1
|
Wang Y, Shen Y, Tan L, Hu L, He M, Zeng X. Causal relationship between immunophenotypes and mitral valve prolapse: a bidirectional Mendelian randomization study. Front Cardiovasc Med 2024; 11:1404284. [PMID: 39421157 PMCID: PMC11484250 DOI: 10.3389/fcvm.2024.1404284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Background Emerging evidence indicates a significant link between various immune cell types and the development of heart valve disorders. Mitral valve prolapse (MVP) is a common condition that can lead to heart failure, arrhythmias, and even sudden death. Currently, the role of immune cells in MVP is not well understood. Thus, this study aimed to explore the causal relationship between immunophenotypes and the risk of MVP. Methods This study conducted a two-sample Mendelian randomization (MR) analysis to examine the link between 731 immunophenotypes and MVP. Publicly available data from genome-wide association studies were used for both the exposures and outcomes. The primary method for assessing the causal relationship between mitral valve prolapse and the 731 immunophenotypes was the inverse variance weighted method. Additionally, to ensure the MR results were reliable and valid, sensitivity analyses, including leave-one-out analysis, the Cochran Q-test, and the Egger intercept test, were conducted. Results The findings indicated that multiple immune cell phenotypes potentially cause changes in the risk of developing MVP. After adjusting for the false discovery rate, nine immune phenotypes were found to increase the risk of MVP, while nine others appeared to decrease it. In addition, reverse MR analysis found no causal relationship between MVP and these eighteen immunophenotypes. Conclusion Through genetic analyses, this research demonstrated a significant causal relationship between certain immune cells and MVP, providing new insights for future basic and clinical research.
Collapse
Affiliation(s)
- Yue Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yusi Shen
- Second Department of Orthopedic Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Lina Tan
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liangbo Hu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Min He
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaocong Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
van den Berg PF, Yousif LI, Markousis-Mavrogenis G, Shi C, Bracun V, Tromp J, de Wit S, Appels Y, Screever EM, Aboumsallem JP, Ouwerkerk W, van Veldhuisen DJ, Silljé HHW, Voors AA, de Boer RA, Meijers WC. Hallmarks of cancer in patients with heart failure: data from BIOSTAT-CHF. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:47. [PMID: 39103886 PMCID: PMC11299300 DOI: 10.1186/s40959-024-00246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Within cardio-oncology, emerging epidemiologic studies have demonstrated a bi-directional relationship between heart failure (HF) and cancer. In the current study, we aimed to further explore this relationship and investigate the underlying pathophysiological pathways that connect these two disease entities. METHODS We conducted a post-hoc analysis in which we identified 24 Gene Ontology (GO) processes associated with the hallmarks of cancer based on 92 biomarkers in 1960 patients with HF. We performed Spearman's correlations and Cox-regression analyses to evaluate associations with HF biomarkers, severity and all-cause mortality. RESULTS Out of a total of 24 GO processes, 9 biological processes were significantly associated with adverse clinical outcome. Positive regulation of mononuclear cell proliferation demonstrated the highest hazard for reaching the clinical endpoint, even after adjusting for confounders: all-cause mortality HR 2.00 (95% CI 1.17-3.42), p = 0.012. In contrast, negative regulation of apoptotic process was consistently associated with a lower hazard of reaching the clinical outcome, even after adjusting for confounders: all-cause mortality HR 0.74 (95% CI 0.59-0.95), p = 0.016. All processes significantly correlated with HF biomarkers, renal function and HF severity. CONCLUSIONS In patients with HF, GO processes associated with hallmarks of cancer are associated with HF biomarkers, severity and all-cause mortality.
Collapse
Affiliation(s)
- P F van den Berg
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - L I Yousif
- Department of Cardiology, Erasmus MC, Cardiovascular Institute, Thorax Center, Rotterdam, The Netherlands
| | - G Markousis-Mavrogenis
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - C Shi
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - V Bracun
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - J Tromp
- National Heart Centre Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - S de Wit
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Y Appels
- Department of Cardiology, Erasmus MC, Cardiovascular Institute, Thorax Center, Rotterdam, The Netherlands
| | - E M Screever
- Department of Cardiology, Erasmus MC, Cardiovascular Institute, Thorax Center, Rotterdam, The Netherlands
| | - J P Aboumsallem
- Department of Cardiology, Erasmus MC, Cardiovascular Institute, Thorax Center, Rotterdam, The Netherlands
| | - W Ouwerkerk
- Department of Dermatology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - D J van Veldhuisen
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - H H W Silljé
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - A A Voors
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - R A de Boer
- Department of Cardiology, Erasmus MC, Cardiovascular Institute, Thorax Center, Rotterdam, The Netherlands
| | - Wouter C Meijers
- Department of Cardiology, Erasmus MC, Cardiovascular Institute, Thorax Center, Rotterdam, The Netherlands.
