1
|
Thabit H, Boughton C, Mubita W, Rubio J, Allen S, Heugh R, Mader JK, Narendran P, Evans M, Leelarathna L, Wilinska ME, Fullwood C, Garratt C, Hovorka R, Rutter MK. Impact of hybrid closed-loop insulin delivery on cardiac rhythm in older adults with type 1 diabetes: A post hoc analysis of trial data. Diabetes Obes Metab 2024; 26:1105-1109. [PMID: 37984425 PMCID: PMC10872628 DOI: 10.1111/dom.15366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Affiliation(s)
- Hood Thabit
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charlotte Boughton
- Wellcome - MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Wolfson Diabetes and Endocrine Clinic, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Womba Mubita
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jose Rubio
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stuart Allen
- Manchester Heart Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Robert Heugh
- Manchester Heart Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Julia K Mader
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Parth Narendran
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mark Evans
- Wellcome - MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Wolfson Diabetes and Endocrine Clinic, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Lalantha Leelarathna
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Malgorzata E Wilinska
- Wellcome - MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Wolfson Diabetes and Endocrine Clinic, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Catherine Fullwood
- Research & Innovation, Manchester University NHS Foundation Trust, Manchester, UK
- Centre for Biostatistics, Division of Population Health, Health Services Research and Primary Care, Faculty of Biology, Medicine and Health, University of Manchester, The Manchester Academic Health Sciences Centre, Manchester, UK
| | - Clifford Garratt
- Manchester Heart Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Roman Hovorka
- Wellcome - MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Wolfson Diabetes and Endocrine Clinic, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Martin K Rutter
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Li F, Qian LL, Wu LD, Zhang ZY, Zhang L, Liu HH, Zhao N, Zhang J, Chen JY, Yang F, Zhang ZY, Wang C, Dang SP, Zhao XX, Li KL, Zhu WQ, Yao Y, Wang RX. Glucose fluctuations aggravated the late sodium current induced ventricular arrhythmias via the activation of ROS/CaMKII pathway. Eur J Pharmacol 2023; 961:176167. [PMID: 37939994 DOI: 10.1016/j.ejphar.2023.176167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Recent evidence revealed that glucose fluctuation might be more likely to cause arrhythmia than persistent hyperglycemia, whereas its mechanisms were elusive. We aimed to investigate the effect of glucose fluctuation on the occurrence of ventricular arrhythmia and its mechanism. METHODS Streptozotocin (STZ) induced diabetic rats were randomized to five groups: the controlled blood glucose (C-STZ) group, uncontrolled blood glucose (U-STZ) group, fluctuated blood glucose (GF-STZ) group, and GF-STZ rats with 100 mg/kg Tempol (GF-STZ + Tempol) group or with 5 mg/kg KN93 (GF-STZ + KN93) group. Six weeks later, the susceptibility of ventricular arrhythmias and the electrophysiological dysfunctions of ventricular myocytes were evaluated using electrocardiogram and patch-clamp technique, respectively. The levels of reactive oxygen species (ROS) and oxidized CaMKII (ox-CaMKII) were determined by fluorescence assay and Western blot, respectively. Neonatal rat cardiomyocytes and H9C2 cells in vitro were used to explore the underlying mechanisms. RESULTS The induction rate of ventricular arrhythmias was 10%, 55%, and 90% in C-STZ group, U-STZ group, and GF-STZ group, respectively (P < 0.05). The electrophysiological dysfunctions of ventricular myocytes, including action potential duration at repolarization of 90% (APD90), APD90 short-term variability (APD90-STV), late sodium current (INa-L), early after depolarization (EAD) and delayed after depolarizations (DAD), as well as the levels of ROS and ox-CaMKII, were significantly increased in GF-STZ group. In vivo and ex vivo, inhibition of ROS or ox-CaMKII reversed these effects. Inhibition of INa-L also significantly alleviated the electrophysiological dysfunctions. In vitro, inhibition of ROS increase could significantly decrease the ox-CaMKII activation induced by glucose fluctuations. CONCLUSIONS Glucose fluctuations aggravated the INa-L induced ventricular arrhythmias though the activation of ROS/CaMKII pathway.
Collapse
Affiliation(s)
- Feng Li
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Ling-Ling Qian
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Li-Da Wu
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Zhen-Ye Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Lei Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Huan-Huan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Ning Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jie Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Jia-Yi Chen
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Fan Yang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Zhi-Yuan Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Chao Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Shi-Peng Dang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Xiao-Xi Zhao
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Ku-Lin Li
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Wen-Qing Zhu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, China.
| | - Yan Yao
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing, China.
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
3
|
Tomek J, Nieves-Cintron M, Navedo MF, Ko CY, Bers DM. SparkMaster 2: A New Software for Automatic Analysis of Calcium Spark Data. Circ Res 2023; 133:450-462. [PMID: 37555352 PMCID: PMC7615009 DOI: 10.1161/circresaha.123.322847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Calcium (Ca) sparks are elementary units of subcellular Ca release in cardiomyocytes and other cells. Accordingly, Ca spark imaging is an essential tool for understanding the physiology and pathophysiology of Ca handling and is used to identify new drugs targeting Ca-related cellular dysfunction (eg, cardiac arrhythmias). The large volumes of imaging data produced during such experiments require accurate and high-throughput analysis. METHODS We developed a new software tool SparkMaster 2 (SM2) for the analysis of Ca sparks imaged by confocal line-scan microscopy, combining high accuracy, flexibility, and user-friendliness. SM2 is distributed as a stand-alone application requiring no installation. It can be controlled using a simple-to-use graphical user interface, or using Python scripting. RESULTS SM2 is shown to have the following strengths: (1) high accuracy at identifying Ca release events, clearly outperforming previous highly successful software SparkMaster; (2) multiple types of Ca release events can be identified using SM2: Ca sparks, waves, miniwaves, and long sparks; (3) SM2 can accurately split and analyze individual sparks within spark clusters, a capability not handled adequately by prior tools. We demonstrate the practical utility of SM2 in two case studies, investigating how Ca levels affect spontaneous Ca release, and how large-scale release events may promote release refractoriness. SM2 is also useful in atrial and smooth muscle myocytes, across different imaging conditions. CONCLUSIONS SparkMaster 2 is a new, much-improved user-friendly software for accurate high-throughput analysis of line-scan Ca spark imaging data. It is free, easy to use, and provides valuable built-in features to facilitate visualization, analysis, and interpretation of Ca spark data. It should enhance the quality and throughput of Ca spark and wave analysis across cell types, particularly in the study of arrhythmogenic Ca release events in cardiomyocytes.
