1
|
Chaloemthanetphong A, Choowongkomon K, Worrapitirungsi W, Thangsiriskul N, Sathirapatya T, Sukawutthiya P, Noh H, Kanhar AA, Varrathyarom P, Lertparinyaphorn I, Natthasumon N, Bongsebandhu-Phubhakdi S, Auvichayapat V, Vongpaisarnsin K. SCN5A missense variants and their contribution to deaths in Sudden Unexplained Nocturnal Death Syndrome (SUNDS). Forensic Sci Int Genet 2025; 76:103237. [PMID: 39977965 DOI: 10.1016/j.fsigen.2025.103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Sudden Unexplained Nocturnal Death Syndrome (SUNDS), locally known as Lai-tai in Thailand, leads to sudden death during sleep in otherwise healthy young males. Cardiac arrhythmias, including Brugada syndrome (BrS) and Long QT syndrome (LQTS), are often implicated, with mutations in the SCN5A gene, encoding the Nav1.5 sodium channel, strongly linked to both conditions. This study characterized postmortem SUNDS cases in Thailand and analyzed SCN5A gene variants using whole exome sequencing (WES) and molecular modeling. Forensic autopsies were performed on 98 SUNDS victims from August 2020 to February 2023. WES was applied to 98 SUNDS-related genes, filtering variants based on dbNSFP annotations and public databases like the 1000 Genomes Project. Three SCN5A variants (A665S, R179Q, and R965C) were detected in five cases (approximate for 5 %). One case of A665S, which was reported for the first time in Thailand, was discovered. The R179Q variant was identified in an additional case, but it did not have a substantial electrostatic surface impact on Nav1.5. In contrast, the R965C variant, which is frequently associated with BrS, was discovered in three cases (approximate for 3 %). These results imply that SCN5A variants are involved in the pathogenesis of SUNDS and may provide valuable genetic markers for the purpose of diagnosis and prevention.
Collapse
Affiliation(s)
- Aummarin Chaloemthanetphong
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Wikanda Worrapitirungsi
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattachai Thangsiriskul
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tikumphorn Sathirapatya
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poonyapat Sukawutthiya
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hasnee Noh
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ashfaque Ahmed Kanhar
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pagparpat Varrathyarom
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand
| | - Irin Lertparinyaphorn
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Saknan Bongsebandhu-Phubhakdi
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vichaya Auvichayapat
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kornkiat Vongpaisarnsin
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
2
|
Zhang Z, Brugada P, Weiss JN, Qu Z. Phase 2 Re-Entry Without I to: Role of Sodium Channel Kinetics in Brugada Syndrome Arrhythmias. JACC Clin Electrophysiol 2023; 9:2459-2474. [PMID: 37831035 PMCID: PMC11348283 DOI: 10.1016/j.jacep.2023.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/27/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND In Brugada syndrome (BrS), phase 2 re-excitation/re-entry (P2R) induced by the transient outward potassium current (Ito) is a proposed arrhythmia mechanism; yet, the most common genetic defects are loss-of-function sodium channel mutations. OBJECTIVES The authors used computer simulations to investigate how sodium channel dysfunction affects P2R-mediated arrhythmogenesis in the presence and absence of Ito. METHODS Computer simulations were carried out in 1-dimensional cables and 2-dimensional tissue using guinea pig and human ventricular action potential models. RESULTS In the presence of Ito sufficient to generate robust P2R, reducing sodium current (INa) peak amplitude alone only slightly potentiated P2R. When INa inactivation kinetics were also altered to simulate reported effects of BrS mutations and sodium channel blockers, however, P2R occurred even in the absence of Ito. These effects could be potentiated by delaying L-type calcium channel activation or increasing ATP-sensitive potassium current, consistent with experimental and clinical findings. INa-mediated P2R also accounted for sex-related, day and night-related, and fever-related differences in arrhythmia risk in BrS patients. CONCLUSIONS Altered INa kinetics synergize powerfully with reduced INa amplitude to promote P2R-induced arrhythmias in BrS in the absence of Ito, establishing a robust mechanistic link between altered INa kinetics and the P2R-mediated arrhythmia mechanism.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang, China; Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - James N Weiss
