Duarte
- Instituto Português Do Mar e da Atmosfera (IPMA, I.P.), Avenida 5 de Outubro S/n, 8700-305, Olhão, Portugal
| | - Nuno Alves
- Centro para o Desenvolvimento Rápido e Sustentado Do Produto, Instituto Politécnico de Leiria, 2430-028, Marinha Grande, Portugal
| | - Teresa Baptista
- Escola Superior de Turismo e Tecnologia Do Mar, Instituto Politécnico de Leiria, Campus 4, Rua Do Conhecimento No. 4, 2520-614, Peniche, Portugal
| | - Miguel B Gaspar
- Instituto Português Do Mar e da Atmosfera (IPMA, I.P.), Avenida 5 de Outubro S/n, 8700-305, Olhão, Portugal; Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
5
|
Şahin B, Belivermiş M, Demiralp S, Sezer N, Bektaş S, Kaptan E, Gönülal O, Kılıç Ö. The multistressor effect of pH reduction, microplastic and lanthanum on sea urchin Arbacia lixula. MARINE POLLUTION BULLETIN 2024; 205:116638. [PMID: 38959571 DOI: 10.1016/j.marpolbul.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
pH reduction (Low pH), microplastic (MP), and lanthanum (La) are substantial stressors due to their increasing trends in marine ecosystems and having adverse effects on marine species. This study investigates the single and combined effects of those stressors (Low pH: 7.45, polyethylene MP: 26 μg L-1, and La: 9 μg L-1) on the physiology and histology of sea urchin Arbacia lixula. Regarding physiological results, while the coelomocytes' quantity was slightly affected by stressors, their viability was significantly affected. The coelomocyte count and viability were suppressed most in Low pH-MP-La treatment. The stressors did not impact the respiration rate. According to the histological examination results, the crypt (villi-like structure) was shorter, and epithelial layers were thinner in single and dual stress treatments like MP, Low pH, Low pH-La, and MP-La. Overall, we suggest that the combination of variable types of those stressors causes negative effects on sea urchin's physiology and histology.
Collapse
Affiliation(s)
- Berna Şahin
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul, Türkiye
| | - Murat Belivermiş
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134 Istanbul, Türkiye
| | - Selcan Demiralp
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul, Türkiye
| | - Narin Sezer
- Medical Services and Techniques Department, Medical Laboratory Techniques Program, Istanbul Arel University, 34295 Sefaköy, Istanbul, Türkiye
| | - Suna Bektaş
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul, Türkiye
| | - Engin Kaptan
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134 Istanbul, Türkiye
| | - Onur Gönülal
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Istanbul, Türkiye
| | - Önder Kılıç
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134 Istanbul, Türkiye.
| |
Collapse
|
6
|
Khalil M, Stuhr M, Kunzmann A, Westphal H. Simultaneous ocean acidification and warming do not alter the lipid-associated biochemistry but induce enzyme activities in an asterinid starfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173000. [PMID: 38719050 DOI: 10.1016/j.scitotenv.2024.173000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Ocean acidification and warming affect marine ecosystems from the molecular scale in organismal physiology to broad alterations of ecosystem functions. However, knowledge of their combined effects on tropical-subtropical intertidal species remains limited. Pushing the environmental range of marine species away from the optimum initiates stress impacting biochemical metabolic characteristics, with consequences on lipid-associated and enzyme biochemistry. This study investigates lipid-associated fatty acids (FAs) and enzyme activities involved in biomineralization of the tropical-subtropical starfish Aquilonastra yairi in response to projected near-future global change. The starfish were acclimatized to two temperature levels (27 °C, 32 °C) crossed with three pCO2 concentrations (455 μatm, 1052 μatm, 2066 μatm). Total lipid (ΣLC) and FAs composition were unaffected by combined elevated temperature and pCO2, but at elevated temperature, there was an increase in ΣLC, SFAs (saturated FAs) and PUFAs (polyunsaturated FAs), and a decrease in MUFAs (monounsaturated FAs). However, temperature was the sole factor to significantly alter SFAs composition. Positive parabolic responses of Ca-ATPase and Mg-ATPase enzyme activities were detected at 27 °C with elevated pCO2, while stable enzyme activities were observed at 32 °C with elevated pCO2. Our results indicate that the lipid-associated biochemistry of A. yairi is resilient and capable of coping with near-future ocean acidification and warming. However, the calcification-related enzymes Ca-ATPase and Mg-ATPase activity appear to be more sensitive to pCO2/pH changes, leading to vulnerability concerning the skeletal structure.
Collapse
Affiliation(s)
- Munawar Khalil
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany; Faculty of Geosciences, University of Bremen, Klagenfurter Str. 2-4, 28359 Bremen, Germany; Department of Marine Science, Faculty of Agriculture, Universitas Malikussaleh, Reuleut Main Campus, 24355 North Aceh, Indonesia.
| | - Marleen Stuhr
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany
| | - Hildegard Westphal
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany; Faculty of Geosciences, University of Bremen, Klagenfurter Str. 2-4, 28359 Bremen, Germany
| |
Collapse
|
7
|
Berlino M, Mangano MC, Di Bona G, Lucchese M, Terzo SMC, De Vittor C, D'Alessandro M, Esposito V, Gambi MC, Del Negro P, Sarà G. Functional diversity and metabolic response in benthic communities along an ocean acidification gradient. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106520. [PMID: 38685145 DOI: 10.1016/j.marenvres.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Altered ocean chemistry caused by ocean acidification (OA) is expected to have negative repercussions at different levels of the ecological hierarchy, starting from the individual and scaling up to the community and ultimately to the ecosystem level. Understanding the effects of OA on benthic organisms is of primary importance given their relevant ecological role in maintaining marine ecosystem functioning. The use of functional traits represents an effective technique to investigate how species adapt to altered environmental conditions and can be used to predict changes in the resilience of communities faced with stresses associated with climate change. Artificial supports were deployed for 1-y along a natural pH gradient in the shallow hydrothermal systems of the Bottaro crater near Panarea (Aeolian Archipelago, southern Tyrrhenian Sea), to explore changes in functional traits and metabolic rates of benthic communities and the repercussions in terms of functional diversity. Changes in community composition due to OA were accompanied by modifications in functional diversity. Altered conditions led to higher oxygen consumption in the acidified site and the selection of species with the functional traits needed to withstand OA. Calcification rate and reproduction were found to be the traits most affected by pH variations. A reduction in a community's functional evenness could potentially reduce its resilience to further environmental or anthropogenic stressors. These findings highlight the ability of the ecosystem to respond to climate change and provide insights into the modifications that can be expected given the predicted future pCO2 scenarios. Understanding the impact of climate change on functional diversity and thus on community functioning and stability is crucial if we are to predict changes in ecosystem vulnerability, especially in a context where OA occurs in combination with other environmental changes and anthropogenic stressors.
Collapse
Affiliation(s)
- M Berlino
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy; Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - M C Mangano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| | - G Di Bona
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| | - M Lucchese
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy; National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - S M C Terzo
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Fernando Stagno d'Alcontres 3, University of Messina, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, Molosiglio, Napoli, 80133, Italy
| | - C De Vittor
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - M D'Alessandro
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - V Esposito
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy; Stazione Zoologica Anton Dohrn, Research Infrastructures for Marine Biological Resources Department, Via Po 25, 00198, Roma, Italy
| | - M C Gambi
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy; Previous at the Stazione Zoologica Anton Dohrn, Department of Marine Integrative Ecology (EMI), Ischia Marine Center, Ischia Napoli, Italy
| | - P Del Negro
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - G Sarà
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| |
Collapse
|
8
|
Melbourne LA, Goodkin NF. Using Museum collections to assess the impact of industrialization on mussel (Mytilus edulis) calcification. PLoS One 2024; 19:e0301874. [PMID: 38630684 PMCID: PMC11023280 DOI: 10.1371/journal.pone.0301874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Mytilus edulis is a commercially and ecologically important species found along the east coast of the United States. Ecologically, M. edulis improves water quality through filtration feeding and provides habitat formation and coastal protection through reef formation. Like many marine calcifiers, ocean warming, and acidification are a growing threat to these organisms-impacting their morphology and function. Museum collections are useful in assessing long-term environmental impacts on organisms in a natural multi-stressor environment, where acclimation and adaptation can be considered. Using the American Museum of Natural History collections ranging from the early 1900s until now, we show that shell porosity changes through time. Shells collected today are significantly more porous than shells collected in the 1960s and, at some sites, than shells collected from the early 1900s. The disparity between porosity changes matches well with the warming that occurred over the last 130 years in the north Atlantic suggesting that warming is causing porosity changes. However, more work is required to discern local environmental impacts and to fully identify porosity drivers. Since, porosity is known to affect structural integrity, porosity increasing through time could have negative consequences for mussel reef structural integrity and hence habitat formation and storm defenses.
Collapse
Affiliation(s)
- Leanne A. Melbourne
- Department of Earth and Planetary Sciences, American Museum of Natural History, New York, New York, United States of America
| | - Nathalie F. Goodkin
- Department of Earth and Planetary Sciences, American Museum of Natural History, New York, New York, United States of America
| |
Collapse
|
9
|
Li Y, Liao Z, Fan X, Wang Y, Liu F, Zhang X, He J, Buttino I, Yan X, Tang C. The molecular response of Mytilus coruscus mantle to shell damage under acute acidified sea water revealed by iTRAQ based quantitative proteomic analysis. J Proteomics 2024; 294:105062. [PMID: 38158015 DOI: 10.1016/j.jprot.2023.105062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Mytilus coruscus is an economically important marine bivalve that lives in estuarine sea areas with seasonal coastal acidification and frequently suffers shell injury in the natural environment. However, the molecular responses and biochemical properties of Mytilus under these conditions are not fully understood. In the present study, we employed tandem mass spectrometry combined with isobaric tagging to identify differentially expressed proteins in the mantle tissue of M. coruscus under different short-term treatments, including shell-complete mussels raised in normal seawater (pH 8.1), shell-damaged mussels raised in normal seawater (pH 8.1), and acidified seawater (pH 7.4). A total of 2694 proteins were identified in the mantle, and analysis of their relative abundance from the three different treatments revealed alterations in the proteins involved in immune regulation, oxidation-reduction processes, protein folding and processing, energy provision, and cytoskeleton. The results obtained by quantitative proteomic analysis of the mantle allowed us to delineate the molecular strategies adopted by M. coruscus in the shell repair process in acidified environments, including an increase in proteins involved in oxidation-reduction processes, protein processing, and cell growth at the expense of proteins involved in immune capacity and energy metabolism. SIGNIFICANCE: The impact of global ocean acidification on calcifying organisms has become a major ecological and environmental problem in the world. Mytilus coruscus is an economically important marine bivalve living in estuary sea area with seasonal coastal acidification, and frequently suffering shell injury in natural environment. Molecular responses of M coruscus under the shell damage and acute acidification is still largely unknown. For this reason, iTRAQ based quantitative proteomic and histological analysis of the mantle from M. coruscus under shell damage and acute acidification were performed, for revealing the proteomic response and possible adaptation mechanism of Mytilus under combined shell damage and acidified sea water, and understanding how the mussel mantle implement a shell-repair process under acidified sea water. Our study provides important data for understanding the shell repair process and proteomic response of Mytilus under ocean acidification, and providing insights into potential adaptation of mussels to future global change.