Collapse
Affiliation(s)
- Jakub Tomek
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, California (J.T., M.N.-C., M.F.N., C.Y.K., D.M.B.)
- Department of Anatomy, Physiology, and Genetics, University of Oxford, Oxford, UK (J.T.)
| | - Madeline Nieves-Cintron
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, California (J.T., M.N.-C., M.F.N., C.Y.K., D.M.B.)
| | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, California (J.T., M.N.-C., M.F.N., C.Y.K., D.M.B.)
| | - Christopher Y. Ko
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, California (J.T., M.N.-C., M.F.N., C.Y.K., D.M.B.)
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, California (J.T., M.N.-C., M.F.N., C.Y.K., D.M.B.)
| |
Collapse
|
4
|
Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220164. [PMID: 37122208 PMCID: PMC10150216 DOI: 10.1098/rstb.2022.0164] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023] Open
Abstract
Influx of sodium ions through voltage-gated sodium channels in cardiomyocytes is essential for proper electrical conduction within the heart. Both acquired conditions associated with sodium channel dysfunction (myocardial ischaemia, heart failure) as well as inherited disorders secondary to mutations in the gene SCN5A encoding for the cardiac sodium channel Nav1.5 are associated with life-threatening arrhythmias. Research in the last decade has uncovered the complex nature of Nav1.5 distribution, function, in particular within distinct subcellular subdomains of cardiomyocytes. Nav1.5-based channels furthermore display previously unrecognized non-electrogenic actions and may impact on cardiac structural integrity, leading to cardiomyopathy. Moreover, SCN5A and Nav1.5 are expressed in cell types other than cardiomyocytes as well as various extracardiac tissues, where their functional role in, e.g. epilepsy, gastrointestinal motility, cancer and the innate immune response is increasingly investigated and recognized. This review provides an overview of these novel insights and how they deepen our mechanistic knowledge on SCN5A channelopathies and Nav1.5 (dys)function. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Su Y, Fan W, Liu Y, Hong K. Glycemic variability and in-hospital death of critically ill patients and the role of ventricular arrhythmias. Cardiovasc Diabetol 2023; 22:134. [PMID: 37308889 DOI: 10.1186/s12933-023-01861-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/20/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Abnormal glycemic variability is common in the intensive care unit (ICU) and is associated with increased in-hospital mortality and major adverse cardiovascular events, but little is known about whether adverse outcomes are partly mediated by ventricular arrhythmias (VA). We aimed to explore the association between glycemic variability and VA in the ICU and whether VA related to glycemic variability mediate the increased risk of in-hospital death. METHODS We extracted all measurements of blood glucose during the ICU stay from The Medical Information Mart for Intensive Care IV (MIMIC-IV) database version 2.0. Glycemic variability was expressed by the coefficient of variation (CV), which was calculated by the ratio of standard deviation (SD) and average blood glucose values. The outcomes included the incidence of VA and in-hospital death. The KHB (Karlson, KB & Holm, A) is a method to analyze the mediation effect for nonlinear models, which was used to decompose the total effect of glycemic variability on in-hospital death into a direct and VA-mediated indirect effect. RESULTS Finally, 17,756 ICU patients with a median age of 64 years were enrolled; 47.2% of them were male, 64.0% were white, and 17.8% were admitted to the cardiac ICU. The total incidence of VA and in-hospital death were 10.6% and 12.8%, respectively. In the adjusted logistic model, each unit increase in log-transformed CV was associated with a 21% increased risk of VA (OR 1.21, 95% CI: 1.11-1.31) and a 30% increased risk (OR 1.30, 95% CI: 1.20-1.41) of in-hospital death. A total of 3.85% of the effect of glycemic variability on in-hospital death was related to the increased risk of VA. CONCLUSION High glycemic variability was an independent risk factor for in-hospital death in ICU patients, and the effect was caused in part by an increased risk of VA.
Collapse
Affiliation(s)
- Yuhao Su
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, 330006, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi, China
| | - Weiguo Fan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, 330006, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi, China
| | - Yang Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, 330006, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi, China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, 330006, Nanchang, Jiangxi, China.
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi, China.