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Zhilin Qu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
3
|
Monasky MM, Micaglio E, D'Imperio S, Pappone C. The Mechanism of Ajmaline and Thus Brugada Syndrome: Not Only the Sodium Channel! Front Cardiovasc Med 2022; 8:782596. [PMID: 35004896 PMCID: PMC8733296 DOI: 10.3389/fcvm.2021.782596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ajmaline is an anti-arrhythmic drug that is used to unmask the type-1 Brugada syndrome (BrS) electrocardiogram pattern to diagnose the syndrome. Thus, the disease is defined at its core as a particular response to this or other drugs. Ajmaline is usually described as a sodium-channel blocker, and most research into the mechanism of BrS has centered around this idea that the sodium channel is somehow impaired in BrS, and thus the genetics research has placed much emphasis on sodium channel gene mutations, especially the gene SCN5A, to the point that it has even been suggested that only the SCN5A gene should be screened in BrS patients. However, pathogenic rare variants in SCN5A are identified in only 20–30% of cases, and recent data indicates that SCN5A variants are actually, in many cases, prognostic rather than diagnostic, resulting in a more severe phenotype. Furthermore, the misconception by some that ajmaline only influences the sodium current is flawed, in that ajmaline actually acts additionally on potassium and calcium currents, as well as mitochondria and metabolic pathways. Clinical studies have implicated several candidate genes in BrS, encoding not only for sodium, potassium, and calcium channel proteins, but also for signaling-related, scaffolding-related, sarcomeric, and mitochondrial proteins. Thus, these proteins, as well as any proteins that act upon them, could prove absolutely relevant in the mechanism of BrS.
Collapse
Affiliation(s)
- Michelle M Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Emanuele Micaglio
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Sara D'Imperio
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
4
|
Ca2+-dependent modulation of voltage-gated myocyte sodium channels. Biochem Soc Trans 2021; 49:1941-1961. [PMID: 34643236 PMCID: PMC8589445 DOI: 10.1042/bst20200604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/01/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
Voltage-dependent Na+ channel activation underlies action potential generation fundamental to cellular excitability. In skeletal and cardiac muscle this triggers contraction via ryanodine-receptor (RyR)-mediated sarcoplasmic reticular (SR) Ca2+ release. We here review potential feedback actions of intracellular [Ca2+] ([Ca2+]i) on Na+ channel activity, surveying their structural, genetic and cellular and functional implications, translating these to their possible clinical importance. In addition to phosphorylation sites, both Nav1.4 and Nav1.5 possess potentially regulatory binding sites for Ca2+ and/or the Ca2+-sensor calmodulin in their inactivating III–IV linker and C-terminal domains (CTD), where mutations are associated with a range of skeletal and cardiac muscle diseases. We summarize in vitro cell-attached patch clamp studies reporting correspondingly diverse, direct and indirect, Ca2+ effects upon maximal Nav1.4 and Nav1.5 currents (Imax) and their half-maximal voltages (V1/2) characterizing channel gating, in cellular expression systems and isolated myocytes. Interventions increasing cytoplasmic [Ca2+]i down-regulated Imax leaving V1/2 constant in native loose patch clamped, wild-type murine skeletal and cardiac myocytes. They correspondingly reduced action potential upstroke rates and conduction velocities, causing pro-arrhythmic effects in intact perfused hearts. Genetically modified murine RyR2-P2328S hearts modelling catecholaminergic polymorphic ventricular tachycardia (CPVT), recapitulated clinical ventricular and atrial pro-arrhythmic phenotypes following catecholaminergic challenge. These accompanied reductions in action potential conduction velocities. The latter were reversed by flecainide at RyR-blocking concentrations specifically in RyR2-P2328S as opposed to wild-type hearts, suggesting a basis for its recent therapeutic application in CPVT. We finally explore the relevance of these mechanisms in further genetic paradigms for commoner metabolic and structural cardiac disease.