Collapse
Affiliation(s)
- Yingao Li
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China.
| | - Xiaojun Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Ying Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Fei Liu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Jianyu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Xiaojun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Changsheng Tang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China.
| |
Collapse
|
10
|
Fellowes TE, Vila-Concejo A, Byrne M, Bruce E, Baker E. Risk classification of low-lying coral reef islands and their exposure to climate threats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168787. [PMID: 38029987 DOI: 10.1016/j.scitotenv.2023.168787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
The bio-physical responses of low-lying coral islands to climate change are of concern. These islands exist across a broad range of bio-physical conditions, and vulnerabilities to rising and warming seas, ocean acidification and increased storminess. We propose a risk-based classification that scores 6 island eco-morphometric attributes and 6 bio-physical ocean/climate conditions from recent open-access data, to assign islands with respect to 5 risk classes (Very Low, Low, Moderate, High and Very High). The potential responses of 56 coral islands in Australia's jurisdiction (Coral Sea, NW Shelf and NE Indian Ocean) to climate change is considered with respect to their bio-physical attributes and eco-morphometrics. None of the islands were classed as Very Low risk, while 8 were classed as Low (14.3 %), 34 were Moderate (60.7 %), 11 were High (19.6 %), and 3 were Very High (5.4 %). Islands in the Very High risk class (located on the NW Shelf) are most vulnerable due to their small size (mean 10 Ha), low elevation (mean 2.6 m MSL), angular/elongated shape, unvegetated state, below average pH (mean 8.05), above average rates of sea-level rise (SLR; mean 4.6 mm/yr), isolation from other islands, and frequent tropical storms and marine heatwaves. In contrast, islands in the Low (and Very Low) risk class are less vulnerable due to their large size (mean 127 Ha), high elevation (mean 8.5 m MSL), sub-angular/round shape, vegetated state, near average pH (mean 8.06), near average SLR rates (mean 3.9 mm/yr), proximity to adjacent islands, and infrequent cyclones and marine heatwaves. Our method provides a risk matrix to assess coral island vulnerability to current climate change related risks and supports future research on the impacts of projected climate change scenarios. Findings have implications for communities living on coral islands, associated ecosystem services and coastal States that base their legal maritime zones on these islands.
Collapse
Affiliation(s)
- Thomas E Fellowes
- Geocoastal Research Group, School of Geosciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; Marine Studies Institute, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Ana Vila-Concejo
- Geocoastal Research Group, School of Geosciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; Marine Studies Institute, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Maria Byrne
- Marine Studies Institute, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eleanor Bruce
- Geocoastal Research Group, School of Geosciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; Marine Studies Institute, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elaine Baker
- Marine Studies Institute, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; UNEP/GRID-Arendal, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Paredes-Molina FJ, Chaparro OR, Navarro JM, Cubillos VM, Paschke K, Márquez F, Averbuj A, Zabala MS, Bökenhans V, Pechenik JA. Upwelling as a stressor event during embryonic development: Consequences for encapsulated and early juvenile stages of the marine gastropod Acanthina monodon. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106270. [PMID: 38011827 DOI: 10.1016/j.marenvres.2023.106270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Upwelling phenomena alter the physical and chemical parameters of the sea's subsurface waters, producing low levels of temperature, pH and dissolved oxygen, which can seriously impact the early developmental stages of marine organisms. To understand how upwelling can affect the encapsulated development of the gastropod Acanthina monodon, capsules containing embryos at different stages of development (initial, intermediate and advanced) were exposed to upwelling conditions (pH = 7.6; O2 = 3 mg L-1; T° = 9 °C) for a period of 7 days. Effects of treatment were determined by estimating parameters such as time to hatching, number of hatchlings per capsule, percentage of individuals with incomplete development, and shell parameters such as shell shape and size, shell strength, and the percentage of the organic/inorganic content. We found no significant impacts on hatching time, number of hatchlings per capsule, or percentage of incomplete development in either the presence or absence of upwelling, regardless of developmental stage. On the other hand, latent effects on encapsulated stages of A. monodon were detected in embryos that had been exposed to upwelling stress in the initial embryonic stage. The juveniles from this treatment hatched at smaller sizes and with higher organic content in their shells, resulting in a higher resistance to cracking 30 days after hatching, due to greater elasticity. Geometric morphometric analysis showed that exposure to upwelling condition induced a change in the morphology of shell growth in all post-hatching juveniles (0-30 days), regardless of embryonic developmental stage at the time of exposure. Thus, more elongated shells (siphonal canal and posterior region) and more globular shells were observed in newly hatched juveniles that had been exposed to the upwelling condition. The neutral or even positive upwelling exposure results suggests that exposure to upwelling events during the encapsulated embryonic phase of A. monodon development might not have major impacts on the future juvenile stages. However, this should be taken with caution in consideration of the increased frequency and intensity of upwelling events predicted for the coming decades.
Collapse
Affiliation(s)
- F J Paredes-Molina
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| | - O R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - J M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - V M Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - K Paschke
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Chile
| | - F Márquez
- Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM)-IBIOMAR, CCT, CONICET-CENPAT, Puerto Madryn, Chubut, Argentina; Universidad Nacional de La Patagonia San Juan Bosco (UNPSJB), Puerto Madryn, Argentina
| | - A Averbuj
- Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM)-IBIOMAR, CCT, CONICET-CENPAT, Puerto Madryn, Chubut, Argentina
| | - M S Zabala
- Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM)-IBIOMAR, CCT, CONICET-CENPAT, Puerto Madryn, Chubut, Argentina
| | - V Bökenhans
- Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM)-IBIOMAR, CCT, CONICET-CENPAT, Puerto Madryn, Chubut, Argentina
| | - J A Pechenik
- Biology Department, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
12
|
Guo X, Huang M, Luo X, You W, Ke C. Impact of ocean acidification on shells of the abalone species Haliotis diversicolor and Haliotis discus hannai. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106183. [PMID: 37820478 DOI: 10.1016/j.marenvres.2023.106183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/20/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Ocean acidification (OA) results from the absorption of anthropogenic CO2 emissions by the ocean and threatens the survival of many marine calcareous organisms including molluscs. We studied OA effects on adult shells of the abalone species Haliotis diversicolor and Haliotis discus hannai that were exposed to three pCO2 conditions (ambient, ∼880, and ∼1600 μatm) for 1 year. Shell periostracum corrosion under OA was observed for both species. OA reduced shell hardness and altered the nacre ultrastructure in H. diversicolor, making its shells more vulnerable to crushing force. OA exposure did not reduce the shell hardness of H. discus hannai and did not alter nacre ultrastructure. However, the reduced calcification also decreased its resistance to crushing force. Sr/Ca in the shell increased with rising calcification rate. Mg/Ca increased upon OA exposure could be due to a complimentary mechanism of preventing shell hardness further reduced. The Na/Ca distribution between the aragonite and calcite of abalone shells was also changed by OA. In general, both abalone species are at a greater risk in a more acidified ocean. Their shells may not provide sufficient protection from predators or to transportation stress in aquaculture.
Collapse
Affiliation(s)
- Xiaoyu Guo
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, PR China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, PR China
| | - Miaoqin Huang
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Xuan Luo
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Weiwei You
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Caihuan Ke
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China.
| |
Collapse
|
13
|
Liao Z, Liu F, Wang Y, Fan X, Li Y, He J, Buttino I, Yan X, Zhang X, Shi G. Transcriptomic response of Mytilus coruscus mantle to acute sea water acidification and shell damage. Front Physiol 2023; 14:1289655. [PMID: 37954445 PMCID: PMC10639161 DOI: 10.3389/fphys.2023.1289655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Mytilus coruscus is an economically important marine calcifier living in the Yangtze River estuary sea area, where seasonal fluctuations in natural pH occur owing to freshwater input, resulting in a rapid reduction in seawater pH. In addition, Mytilus constantly suffers from shell fracture or injury in the natural environment, and the shell repair mechanisms in mussels have evolved to counteract shell injury. Therefore, we utilized shell-complete and shell-damaged Mytilus coruscus in this study and performed transcriptomic analysis of the mantle to investigate whether the expression of mantle-specific genes can be induced by acute seawater acidification and how the mantle responds to acute acidification during the shell repair process. We found that acute acidification induced more differentially expressed genes than shell damage in the mantle, and the biomineralization-related Gene Ontology terms and KEGG pathways were significantly enriched by these DEGs. Most DEGs were upregulated in enriched pathways, indicating the activation of biomineralization-related processes in the mussel mantle under acute acidification. The expression levels of some shell matrix proteins and antimicrobial peptides increased under acute acidification and/or shell damage, suggesting the molecular modulation of the mantle for the preparation and activation of the shell repairing and anti-infection under adverse environmental conditions. In addition, morphological and microstructural analyses were performed for the mantle edge and shell cross-section, and changes in the mantle secretory capacity and shell inner film system induced by the two stressors were observed. Our findings highlight the adaptation of M. coruscus in estuarine areas with dramatic fluctuations in pH and may prove instrumental in its ability to survive ocean acidification.
Collapse
Affiliation(s)
- Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Fei Liu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Ying Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiaojun Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Yingao Li
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jianyu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Livorno, Italy
| | - Xiaojun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Ge Shi
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
14
|
Wang X, Feng Y, Zhang Z, Li C, Han H. Balance dysfunction in large yellow croaker in response to ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162444. [PMID: 36842599 DOI: 10.1016/j.scitotenv.2023.162444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is a coastal-dwelling soniferous, commercially important fish species that is sensitive to sound. An understanding of how ocean acidification might affect its auditory system is therefore important for its long-term viability and management as a fisheries resource. We tested the effects of ocean acidification with four CO2 treatments (440 ppm (control), 1000 ppm, 1800 ppm, and 3000 ppm) on the inner ear system of this species. After exposure to acidified water for 50 d, the impacts on the perimeter and mass of the sagitta, asteriscus, and lapillus otoliths were determined. In the acidified water treatments, the shape of sagittal otoliths became more irregular, and the surface became rougher. Similar sound frequency ranges triggered startle responses of fish in all treatments. In the highest CO2 treatment (3000 ppm CO2), significant asymmetry of the left and right lapillus perimeter and weight was apparent. Moreover, in the higher CO2 treatments (1800 ppm and 3000 ppm CO2), the fish were unable to maintain a balanced dorsal-up posture and tilted to one side. This result suggested that the balance functions of the inner ear might be affected by ocean acidification, which may threaten large yellow croaker individuals and populations. The molecular response to acidification was analyzed by RNA-Seq. The differentially expressed genes (DEGs) between right and left sensory epithelia of the utricle in each CO2 treatment group were identified. In higher CO2 concentration groups, nervous system function and regulation of bone mineralization pathways were enriched with DEGs. The comparative transcriptome analyses provide valuable molecular information about how the inner ear system responds to an acidified environment.