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, P.O. Box 2040, Rotterdam, 3000CA, The Netherlands.
| |
Collapse
|
3
|
Baumhove L, van Essen BJ, Dokter MM, Zijlstra SN, Deiman FE, Laman JD, Lang CC, Verstappen GMPJ, van Veldhuisen DJ, van der Meer P, Bomer N, Voors AA. IL-17 is associated with disease severity and targetable inflammatory processes in heart failure. ESC Heart Fail 2024. [PMID: 39031992 DOI: 10.1002/ehf2.14968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024] Open
Abstract
AIMS Heart failure (HF) is recognized as an inflammatory disease in which cytokines play an important role. In animal HF models, interleukin-17A (IL-17) has been linked to deterioration of cardiac function and fibrosis, whereas knock-out of IL-17 showed beneficial cardiac effects. However, there is limited evidence of IL-17 involvement in patients with HF. This study aims to investigate the clinical characteristics, outcomes, and pathophysiological processes associated with circulating IL-17 concentrations in patients with HF. METHODS AND RESULTS IL-17 was measured by ELISA in 2082 patients diagnosed with HF along with 363 circulating proteins using proximity extension assay technology for differential expression and pathway analysis. Data were validated in an independent cohort of 1737 patients with HF. Patients with elevated IL-17 concentrations had more severe HF, as reflected by more frequent current or previous hospitalizations for HF, higher New York Heart Association functional class (NYHA) and higher levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP). High IL-17 concentrations were independently associated with an increased risk of hospitalization for HF and mortality. In both cohorts, the most strongly up-regulated proteins in patients with high IL-17 were fibroblast growth factor 21 (FGF-21), interleukin-6 (IL-6), C-X-C motif chemokine ligand 13 (CXCL13), tumour necrosis factor receptor superfamily member 6B (TNFRSF6B) and interleukin-1 receptor antagonist (IL-1RA). Pathway over-representation analysis showed increased activity of pathways related to lymphocyte-mediated immunity, leukocyte activation and regulation of the immune response. CONCLUSIONS In patients with HF, elevated IL-17 concentrations indicate more severe HF and increased activity of inflammatory processes known to be involved in the pathophysiology of HF. IL-17 might hold potential for identifying and targeting inflammation in HF.
Collapse
Affiliation(s)
- Lukas Baumhove
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart J van Essen
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin M Dokter
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Sietske N Zijlstra
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Frederik E Deiman
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Jon D Laman
- Department of Pathology & Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Gwenny M P J Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Gergely TG, Drobni ZD, Kallikourdis M, Zhu H, Meijers WC, Neilan TG, Rassaf T, Ferdinandy P, Varga ZV. Immune checkpoints in cardiac physiology and pathology: therapeutic targets for heart failure. Nat Rev Cardiol 2024; 21:443-462. [PMID: 38279046 DOI: 10.1038/s41569-023-00986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
Immune checkpoint molecules are physiological regulators of the adaptive immune response. Immune checkpoint inhibitors (ICIs), such as monoclonal antibodies targeting programmed cell death protein 1 or cytotoxic T lymphocyte-associated protein 4, have revolutionized cancer treatment and their clinical use is increasing. However, ICIs can cause various immune-related adverse events, including acute and chronic cardiotoxicity. Of these cardiovascular complications, ICI-induced acute fulminant myocarditis is the most studied, although emerging clinical and preclinical data are uncovering the importance of other ICI-related chronic cardiovascular complications, such as accelerated atherosclerosis and non-myocarditis-related heart failure. These complications could be more difficult to diagnose, given that they might only be present alongside other comorbidities. The occurrence of these complications suggests a potential role of immune checkpoint molecules in maintaining cardiovascular homeostasis, and disruption of physiological immune checkpoint signalling might thus lead to cardiac pathologies, including heart failure. Although inflammation is a long-known contributor to the development of heart failure, the therapeutic targeting of pro-inflammatory pathways has not been successful thus far. The increasingly recognized role of immune checkpoint molecules in the failing heart highlights their potential use as immunotherapeutic targets for heart failure. In this Review, we summarize the available data on ICI-induced cardiac dysfunction and heart failure, and discuss how immune checkpoint signalling is altered in the failing heart. Furthermore, we describe how pharmacological targeting of immune checkpoints could be used to treat heart failure.
Collapse
Affiliation(s)
- Tamás G Gergely
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zsófia D Drobni
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marinos Kallikourdis
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Adaptive Immunity Lab, Humanitas Research Hospital IRCCS, Milan, Italy
| | - Han Zhu
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wouter C Meijers
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, The Netherlands
| | - Tomas G Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary.