- Department of Genetic Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
6
|
Szeiffova Bacova B, Andelova K, Sykora M, T EB, Kurahara LH, Slezak J, Tribulova N. Distinct Cardiac Connexin-43 Expression in Hypertrophied and Atrophied Myocardium May Impact the Vulnerability of the Heart to Malignant Arrhythmias. A Pilot Study. Physiol Res 2023; 72:S37-S45. [PMID: 37294117 DOI: 10.33549/physiolres.935025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Our and other studies suggest that myocardial hypertrophy in response to hypertension and hyperthyroidism increases propensity of the heart to malignant arrhythmias, while these are rare in conditions of hypothyroidism or type-1 diabetes mellitus associated with myocardial atrophy. One of the crucial factors impacting the susceptibility of the heart to life-threatening arrhythmias is gap junction channel protein connexin-43 (Cx43), which ensure cell-to-cell coupling for electrical signal propagation. Therefore, we aimed to explore Cx43 protein abundance and its topology in hypertrophic and hypotrophic cardiac phenotype. Analysis were performed in left ventricular tissue of adult male spontaneously hypertensive rat (SHR), Wistar Kyoto rats treated for 8-weeks with L-thyroxine, methimazol or strepotozotocin to induce hyperthyroid, hypothyroid and type-1 diabetic status as well as non-treated animals. Results showed that comparing to healthy rats there was a decrease of total myocardial Cx43 and its variant phosphorylated at serine368 in SHR and hyperthyroid rats. Besides, enhanced localization of Cx43 was demonstrated on lateral sides of hypertrophied cardiomyocytes. In contrast, total Cx43 protein and its serine368 variant were increased in atrophied left ventricle of hypothyroid and type-1 diabetic rats. It was associated with less pronounced alterations in Cx43 topology. In parallel, the abundance of PKCepsilon, which phosphorylates Cx43 at serine368 that stabilize Cx43 function and distribution was reduced in hypertrophied heart while enhanced in atrophied once. Findings suggest that differences in the abundance of cardiac Cx43, its variant phosphorylated at serine368 and Cx43 topology may explain, in part, distinct propensity of hypertrophied and atrophied heart to malignant arrhythmias.
Collapse
Affiliation(s)
- B Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
7
|
Shen H, Wang S, Zhang C, Gao W, Cui X, Zhang Q, Lang Y, Ning M, Li T. Association of hyperglycemia ratio and ventricular arrhythmia in critically ill patients admitted to the intensive care unit. BMC Cardiovasc Disord 2023; 23:215. [PMID: 37118670 PMCID: PMC10148444 DOI: 10.1186/s12872-023-03208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/27/2023] [Indexed: 04/30/2023] Open
Abstract
INTRODUCTION The relationship between relative hyperglycemia and ventricular arrhythmia (VA) in critically ill patients admitted to intensive care units (ICU) remains unclear. This study aims to investigate the association between stress hyperglycemia ratio (SHR) and VA in this population. METHODS This retrospective and observational study analyzed data from 4324 critically ill patients admitted to the ICU, obtained from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The SHR was calculated as the highest blood glucose level during the first 24 h of ICU admission divided by the admission blood glucose level. Based on the optimal cut-off values under the receiver operating characteristic curve, patients were stratified into high SHR (≥ 1.31) and low SHR (< 1.31) group. To investigate the impact of diabetes mellitus (DM) on the outcome, patients were stratified as low SHR/DM; low SHR/non-DM; high SHR/DM, and high SHR/non-DM. Restricted cubic spline (RCS) and logistic regression analysis were performed to analyze the relationship between SHR and VA. RESULTS A total of 4,324 critically ill patients were included in this retrospective and observational study. The incidence of VA was higher in the high SHR group. Multiple-adjusted RCS revealed a "J-shaped" correlation between SHR and VA morbidity. The logistic regression model demonstrated that high SHR was associated with VA. The high SHR/non-DM group had a higher risk of VA than other groups stratified based on SHR and DM. Subgroup analysis showed that high SHR was associated with an increased risk of VA in patients with coronary artery disease. CONCLUSION High SHR is an independent risk factor and has potential as a biomarker of higher VT/VF risk in ICU-admitted patients.
Collapse
Affiliation(s)
- Hechen Shen
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Song Wang
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Chong Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Wenqing Gao
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, China
| | - Xiaoqiong Cui
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, China
| | - Qiang Zhang
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, China
| | - Yuheng Lang
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, China
| | - Meng Ning
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, China
| | - Tong Li
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China.
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China.
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.
- Tianjin ECMO Treatment and Training Base, Tianjin, China.
- Artificial Cell Engineering Technology Research Center, Tianjin, China.
- School of Medicine, Nankai University, Tianjin, China.
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, China.
| |
Collapse
|
8
|
Guzik TJ, Sipido KR, Brown SK, Casadei B. At the forefront of basic and translational Cardiovascular Research for 55 years and counting. Cardiovasc Res 2022; 118:3163-3165. [PMID: 36333941 DOI: 10.1093/cvr/cvac169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Tomasz J Guzik
- UoE/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK.,Department of Internal and Agricultural Medicine, Jagiellonian University Collegium Medicum, Kraków, Poland
| | - Karin R Sipido
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sarah K Brown
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Barbara Casadei