Collapse
Affiliation(s)
- Xiaojie Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China.
| | - Yaoyi Feng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China
| | - Zichao Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China
| | - Chenchen Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China
| | - Huan Han
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China
| |
Collapse
|
15
|
Neale PJ, Williamson CE, Banaszak AT, Häder DP, Hylander S, Ossola R, Rose KC, Wängberg SÅ, Zepp R. The response of aquatic ecosystems to the interactive effects of stratospheric ozone depletion, UV radiation, and climate change. Photochem Photobiol Sci 2023; 22:1093-1127. [PMID: 37129840 PMCID: PMC10153058 DOI: 10.1007/s43630-023-00370-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world's rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate.
Collapse
Affiliation(s)
- P J Neale
- Smithsonian Environmental Research Center, Edgewater, USA.
| | | | - A T Banaszak
- Universidad Nacional Autónoma de México, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Mexico
| | - D-P Häder
- Friedrich-Alexander University, Möhrendorf, Germany
| | | | - R Ossola
- Colorado State University, Fort Collins, USA
| | - K C Rose
- Rensselaer Polytechnic Institute, Troy, USA
| | | | - R Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, USA
| |
Collapse
|
16
|
González-Delgado S, Wangensteen OS, Sangil C, Hernández CA, Alfonso B, Soto AZ, Pérez-Portela R, Mariani S, Hernández JC. High taxonomic diversity and miniaturization in benthic communities under persistent natural CO 2 disturbances. Proc Biol Sci 2023; 290:20222417. [PMID: 36987638 PMCID: PMC10050917 DOI: 10.1098/rspb.2022.2417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Metabarcoding techniques have revolutionized ecological research in recent years, facilitating the differentiation of cryptic species and revealing previously hidden diversity. In the current scenario of climate change and ocean acidification, biodiversity loss is one of the main threats to marine ecosystems. Here, we explored the effects of ocean acidification on marine benthic communities using DNA metabarcoding to assess the diversity of algae and metazoans. Specifically, we examined the natural pH gradient generated by the Fuencaliente CO2 vent system, located near La Palma Island (Canary Islands). High-resolution COI metabarcoding analyses revealed high levels of taxonomic diversity in an acidified natural area for the first time. This high number of species arises from the detection of small and cryptic species that were previously undetectable by other techniques. Such species are apparently tolerant to the acidification levels expected in future oceans. Hence and following our results, future subtropical communities are expected to keep high biodiversity values under an acidification scenario, although they will tend toward overall miniaturization due to the dominance of small algal and invertebrate species, leading to changes in ecosystem functions.
Collapse
Affiliation(s)
- Sara González-Delgado
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Canary Islands, Spain
| | - Owen S. Wangensteen
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Institut de Recerca de la Biodiversitat, University of Barcelona, Barcelona, Spain
| | - Carlos Sangil
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Canary Islands, Spain
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, Canary Islands, Spain
| | - Celso A. Hernández
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Canary Islands, Spain
| | - Beatriz Alfonso
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Canary Islands, Spain
| | - Ana Z. Soto
- Apis Assay Technologies Ltd, Manchester M13 9NQ, UK
| | - Rocío Pérez-Portela
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Institut de Recerca de la Biodiversitat, University of Barcelona, Barcelona, Spain
| | - Stefano Mariani
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - José Carlos Hernández
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Canary Islands, Spain
| |
Collapse
|
17
|
Marshall DJ, Tsikouras B. Clay-shielded estuarine gastropods are better protected against environmental acidification than unshielded individuals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161367. [PMID: 36610628 DOI: 10.1016/j.scitotenv.2022.161367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The effects of progressive global acidification on the shells of marine organisms is a topic of much current interest. Most studies on molluscan shell resistance to dissolution consider the carbonate mineral component, with less known about the protective role of the outer organic periostracum. Outer-shell resistance would seem especially important to gastropods living in carbonate-undersaturated and calcium-deficient estuarine waters that threaten shell dissolution and constrain CaCO3 production. We tested this prediction using gastropods from an acidified estuarine population (Neripteron violaceum) that form a clay shield outside the periostracum. Specifically, we aimed to show that the carbonate shell component lacks integrity, that the formation of the clay shield is directed by the organism, and that the clay shield functions to protect against shell dissolution. We found no evidence for any specific carbonate dissolution resistance strategy in the thin, predominantly aragonitic shells of these gastropods. Shield formation was directed by an ornamented periostracum which strongly bonded illite elements (e.g., Fe, Al and S), that become available through suspension in the water column. In unshielded individuals, CaCO3 erosion was initiated randomly across the shell (not age-related) and progressed rapidly when the periostracum was breached. A light reflectance technique showed qualitatively that shield consolidation is negatively-related to shell erosion. These findings support a conceptual framework for gastropod outer-shell responses to acidification that considers both environmental and evolutionary constraints on shell construction. We describe a novel strategy for shell protection against dissolution, highlighting the diversity of mechanisms available to gastropods facing extreme coastal acidification.
Collapse
Affiliation(s)
- David J Marshall
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam.
| | - Basilios Tsikouras
- Geosciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| |
Collapse
|
18
|
Limeira SCM, Rodrigues SC, Ghilardi RP. Characterization of the cross-lamellar structure of Olivancillaria urceus (Gastropoda: Olividae) and its dissolution pattern. Micron 2023; 166:103416. [PMID: 36680997 DOI: 10.1016/j.micron.2023.103416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
In this work, we sought to characterize the cross-lamellar microstructure of the gastropod Olivancillaria urceus (Röding, 1798) and its profile after immersion in acid medium. For crystallographic analysis, segments of the valve were removed and crushed. The powder obtained was analyzed using Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR) and X-ray Diffractometry (XRD) techniques. For microstructural analysis, eight sections were taken from the shell using a rotary saw. The face of interest of each section was polished with Saint Gobain silicon carbide abrasive powder with mesh sizes of 320, 500, 600, and 1000. The eight sections were divided into four groups of two samples. Three groups were left in 4 % glacial acetic acid solution diluted in water for intervals of 20, 40, and 60 min, respectively, and the control group was not degraded. All wafers were then analyzed in Scanning Electron Microscopy to ascertain the microstructure. The angle and thickness of the layers were determined by Image J software. As a result of the FTIR-ATR technique, a transmittance spectrum was obtained whose valleys represent the vibrational modes of the carbonate ion. The diffractogram peaks and their respective Miller indices, are characteristic of the aragonite crystallographic structure and a small fraction of calcite. The micrographs obtained exposed 3 layers of cross-lamellar microstructure, however, the third and innermost layer showed discontinuity. The angle and average thickness were (105 ± 2)° and (727 ± 5)µm for the outermost layer and (116 ± 3)° and (668 ± 6)µm for the middle layer. The tablets immersed in acid medium showed loss of orientation of the calcium carbonate grains after 40 min and 60 min. Thus, the O. urceus shell exhibits orthorhombic calcium carbonate crystallography. Three layers of cross-lamellar microstructure were identified, as well as the configuration of the structure after contact with corrosive media. These results contribute to the characterization of natural materials and serve as a basis for analysis of the preservation potential in the fossil record.
Collapse
Affiliation(s)
- Silvio C M Limeira
- Faculdade de Ciências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, SP, Brazil.
| | - Sabrina C Rodrigues
- Faculdade de Ciências Integradas do Pontal, Universidade Federal de Uberlândia, Rua Vinte, 1600, Ituiutaba, MG, Brazil
| | - Renato P Ghilardi
- Faculdade de Ciências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, SP, Brazil
| |
Collapse
|
19
|
Christensen AB, Taylor G, Lamare M, Byrne M. The added costs of winter ocean warming for metabolism, arm regeneration and survival in the brittle star Ophionereis schayeri. J Exp Biol 2023; 226:287003. [PMID: 36651231 DOI: 10.1242/jeb.244613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
As the climate continues to change, it is not just the magnitude of these changes that is important - equally critical is the timing of these events. Conditions that may be well tolerated at one time can become detrimental if experienced at another, as a result of seasonal acclimation. Temperature is the most critical variable as it affects most aspects of an organism's physiology. To address this, we quantified arm regeneration and respiration in the Australian brittle star Ophionereis schayeri for 10 weeks in response to a +3°C warming (18.5°C, simulating a winter heatwave) compared with ambient winter temperature (15.5°C). The metabolic scaling rate (b=0.635 at 15.5°C and 0.746 at 18.5°C) with respect to size was similar to that of other echinoderms and was not affected by temperature. Elevated temperature resulted in up to a 3-fold increase in respiration and a doubling of regeneration growth; however, mortality was greater (up to 44.2% at 18.5°C), especially in the regenerating brittle stars. Metabolic rate of the brittle stars held at 18.5°C was much higher than expected (Q10≈23) and similar to that of O. schayeri tested in summer, which was near their estimated thermotolerance limits. The additional costs associated with the elevated metabolism and regeneration rates incurred by the unseasonably warm winter temperatures may lead to increased mortality and predation risk.
Collapse
Affiliation(s)
| | - Georgie Taylor
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | - Miles Lamare
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
20
|
Guo X, Huang M, Luo X, You W, Ke C. Effects of one-year exposure to ocean acidification on two species of abalone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158144. [PMID: 35988613 DOI: 10.1016/j.scitotenv.2022.158144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Ocean acidification (OA) resulting from the absorption of excess atmospheric CO2 by the ocean threatens the survival of marine calcareous organisms, including mollusks. This study investigated the effects of OA on adults of two abalone species (Haliotis diversicolor, a subtropical species, and Haliotis discus hannai, a temperate species). Abalone were exposed to three pCO2 conditions for 1 year (ambient, ~ 880, and ~ 1600 μatm), and parameters, including mortality, physiology, immune system, biochemistry, and carry-over effects, were measured. Survival decreased significantly at ~ 800 μatm pCO2 for H. diversicolor, while H. discus hannai survival was negatively affected only at a higher OA level (~ 1600 μatm pCO2). H. diversicolor exhibited depressed metabolic and excretion rates and a higher O:N ratio under OA, indicating a shift to lipids as a metabolism substrate, while these physiological parameters in H. discus hannai were robust to OA. Both abalone failed to compensate for the pH decrease of their internal fluids because of the lowered hemolymph pH under OA. However, the reduced hemolymph pH did not affect total hemocyte counts or tested biomarkers. Additionally, H. discus hannai increased its hemolymph protein content under OA, which could indicate enhanced immunity. Larvae produced by adults exposed to the three pCO2 levels were cultured in the same pCO2 conditions and larval deformation and shell length were measured to observe carry-over effects. Enhanced OA tolerance was observed for H. discus hannai exposed under both of the OA treatments, while that was only observed following parental pCO2 ~ 880 μatm exposure for H. diversicolor. Following pCO2 ~ 1600 μatm parental exposure, H. diversicolor offspring exhibited higher deformation and lower shell growth in all pCO2 treatments. In general, H. diversicolor were more susceptible to OA compared with H. discus hannai, suggesting that H. diversicolor could be unable to adapt to acidified oceans in the future.