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary.
| |
Collapse
|
5
|
Welt FGP, Batchelor W, Spears JR, Penna C, Pagliaro P, Ibanez B, Drakos SG, Dangas G, Kapur NK. Reperfusion Injury in Patients With Acute Myocardial Infarction: JACC Scientific Statement. J Am Coll Cardiol 2024; 83:2196-2213. [PMID: 38811097 DOI: 10.1016/j.jacc.2024.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 05/31/2024]
Abstract
Despite impressive improvements in the care of patients with ST-segment elevation myocardial infarction, mortality remains high. Reperfusion is necessary for myocardial salvage, but the abrupt return of flow sets off a cascade of injurious processes that can lead to further necrosis. This has been termed myocardial ischemia-reperfusion injury and is the subject of this review. The pathologic and molecular bases for myocardial ischemia-reperfusion injury are increasingly understood and include injury from reactive oxygen species, inflammation, calcium overload, endothelial dysfunction, and impaired microvascular flow. A variety of pharmacologic strategies have been developed that have worked well in preclinical models and some have shown promise in the clinical setting. In addition, there are newer mechanical approaches including mechanical unloading of the heart prior to reperfusion that are in current clinical trials.
Collapse
Affiliation(s)
- Frederick G P Welt
- Department of Medicine, Division of Cardiovascular Medicine, University of Utah Hospital, Salt Lake City, Utah, USA.
| | | | - J Richard Spears
- Department of Cardiovascular Medicine, Beaumont Systems, Royal Oak, Michigan, USA
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Madrid, Spain; Department of Cardiology, Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Stavros G Drakos
- Department of Medicine, Division of Cardiovascular Medicine, University of Utah Hospital, Salt Lake City, Utah, USA; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| | - George Dangas
- Division of Cardiology, Mount Sinai Health System, New York, New York, USA
| | - Navin K Kapur
- The CardioVascular Center and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Markousis-Mavrogenis G, Baumhove L, Al-Mubarak AA, Aboumsallem JP, Bomer N, Voors AA, van der Meer P. Immunomodulation and immunopharmacology in heart failure. Nat Rev Cardiol 2024; 21:119-149. [PMID: 37709934 DOI: 10.1038/s41569-023-00919-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The immune system is intimately involved in the pathophysiology of heart failure. However, it is currently underused as a therapeutic target in the clinical setting. Moreover, the development of novel immunomodulatory therapies and their investigation for the treatment of patients with heart failure are hampered by the fact that currently used, evidence-based treatments for heart failure exert multiple immunomodulatory effects. In this Review, we discuss current knowledge on how evidence-based treatments for heart failure affect the immune system in addition to their primary mechanism of action, both to inform practising physicians about these pleiotropic actions and to create a framework for the development and application of future immunomodulatory therapies. We also delineate which subpopulations of patients with heart failure might benefit from immunomodulatory treatments. Furthermore, we summarize completed and ongoing clinical trials that assess immunomodulatory treatments in heart failure and present several therapeutic targets that could be investigated in the future. Lastly, we provide future directions to leverage the immunomodulatory potential of existing treatments and to foster the investigation of novel immunomodulatory therapeutics.
Collapse
Affiliation(s)
- George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lukas Baumhove
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ali A Al-Mubarak
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
7
|
Kuku KO, Oyetoro R, Hashemian M, Livinski AA, Shearer JJ, Joo J, Psaty BM, Levy D, Ganz P, Roger VL. Proteomics for heart failure risk stratification: a systematic review. BMC Med 2024; 22:34. [PMID: 38273315 PMCID: PMC10809595 DOI: 10.1186/s12916-024-03249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a complex clinical syndrome with persistently high mortality. High-throughput proteomic technologies offer new opportunities to improve HF risk stratification, but their contribution remains to be clearly defined. We aimed to systematically review prognostic studies using high-throughput proteomics to identify protein signatures associated with HF mortality. METHODS We searched four databases and two clinical trial registries for articles published from 2012 to 2023. HF proteomics studies measuring high numbers of proteins using aptamer or antibody-based affinity platforms on human plasma or serum with outcomes of all-cause or cardiovascular death were included. Two reviewers independently screened articles, extracted data, and assessed the risk of bias. A third reviewer resolved conflicts. We assessed the risk of bias using the Risk Of Bias In Non-randomized Studies-of Exposure tool. RESULTS Out of 5131 unique articles identified, nine articles were included in the review. The nine studies were observational; three used the aptamer platform, and six used the antibody platform. We found considerable heterogeneity across studies in measurement panels, HF definitions, ejection fraction categorization, follow-up duration, and outcome definitions, and a lack of risk estimates for most protein associations. Hence, we proceeded with a systematic review rather than a meta-analysis. In two comparable aptamer studies in patients with HF with reduced ejection fraction, 21 proteins were identified in common for the association with all-cause death. Among these, one protein, WAP four-disulfide core domain protein 2 was also reported in an antibody study on HFrEF and for the association with CV death. We proposed standardized reporting criteria to facilitate the interpretation of future studies. CONCLUSIONS In this systematic review of nine studies evaluating the association of proteomics with mortality in HF, we identified a limited number of proteins common across several studies. Heterogeneity across studies compromised drawing broad inferences, underscoring the importance of standardized approaches to reporting.