- Division of Cardiovascular Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Hegyi B, Mira Hernandez J, Ko CY, Hong J, Shen EY, Spencer ER, Smoliarchuk D, Navedo MF, Bers DM, Bossuyt J. Diabetes and Excess Aldosterone Promote Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2022; 11:e027164. [PMID: 36416174 PMCID: PMC9851441 DOI: 10.1161/jaha.122.027164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background The pathobiology of heart failure with preserved ejection fraction (HFpEF) is still poorly understood, and effective therapies remain limited. Diabetes and mineralocorticoid excess are common and important pathophysiological factors that may synergistically promote HFpEF. The authors aimed to develop a novel animal model of HFpEF that recapitulates key aspects of the complex human phenotype with multiorgan impairments. Methods and Results The authors created a novel HFpEF model combining leptin receptor-deficient db/db mice with a 4-week period of aldosterone infusion. The HFpEF phenotype was assessed using morphometry, echocardiography, Ca2+ handling, and electrophysiology. The sodium-glucose cotransporter-2 inhibitor empagliflozin was then tested for reversing the arrhythmogenic cardiomyocyte phenotype. Continuous aldosterone infusion for 4 weeks in db/db mice induced marked diastolic dysfunction with preserved ejection fraction, cardiac hypertrophy, high levels of B-type natriuretic peptide, and significant extracardiac comorbidities (including severe obesity, diabetes with marked hyperglycemia, pulmonary edema, and vascular dysfunction). Aldosterone or db/db alone induced only a mild diastolic dysfunction without congestion. At the cellular level, cardiomyocyte hypertrophy, prolonged Ca2+ transient decay, and arrhythmogenic action potential remodeling (prolongation, increased short-term variability, delayed afterdepolarizations), and enhanced late Na+ current were observed in aldosterone-treated db/db mice. All of these arrhythmogenic changes were reversed by empagliflozin pretreatment of HFpEF cardiomyocytes. Conclusions The authors conclude that the db/db+aldosterone model may represent a distinct clinical subgroup of HFpEF that has marked hyperglycemia, obesity, and increased arrhythmia risk. This novel HFpEF model can be useful in future therapeutic testing and should provide unique opportunities to better understand disease pathobiology.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of PharmacologyUniversity of CaliforniaDavisCA
| | - Juliana Mira Hernandez
- Department of PharmacologyUniversity of CaliforniaDavisCA
- Research Group in Veterinary Medicine (GIVET), School of Veterinary MedicineUniversity Corporation Lasallista (Unilasallista)CaldasAntioquiaColombia
| | | | - Junyoung Hong
- Department of PharmacologyUniversity of CaliforniaDavisCA
| | - Erin Y. Shen
- Department of PharmacologyUniversity of CaliforniaDavisCA
| | | | | | | | - Donald M. Bers
- Department of PharmacologyUniversity of CaliforniaDavisCA
| | - Julie Bossuyt
- Department of PharmacologyUniversity of CaliforniaDavisCA
| |
Collapse
|
10
|
Yao Y, Xue J, Li B. Obesity and sudden cardiac death: Prevalence, pathogenesis, prevention and intervention. Front Cell Dev Biol 2022; 10:1044923. [PMID: 36531958 PMCID: PMC9757164 DOI: 10.3389/fcell.2022.1044923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2024] Open
Abstract
Obesity and sudden cardiac death (SCD) share common risk factors. Obesity, in and of itself, can result in the development of SCD. Numerous epidemiologic and clinical studies have demonstrated the close relationships between obesity and SCD, however, the underlying mechanisms remain incompletely understood. Various evidences support the significance of excess adiposity in determining the risk of SCD, including anatomical remodeling, electrical remodeling, metabolic dysfunction, autonomic imbalance. Weight reduction has improved obesity related comorbidities, and reversed abnormal cardiac remodeling. Indeed, it is still unknown whether weight loss contributes to decreased risk of SCD. Further high-quality, prospective trials are needed to strengthen our understanding on weight management and SCD.
Collapse
Affiliation(s)
- Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
11
|
Bacova BS, Andelova K, Sykora M, Egan Benova T, Barancik M, Kurahara LH, Tribulova N. Does Myocardial Atrophy Represent Anti-Arrhythmic Phenotype? Biomedicines 2022; 10:2819. [PMID: 36359339 PMCID: PMC9687767 DOI: 10.3390/biomedicines10112819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2023] Open
Abstract
This review focuses on cardiac atrophy resulting from mechanical or metabolic unloading due to various conditions, describing some mechanisms and discussing possible strategies or interventions to prevent, attenuate or reverse myocardial atrophy. An improved awareness of these conditions and an increased focus on the identification of mechanisms and therapeutic targets may facilitate the development of the effective treatment or reversion for cardiac atrophy. It appears that a decrement in the left ventricular mass itself may be the central component in cardiac deconditioning, which avoids the occurrence of life-threatening arrhythmias. The depressed myocardial contractility of atrophied myocardium along with the upregulation of electrical coupling protein, connexin43, the maintenance of its topology, and enhanced PKCƐ signalling may be involved in the anti-arrhythmic phenotype. Meanwhile, persistent myocardial atrophy accompanied by oxidative stress and inflammation, as well as extracellular matrix fibrosis, may lead to severe cardiac dysfunction, and heart failure. Data in the literature suggest that the prevention of heart failure via the attenuation or reversion of myocardial atrophy is possible, although this requires further research.
Collapse
Affiliation(s)
| | - Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Japan
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| |
Collapse
|
12
|
Bossuyt J, Borst JM, Verberckmoes M, Bailey LRJ, Bers DM, Hegyi B. Protein Kinase D1 Regulates Cardiac Hypertrophy, Potassium Channel Remodeling, and Arrhythmias in Heart Failure. J Am Heart Assoc 2022; 11:e027573. [PMID: 36172952 DOI: 10.1161/jaha.122.027573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Structural and electrophysiological remodeling characterize heart failure (HF) enhancing arrhythmias. PKD1 (protein kinase D1) is upregulated in HF and mediates pathological hypertrophic signaling, but its role in K+ channel remodeling and arrhythmogenesis in HF is unknown. Methods and Results We performed echocardiography, electrophysiology, and expression analysis in wild-type and PKD1 cardiomyocyte-specific knockout (cKO) mice following transverse aortic constriction (TAC). PKD1-cKO mice exhibited significantly less cardiac hypertrophy post-TAC and were protected from early decline in cardiac contractile function (3 weeks post-TAC) but not the progression to HF at 7 weeks post-TAC. Wild-type mice exhibited ventricular action potential duration prolongation at 8 weeks post-TAC, which was attenuated in PKD1-cKO, consistent with larger K+ currents via the transient outward current, sustained current, inward rectifier K+ current, and rapid delayed rectifier K+ current and increased expression of corresponding K+ channels. Conversely, reduction of slowly inactivating K+ current was independent of PKD1 in HF. Acute PKD inhibition slightly increased transient outward current in TAC and sham wild-type myocytes but did not alter other K+ currents. Sham PKD1-cKO versus wild-type also exhibited larger transient outward current and faster early action potential repolarization. Tachypacing-induced action potential duration alternans in TAC animals was increased and independent of PKD1, but diastolic arrhythmogenic activities were reduced in PKD1-cKO. Conclusions Our data indicate an important role for PKD1 in the HF-related hypertrophic response and K+ channel downregulation. Therefore, PKD1 inhibition may represent a therapeutic strategy to reduce hypertrophy and arrhythmias; however, PKD1 inhibition may not prevent disease progression and reduced contractility in HF.