Collapse
|
5
|
Predicting changes to I Na from missense mutations in human SCN5A. Sci Rep 2018; 8:12797. [PMID: 30143662 PMCID: PMC6109095 DOI: 10.1038/s41598-018-30577-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/23/2018] [Indexed: 11/08/2022] Open
Abstract
Mutations in SCN5A can alter the cardiac sodium current INa and increase the risk of potentially lethal conditions such as Brugada and long-QT syndromes. The relation between mutations and their clinical phenotypes is complex, and systems to predict clinical severity of unclassified SCN5A variants perform poorly. We investigated if instead we could predict changes to INa, leaving the link from INa to clinical phenotype for mechanistic simulation studies. An exhaustive list of nonsynonymous missense mutations and resulting changes to INa was compiled. We then applied machine-learning methods to this dataset, and found that changes to INa could be predicted with higher sensitivity and specificity than most existing predictors of clinical significance. The substituted residues’ location on the protein correlated with channel function and strongly contributed to predictions, while conservedness and physico-chemical properties did not. However, predictions were not sufficiently accurate to form a basis for mechanistic studies. These results show that changes to INa, the mechanism through which SCN5A mutations create cardiac risk, are already difficult to predict using purely in-silico methods. This partly explains the limited success of systems to predict clinical significance of SCN5A variants, and underscores the need for functional studies of INa in risk assessment.
Collapse
|
6
|
Skibsbye L, Bengaard AK, Uldum-Nielsen AM, Boddum K, Christ T, Jespersen T. Inhibition of Small Conductance Calcium-Activated Potassium (SK) Channels Prevents Arrhythmias in Rat Atria During β-Adrenergic and Muscarinic Receptor Activation. Front Physiol 2018; 9:510. [PMID: 29922167 PMCID: PMC5996028 DOI: 10.3389/fphys.2018.00510] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/20/2018] [Indexed: 01/18/2023] Open
Abstract
Sympathetic and vagal activation is linked to atrial arrhythmogenesis. Here we investigated the small conductance Ca2+-activated K+ (SK)-channel pore-blocker N-(pyridin-2-yl)-4-(pyridine-2-yl)thiazol-2-amine (ICA) on action potential (AP) and atrial fibrillation (AF) parameters in isolated rat atria during β-adrenergic [isoprenaline (ISO)] and muscarinic M2 [carbachol (CCh)] activation. Furthermore, antiarrhythmic efficacy of ICA was benchmarked toward the class-IC antiarrhythmic drug flecainide (Fleca). ISO increased the spontaneous beating frequency but did not affect other AP parameters. As expected, CCh hyperpolarized resting membrane potential (-6.2 ± 0.9 mV), shortened APD90 (24.2 ± 1.6 vs. 17.7 ± 1.1 ms), and effective refractory period (ERP; 20.0 ± 1.3 vs. 15.8 ± 1.3 ms). The duration of burst pacing triggered AF was unchanged in the presence of CCh compared to control atria (12.8 ± 5.3 vs. 11.2 ± 3.6 s), while β-adrenergic activation resulted in shorter AF durations (3.3 ± 1.7 s) and lower AF-frequency compared to CCh. Treatment with ICA (10 μM) in ISO -stimulated atria prolonged APD90 and ERP, while the AF burden was reduced (7.1 ± 5.5 vs. 0.1 ± 0.1 s). In CCh-stimulated atria, ICA treatment also resulted in APD90 and ERP prolongation and shorter AF durations. Fleca treatment in CCh-stimulated atria prolonged APD90 and ERP and abbreviated the AF duration to a similar extent as with ICA. Muscarinic activated atria constitutes a more arrhythmogenic substrate than β-adrenoceptor activated atria. Pharmacological inhibition of SK channels by ICA is effective under both conditions and equally efficacious to Fleca.