Collapse
Affiliation(s)
- Kayode O Kuku
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Oyetoro
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maryam Hashemian
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alicia A Livinski
- Office of Research Services, Office of the Director, National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - Joseph J Shearer
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jungnam Joo
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Daniel Levy
- Laboratory for Cardiovascular Epidemiology and Genomics, Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter Ganz
- Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Véronique L Roger
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Ouwerkerk W, Belo Pereira JP, Maasland T, Emmens JE, Figarska SM, Tromp J, Koekemoer AL, Nelson CP, Nath M, Romaine SPR, Cleland JGF, Zannad F, van Veldhuisen DJ, Lang CC, Ponikowski P, Filippatos G, Anker S, Metra M, Dickstein K, Ng LL, de Boer RA, van Riel N, Nieuwdorp M, Groen AK, Stroes E, Zwinderman AH, Samani NJ, Lam CSP, Levin E, Voors AA. Multiomics Analysis Provides Novel Pathways Related to Progression of Heart Failure. J Am Coll Cardiol 2023; 82:1921-1931. [PMID: 37940229 DOI: 10.1016/j.jacc.2023.08.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Despite major advances in pharmacological treatment for patients with heart failure, residual mortality remains high. This suggests that important pathways are not yet targeted by current heart failure therapies. OBJECTIVES We sought integration of genetic, transcriptomic, and proteomic data in a large cohort of patients with heart failure to detect major pathways related to progression of heart failure leading to death. METHODS We used machine learning methodology based on stacked generalization framework and gradient boosting algorithms, using 54 clinical phenotypes, 403 circulating plasma proteins, 36,046 transcript expression levels in whole blood, and 6 million genomic markers to model all-cause mortality in 2,516 patients with heart failure from the BIOSTAT-CHF (Systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure) study. Results were validated in an independent cohort of 1,738 patients. RESULTS The mean age of the patients was 70 years (Q1-Q3: 61-78 years), 27% were female, median N-terminal pro-B-type natriuretic peptide was 4,275 ng/L (Q1-Q3: 2,360-8,486 ng/L), and 7% had heart failure with preserved ejection fraction. During a median follow-up of 21 months, 657 (26%) of patients died. The 4 major pathways with a significant association to all-cause mortality were: 1) the PI3K/Akt pathway; 2) the MAPK pathway; 3) the Ras signaling pathway; and 4) epidermal growth factor receptor tyrosine kinase inhibitor resistance. Results were validated in an independent cohort of 1,738 patients. CONCLUSIONS A systems biology approach integrating genomic, transcriptomic, and proteomic data identified 4 major pathways related to mortality. These pathways are related to decreased activation of the cardioprotective ERBB2 receptor, which can be modified by neuregulin.
Collapse
Affiliation(s)
- Wouter Ouwerkerk
- Department of Dermatology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; National Heart Centre Singapore, Singapore.
| | - Joao P Belo Pereira
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands; HORAIZON BV, Delft, the Netherlands
| | - Troy Maasland
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands; HORAIZON BV, Delft, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Johanna E Emmens
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sylwia M Figarska
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jasper Tromp
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; National Heart Centre Singapore and Duke-National University of Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Andrea L Koekemoer
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Mintu Nath
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Simon P R Romaine
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - John G F Cleland
- Robertson Centre for Biostatistics and Clinical Trials, University of Glasgow, Glasgow, United Kingdom; National Heart & Lung Institute, Imperial College, London, United Kingdom
| | - Faiez Zannad
- Clinical Investigation Center 1433, Université de Lorraine, Nancy, France; Clinical investigation Center 1433, Centre Hospitalier Régional Universitaire de Nancy, Vandoeuvre-lès-Nancy, Nancy, France; French Clinical Research Infrastructure Network-Investigation Network Initiative-Cardiovascular and Renal Clinical Trialists, French Institute of Health and Medical Research, Vandoeuvre-lès-Nancy, France
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chim C Lang
- Cardiology, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Piotr Ponikowski
- Institute for Heart Diseases, Medical University, Wroclaw, Poland
| | - Gerasimos Filippatos
- Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefan Anker
- Department of Cardiology, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany; German Centre for Cardiovascular Research, partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Metra