Collapse
Affiliation(s)
- Julie Bossuyt
- Department of Pharmacology University of California Davis CA
| | - Johanna M Borst
- Department of Pharmacology University of California Davis CA
| | | | | | - Donald M Bers
- Department of Pharmacology University of California Davis CA
| | - Bence Hegyi
- Department of Pharmacology University of California Davis CA
| |
Collapse
|
13
|
Effect of hyperglycaemia in combination with moxifloxacin on cardiac repolarization in male and female patients with type I diabetes. Clin Res Cardiol 2022; 111:1147-1160. [PMID: 35596784 PMCID: PMC9525410 DOI: 10.1007/s00392-022-02037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
Abstract
Background Patients with Type 1 diabetes mellitus have been shown to be at a two to ten-fold higher risk of sudden cardiac death (SCD) (Svane et al., Curr Cardiol 2020; 22:112) than the general population, but the underlying mechanism is unclear. Hyperglycaemia is a recognised cause of QTc prolongation; a state patients with type 1 diabetes are more prone to, potentially increasing their risk of ventricular arrhythmia. Understanding the QTc prolongation effect of both hyperglycaemia and the concomitant additive risk of commonly prescribed QTc-prolonging drugs such as Moxifloxacin may help to elucidate the mechanism of sudden cardiac death in this cohort. This single-blinded, placebo-controlled study investigated the extent to which hyperglycaemia prolongs the QTc in controlled conditions, and the potential additive risk of QTc-prolonging medications. Methods 21 patients with type 1 diabetes mellitus were enrolled to a placebo-controlled crossover study at a single clinical trials unit. Patients underwent thorough QTc assessment throughout the study. A ‘hyperglycaemic clamp’ of oral and intravenous glucose was administered with a target blood glucose of > 25 mM and maintained for 2 h on day 1 and day 3, alongside placebo on day 1 and moxifloxacin on day 3. Day 2 served as a control day between the two active treatment days. Thorough QTc assessment was conducted at matched time points over 3 days, and regular blood sampling was undertaken at matched time intervals for glucose levels and moxifloxacin exposure. Results Concentration-effect modelling showed that acute hyperglycaemia prolonged the QTc interval in female and male volunteers with type 1 diabetes by a peak mean increase of 13 ms at 2 h. Peak mean QTc intervals after the administration of intravenous Moxifloxacin during the hyperglycaemic state were increased by a further 9 ms at 2 h, to 22 ms across the entire study population. Regression analysis suggested this additional increase was additive, not exponential. Hyperglycaemia was associated with a significantly greater mean QTc-prolonging effect in females, but the mean peak increase with the addition of moxifloxacin was the same for males and females. This apparent sex difference was likely due to the exclusive use of basal insulin in the male patients, which provided a low level of exogenous insulin during the study assessments thereby mitigating the effects of hyperglycaemia on QTc. This effect was partially overcome by Moxifloxacin administration, suggesting both hyperglycaemia and moxifloxacin prolong QTc by different mechanisms, based on subinterval analysis. Conclusions Hyperglycaemia was found to be a significant cause of QTc prolongation and the additional effect of a QTc-prolonging positive control (moxifloxacin) was found to be additive. Given the high risk of sudden cardiac death in type 1 diabetes mellitus, extra caution should be exercised when prescribing any medication in this cohort for QTc effects, and further research needs to be undertaken to elucidate the exact mechanism underlying this finding and explore the potential prescribing risk in diabetes. Trial Registration NCT number: NCT01984827. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00392-022-02037-8.
Collapse
|
14
|
Dyck JRB, Sossalla S, Hamdani N, Coronel R, Weber NC, Light PE, Zuurbier CJ. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects. J Mol Cell Cardiol 2022; 167:17-31. [PMID: 35331696 DOI: 10.1016/j.yjmcc.2022.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
Sodium glucose cotransporter 2 inhibitors (SGLT2i) constitute a promising drug treatment for heart failure patients with either preserved or reduced ejection fraction. Whereas SGLT2i were originally developed to target SGLT2 in the kidney to facilitate glucosuria in diabetic patients, it is becoming increasingly clear that these drugs also have important effects outside of the kidney. In this review we summarize the literature on cardiac effects of SGLT2i, focussing on pro-inflammatory and oxidative stress processes, ion transport mechanisms controlling sodium and calcium homeostasis and metabolic/mitochondrial pathways. These mechanisms are particularly important as disturbances in these pathways result in endothelial dysfunction, diastolic dysfunction, cardiac stiffness, and cardiac arrhythmias that together contribute to heart failure. We review the findings that support the concept that SGLT2i directly and beneficially interfere with inflammation, oxidative stress, ionic homeostasis, and metabolism within the cardiac cell. However, given the very low levels of SGLT2 in cardiac cells, the evidence suggests that SGLT2-independent effects of this class of drugs likely occurs via off-target effects in the myocardium. Thus, while there is still much to be understood about the various factors which determine how SGLT2i affect cardiac cells, much of the research clearly demonstrates that direct cardiac effects of these SGLT2i exist, albeit mediated via SGLT2-independent pathways, and these pathways may play a role in explaining the beneficial effects of SGLT2 inhibitors in heart failure.