Collapse
Affiliation(s)
- Lasse Skibsbye
- Cardiac Physiology Laboratory, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne K Bengaard
- Cardiac Physiology Laboratory, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A M Uldum-Nielsen
- Cardiac Physiology Laboratory, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Boddum
- Cardiac Physiology Laboratory, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, DZHK: German Centre for Cardiovascular Research, Hamburg, Germany
| | - Thomas Jespersen
- Cardiac Physiology Laboratory, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Gardill BR, Rivera-Acevedo RE, Tung CC, Okon M, McIntosh LP, Van Petegem F. The voltage-gated sodium channel EF-hands form an interaction with the III-IV linker that is disturbed by disease-causing mutations. Sci Rep 2018; 8:4483. [PMID: 29540853 PMCID: PMC5852250 DOI: 10.1038/s41598-018-22713-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Voltage-gated sodium channels (NaV) are responsible for the rapid depolarization of many excitable cells. They readily inactivate, a process where currents diminish after milliseconds of channel opening. They are also targets for a multitude of disease-causing mutations, many of which have been shown to affect inactivation. A cluster of disease mutations, linked to Long-QT and Brugada syndromes, is located in a C-terminal EF-hand like domain of NaV1.5, the predominant cardiac sodium channel isoform. Previous studies have suggested interactions with the III-IV linker, a cytosolic element directly involved in inactivation. Here we validate and map the interaction interface using isothermal titration calorimetry (ITC) and NMR spectroscopy. We investigated the impact of various disease mutations on the stability of the domain, and found that mutations that cause misfolding of the EF-hand domain result in hyperpolarizing shifts in the steady-state inactivation curve. Conversely, mutations in the III-IV linker that disrupt the interaction with the EF-hand domain also result in large hyperpolarization shifts, supporting the interaction between both elements in intact channels. Disrupting the interaction also causes large late currents, pointing to a dual role of the interaction in reducing the population of channels entering inactivation and in stabilizing the inactivated state.
Collapse
Affiliation(s)
- Bernd R Gardill
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ricardo E Rivera-Acevedo
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ching-Chieh Tung
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
8
|
Sinus Bradycardia in Carriers of the SCN5A-1795insD Mutation: Unraveling the Mechanism through Computer Simulations. Int J Mol Sci 2018; 19:ijms19020634. [PMID: 29473904 PMCID: PMC5855856 DOI: 10.3390/ijms19020634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 11/25/2022] Open
Abstract
The SCN5A gene encodes the pore-forming α-subunit of the ion channel that carries the cardiac fast sodium current (INa). The 1795insD mutation in SCN5A causes sinus bradycardia, with a mean heart rate of 70 beats/min in mutation carriers vs. 77 beats/min in non-carriers from the same family (lowest heart rate 41 vs. 47 beats/min). To unravel the underlying mechanism, we incorporated the mutation-induced changes in INa into a recently developed comprehensive computational model of a single human sinoatrial node cell (Fabbri–Severi model). The 1795insD mutation reduced the beating rate of the model cell from 74 to 69 beats/min (from 49 to 43 beats/min in the simulated presence of 20 nmol/L acetylcholine). The mutation-induced persistent INa per se resulted in a substantial increase in beating rate. This gain-of-function effect was almost completely counteracted by the loss-of-function effect of the reduction in INa conductance. The further loss-of-function effect of the shifts in steady-state activation and inactivation resulted in an overall loss-of-function effect of the 1795insD mutation. We conclude that the experimentally identified mutation-induced changes in INa can explain the clinically observed sinus bradycardia. Furthermore, we conclude that the Fabbri–Severi model may prove a useful tool in understanding cardiac pacemaker activity in humans.
Collapse
|
9
|
van der Heyden MA, Jespersen T. Pharmacological exploration of the resting membrane potential reserve: Impact on atrial fibrillation. Eur J Pharmacol 2016; 771:56-64. [DOI: 10.1016/j.ejphar.2015.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022]
|
10
|
Basis for the Induction of Tissue-Level Phase-2 Reentry as a Repolarization Disorder in the Brugada Syndrome. BIOMED RESEARCH INTERNATIONAL 2015; 2015:197586. [PMID: 26583094 PMCID: PMC4637010 DOI: 10.1155/2015/197586] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 11/20/2022]
Abstract
Aims. Human action potentials in the Brugada syndrome have been characterized by delayed or even complete loss of dome formation, especially in the right ventricular epicardial layers. Such a repolarization pattern is believed to trigger phase-2 reentry (P2R); however, little is known about the conditions necessary for its initiation. This study aims to determine the specific mechanisms that facilitate P2R induction in Brugada-affected cardiac tissue in humans. Methods. Ionic models for Brugada syndrome in human epicardial cells were developed and used to study the induction of P2R in cables, sheets, and a three-dimensional model of the right ventricular free wall. Results. In one-dimensional cables, P2R can be induced by adjoining lost-dome and delayed-dome regions, as mediated by tissue excitability and transmembrane voltage profiles, and reduced coupling facilitates its induction. In two and three dimensions, sustained reentry can arise when three regions (delayed-dome, lost-dome, and normal epicardium) are present. Conclusions. Not only does P2R induction by Brugada syndrome require regions of action potential with delayed-dome and lost-dome, but in order to generate a sustained reentry from a triggered waveback multiple factors are necessary, including heterogeneity in action potential distribution, tissue coupling, direction of stimulation, the shape of the late plateau, the duration of lost-dome action potentials, and recovery of tissue excitability, which is predominantly modulated by tissue coupling.