Collapse
Affiliation(s)
- Xiaoyu Guo
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, PR China; XMU-MRB Abalone Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou 362000, PR China
| | - Miaoqin Huang
- XMU-MRB Abalone Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Xuan Luo
- XMU-MRB Abalone Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Weiwei You
- XMU-MRB Abalone Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Caihuan Ke
- XMU-MRB Abalone Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
21
|
Auzoux-Bordenave S, Ledoux A, Martin S, Di Poi C, Suquet M, Badou A, Gaillard F, Servili A, Le Goïc N, Huchette S, Roussel S. Responses of early life stages of European abalone (Haliotis tuberculata) to ocean acidification after parental conditioning: Insights from a transgenerational experiment. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105753. [PMID: 36130468 DOI: 10.1016/j.marenvres.2022.105753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
CO2 absorption is leading to ocean acidification (OA), which is a matter of major concern for marine calcifying species. This study investigated the effects of simulated OA on the reproduction of European abalone Haliotis tuberculata and the survival of its offspring. Four-year-old abalone were exposed during reproductive season to two relevant OA scenarios, ambient pH (8.0) and low pH (7.7). After five months of exposure, abalone were induced to spawn. The gametes, larvae and juveniles were then exposed for five months to the same pH conditions as their parents. Several biological parameters involved in adult reproduction as well as in larval, post-larval and juvenile fitness were measured. No effects on gametes, fertilisation or larval oxidative stress response were detected. However, developmental abnormalities and significant decreases in shell length and calcification were observed at veliger stages. The expression profile of a GABA A receptor-like gene appeared to be regulated by pH, depending on larval stage. Larval and post-larval survival was not affected by low pH. However, a lower survival and a reduction of growth were recorded in juveniles at pH 7.7. Our results confirm that OA negatively impacts larval and juvenile fitness and suggest the absence of carry-over effects on abalone offspring. This may compromise the survival of abalone populations in the near future.
Collapse
Affiliation(s)
- Stéphanie Auzoux-Bordenave
- UMR "Biologie des Organismes et Ecosystèmes Aquatiques" (BOREA), MNHN/CNRS/SU/IRD, Muséum national d'Histoire naturelle, Station marine de Concarneau, 29900, Concarneau, France; Sorbonne Université, 4, place Jussieu, 75005, Paris, France.
| | - Apolline Ledoux
- IFREMER, Université de Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Sophie Martin
- Sorbonne Université, 4, place Jussieu, 75005, Paris, France; UMR 7144 "Adaptation et Diversité en Milieu Marin" (AD2M), CNRS/SU, Station Biologique de Roscoff, 29680, Roscoff Cedex, France
| | - Carole Di Poi
- IFREMER, Université de Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Marc Suquet
- IFREMER, Université de Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Aïcha Badou
- Direction Générale Déléguée à la Recherche, l'Expertise, la Valorisation et l'Enseignement (DGD REVE), Muséum national d'Histoire naturelle, Station marine de Concarneau, 29900, Concarneau, France
| | - Fanny Gaillard
- UMR 7144 "Adaptation et Diversité en Milieu Marin" (AD2M), CNRS/SU, Station Biologique de Roscoff, 29680, Roscoff Cedex, France
| | - Arianna Servili
- IFREMER, Université de Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Nelly Le Goïc
- IFREMER, Université de Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | | - Sabine Roussel
- Université de Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| |
Collapse
|
22
|
Wang X, Li C, Lv Z, Zhang Z, Qiu L. A calcification-related calmodulin-like protein in the oyster Crassostrea gigas mediates the enhanced calcium deposition induced by CO 2 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155114. [PMID: 35413345 DOI: 10.1016/j.scitotenv.2022.155114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/19/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Calcium transportation and homeostasis are essential for marine bivalves to maintain basic metabolism and build their shells. Calmodulin-like proteins (CaLPs) are important calcium sensors and buffers and can respond to ocean acidification (OA) in marine calcifiers. However, no further study of their physiological function in calcium metabolism under elevated CO2 has been performed. Here, we identified a novel CaLP (designated CgCaLP) in the Pacific oyster Crassostrea gigas and demonstrated its participation in the calcification process: the mRNA expression level of CgCaLP peaked at the trochophore larval stage and remained high at stages when shells were shaped; the mRNA and protein of CgCaLP were more highly expressed in mantle tissue than in other tissues. Under elevated CO2 levels, the protein expression level of CgCaLP in hemocytes increased, while in contrast, significantly decreased protein levels were detected in gill and mantle tissues. Shell dissolution caused the imbalance of calcium in hemocytes and decreased calcium absorption and transportation demand in gill and mantle tissues, inducing the molecular function allocation of CgCaLP under CO2 exposure. Despite the decreased protein level in mantle tissue, CgCaLP was found to translocate to outer mantle epithelium (OME) cells where condensed calcium-rich deposits (CRDs) were detected. We further demonstrated that CgCaLP mRNA and protein expression levels could respond to seawater Ca2+ availability, suggesting that the calcium deposition capacity of oysters might be enhanced to fight against shell dissolution problems and that CgCaLP might serve as an essential participator of the process. In summary, CgCaLP might enhance calcium deposition under CO2 exposure and thus play a significant and flexible molecular function involved in a compensation strategy of oysters to fight against the acidified ocean.
Collapse
Affiliation(s)
- Xiudan Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Changmei Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhao Lv
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Zhenqiang Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Limei Qiu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
23
|
Palladino G, Caroselli E, Tavella T, D'Amico F, Prada F, Mancuso A, Franzellitti S, Rampelli S, Candela M, Goffredo S, Biagi E. Metagenomic shifts in mucus, tissue and skeleton of the coral Balanophyllia europaea living along a natural CO 2 gradient. ISME COMMUNICATIONS 2022; 2:65. [PMID: 37938252 PMCID: PMC9723718 DOI: 10.1038/s43705-022-00152-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 05/13/2023]
Abstract
Using the Mediterranean coral Balanophyllia europaea naturally growing along a pH gradient close to Panarea island (Italy) as a model, we explored the role of host-associated microbiomes in coral acclimatization to ocean acidification (OA). Coral samples were collected at three sites along the gradient, mimicking seawater conditions projected for 2100 under different IPCC (The Intergovernmental Panel on Climate Change) scenarios, and mucus, soft tissue and skeleton associated microbiomes were characterized by shotgun metagenomics. According to our findings, OA induced functional changes in the microbiomes genetic potential that could mitigate the sub-optimal environmental conditions at three levels: i. selection of bacteria genetically equipped with functions related to stress resistance; ii. shifts in microbial carbohydrate metabolism from energy production to maintenance of cell membranes and walls integrity; iii. gain of functions able to respond to variations in nitrogen needs at the holobiont level, such as genes devoted to organic nitrogen mobilization. We hence provided hypotheses about the functional role of the coral associated microbiome in favoring host acclimatation to OA, remarking on the importance of considering the crosstalk among all the components of the holobiont to unveil how and to what extent corals will maintain their functionality under forthcoming ocean conditions.
Collapse
Affiliation(s)
- Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| | - Erik Caroselli
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Teresa Tavella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
| | - Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
| | - Fiorella Prada
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Arianna Mancuso
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Silvia Franzellitti
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy.
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy.
| | - Stefano Goffredo
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy.
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| | - Elena Biagi
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| |
Collapse
|
24
|
Ocean Warming Amplifies the Effects of Ocean Acidification on Skeletal Mineralogy and Microstructure in the Asterinid Starfish Aquilonastra yairi. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10081065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ocean acidification and ocean warming compromise the capacity of calcifying marine organisms to generate and maintain their skeletons. While many marine calcifying organisms precipitate low-Mg calcite or aragonite, the skeleton of echinoderms consists of more soluble Mg-calcite. To assess the impact of exposure to elevated temperature and increased pCO2 on the skeleton of echinoderms, in particular the mineralogy and microstructure, the starfish Aquilonastra yairi (Echinodermata: Asteroidea) was exposed for 90 days to simulated ocean warming (27 °C and 32 °C) and ocean acidification (455 µatm, 1052 µatm, 2066 µatm) conditions. The results indicate that temperature is the major factor controlling the skeletal Mg (Mg/Ca ratio and Mgnorm ratio), but not for skeletal Sr (Sr/Ca ratio and Srnorm ratio) and skeletal Ca (Canorm ratio) in A. yairi. Nevertheless, inter-individual variability in skeletal Sr and Ca ratios increased with higher temperature. Elevated pCO2 did not induce any statistically significant element alterations of the skeleton in all treatments over the incubation time, but increased pCO2 concentrations might possess an indirect effect on skeletal mineral ratio alteration. The influence of increased pCO2 was more relevant than that of increased temperature on skeletal microstructures. pCO2 as a sole stressor caused alterations on stereom structure and degradation on the skeletal structure of A. yairi, whereas temperature did not; however, skeletons exposed to elevated pCO2 and high temperature show a strongly altered skeleton structure compared to ambient temperature. These results indicate that ocean warming might exacerbate the skeletal maintaining mechanisms of the starfish in a high pCO2 environment and could potentially modify the morphology and functions of the starfish skeleton.
Collapse
|
25
|
Bednaršek N, Beck MW, Pelletier G, Applebaum SL, Feely RA, Butler R, Byrne M, Peabody B, Davis J, Štrus J. Natural Analogues in pH Variability and Predictability across the Coastal Pacific Estuaries: Extrapolation of the Increased Oyster Dissolution under Increased pH Amplitude and Low Predictability Related to Ocean Acidification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9015-9028. [PMID: 35548856 PMCID: PMC9228044 DOI: 10.1021/acs.est.2c00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Coastal-estuarine habitats are rapidly changing due to global climate change, with impacts influenced by the variability of carbonate chemistry conditions. However, our understanding of the responses of ecologically and economically important calcifiers to pH variability and temporal variation is limited, particularly with respect to shell-building processes. We investigated the mechanisms driving biomineralogical and physiological responses in juveniles of introduced (Pacific; Crassostrea gigas) and native (Olympia; Ostrea lurida) oysters under flow-through experimental conditions over a six-week period that simulate current and future conditions: static control and low pH (8.0 and 7.7); low pH with fluctuating (24-h) amplitude (7.7 ± 0.2 and 7.7 ± 0.5); and high-frequency (12-h) fluctuating (8.0 ± 0.2) treatment. The oysters showed physiological tolerance in vital processes, including calcification, respiration, clearance, and survival. However, shell dissolution significantly increased with larger amplitudes of pH variability compared to static pH conditions, attributable to the longer cumulative exposure to lower pH conditions, with the dissolution threshold of pH 7.7 with 0.2 amplitude. Moreover, the high-frequency treatment triggered significantly greater dissolution, likely because of the oyster's inability to respond to the unpredictable frequency of variations. The experimental findings were extrapolated to provide context for conditions existing in several Pacific coastal estuaries, with time series analyses demonstrating unique signatures of pH predictability and variability in these habitats, indicating potentially benefiting effects on fitness in these habitats. These implications are crucial for evaluating the suitability of coastal habitats for aquaculture, adaptation, and carbon dioxide removal strategies.