Collapse
Affiliation(s)
- Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany; Klinik für Kardiologie und Pneumologie, Georg-August-Universität Goettingen, DZHK (German Centre for Cardiovascular Research), Robert-Koch Str. 40, D-37075 Goettingen, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital Ruhr University Bochum, Bochum, Germany
| | - Ruben Coronel
- Department of Experimental Cardiology, Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Amsterdam, the Netherlands
| | - Nina C Weber
- Department of Anesthesiology - L.E.I.C.A, Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Amsterdam, the Netherlands
| | - Peter E Light
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Coert J Zuurbier
- Department of Anesthesiology - L.E.I.C.A, Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Lubberding AF, Juhl CR, Skovhøj EZ, Kanters JK, Mandrup‐Poulsen T, Torekov SS. Celebrities in the heart, strangers in the pancreatic beta cell: Voltage-gated potassium channels K v 7.1 and K v 11.1 bridge long QT syndrome with hyperinsulinaemia as well as type 2 diabetes. Acta Physiol (Oxf) 2022; 234:e13781. [PMID: 34990074 PMCID: PMC9286829 DOI: 10.1111/apha.13781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
Abstract
Voltage‐gated potassium (Kv) channels play an important role in the repolarization of a variety of excitable tissues, including in the cardiomyocyte and the pancreatic beta cell. Recently, individuals carrying loss‐of‐function (LoF) mutations in KCNQ1, encoding Kv7.1, and KCNH2 (hERG), encoding Kv11.1, were found to exhibit post‐prandial hyperinsulinaemia and episodes of hypoglycaemia. These LoF mutations also cause the cardiac disorder long QT syndrome (LQTS), which can be aggravated by hypoglycaemia. Interestingly, patients with LQTS also have a higher burden of diabetes compared to the background population, an apparent paradox in relation to the hyperinsulinaemic phenotype, and KCNQ1 has been identified as a type 2 diabetes risk gene. This review article summarizes the involvement of delayed rectifier K+ channels in pancreatic beta cell function, with emphasis on Kv7.1 and Kv11.1, using the cardiomyocyte for context. The functional and clinical consequences of LoF mutations and polymorphisms in these channels on blood glucose homeostasis are explored using evidence from pre‐clinical, clinical and genome‐wide association studies, thereby evaluating the link between LQTS, hyperinsulinaemia and type 2 diabetes.
Collapse
Affiliation(s)
- Anniek F. Lubberding
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Christian R. Juhl
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Emil Z. Skovhøj
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jørgen K. Kanters
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Thomas Mandrup‐Poulsen
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Signe S. Torekov
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
16
|
Ha ACT, Doumouras BS, Wang CN, Tranmer J, Lee DS. Prediction of sudden cardiac arrest in the general population: Review of traditional and emerging risk factors. Can J Cardiol 2022; 38:465-478. [PMID: 35041932 DOI: 10.1016/j.cjca.2022.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 12/28/2022] Open
Abstract
Sudden cardiac death (SCD) is the most common and devastating outcome of sudden cardiac arrest (SCA), defined as an abrupt and unexpected cessation of cardiovascular function leading to circulatory collapse. The incidence of SCD is relatively infrequent for individuals in the general population, in the range of 0.03-0.10% per year. Yet, the absolute number of cases around the world is high due to the sheer size of the population at risk, making SCA/SCD a major global health issue. Based on conservative estimates, there are at least 2 million cases of SCA occurring worldwide on a yearly basis. As such, identification of risk factors associated with SCA in the general population is an important objective from a clinical and public health standpoint. This review will provide an in-depth discussion of established and emerging factors predictive of SCA/SCD in the general population beyond coronary artery disease and impaired left ventricular ejection fraction. Contemporary studies evaluating the association between age, sex, race, socioeconomic status and the emerging contribution of diabetes and obesity to SCD risk beyond their role as atherosclerotic risk factors will be reviewed. In addition, the role of biomarkers, particularly electrocardiographic ones, on SCA/SCD risk prediction in the general population will be discussed. Finally, the use of machine learning as a tool to facilitate SCA/SCD risk prediction will be examined.
Collapse
Affiliation(s)
- Andrew C T Ha
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
| | - Barbara S Doumouras
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Chang Nancy Wang
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; ICES Central, Toronto, Ontario, Canada
| | - Joan Tranmer
- School of Nursing, Queen's University, Kingston, Ontario, Canada; ICES Queens, Queen's University, Kingston, Ontario, Canada
| | - Douglas S Lee
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada; ICES Central, Toronto, Ontario, Canada; Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Remme CA. Sudden cardiac death in diabetes and obesity: mechanisms and therapeutic strategies. Can J Cardiol 2022; 38:418-426. [PMID: 35017043 DOI: 10.1016/j.cjca.2022.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Ventricular arrhythmias and sudden cardiac death (SCD) occur most frequently in the setting of coronary artery disease, cardiomyopathy and heart failure, but are also increasingly observed in individuals suffering from diabetes mellitus and obesity. The incidence of these metabolic disorders is rising in Western countries, but adequate prevention and treatment of arrhythmias and SCD in affected patients is limited due to our incomplete knowledge of the underlying disease mechanisms. Here, an overview is presented of the prevalence of electrophysiological disturbances, ventricular arrhythmias and SCD in the clinical setting of diabetes and obesity. Experimental studies are reviewed, which have identified disease pathways and associated modulatory factors, in addition to pro-arrhythmic mechanisms. Key processes are discussed, including mitochondrial dysfunction, oxidative stress, cardiac structural derangements, abnormal cardiac conduction, ion channel dysfunction, prolonged repolarization and dysregulation of intracellular sodium and calcium homeostasis. In addition, the recently identified pro-arrhythmic effects of dysregulated branched chain amino acid metabolism, a common feature in patients with metabolic disorders, are addressed. Finally, current management options are discussed, in addition to the potential development of novel preventive and therapeutic strategies based on recent insight gained from translational studies.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Morotti S, Liu C, Hegyi B, Ni H, Fogli Iseppe A, Wang L, Pritoni M, Ripplinger CM, Bers DM, Edwards AG, Grandi E. Quantitative cross-species translators of cardiac myocyte electrophysiology: Model training, experimental validation, and applications. SCIENCE ADVANCES 2021; 7:eabg0927. [PMID: 34788089 PMCID: PMC8598003 DOI: 10.1126/sciadv.abg0927] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/28/2021] [Indexed: 05/13/2023]
Abstract
Animal experimentation is key in the evaluation of cardiac efficacy and safety of novel therapeutic compounds. However, interspecies differences in the mechanisms regulating excitation-contraction coupling can limit the translation of experimental findings from animal models to human physiology and undermine the assessment of drugs’ efficacy and safety. Here, we built a suite of translators for quantitatively mapping electrophysiological responses in ventricular myocytes across species. We trained these statistical operators using a broad dataset obtained by simulating populations of our biophysically detailed computational models of action potential and Ca2+ transient in mouse, rabbit, and human. We then tested our translators against experimental data describing the response to stimuli, such as ion channel block, change in beating rate, and β-adrenergic challenge. We demonstrate that this approach is well suited to predicting the effects of perturbations across different species or experimental conditions and suggest its integration into mechanistic studies and drug development pipelines.