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Institute of Cardiology, University of Brescia, Brescia, Italy
| | - Kenneth Dickstein
- Stavanger University Hospital, University of Bergen, Stavanger, Norway
| | - Leong L Ng
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Natal van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Albert K Groen
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Erik Stroes
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | | | - Evgeni Levin
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands; HORAIZON BV, Delft, the Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
9
|
Sulicka-Grodzicka J, Szczepaniak P, Jozefczuk E, Urbanski K, Siedlinski M, Niewiara Ł, Guzik B, Filip G, Kapelak B, Wierzbicki K, Korkosz M, Guzik TJ, Mikolajczyk TP. Systemic and local vascular inflammation and arterial reactive oxygen species generation in patients with advanced cardiovascular diseases. Front Cardiovasc Med 2023; 10:1230051. [PMID: 37745103 PMCID: PMC10513373 DOI: 10.3389/fcvm.2023.1230051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Background Systemic inflammation may cause endothelial activation, mediate local inflammation, and accelerate progression of atherosclerosis. We examined whether the levels of circulating inflammatory cytokines reflect local vascular inflammation and oxidative stress in two types of human arteries. Methods Human internal mammary artery (IMA) was obtained in 69 patients undergoing coronary artery bypass graft (CABG) surgery and left anterior descending (LAD) artery was obtained in 17 patients undergoing heart transplantation (HTx). Plasma levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were measured using ELISA, high-sensitivity C-reactive protein (hs-CRP) was measured using Luminex, and mRNA expression of proinflammatory cytokines in the vascular tissues was assessed. Furthermore, formation of superoxide anion was measured in segments of IMA using 5 uM lucigenin-dependent chemiluminescence. Vascular reactivity was measured using tissue organ bath system. Results TNF-α, IL-6 and IL-1β mRNAs were expressed in all studied IMA and LAD segments. Plasma levels of inflammatory cytokines did not correlate with vascular cytokine mRNA expression neither in IMA nor in LAD. Plasma TNF-α and IL-6 correlated with hs-CRP level in CABG group. Hs-CRP also correlated with TNF-α in HTx group. Neither vascular TNF-α, IL-6 and IL-1β mRNA expression, nor systemic levels of either TNF-α, IL-6 and IL-1β were correlated with superoxide generation in IMAs. Interestingly, circulating IL-1β negatively correlated with maximal relaxation of the internal mammary artery (r = -0.37, p = 0.004). At the same time the mRNA expression of studied inflammatory cytokines were positively associated with each other in both IMA and LAD. The positive correlations were observed between circulating levels of IL-6 and TNF-α in CABG cohort and IL-6 and IL-1β in HTx cohort. Conclusions This study shows that peripheral inflammatory cytokine measurements may not reflect local vascular inflammation or oxidative stress in patients with advanced cardiovascular disease (CVD). Circulating pro-inflammatory cytokines generally correlated positively with each other, similarly their mRNA correlated in the arterial wall, however, these levels were not correlated between the studied compartments.
Collapse
Affiliation(s)
- Joanna Sulicka-Grodzicka
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Krakow, Poland
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Piotr Szczepaniak
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Ewelina Jozefczuk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Karol Urbanski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Łukasz Niewiara
- Department of Interventional Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Kraków, Poland
| | - Bartłomiej Guzik
- Department of Interventional Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Kraków, Poland
| | - Grzegorz Filip
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Bogusław Kapelak
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Karol Wierzbicki
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Mariusz Korkosz
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz J. Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tomasz P. Mikolajczyk
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
10
|