Collapse
Affiliation(s)
- Nina Bednaršek
- Southern
California Coastal Water Research Project, Costa Mesa, California 92626, United States
- National
Institute of Biology, Marine Biological Station, 6330 Piran, Slovenia
| | - Marcus W. Beck
- Tampa
Bay Estuary Program, St. Petersburg, Florida 33701, United States
| | - Greg Pelletier
- Southern
California Coastal Water Research Project, Costa Mesa, California 92626, United States
| | - Scott Lee Applebaum
- Environmental
Studies Program, University of Southern
California, Los Angeles, California 90089, United States
| | - Richard A. Feely
- NOAA
Pacific Marine Environmental Laboratory, Seattle, Washington 98115, United States
| | - Robert Butler
- Southern
California Coastal Water Research Project, Costa Mesa, California 92626, United States
| | - Maria Byrne
- School of
Life and Environmental Sciences, University
of Sydney, Sydney 2006, New South Wales, Australia
| | - Betsy Peabody
- Puget
Sound Restoration Fund, Bainbridge
Island, Washington 98110, United States
| | - Jonathan Davis
- Pacific
Hybreed, Inc., Port Orchard, Washington 98366, United States
| | - Jasna Štrus
- Biotechnical
Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
26
|
Córdova-Rodríguez K, Flye-Sainte-Marie J, Fernández E, Graco M, Rozas A, Aguirre-Velarde A. Effect of low pH on growth and shell mechanical properties of the Peruvian scallop Argopecten purpuratus (Lamarck, 1819). MARINE ENVIRONMENTAL RESEARCH 2022; 177:105639. [PMID: 35512586 DOI: 10.1016/j.marenvres.2022.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/20/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Dissolution of anthropogenic CO2 modifies seawater pH, leading to ocean acidification, which might affect calcifying organisms such as bivalve mollusks. Along the Peruvian coast, however, natural conditions of low pH (7.6-8.0) are encountered in the habitat of the Peruvian scallop (Argopecten purpuratus), as a consequence of the nearby coastal upwelling influence. To understand the effects of low pH in a species adapted to these environmental conditions, an experiment was performed to test its consequences on growth, calcification, dissolution, and shell mechanical properties in juvenile Peruvian scallops. During 28 days, scallops (initial mean height = 14 mm) were exposed to two contrasted pH conditions: a control with unmanipulated seawater presenting pH conditions similar to those found in situ (pHT = 7.8) and a treatment, in which CO2 was injected to reduce pH to 7.4. At the end of the experiment, shell height and weight, and growth and calcification rates were reduced about 6%, 20%, 9%, and 10% respectively in the low pH treatment. Mechanical properties, such as microhardness were positively affected in the low pH condition and crushing force did not show differences between pH treatments. Final soft tissue weights were not significantly affected by low pH. This study provides evidence of low pH change shell properties increasing the shell microhardness in Peruvian scallops, which implies protective functions. However, the mechanisms behind this response need to be studied in a global change context.
Collapse
Affiliation(s)
| | | | - Ernesto Fernández
- Instituto del Mar del Perú (IMARPE), Esq. General Valle y Gamarra s/n, Chucuito, Callao, Peru
| | - Michelle Graco
- Ciencias del Mar, Universidad Peruana Cayetano Heredia, Honorio Delgado 444, Lima, Peru; Instituto del Mar del Perú (IMARPE), Esq. General Valle y Gamarra s/n, Chucuito, Callao, Peru
| | - Anibal Rozas
- Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, Peru
| | - Arturo Aguirre-Velarde
- Instituto del Mar del Perú (IMARPE), Esq. General Valle y Gamarra s/n, Chucuito, Callao, Peru
| |
Collapse
|
27
|
Lutier M, Di Poi C, Gazeau F, Appolis A, Le Luyer J, Pernet F. Revisiting tolerance to ocean acidification: Insights from a new framework combining physiological and molecular tipping points of Pacific oyster. GLOBAL CHANGE BIOLOGY 2022; 28:3333-3348. [PMID: 35092108 DOI: 10.1111/gcb.16101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Studies on the impact of ocean acidification on marine organisms involve exposing organisms to future acidification scenarios, which has limited relevance for coastal calcifiers living in a mosaic of habitats. Identification of tipping points beyond which detrimental effects are observed is a widely generalizable proxy of acidification susceptibility at the population level. This approach is limited to a handful of studies that focus on only a few macro-physiological traits, thus overlooking the whole organism response. Here we develop a framework to analyze the broad macro-physiological and molecular responses over a wide pH range in juvenile oyster. We identify low tipping points for physiological traits at pH 7.3-6.9 that coincide with a major reshuffling in membrane lipids and transcriptome. In contrast, a drop in pH affects shell parameters above tipping points, likely impacting animal fitness. These findings were made possible by the development of an innovative methodology to synthesize and identify the main patterns of variations in large -omic data sets, fitting them to pH and identifying molecular tipping points. We propose the broad application of our framework to the assessment of effects of global change on other organisms.
Collapse
Affiliation(s)
| | - Carole Di Poi
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Frédéric Gazeau
- Laboratoire d'Océanographie de Villefranche, LOV Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | | | - Jérémy Le Luyer
- EIO UPF/IRD/ILM/Ifremer, Labex CORAIL, Unité RMPF, Centre Océanologique du Pacifique, Vairao, French Polynesia
| | | |
Collapse
|
28
|
Leung JYS, Nagelkerken I, Pistevos JCA, Xie Z, Zhang S, Connell SD. Shark teeth can resist ocean acidification. GLOBAL CHANGE BIOLOGY 2022; 28:2286-2295. [PMID: 35023266 DOI: 10.1111/gcb.16052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
Ocean acidification can cause dissolution of calcium carbonate minerals in biological structures of many marine organisms, which can be exacerbated by warming. However, it is still unclear whether this also affects organisms that have body parts made of calcium phosphate minerals (e.g. shark teeth), which may also be impacted by the 'corrosive' effect of acidified seawater. Thus, we examined the effect of ocean acidification and warming on the mechanical properties of shark teeth (Port Jackson shark, Heterodontus portusjacksoni), and assessed whether their mineralogical properties can be modified in response to predicted near-future seawater pH (-0.3 units) and temperature (+3°C) changes. We found that warming resulted in the production of more brittle teeth (higher elastic modulus and lower mechanical resilience) that were more vulnerable to physical damage. Yet, when combined with ocean acidification, the durability of teeth increased (i.e. less prone to physical damage due to the production of more elastic teeth) so that they did not differ from those raised under ambient conditions. The teeth were chiefly made of fluorapatite (Ca5 (PO4 )3 F), with increased fluoride content under ocean acidification that was associated with increased crystallinity. The increased precipitation of this highly insoluble mineral under ocean acidification suggests that the sharks could modulate and enhance biomineralization to produce teeth which are more resistant to corrosion. This adaptive mineralogical adjustment could allow some shark species to maintain durability and functionality of their teeth, which underpins a fundamental component of predation and sustenance of the trophic dynamics of future oceans.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, PR China
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Jennifer C A Pistevos
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
- PSL Research University EPHE-UPVD-CNRS, USR 3278 CRIOBE, Moorea, French Polynesia
| | - Zonghan Xie
- School of Mechanical Engineering, The University of Adelaide, South Australia, Australia
| | - Sam Zhang
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, PR China
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| |
Collapse
|
29
|
Navarro JM, Andrade-Villagrán PV, Manríquez PH, Duarte C, Chaparro OR. Long-term effects of contrasting pCO 2 levels on the scope for growth in the carnivorous gastropod Concholepas concholepas. MARINE ENVIRONMENTAL RESEARCH 2022; 175:105586. [PMID: 35168007 DOI: 10.1016/j.marenvres.2022.105586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
We evaluated the effect of contrasting pCO2 levels: lower (390 μatm), moderate (700 μatm) and extreme (1000 μatm), on the scope for growth of the keystone snail Concholepas concholepas over an exposure period of 6 months. Juvenile snails were collected from rocky intertidal habitats and acclimated for 5 months to those pCO2 levels. Subsequently, three groups of snails were randomly taken (n = 7 for each treatment) and reared for an additional 1 month for each of the three pCO2 levels. Physiological traits related with energy gain and energy expenditure were quantified. The scope for growth index decreased significantly with increases in pCO2, yielding negative values throughout the experimental period for the snails exposed to 1000 μatm pCO2, probably due to the extra energy required to maintain their metabolic functions in balance. This suggests that future climate change scenarios with elevated pCO2 levels could threaten the growth and other basic functions of juvenile snails of this species.
Collapse
Affiliation(s)
- J M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile.