Collapse
Affiliation(s)
- Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Caroline Liu
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Alex Fogli Iseppe
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Lianguo Wang
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Marco Pritoni
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Andrew G. Edwards
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
19
|
D'Imperio S, Monasky MM, Micaglio E, Ciconte G, Anastasia L, Pappone C. Brugada Syndrome: Warning of a Systemic Condition? Front Cardiovasc Med 2021; 8:771349. [PMID: 34722688 PMCID: PMC8553994 DOI: 10.3389/fcvm.2021.771349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is a hereditary disorder, characterized by a specific electrocardiogram pattern and highly related to an increased risk of sudden cardiac death. BrS has been associated with other cardiac and non-cardiac pathologies, probably because of protein expression shared by the heart and other tissue types. In fact, the most commonly found mutated gene in BrS, SCN5A, is expressed throughout nearly the entire body. Consistent with this, large meals and alcohol consumption can trigger arrhythmic events in patients with BrS, suggesting a role for organs involved in the digestive and metabolic pathways. Ajmaline, a drug used to diagnose BrS, can have side effects on non-cardiac tissues, such as the liver, further supporting the idea of a role for organs involved in the digestive and metabolic pathways in BrS. The BrS electrocardiogram (ECG) sign has been associated with neural, digestive, and metabolic pathways, and potential biomarkers for BrS have been found in the serum or plasma. Here, we review the known associations between BrS and various organ systems, and demonstrate support for the hypothesis that BrS is not only a cardiac disorder, but rather a systemic one that affects virtually the whole body. Any time that the BrS ECG sign is found, it should be considered not a single disease, but rather the final step in any number of pathways that ultimately threaten the patient's life. A multi-omics approach would be appropriate to study this syndrome, including genetics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, and glycomics, resulting eventually in a biomarker for BrS and the ability to diagnose this syndrome using a minimally invasive blood test, avoiding the risk associated with ajmaline testing.
Collapse
Affiliation(s)
- Sara D'Imperio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Emanuele Micaglio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
20
|
Veitch CR, Power AS, Erickson JR. CaMKII Inhibition is a Novel Therapeutic Strategy to Prevent Diabetic Cardiomyopathy. Front Pharmacol 2021; 12:695401. [PMID: 34381362 PMCID: PMC8350113 DOI: 10.3389/fphar.2021.695401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing prevalence of diabetes mellitus worldwide has pushed the complex disease state to the foreground of biomedical research, especially concerning its multifaceted impacts on the cardiovascular system. Current therapies for diabetic cardiomyopathy have had a positive impact, but with diabetic patients still suffering from a significantly greater burden of cardiac pathology compared to the general population, the need for novel therapeutic approaches is great. A new therapeutic target, calcium/calmodulin-dependent kinase II (CaMKII), has emerged as a potential treatment option for preventing cardiac dysfunction in the setting of diabetes. Within the last 10 years, new evidence has emerged describing the pathophysiological consequences of CaMKII activation in the diabetic heart, the mechanisms that underlie persistent CaMKII activation, and the protective effects of CaMKII inhibition to prevent diabetic cardiomyopathy. This review will examine recent evidence tying cardiac dysfunction in diabetes to CaMKII activation. It will then discuss the current understanding of the mechanisms by which CaMKII activity is enhanced during diabetes. Finally, it will examine the benefits of CaMKII inhibition to treat diabetic cardiomyopathy, including contractile dysfunction, heart failure with preserved ejection fraction, and arrhythmogenesis. We intend this review to serve as a critical examination of CaMKII inhibition as a therapeutic strategy, including potential drawbacks of this approach.