Collapse
|
11
|
Zhu JF, DU LL, Tian Y, DU YM, Zhang L, Zhou T, Tian LI. Novel heterozygous mutation c.4282G>T in the SCN5A gene in a family with Brugada syndrome. Exp Ther Med 2015; 9:1639-1645. [PMID: 26136871 DOI: 10.3892/etm.2015.2361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/20/2014] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is a rare, inherited arrhythmia syndrome. The most well-known gene that is responsible for causing BrS is SCN5A, which encodes the human cardiac Na+ channel (Nav1.5) α subunit. To date, it has been reported that >100 mutations in SCN5A can cause BrS. In the present study, a novel BrS-associated Nav1.5 mutation, A1428S, was identified in a proband who was successfully resuscitated from an episode of sudden collapse during walking. This mutation was further confirmed by polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis, which showed that the PCR fragment containing the mutation A1428S could be cut by the restriction enzyme Nsi1, yielding two shorter DNA fragments of 329 and 159 bp, which were not present in family members homozygous for the wild-type (WT) allele. Furthermore, the electrophysiological properties were analyzed by patch clamp technique. Current density was decreased in the A1428S mutant compared that in the WT. However, neither the steady-state activation or inactivation, nor the recovery from inactivation exhibited changes between the A1428S mutant and the WT. In conclusion, the results of this study are consistent with the hypothesis that a reduction in Nav1.5 channel function is involved in the pathogenesis of BrS. The structural-functional study of the Nav1.5 channel enhances the present understanding the pathophysiological function of the channel.
Collapse
Affiliation(s)
- Jian-Fang Zhu
- Central Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Li-Li DU
- Ion Channelopathy Research Center, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yuan Tian
- Department of Geriatrics and Nursing, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yi-Mei DU
- Ion Channelopathy Research Center, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ling Zhang
- Ion Channelopathy Research Center, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tao Zhou
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - L I Tian
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
12
|
Yuan L, Koivumäki JT, Liang B, Lorentzen LG, Tang C, Andersen MN, Svendsen JH, Tfelt-Hansen J, Maleckar M, Schmitt N, Olesen MS, Jespersen T. Investigations of the Navβ1b sodium channel subunit in human ventricle; functional characterization of the H162P Brugada syndrome mutant. Am J Physiol Heart Circ Physiol 2014; 306:H1204-12. [PMID: 24561865 DOI: 10.1152/ajpheart.00405.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brugada syndrome (BrS) is a rare inherited disease that can give rise to ventricular arrhythmia and ultimately sudden cardiac death. Numerous loss-of-function mutations in the cardiac sodium channel Nav1.5 have been associated with BrS. However, few mutations in the auxiliary Navβ1-4 subunits have been linked to this disease. Here we investigated differences in expression and function between Navβ1 and Navβ1b and whether the H162P/Navβ1b mutation found in a BrS patient is likely to be the underlying cause of disease. The impact of Navβ subunits was investigated by patch-clamp electrophysiology, and the obtained in vitro values were used for subsequent in silico modeling. We found that Navβ1b transcripts were expressed at higher levels than Navβ1 transcripts in the human heart. Navβ1 and Navβ1b coexpressed with Nav1.5 induced a negative shift on steady state of activation and inactivation compared with Nav1.5 alone. Furthermore, Navβ1b was found to increase the current level when coexpressed with Nav1.5, Navβ1b/H162P mutated subunit peak current density was reduced by 48% (-645 ± 151 vs. -334 ± 71 pA/pF), V1/2 steady-state inactivation shifted by -6.7 mV (-70.3 ± 1.5 vs. -77.0 ± 2.8 mV), and time-dependent recovery from inactivation slowed by >50% compared with coexpression with Navβ1b wild type. Computer simulations revealed that these electrophysiological changes resulted in a reduction in both action potential amplitude and maximum upstroke velocity. The experimental data thereby indicate that Navβ1b/H162P results in reduced sodium channel activity functionally affecting the ventricular action potential. This result is an important replication to support the notion that BrS can be linked to the function of Navβ1b and is associated with loss-of-function of the cardiac sodium channel.