Wu Y, Zhan S, Chen L, Sun M, Li M, Mou X, Zhang Z, Xu L, Xu Y. TNFSF14/LIGHT promotes cardiac fibrosis and atrial fibrillation vulnerability via PI3Kγ/SGK1 pathway-dependent M2 macrophage polarisation. J Transl Med 2023; 21:544. [PMID: 37580750 PMCID: PMC10424430 DOI: 10.1186/s12967-023-04381-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/21/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Tumour necrosis factor superfamily protein 14 (TNFSF14), also called LIGHT, is an important regulator of immunological and fibrosis diseases. However, its specific involvement in cardiac fibrosis and atrial fibrillation (AF) has not been fully elucidated. The objective of this study is to examine the influence of LIGHT on the development of myocardial fibrosis and AF. METHODS PCR arrays of peripheral blood mononuclear cells (PBMCs) from patients with AF and sinus rhythm was used to identify the dominant differentially expressed genes, followed by ELISA to evaluate its serum protein levels. Morphological, functional, and electrophysiological changes in the heart were detected in vivo after the tail intravenous injection of recombinant LIGHT (rLIGHT) in mice for 4 weeks. rLIGHT was used to stimulate bone marrow-derived macrophages (BMDMs) to prepare a macrophage-conditioned medium (MCM) in vitro. Then, the MCM was used to culture mouse cardiac fibroblasts (CFs). The expression of relevant proteins and genes was determined using qRT-PCR, western blotting, and immunostaining. RESULTS The mRNA levels of LIGHT and TNFRSF14 were higher in the PBMCs of patients with AF than in those of the healthy controls. Additionally, the serum protein levels of LIGHT were higher in patients with AF than those in the healthy controls and were correlated with left atrial reverse remodelling. Furthermore, we demonstrated that rLIGHT injection promoted macrophage infiltration and M2 polarisation in the heart, in addition to promoting atrial fibrosis and AF inducibility in vivo, as detected with MASSON staining and atrial burst pacing respectively. RNA sequencing of heart samples revealed that the PI3Kγ/SGK1 pathway may participate in these pathological processes. Therefore, we confirmed the hypothesis that rLIGHT promotes BMDM M2 polarisation and TGB-β1 secretion, and that this process can be inhibited by PI3Kγ and SGK1 inhibitors in vitro. Meanwhile, increased collagen synthesis and myofibroblast transition were observed in LIGHT-stimulated MCM-cultured CFs and were ameliorated in the groups treated with PI3Kγ and SGK1 inhibitors. CONCLUSION LIGHT protein levels in peripheral blood can be used as a prognostic marker for AF and to evaluate its severity. LIGHT promotes cardiac fibrosis and AF inducibility by promoting macrophage M2 polarisation, wherein PI3Kγ and SGK1 activation is indispensable.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Siyao Zhan
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Lian Chen
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Mingrui Sun
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Miaofu Li
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xuanting Mou
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Zhen Zhang
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
| |
Collapse
|
11
|
Markousis-Mavrogenis G, Minich WB, Al-Mubarak AA, Anker SD, Cleland JGF, Dickstein K, Lang CC, Ng LL, Samani NJ, Zannad F, Metra M, Seemann P, Hoeg A, Lopez P, van Veldhuisen DJ, de Boer RA, Voors AA, van der Meer P, Schomburg L, Bomer N. Clinical and prognostic associations of autoantibodies recognizing adrenergic/muscarinic receptors in patients with heart failure. Cardiovasc Res 2023; 119:1690-1705. [PMID: 36883593 PMCID: PMC10325696 DOI: 10.1093/cvr/cvad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 03/09/2023] Open
Abstract
AIMS The importance of autoantibodies (AABs) against adrenergic/muscarinic receptors in heart failure (HF) is not well-understood. We investigated the prevalence and clinical/prognostic associations of four AABs recognizing the M2-muscarinic receptor or the β1-, β2-, or β3-adrenergic receptor in a large and well-characterized cohort of patients with HF. METHODS AND RESULTS Serum samples from 2256 patients with HF from the BIOSTAT-CHF cohort and 299 healthy controls were analysed using newly established chemiluminescence immunoassays. The primary outcome was a composite of all-cause mortality and HF rehospitalization at 2-year follow-up, and each outcome was also separately investigated. Collectively, 382 (16.9%) patients and 37 (12.4%) controls were seropositive for ≥1 AAB (P = 0.045). Seropositivity occurred more frequently only for anti-M2 AABs (P = 0.025). Amongst patients with HF, seropositivity was associated with the presence of comorbidities (renal disease, chronic obstructive pulmonary disease, stroke, and atrial fibrillation) and with medication use. Only anti-β1 AAB seropositivity was associated with the primary outcome [hazard ratio (95% confidence interval): 1.37 (1.04-1.81), P = 0.024] and HF rehospitalization [1.57 (1.13-2.19), P = 0.010] in univariable analyses but remained associated only with HF rehospitalization after multivariable adjustment for the BIOSTAT-CHF risk model [1.47 (1.05-2.07), P = 0.030]. Principal component analyses showed considerable overlap in B-lymphocyte activity between seropositive and seronegative patients, based on 31 circulating biomarkers related to B-lymphocyte function. CONCLUSIONS AAB seropositivity was not strongly associated with adverse outcomes in HF and was mostly related to the presence of comorbidities and medication use. Only anti-β1 AABs were independently associated with HF rehospitalization. The exact clinical value of AABs remains to be elucidated.