| | - P V Andrade-Villagrán
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción. Concepción, Chile
| | - P H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Avenida Ossandón 877, Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - C Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile
| | - O R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
30
|
Butt N, Halpern BS, O'Hara CC, Allcock AL, Polidoro B, Sherman S, Byrne M, Birkeland C, Dwyer RG, Frazier M, Woodworth BK, Arango CP, Kingsford MJ, Udyawer V, Hutchings P, Scanes E, McClaren EJ, Maxwell SM, Diaz‐Pulido G, Dugan E, Simmons BA, Wenger AS, Linardich C, Klein CJ. A trait‐based framework for assessing the vulnerability of marine species to human impacts. Ecosphere 2022. [DOI: 10.1002/ecs2.3919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nathalie Butt
- School of Earth and Environmental Sciences The University of Queensland St. Lucia Queensland Australia
- Centre for Biodiversity and Conservation Science The University of Queensland St. Lucia Queensland Australia
| | - Benjamin S. Halpern
- Bren School of Environmental Science and Management University of California Santa Barbara Santa Barbara California USA
- National Center for Ecological Analysis and Synthesis University of California Santa Barbara Santa Barbara California USA
| | - Casey C. O'Hara
- Bren School of Environmental Science and Management University of California Santa Barbara Santa Barbara California USA
| | - A. Louise Allcock
- Department of Zoology National University of Ireland Galway Galway Ireland
- The Ryan Institute's Centre for Ocean Research & Exploration (COREx) National University of Ireland Galway Galway Ireland
| | - Beth Polidoro
- School of Mathematics and Natural Sciences Arizona State University Glendale Arizona USA
| | - Samantha Sherman
- Department of Biological Sciences, Earth to Oceans Research Group Simon Fraser University Burnaby British Columbia Canada
- TRAFFIC Cambridge UK
| | - Maria Byrne
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales Australia
| | - Charles Birkeland
- Department of Biology University of Hawaii at Manoa Honolulu Hawaii USA
| | - Ross G. Dwyer
- School of Biological Sciences The University of Queensland St. Lucia Queensland Australia
- School of Science, Technology and Engineering University of the Sunshine Coast Sippy Downs Queensland Australia
| | - Melanie Frazier
- National Center for Ecological Analysis and Synthesis University of California Santa Barbara Santa Barbara California USA
| | - Bradley K. Woodworth
- Centre for Biodiversity and Conservation Science The University of Queensland St. Lucia Queensland Australia
- School of Biological Sciences The University of Queensland St. Lucia Queensland Australia
| | | | - Michael J. Kingsford
- ARC Centre of Excellence for Coral Reef Studies and Marine Biology and Aquaculture College of Science and Engineering, JCU Townsville Queensland Australia
| | - Vinay Udyawer
- Arafura Timor Research Facility Australian Institute of Marine Science—Darwin Brinkin Northern Territory Australia
| | - Pat Hutchings
- Department of Marine Invertebrates Australian Museum Research Institute Sydney New South Wales Australia
- Department of Biological Sciences Macquarie University North Ryde New South Wales Australia
| | - Elliot Scanes
- Climate Change Cluster, Faculty of Science University of Technology Sydney Ultimo New South Wales Australia
| | - Emily Jane McClaren
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales Australia
| | - Sara M. Maxwell
- School of Interdisciplinary Arts and Sciences University of Washington, Bothell Campus Bothell Washington USA
| | - Guillermo Diaz‐Pulido
- School of Environment & Science Griffith University, Nathan Campus Brisbane Queensland Australia
| | - Emma Dugan
- College of Letters & Science University of California Santa Barbara Santa Barbara California USA
| | | | - Amelia S. Wenger
- School of Earth and Environmental Sciences The University of Queensland St. Lucia Queensland Australia
- Centre for Biodiversity and Conservation Science The University of Queensland St. Lucia Queensland Australia
| | - Christi Linardich
- International Union for Conservation of Nature Marine Biodiversity Unit, Department of Biological Sciences Old Dominion University Norfolk Virginia USA
| | - Carissa J. Klein
- School of Earth and Environmental Sciences The University of Queensland St. Lucia Queensland Australia
- Centre for Biodiversity and Conservation Science The University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
31
|
Impact of ocean warming and ocean acidification on asexual reproduction and statolith formation of the symbiotic jellyfish Cotylorhiza tuberculata. PLoS One 2021; 16:e0254983. [PMID: 34347820 PMCID: PMC8336884 DOI: 10.1371/journal.pone.0254983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/07/2021] [Indexed: 12/01/2022] Open
Abstract
Ocean acidification and warming are challenging marine organisms and ecosystems around the world. The synergetic effects of these two climate change stressors on jellyfish remain still understudied. Here, we examine the independent and combined effects of these two environmental variables on polyp population dynamics of the Mediterranean jellyfish Cotylorhiza tuberculata. An experiment was conducted to examine asexual reproduction by budding and strobilation considering current and ca. 2100 winter (Trial 1, 36 days) and summer (Trial 2, 36 days) conditions under the RCP8.5 (IPCC 2013). In Trial 1, a temperature of 18°C and two pH levels (current: 7.9 and, reduced: 7.7) were tested. Trial 2 considered two temperature levels 24°C and 30°C, under current and reduced acidification conditions (8.0 and 7.7, respectively). Ephyrae size and statolith formation of released ephyrae from polyps exposed to summer temperatures under both acidification treatment was also analyzed. Zooxanthellae density inside the polyps throughout the experiment was measured. C. tuberculata polyps could cope with the conditions mimicked in all experimental treatments and no significant effect of pH, temperature, or the combination of both variables on the abundance of polyps was observed. At 18°C, strobilation was reduced under high PCO2 conditions. Under summer treatments (24°C and 30°C), percentage strobilation was very low and several released ephyrae suffered malformations and reduced size, as a consequence of reduced pH and elevated temperatures, separately. The number of statoliths was not affected by pH or temperature, however, bigger statoliths were formed at elevated temperatures (30°C). Finally, zooxanthellae density was not affected by experimental conditions, even if, the duration of the experiment significantly affected symbiont concentration. Our results show that even though polyps of C. tuberculata would thrive the future worst scenario predicted for the Mediterranean Sea, their capacity to undergo a proper strobilation and to produce healthy ephyrae will be more vulnerable to climate induced environmental conditions, thereby affecting medusae recruitment and, therefore, population dynamics of the species.
Collapse
|
32
|
Chandra Rajan K, Meng Y, Yu Z, Roberts SB, Vengatesen T. Oyster biomineralization under ocean acidification: From genes to shell. GLOBAL CHANGE BIOLOGY 2021; 27:3779-3797. [PMID: 33964098 DOI: 10.1111/gcb.15675] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/02/2021] [Indexed: 05/27/2023]
Abstract
Biomineralization is one of the key processes that is notably affected in marine calcifiers such as oysters under ocean acidification (OA). Understanding molecular changes in the biomineralization process under OA and its heritability, therefore, is key to developing conservation strategies for protecting ecologically and economically important oyster species. To do this, in this study, we have explicitly chosen the tissue involved in biomineralization (mantle) of an estuarine commercial oyster species, Crassostrea hongkongensis. The primary aim of this study is to understand the influence of DNA methylation over gene expression of mantle tissue under decreased ~pH 7.4, a proxy of OA, and to extrapolate if these molecular changes can be observed in the product of biomineralization-the shell. We grew early juvenile C. hongkongensis, under decreased ~pH 7.4 and control ~pH 8.0 over 4.5 months and studied OA-induced DNA methylation and gene expression patterns along with shell properties such as microstructure, crystal orientation and hardness. The population of oysters used in this study was found to be moderately resilient to OA at the end of the experiment. The expression of key biomineralization-related genes such as carbonic anhydrase and alkaline phosphatase remained unaffected; thus, the mechanical properties of the shell (shell growth rate, hardness and crystal orientation) were also maintained without any significant difference between control and OA conditions with signs of severe dissolution. In addition, this study makes three major conclusions: (1) higher expression of Ca2+ binding/signalling-related genes in the mantle plays a key role in maintaining biomineralization under OA; (2) DNA methylation changes occur in response to OA; however, these methylation changes do not directly control gene expression; and (3) OA would be more of a 'dissolution problem' rather than a 'biomineralization problem' for resilient species that maintain calcification rate with normal shell growth and mechanical properties.
Collapse
Affiliation(s)
- Kanmani Chandra Rajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Yuan Meng
- State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziniu Yu
- South China Sea Institute of Oceanology, Guangzhou, China
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Thiyagarajan Vengatesen
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| |
Collapse
|
33
|
Leung JYS, Russell BD, Coleman MA, Kelaher BP, Connell SD. Long-term thermal acclimation drives adaptive physiological adjustments of a marine gastropod to reduce sensitivity to climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145208. [PMID: 33548706 DOI: 10.1016/j.scitotenv.2021.145208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Ocean warming is predicted to challenge the persistence of a variety of marine organisms, especially when combined with ocean acidification. While temperature affects virtually all physiological processes, the extent to which thermal history mediates the adaptive capacity of marine organisms to climate change has been largely overlooked. Using populations of a marine gastropod (Turbo undulatus) with different thermal histories (cool vs. warm), we compared their physiological adjustments following exposure (8-week) to ocean acidification and warming. Compared to cool-acclimated counterparts, we found that warm-acclimated individuals had a higher thermal threshold (i.e. increased CTmax by 2 °C), which was unaffected by the exposure to ocean acidification and warming. Thermal history also strongly mediated physiological effects, where warm-acclimated individuals adjusted to warming by conserving energy, suggested by lower respiration and ingestion rates, energy budget (i.e. scope for growth) and O:N ratio. After exposure to warming, warm-acclimated individuals had higher metabolic rates and greater energy budget due to boosted ingestion rates, but such compensatory feeding disappeared when combined with ocean acidification. Overall, we suggest that thermal history can be a critical mediator of physiological performance under future climatic conditions. Given the relatively gradual rate of global warming, marine organisms may be better able to adaptively adjust their physiology to future climate than what short-term experiments currently convey.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Bayden D Russell
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Melinda A Coleman
- New South Wales Department of Primary Industries, Fisheries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia
| | - Brendan P Kelaher
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW 2450, Australia
| | - Sean D Connell
- Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
34
|
Foo SA, Byrne M. Forecasting impacts of ocean acidification on marine communities: Utilizing volcanic CO 2 vents as natural laboratories. GLOBAL CHANGE BIOLOGY 2021; 27:1995-1997. [PMID: 33501734 DOI: 10.1111/gcb.15528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Oceans have absorbed approximately 30% of anthropogenic CO2 emissions, causing a phenomenon known as 'ocean acidification'. With surface ocean pH changing at a rapid pace, continued uptake of CO2 is expected to decrease ocean pH by 0.3 pH units as early as 2081, accompanied by a decrease in the saturation of calcium carbonate minerals needed to produce skeletons and shells (RCP 8.5 scenario, IPCC 2019). Natural marine CO2 vent systems provide ocean acidification proxies, offering a glimpse into what a future ocean may look like.
Collapse
Affiliation(s)
- Shawna A Foo
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
35
|
Dickinson GH, Bejerano S, Salvador T, Makdisi C, Patel S, Long WC, Swiney KM, Foy RJ, Steffel BV, Smith KE, Aronson RB. Ocean acidification alters properties of the exoskeleton in adult Tanner crabs, Chionoecetes bairdi. J Exp Biol 2021; 224:jeb.232819. [DOI: 10.1242/jeb.232819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022]
Abstract
ABSTRACT
Ocean acidification can affect the ability of calcifying organisms to build and maintain mineralized tissue. In decapod crustaceans, the exoskeleton is a multilayered structure composed of chitin, protein and mineral, predominately magnesian calcite or amorphous calcium carbonate (ACC). We investigated the effects of acidification on the exoskeleton of mature (post-terminal-molt) female southern Tanner crabs, Chionoecetes bairdi. Crabs were exposed to one of three pH levels – 8.1, 7.8 or 7.5 – for 2 years. Reduced pH led to a suite of body region-specific effects on the exoskeleton. Microhardness of the claw was 38% lower in crabs at pH 7.5 compared with those at pH 8.1, but carapace microhardness was unaffected by pH. In contrast, reduced pH altered elemental content in the carapace (reduced calcium, increased magnesium), but not the claw. Diminished structural integrity and thinning of the exoskeleton were observed at reduced pH in both body regions; internal erosion of the carapace was present in most crabs at pH 7.5, and the claws of these crabs showed substantial external erosion, with tooth-like denticles nearly or completely worn away. Using infrared spectroscopy, we observed a shift in the phase of calcium carbonate present in the carapace of pH 7.5 crabs: a mix of ACC and calcite was found in the carapace of crabs at pH 8.1, whereas the bulk of calcium carbonate had transformed to calcite in pH 7.5 crabs. With limited capacity for repair, the exoskeleton of long-lived crabs that undergo a terminal molt, such as C. bairdi, may be especially susceptible to ocean acidification.