Collapse
Affiliation(s)
- Christopher R Veitch
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Amelia S Power
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Hegyi B, Fasoli A, Ko CY, Van BW, Alim CC, Shen EY, Ciccozzi MM, Tapa S, Ripplinger CM, Erickson JR, Bossuyt J, Bers DM. CaMKII Serine 280 O-GlcNAcylation Links Diabetic Hyperglycemia to Proarrhythmia. Circ Res 2021; 129:98-113. [PMID: 33926209 PMCID: PMC8221539 DOI: 10.1161/circresaha.120.318402] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Action Potentials
- Adult
- Aged
- Animals
- Arrhythmias, Cardiac/enzymology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/physiopathology
- Biomarkers/blood
- Blood Glucose/metabolism
- Calcium Signaling
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Case-Control Studies
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Excitation Contraction Coupling
- Female
- Glycosylation
- Heart Rate
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Transgenic
- Middle Aged
- Mutation
- Myocardial Contraction
- Myocytes, Cardiac/enzymology
- NADPH Oxidase 2/genetics
- NADPH Oxidase 2/metabolism
- Phosphorylation
- Protein Processing, Post-Translational
- Mice
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California, Davis (B.H., A.F., C.Y.K., B.W.V., C.C.A., E.Y.S., M.M.C., S.T., C.M.R., J.B., D.M.B.)
| | - Anna Fasoli
- Department of Pharmacology, University of California, Davis (B.H., A.F., C.Y.K., B.W.V., C.C.A., E.Y.S., M.M.C., S.T., C.M.R., J.B., D.M.B.)
| | - Christopher Y. Ko
- Department of Pharmacology, University of California, Davis (B.H., A.F., C.Y.K., B.W.V., C.C.A., E.Y.S., M.M.C., S.T., C.M.R., J.B., D.M.B.)
| | - Benjamin W. Van
- Department of Pharmacology, University of California, Davis (B.H., A.F., C.Y.K., B.W.V., C.C.A., E.Y.S., M.M.C., S.T., C.M.R., J.B., D.M.B.)
| | - Chidera C. Alim
- Department of Pharmacology, University of California, Davis (B.H., A.F., C.Y.K., B.W.V., C.C.A., E.Y.S., M.M.C., S.T., C.M.R., J.B., D.M.B.)
| | - Erin Y. Shen
- Department of Pharmacology, University of California, Davis (B.H., A.F., C.Y.K., B.W.V., C.C.A., E.Y.S., M.M.C., S.T., C.M.R., J.B., D.M.B.)
| | - Marisa M. Ciccozzi
- Department of Pharmacology, University of California, Davis (B.H., A.F., C.Y.K., B.W.V., C.C.A., E.Y.S., M.M.C., S.T., C.M.R., J.B., D.M.B.)
| | - Srinivas Tapa
- Department of Pharmacology, University of California, Davis (B.H., A.F., C.Y.K., B.W.V., C.C.A., E.Y.S., M.M.C., S.T., C.M.R., J.B., D.M.B.)
| | - Crystal M. Ripplinger
- Department of Pharmacology, University of California, Davis (B.H., A.F., C.Y.K., B.W.V., C.C.A., E.Y.S., M.M.C., S.T., C.M.R., J.B., D.M.B.)
| | - Jeffrey R. Erickson
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand (J.R.E.)
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis (B.H., A.F., C.Y.K., B.W.V., C.C.A., E.Y.S., M.M.C., S.T., C.M.R., J.B., D.M.B.)
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis (B.H., A.F., C.Y.K., B.W.V., C.C.A., E.Y.S., M.M.C., S.T., C.M.R., J.B., D.M.B.)
| |
Collapse
|
22
|
Coppini R, Cerbai E. Of hits, players, and goalkeepers: the case of arrhythmias in diabetes. Cardiovasc Res 2021; 117:2694-2695. [PMID: 33744943 DOI: 10.1093/cvr/cvab101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Raffaele Coppini
- Department of Neurosciences, Psychology, Drugs and Child Health, University of Florence, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drugs and Child Health, University of Florence, Italy
| |
Collapse
|
23
|
Hegyi B, Pölönen RP, Hellgren KT, Ko CY, Ginsburg KS, Bossuyt J, Mercola M, Bers DM. Cardiomyocyte Na + and Ca 2+ mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors. Basic Res Cardiol 2021; 116:58. [PMID: 34648073 PMCID: PMC8516771 DOI: 10.1007/s00395-021-00900-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte Na+ and Ca2+ mishandling, upregulated Ca2+/calmodulin-dependent kinase II (CaMKII), and increased reactive oxygen species (ROS) are characteristics of various heart diseases, including heart failure (HF), long QT (LQT) syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). These changes may form a vicious cycle of positive feedback to promote cardiac dysfunction and arrhythmias. In HF rabbit cardiomyocytes investigated in this study, the inhibition of CaMKII, late Na+ current (INaL), and leaky ryanodine receptors (RyRs) all attenuated the prolongation and increased short-term variability (STV) of action potential duration (APD), but in age-matched controls these inhibitors had no or minimal effects. In control cardiomyocytes, we enhanced RyR leak (by low [caffeine] plus isoproterenol mimicking CPVT) which markedly increased STV and delayed afterdepolarizations (DADs). These proarrhythmic changes were significantly attenuated by both CaMKII inhibition and mitochondrial ROS scavenging, with a slight synergy with INaL inhibition. Inducing LQT by elevating INaL (by Anemone toxin II, ATX-II) caused markedly prolonged APD, increased STV, and early afterdepolarizations (EADs). Those proarrhythmic ATX-II effects were largely attenuated by mitochondrial ROS scavenging, and partially reduced by inhibition of CaMKII and pathological leaky RyRs using dantrolene. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) bearing LQT3 mutation SCN5A N406K, dantrolene significantly attenuated cell arrhythmias and APD prolongation. Targeting critical components of the Na+-Ca2+-CaMKII-ROS-INaL arrhythmogenic vicious cycle may exhibit important on-target and also trans-target effects (e.g., INaL and RyR inhibition can alter INaL-mediated LQT3 effects). Incorporating this vicious cycle into therapeutic strategies provides novel integrated insight for treating cardiac arrhythmias and diseases.
Collapse
Affiliation(s)
- Bence Hegyi
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Risto-Pekka Pölönen
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA ,grid.168010.e0000000419368956Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Kim T. Hellgren
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Christopher Y. Ko
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Kenneth S. Ginsburg
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Julie Bossuyt
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Mark Mercola
- grid.168010.e0000000419368956Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Donald M. Bers
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| |
Collapse
|