Collapse
Affiliation(s)
- George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Waldemar B Minich
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straß0065 4A, CCM, Berlin D-10115, Germany
- ImmunometriX GmbH i.L, Brandenburgische Str. 83, D-10713 Berlin, Germany
| | - Ali A Al-Mubarak
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Charitépl. 1, 10117 Berlin, Germany
| | - John G F Cleland
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
- National Heart & Lung Institute, Imperial College, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Kenneth Dickstein
- University of Bergen, Stavanger University Hospital, Gerd-Ragna Bloch Thorsens gate 8, 4011 Stavanger, Norway
| | - Chim C Lang
- Division of Molecular & Clinical Medicine, University of Dundee, Nethergate, Dundee DD1 4HN, UK
| | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Groby Rd, Leicester LE3 9QP, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Rd, Leicester LE3 9QP, UK
| | - Nilesh J Samani
- University of Bergen, Stavanger University Hospital, Gerd-Ragna Bloch Thorsens gate 8, 4011 Stavanger, Norway
| | - Faiez Zannad
- Université de Lorraine, Inserm CIC 1403, CHRU, Cité Universitaire, 57000 Metz, France
| | - Marco Metra
- Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza del Mercato, 15, 25121 Brescia BS, Italy
| | - Petra Seemann
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straß0065 4A, CCM, Berlin D-10115, Germany
- ImmunometriX GmbH i.L, Brandenburgische Str. 83, D-10713 Berlin, Germany
| | - Antonia Hoeg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straß0065 4A, CCM, Berlin D-10115, Germany
| | - Patricio Lopez
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straß0065 4A, CCM, Berlin D-10115, Germany
- ImmunometriX GmbH i.L, Brandenburgische Str. 83, D-10713 Berlin, Germany
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straß0065 4A, CCM, Berlin D-10115, Germany
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
12
|
Aboumsallem JP, Shi C, De Wit S, Markousis-Mavrogenis G, Bracun V, Eijgenraam TR, Hoes MF, Meijers WC, Screever EM, Schouten ME, Voors AA, Silljé HHW, De Boer RA. Multi-omics analyses identify molecular signatures with prognostic values in different heart failure aetiologies. J Mol Cell Cardiol 2023; 175:13-28. [PMID: 36493852 DOI: 10.1016/j.yjmcc.2022.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heart failure (HF) is the leading cause of morbidity and mortality worldwide, and there is an urgent need for more global studies and data mining approaches to uncover its underlying mechanisms. Multiple omics techniques provide a more holistic molecular perspective to study pathophysiological events involved in the development of HF. METHODS In this study, we used a label-free whole myocardium multi-omics characterization from three commonly used mouse HF models: transverse aortic constriction (TAC), myocardial infarction (MI), and homozygous Phospholamban-R14del (PLN-R14Δ/Δ). Genes, proteins, and metabolites were analysed for differential expression between each group and a corresponding control group. The core transcriptome and proteome datasets were used for enrichment analysis. For genes that were upregulated at both the RNA and protein levels in all models, clinical validation was performed by means of plasma level determination in patients with HF from the BIOSTAT-CHF cohort. RESULTS Cell death and tissue repair-related pathways were upregulated in all preclinical models. Fatty acid oxidation, ATP metabolism, and Energy derivation processes were downregulated in all investigated HF aetiologies. Putrescine, a metabolite known for its role in cell survival and apoptosis, demonstrated a 4.9-fold (p < 0.02) increase in PLN-R14Δ/Δ, 2.7-fold (p < 0.005) increase in TAC mice, and 2.2-fold (p < 0.02) increase in MI mice. Four Biomarkers were associated with all-cause mortality (PRELP: Hazard ratio (95% confidence interval) 1.79(1.35, 2.39), p < 0.001; CKAP4: 1.38(1.21, 1.57), p < 0.001; S100A11: 1.37(1.13, 1.65), p = 0.001; Annexin A1 (ANXA1): 1.16(1.04, 1.29) p = 0.01), and three biomarkers were associated with HF-Related Rehospitalization, (PRELP: 1.88(1.4, 2.53), p < 0.001; CSTB: 1.15(1.05, 1.27), p = 0.003; CKAP4: 1.18(1.02, 1.35), P = 0.023). CONCLUSIONS Cell death and tissue repair pathways were significantly upregulated, and ATP and energy derivation processes were significantly downregulated in all models. Common pathways and biomarkers with potential clinical and prognostic associations merit further investigation to develop optimal management and therapeutic strategies for all HF aetiologies.