Collapse
Affiliation(s)
- Gary H. Dickinson
- Department of Biology, The College of New Jersey, 2000 Pennington Rd, Ewing, NJ 08628, USA
| | - Shai Bejerano
- Department of Biology, The College of New Jersey, 2000 Pennington Rd, Ewing, NJ 08628, USA
| | - Trina Salvador
- Department of Biology, The College of New Jersey, 2000 Pennington Rd, Ewing, NJ 08628, USA
| | - Christine Makdisi
- Department of Biology, The College of New Jersey, 2000 Pennington Rd, Ewing, NJ 08628, USA
| | - Shrey Patel
- Department of Biology, The College of New Jersey, 2000 Pennington Rd, Ewing, NJ 08628, USA
| | - W. Christopher Long
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Resource Assessment and Conservation Engineering Division, Kodiak Laboratory, 301 Research Ct, Kodiak, AK 99615, USA
| | - Katherine M. Swiney
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Resource Assessment and Conservation Engineering Division, Kodiak Laboratory, 301 Research Ct, Kodiak, AK 99615, USA
| | - Robert J. Foy
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Resource Assessment and Conservation Engineering Division, Kodiak Laboratory, 301 Research Ct, Kodiak, AK 99615, USA
| | - Brittan V. Steffel
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Kathryn E. Smith
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Richard B. Aronson
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
36
|
Barclay KM, Gingras MK, Packer ST, Leighton LR. The role of gastropod shell composition and microstructure in resisting dissolution caused by ocean acidification. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105105. [PMID: 32841915 DOI: 10.1016/j.marenvres.2020.105105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Organisms, such as molluscs, that produce their hard parts from calcium carbonate are expected to show increased difficulties growing and maintaining their skeletons under ocean acidification (OA). Any loss of shell integrity increases vulnerability, as shells provide protection against predation, desiccation, and disease. Not all species show the same responses to OA, which may be due to the composition and microstructural arrangement of their shells. We explore the role of shell composition and microstructure in resisting dissolution caused by decreases in seawater pH using a combination of microCT scans, XRD analysis, and SEM imaging. Two gastropods with different shell compositions and microstructure, Tegula funebralis and Nucella ostrina, were exposed to simulated ocean acidification conditions for six months. Both species showed signs of dissolution on the exterior of their shells, but changes in density were significantly more pronounced in T. funebralis. XRD analysis indicated that the exterior layer of both shell types was made of calcite. T. funebralis may be more prone to dissolution because their outer fibrous calcite layer has more crystal edges and faces exposed, potentially increasing the surface area on which dissolution can occur. These results support a previous study where T. funebralis showed significant decreases in both shell growth and strength, but N. ostrina only showed slight reductions in shell strength, and unaffected growth. We suggest that microstructural arrangement of shell layers in molluscs, more so than their composition alone, is critical for determining the vulnerability of mollusc shells to OA.
Collapse
Affiliation(s)
- Kristina M Barclay
- Earth and Atmospheric Sciences Department, University of Alberta, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB, T6G 2E3, Canada.
| | - Murray K Gingras
- Earth and Atmospheric Sciences Department, University of Alberta, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Stephen T Packer
- Earth and Atmospheric Sciences Department, University of Alberta, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Lindsey R Leighton
- Earth and Atmospheric Sciences Department, University of Alberta, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
37
|
Devens HR, Davidson PL, Deaker DJ, Smith KE, Wray GA, Byrne M. Ocean acidification induces distinct transcriptomic responses across life history stages of the sea urchin Heliocidaris erythrogramma. Mol Ecol 2020; 29:4618-4636. [PMID: 33002253 PMCID: PMC8994206 DOI: 10.1111/mec.15664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 09/01/2023]
Abstract
Ocean acidification (OA) from seawater uptake of rising carbon dioxide emissions impairs development in marine invertebrates, particularly in calcifying species. Plasticity in gene expression is thought to mediate many of these physiological effects, but how these responses change across life history stages remains unclear. The abbreviated lecithotrophic development of the sea urchin Heliocidaris erythrogramma provides a valuable opportunity to analyse gene expression responses across a wide range of life history stages, including the benthic, post-metamorphic juvenile. We measured the transcriptional response to OA in H. erythrogramma at three stages of the life cycle (embryo, larva, and juvenile) in a controlled breeding design. The results reveal a broad range of strikingly stage-specific impacts of OA on transcription, including changes in the number and identity of affected genes; the magnitude, sign, and variance of their expression response; and the developmental trajectory of expression. The impact of OA on transcription was notably modest in relation to gene expression changes during unperturbed development and much smaller than genetic contributions from parentage. The latter result suggests that natural populations may provide an extensive genetic reservoir of resilience to OA. Taken together, these results highlight the complexity of the molecular response to OA, its substantial life history stage specificity, and the importance of contextualizing the transcriptional response to pH stress in light of normal development and standing genetic variation to better understand the capacity for marine invertebrates to adapt to OA.
Collapse
Affiliation(s)
| | | | - Dione J Deaker
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| | - Kathryn E Smith
- The Laboratory, The Marine Biological Association, Plymouth, UK
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Maria Byrne
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
38
|
Leung JYS, Chen Y, Nagelkerken I, Zhang S, Xie Z, Connell SD. Calcifiers can Adjust Shell Building at the Nanoscale to Resist Ocean Acidification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003186. [PMID: 32776486 DOI: 10.1002/smll.202003186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Ocean acidification is considered detrimental to marine calcifiers based on laboratory studies showing that increased seawater acidity weakens their ability to build calcareous shells needed for growth and protection. In the natural environment, however, the effects of ocean acidification are subject to ecological and evolutionary processes that may allow calcifiers to buffer or reverse these short-term negative effects through adaptive mechanisms. Using marine snails inhabiting a naturally CO2 -enriched environment over multiple generations, it is discovered herein that they build more durable shells (i.e., mechanically more resilient) by adjusting the building blocks of their shells (i.e., calcium carbonate crystals), such as atomic rearrangement to reduce nanotwin thickness and increased incorporation of organic matter. However, these adaptive adjustments to future levels of ocean acidification (year 2100) are eroded at extreme CO2 concentrations, leading to construction of more fragile shells. The discovery of adaptive mechanisms of shell building at the nanoscale provides a new perspective on why some calcifiers may thrive and others collapse in acidifying oceans, and highlights the inherent adaptability that some species possess in adjusting to human-caused environmental change.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yujie Chen
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sam Zhang
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Zonghan Xie
- School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sean D Connell
- Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
39
|
Doo SS, Leplastrier A, Graba‐Landry A, Harianto J, Coleman RA, Byrne M. Amelioration of ocean acidification and warming effects through physiological buffering of a macroalgae. Ecol Evol 2020; 10:8465-8475. [PMID: 32788994 PMCID: PMC7417211 DOI: 10.1002/ece3.6552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
Concurrent anthropogenic global climate change and ocean acidification are expected to have a negative impact on calcifying marine organisms. While knowledge of biological responses of organisms to oceanic stress has emerged from single-species experiments, these do not capture ecologically relevant scenarios where the potential for multi-organism physiological interactions is assessed. Marine algae provide an interesting case study, as their photosynthetic activity elevates pH in the surrounding microenvironment, potentially buffering more acidic conditions for associated epiphytes. We present findings that indicate increased tolerance of an important epiphytic foraminifera, Marginopora vertebralis, to the effects of increased temperature (±3°C) and pCO2 (~1,000 µatm) when associated with its common algal host, Laurencia intricata. Specimens of M. vertebralis were incubated for 15 days in flow-through aquaria simulating current and end-of-century temperature and pH conditions. Physiological measures of growth (change in wet weight), calcification (measured change in total alkalinity in closed bottles), photochemical efficiency (Fv/Fm), total chlorophyll, photosynthesis (oxygen flux), and respiration were determined. When incubated in isolation, M. vertebralis exhibited reduced growth in end-of-century projections of ocean acidification conditions, while calcification rates were lowest in the high-temperature, low-pH treatment. Interestingly, association with L. intricata ameliorated these stress effects with the growth and calcification rates of M. vertebralis being similar to those observed in ambient conditions. Total chlorophyll levels in M. vertebralis decreased when in association with L. intricata, while maximum photochemical efficiency increased in ambient conditions. Net production estimates remained similar between M. vertebralis in isolation and in association with L. intricata, although both production and respiration rates of M. vertebralis were significantly higher when associated with L. intricata. These results indicate that the association with L. intricata increases the resilience of M. vertebralis to climate change stress, providing one of the first examples of physiological buffering by a marine alga that can ameliorate the negative effects of changing ocean conditions.
Collapse
Affiliation(s)
- Steve S. Doo
- Coastal & Marine Ecosystems GroupSchool of Life & Environmental SciencesThe University of SydneySydneyNSWAustralia
- Geoecology and Carbonate Sedimentology GroupLeibniz Centre for Tropical Marine Research (ZMT)BremenGermany
| | - Aero Leplastrier
- Research School of Earth SciencesThe Australian National UniversityCanberraACTAustralia
| | - Alexia Graba‐Landry
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQldAustralia
| | - Januar Harianto
- Coastal & Marine Ecosystems GroupSchool of Life & Environmental SciencesThe University of SydneySydneyNSWAustralia
| | - Ross A. Coleman
- Coastal & Marine Ecosystems GroupSchool of Life & Environmental SciencesThe University of SydneySydneyNSWAustralia
| | - Maria Byrne
- Coastal & Marine Ecosystems GroupSchool of Life & Environmental SciencesThe University of SydneySydneyNSWAustralia
| |
Collapse
|
40
|
Grenier C, Román R, Duarte C, Navarro JM, Rodriguez-Navarro AB, Ramajo L. The combined effects of salinity and pH on shell biomineralization of the edible mussel Mytilus chilensis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114555. [PMID: 32298937 DOI: 10.1016/j.envpol.2020.114555] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Coastal ecosystems influenced by river discharges are subjected to important environmental changes. Understanding how marine biota cope with its environment is relevant in predicting the responses to future conditions imposed by climate change. To date, a large number of studies have addressed the role of pH on shell and biomineralization properties on multiple calcifying species; however the role of salinity in combination with other stressors has been poorly studied. In particular, the edible mussel Mytilus chilensis, an important marine resource of the Chilean coasts, inhabits estuarine areas which show high natural variability in terms of pH and salinity. Here, we studied how M. chilensis shell periostracum, shell organic matrix and crystal orientation are affected by different pH (8.1 and 7.7) and salinity conditions (30, 25 and 20 psu), isolated and in combination, at different time intervals. Our results show differences in the plasticity of the different biomineralogical properties studied during the experiment under the different pH and salinity treatments. While the periostracum thickness and the total shell organic matter were not affected by pH and salinity, the periostracum organic composition did. Higher amounts of polysaccharides were observed under low pH conditions after 20 days of experiment, while after 60 days, low salinity was responsible for the decrease of the polysaccharides and proteins in the periostracum. Low salinity also produced a major disorder in crystal organization at the outer shell surface. Finally, total shell weight was only affected by low pH conditions under lower salinity conditions (20 psu). From the results, in the majority of the shell properties observed we did not observe any combined effect of pH and salinity. Also, we detected that the magnitude of the impacts of salinity and pH are variable and time-dependent. This would be suggesting some level of acclimatization of M. chilensis to lower pH and salinity conditions.