Collapse
Affiliation(s)
- Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Canxia Shi
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sanne De Wit
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Valentina Bracun
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim R Eijgenraam
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn F Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wouter C Meijers
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elles M Screever
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marloes E Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A De Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Paraskevaidis I, Farmakis D, Papingiotis G, Tsougos E. Inflammation and Heart Failure: Searching for the Enemy-Reaching the Entelechy. J Cardiovasc Dev Dis 2023; 10:jcdd10010019. [PMID: 36661914 PMCID: PMC9866611 DOI: 10.3390/jcdd10010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The pivotal role of inflammation in the pathophysiology of heart-failure (HF) development and progression has long been recognized. High blood levels of pro-inflammatory and inflammatory markers are present and associated with adverse outcomes in patients with HF. In addition, there seems to be an interrelation between inflammation and neurohormonal activation, the cornerstone of HF pathophysiology and management. However, clinical trials involving anti-inflammatory agents have shown inconclusive or even contradictory results in improving HF outcomes. In the present review, we try to shed some light on the reciprocal relationship between inflammation and HF in an attempt to identify the central regulating factors, such as inflammatory cells and soluble mediators and the related inflammatory pathways as potential therapeutic targets.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- 6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| | - Dimitrios Farmakis
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
- Correspondence: ; Tel.: +357-22-895235
| | - Georgios Papingiotis
- Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| |
Collapse
|
14
|
Bracun V, van Essen B, Voors AA, van Veldhuisen DJ, Dickstein K, Zannad F, Metra M, Anker S, Samani NJ, Ponikowski P, Filippatos G, Cleland JG, Lang CC, Ng LL, Shi C, de Wit S, Aboumsallem JP, Meijers WC, Klip IJT, van der Meer P, de Boer RA. Insulin-like growth factor binding protein 7 (IGFBP7), a link between heart failure and senescence. ESC Heart Fail 2022; 9:4167-4176. [PMID: 36088651 PMCID: PMC9773704 DOI: 10.1002/ehf2.14120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023] Open
Abstract
AIMS Insulin like growth factor binding protein 7 (IGFBP7) is a marker of senescence secretome and a novel biomarker in patients with heart failure (HF). We evaluated the prognostic value of IGFBP7 in patients with heart failure and examined associations to uncover potential new pathophysiological pathways related to increased plasma IGFBP7 concentrations. METHODS AND RESULTS We have measured plasma IGFBP7 concentrations in 2250 subjects with new-onset or worsening heart failure (BIOSTAT-CHF cohort). Higher IGFBP7 plasma concentrations were found in older subjects, those with worse kidney function, history of atrial fibrillation, and diabetes mellitus type 2, and in subjects with higher number of HF hospitalizations. Higher IGFBP7 levels also correlate with the levels of several circulating biomarkers, including higher NT-proBNP, hsTnT, and urea levels. Cox regression analyses showed that higher plasma IGFBP7 concentrations were strongly associated with increased risk of all three main endpoints (hospitalization, all-cause mortality, and combined hospitalization and mortality) (HR 1.75, 95% CI 1.25-2.46; HR 1.71, 95% CI 1.39-2.11; and HR 1.44, 95% CI 1.23-1.70, respectively). IGFBP7 remained a significant predictor of these endpoints in patients with both reduced and preserved ejection fraction. Likelihood ratio test showed significant improvement of all three risk prediction models, after adding IGFBP7 (P < 0.001). A biomarker network analysis showed that IGFBP7 levels activate different pathways involved in the regulation of the immune system. Results were externally validated in BIOSTAT-CHF validation cohort. CONCLUSIONS IGFPB7 presents as an independent and robust prognostic biomarker in patients with HF, with both reduced and preserved ejection fraction. We validate the previously published data showing IGFBP7 has correlations with a number of echocardiographic markers. Lastly, IGFBP7 pathways are involved in different stages of immune system regulation, linking heart failure to senescence pathways.
Collapse
Affiliation(s)
- Valentina Bracun
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Bart van Essen
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Adriaan A. Voors
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | | | | | - Faiez Zannad
- Universite de Lorraine | InsermCentre d'Investigations CliniquesNancyFrance
| | - Marco Metra
- Department of Medical and Surgical Specialties | Radiological Sciences and Public Health | Institute of CardiologyUniversity of BresciaBresciaItaly
| | - Stefan Anker
- Department of Cardiology (CVK) and Berlin Institute of Health Center for Regenerative Therapies (BCRT) | German Centre for Cardiovascular Research (DZHK) partner site BerlinCharité UniversitätsmedizinBerlinGermany
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences | University of Leicester | Glenfield Hospital | and NIHR Leicester Biomedical Research CentreGlenfield HospitalLeicesterUnited Kingdom
| | - Piotr Ponikowski
- Department of Heart DiseasesWroclaw Medical UniversityWrocławPoland
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens | School of MedicineAttikon University HospitalAthensGreece
| | - John G.F. Cleland
- Robertson Centre for Biostatistics | Institute of Health and WellbeingUniversity of Glasgow | Imperial CollegeLondonUnited Kingdom
| | - Chim C. Lang
- Division of Molecular and Clinical Medicine | Medical Research Institute | Ninewells Hospital & Medical SchoolUniversity of DundeeDundeeUnited Kingdom
| | - Leong L. Ng
- Department of Cardiovascular Sciences | University of Leicester | Glenfield Hospital | and NIHR Leicester Biomedical Research CentreGlenfield HospitalLeicesterUnited Kingdom
| | - Canxia Shi
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Sanne de Wit
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | | | - Wouter C. Meijers
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - IJsbrand T. Klip
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Peter van der Meer
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Rudolf A. de Boer
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|