Collapse
Affiliation(s)
- Christian Grenier
- Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada (UGR), Granada, Spain; Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada (UGR), Granada, Spain
| | - Rocío Román
- Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada (UGR), Granada, Spain
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello (UNAB), Santiago, Chile
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile (UACH), Valdivia, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | | | - Laura Ramajo
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás (UST), Santiago, Chile.
| |
Collapse
|
41
|
Fordyce AJ, Knuefing L, Ainsworth TD, Beeching L, Turner M, Leggat W. Understanding decay in marine calcifiers: Micro‐CT analysis of skeletal structures provides insight into the impacts of a changing climate in marine ecosystems. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Alexander J. Fordyce
- School of Environmental and Life Sciences University of Newcastle Ourimbah NSW Australia
| | - Lydia Knuefing
- Research School of Physics Australian National University Canberra ACT Australia
| | - Tracy D. Ainsworth
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - Levi Beeching
- National Laboratory for X‐ray Micro Computed Tomography Australian National University Canberra ACT Australia
| | - Michael Turner
- National Laboratory for X‐ray Micro Computed Tomography Australian National University Canberra ACT Australia
| | - William Leggat
- School of Environmental and Life Sciences University of Newcastle Ourimbah NSW Australia
| |
Collapse
|
42
|
Wolfe K, Nguyen HD, Davey M, Byrne M. Characterizing biogeochemical fluctuations in a world of extremes: A synthesis for temperate intertidal habitats in the face of global change. GLOBAL CHANGE BIOLOGY 2020; 26:3858-3879. [PMID: 32239581 DOI: 10.1111/gcb.15103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/17/2020] [Indexed: 05/24/2023]
Abstract
Coastal and intertidal habitats are at the forefront of anthropogenic influence and environmental change. The species occupying these habitats are adapted to a world of extremes, which may render them robust to the changing climate or more vulnerable if they are at their physiological limits. We characterized the diurnal, seasonal and interannual patterns of flux in biogeochemistry across an intertidal gradient on a temperate sandstone platform in eastern Australia over 6 years (2009-2015) and present a synthesis of our current understanding of this habitat in context with global change. We used rock pools as natural mesocosms to determine biogeochemistry dynamics and patterns of eco-stress experienced by resident biota. In situ measurements and discrete water samples were collected night and day during neap low tide events to capture diurnal biogeochemistry cycles. Calculation of pHT using total alkalinity (TA) and dissolved inorganic carbon (DIC) revealed that the mid-intertidal habitat exhibited the greatest flux over the years (pHT 7.52-8.87), and over a single tidal cycle (1.11 pHT units), while the low-intertidal (pHT 7.82-8.30) and subtidal (pHT 7.87-8.30) were less variable. Temperature flux was also greatest in the mid-intertidal (8.0-34.5°C) and over a single tidal event (14°C range), as typical of temperate rocky shores. Mean TA and DIC increased at night and decreased during the day, with the most extreme conditions measured in the mid-intertidal owing to prolonged emersion periods. Temporal sampling revealed that net ecosystem calcification and production were highest during the day and lowest at night, particularly in the mid-intertidal. Characterization of biogeochemical fluctuations in a world of extremes demonstrates the variable conditions that intertidal biota routinely experience and highlight potential microhabitat-specific vulnerabilities and climate change refugia.
Collapse
Affiliation(s)
- Kennedy Wolfe
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St Lucia, Qld, Australia
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Hong D Nguyen
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Madeline Davey
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Maria Byrne
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
43
|
Foo SA, Koweek DA, Munari M, Gambi MC, Byrne M, Caldeira K. Responses of sea urchin larvae to field and laboratory acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138003. [PMID: 32217382 DOI: 10.1016/j.scitotenv.2020.138003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Understanding the extent to which laboratory findings of low pH on marine organisms can be extrapolated to the natural environment is key toward making better projections about the impacts of global change on marine ecosystems. We simultaneously exposed larvae of the sea urchin Arbacia lixula to ocean acidification in laboratory and natural CO2 vents and assessed the arm growth response as a proxy of net calcification. Populations of embryos were simultaneously placed at both control and volcanic CO2 vent sites in Ischia (Italy), with a parallel group maintained in the laboratory in control and low pH treatments corresponding to the mean pH levels of the field sites. As expected, larvae grown at constant low pH (pHT 7.8) in the laboratory exhibited reduced arm growth, but counter to expectations, the larvae that developed at the low pH vent site (pHT 7.33-7.99) had the longest arms. The larvae at the control field site (pHT 7.87-7.99) grew at a similar rate to laboratory controls. Salinity, temperature, oxygen and flow regimes were comparable between control and vent sites; however, chlorophyll a levels and particulate organic carbon were higher at the vent site than at the control field site. This increased food availability may have modulated the effects of low pH, creating an opposite calcification response in the laboratory from that in the field. Divergent responses of the same larval populations developing in laboratory and field environments show the importance of considering larval phenotypic plasticity and the complex interactions among decreased pH, food availability and larval responses.
Collapse
Affiliation(s)
- Shawna A Foo
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA; Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ 85287, USA.
| | - David A Koweek
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Marco Munari
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, 80077, Ischia(Naples), Italy
| | - Maria Cristina Gambi
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, 80077, Ischia(Naples), Italy
| | - Maria Byrne
- School of Medical Sciences and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ken Caldeira
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| |
Collapse
|
44
|
Di Giglio S, Spatafora D, Milazzo M, M'Zoudi S, Zito F, Dubois P, Costa C. Are control of extracellular acid-base balance and regulation of skeleton genes linked to resistance to ocean acidification in adult sea urchins? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137443. [PMID: 32325563 DOI: 10.1016/j.scitotenv.2020.137443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Sarah Di Giglio
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, 1050 Bruxelles, Belgium.
| | - Davide Spatafora
- Department of Earth and Marine Science (DiSTeM), Università degli studi di Palermo, 90146 Palermo, Italy
| | - Marco Milazzo
- Department of Earth and Marine Science (DiSTeM), Università degli studi di Palermo, 90146 Palermo, Italy
| | - Saloua M'Zoudi
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Francesca Zito
- Consiglio Nazionale Delle Ricerche, Istituto per la Ricerca e per l'Innovazione Biomedica (IRIB), Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Philippe Dubois
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, 1050 Bruxelles, Belgium.
| | - Caterina Costa
- Consiglio Nazionale Delle Ricerche, Istituto per la Ricerca e per l'Innovazione Biomedica (IRIB), Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
45
|
Domenici P, Seebacher F. The impacts of climate change on the biomechanics of animals: Themed Issue Article: Biomechanics and Climate Change. CONSERVATION PHYSIOLOGY 2020; 8:coz102. [PMID: 31976075 PMCID: PMC6956782 DOI: 10.1093/conphys/coz102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 05/09/2023]
Abstract
Anthropogenic climate change induces unprecedented variability in a broad range of environmental parameters. These changes will impact material properties and animal biomechanics, thereby affecting animal performance and persistence of populations. Climate change implies warming at the global level, and it may be accompanied by altered wind speeds, wave action, ocean circulation, acidification as well as increased frequency of hypoxic events. Together, these environmental drivers affect muscle function and neural control and thereby movement of animals such as bird migration and schooling behaviour of fish. Altered environmental conditions will also modify material properties of animals. For example, ocean acidification, particularly when coupled with increased temperatures, compromises calcified shells and skeletons of marine invertebrates and byssal threads of mussels. These biomechanical consequences can lead to population declines and disintegration of habitats. Integrating biomechanical research with ecology is instrumental in predicting the future responses of natural systems to climate change and the consequences for ecosystem services such as fisheries and ecotourism.
Collapse
Affiliation(s)
- Paolo Domenici
- IAS-CNR, Località Sa Mardini, Torregrande, Oristano, 09170 Italy
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
46
|
Byrne M, Foo SA, Ross PM, Putnam HM. Limitations of cross- and multigenerational plasticity for marine invertebrates faced with global climate change. GLOBAL CHANGE BIOLOGY 2020; 26:80-102. [PMID: 31670444 DOI: 10.1111/gcb.14882] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 05/18/2023]
Abstract
Although cross generation (CGP) and multigenerational (MGP) plasticity have been identified as mechanisms of acclimation to global change, the weight of evidence indicates that parental conditioning over generations is not a panacea to rescue stress sensitivity in offspring. For many species, there were no benefits of parental conditioning. Even when improved performance was observed, this waned over time within a generation or across generations and fitness declined. CGP and MGP studies identified resilient species with stress tolerant genotypes in wild populations and selected family lines. Several bivalves possess favourable stress tolerance and phenotypically plastic traits potentially associated with genetic adaptation to life in habitats where they routinely experience temperature and/or acidification stress. These traits will be important to help 'climate proof' shellfish ventures. Species that are naturally stress tolerant and those that naturally experience a broad range of environmental conditions are good candidates to provide insights into the physiological and molecular mechanisms involved in CGP and MGP. It is challenging to conduct ecologically relevant global change experiments over the long times commensurate with the pace of changing climate. As a result, many studies present stressors in a shock-type exposure at rates much faster than projected scenarios. With more gradual stressor introduction over longer experimental durations and in context with conditions species are currently acclimatized and/or adapted to, the outcomes for sensitive species might differ. We highlight the importance to understand primordial germ cell development and the timing of gametogenesis with respect to stressor exposure. Although multigenerational exposure to global change stressors currently appears limited as a universal tool to rescue species in the face of changing climate, natural proxies of future conditions (upwelling zones, CO2 vents, naturally warm habitats) show that phenotypic adjustment and/or beneficial genetic selection is possible for some species, indicating complex plasticity-adaptation interactions.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Shawna A Foo
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
47
|
Fitzer SC, McGill RAR, Torres Gabarda S, Hughes B, Dove M, O'Connor W, Byrne M. Selectively bred oysters can alter their biomineralization pathways, promoting resilience to environmental acidification. GLOBAL CHANGE BIOLOGY 2019; 25:4105-4115. [PMID: 31554025 PMCID: PMC6899863 DOI: 10.1111/gcb.14818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 05/29/2023]
Abstract
Commercial shellfish aquaculture is vulnerable to the impacts of ocean acidification driven by increasing carbon dioxide (CO2 ) absorption by the ocean as well as to coastal acidification driven by land run off and rising sea level. These drivers of environmental acidification have deleterious effects on biomineralization. We investigated shell biomineralization of selectively bred and wild-type families of the Sydney rock oyster Saccostrea glomerata in a study of oysters being farmed in estuaries at aquaculture leases differing in environmental acidification. The contrasting estuarine pH regimes enabled us to determine the mechanisms of shell growth and the vulnerability of this species to contemporary environmental acidification. Determination of the source of carbon, the mechanism of carbon uptake and use of carbon in biomineral formation are key to understanding the vulnerability of shellfish aquaculture to contemporary and future environmental acidification. We, therefore, characterized the crystallography and carbon uptake in the shells of S. glomerata, resident in habitats subjected to coastal acidification, using high-resolution electron backscatter diffraction and carbon isotope analyses (as δ13 C). We show that oyster families selectively bred for fast growth and families selected for disease resistance can alter their mechanisms of calcite crystal biomineralization, promoting resilience to acidification. The responses of S. glomerata to acidification in their estuarine habitat provide key insights into mechanisms of mollusc shell growth under future climate change conditions. Importantly, we show that selective breeding in oysters is likely to be an important global mitigation strategy for sustainable shellfish aquaculture to withstand future climate-driven change to habitat acidification.
Collapse
Affiliation(s)
| | - Rona A. R. McGill
- Scottish Universities Environmental Research CentreScottish Enterprise Technology ParkEast KilbrideUK
| | | | | | - Michael Dove
- New South Wales Department of Primary IndustriesFisheries NSWPort Stephens Fisheries InstituteTaylors BeachNSWAustralia
| | - Wayne O'Connor
- New South Wales Department of Primary IndustriesFisheries NSWPort Stephens Fisheries InstituteTaylors BeachNSWAustralia
| | - Maria Byrne
- School of Medical SciencesUniversity of SydneySydneyNSWAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNSWAustralia
| |
Collapse
|