Collapse
Affiliation(s)
- Lei Yuan
- Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bébarová M. Arrhythmogenesis in Brugada syndrome: impact and constrains of current concepts. Int J Cardiol 2013; 167:1760-71. [PMID: 23295036 DOI: 10.1016/j.ijcard.2012.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/15/2012] [Accepted: 12/06/2012] [Indexed: 01/13/2023]
Abstract
Brugada syndrome (BrS), an inherited arrhythmogenic disease first described in 1992, is characterized by ST segment elevations on the electrocardiogram in the right precordium and by a high occurrence of arrhythmias including the life-threatening ventricular tachycardia/fibrillation. Knowledge of the underlying mechanisms of formation of arrhythmogenic substrate in BrS is essential, namely for the risk stratification of BrS patients and their therapy which is still restrained almost exclusively to the implantation of cardioverter/defibrillator. In spite of many crucial findings in this field published within recent years, the final consistent view has not been established so far. Hence, BrS described 20 years ago remains an actual topic of both clinical and experimental studies. This review presents an overview of the current knowledge related to the pathogenesis of BrS arrhythmogenic substrate, namely of the genetic basis of BrS, functional consequences of mutations related to BrS, and arrhythmogenic mechanisms in BrS.
Collapse
Affiliation(s)
- Markéta Bébarová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Bohunice, Czech Republic.
| |
Collapse
|
14
|
Abriel H, Zaklyazminskaya EV. Cardiac channelopathies: genetic and molecular mechanisms. Gene 2012; 517:1-11. [PMID: 23266818 DOI: 10.1016/j.gene.2012.12.061] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/03/2012] [Indexed: 12/20/2022]
Abstract
Channelopathies are diseases caused by dysfunctional ion channels, due to either genetic or acquired pathological factors. Inherited cardiac arrhythmic syndromes are among the most studied human disorders involving ion channels. Since seminal observations made in 1995, thousands of mutations have been found in many of the different genes that code for cardiac ion channel subunits and proteins that regulate the cardiac ion channels. The main phenotypes observed in patients carrying these mutations are congenital long QT syndrome (LQTS), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), short QT syndrome (SQTS) and variable types of conduction defects (CD). The goal of this review is to present an update of the main genetic and molecular mechanisms, as well as the associated phenotypes of cardiac channelopathies as of 2012.
Collapse
Affiliation(s)
- Hugues Abriel
- Department of Clinical Research, University of Bern, Switzerland.
| | | |
Collapse
|
15
|
Winkel BG, Larsen MK, Berge KE, Leren TP, Nissen PH, Olesen MS, Hollegaard MV, Jespersen T, Yuan L, Nielsen N, Haunsø S, Svendsen JH, Wang Y, Kristensen IB, Jensen HK, Tfelt-Hansen J, Banner J. The prevalence of mutations in KCNQ1, KCNH2, and SCN5A in an unselected national cohort of young sudden unexplained death cases. J Cardiovasc Electrophysiol 2012; 23:1092-8. [PMID: 22882672 DOI: 10.1111/j.1540-8167.2012.02371.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Sudden unexplained death account for one-third of all sudden natural deaths in the young (1-35 years). Hitherto, the prevalence of genopositive cases has primarily been based on deceased persons referred for postmortem genetic testing. These deaths potentially may represent the worst of cases, thus possibly overestimating the prevalence of potentially disease causing mutations in the 3 major long-QT syndrome (LQTS) genes in the general population. We therefore wanted to investigate the prevalence of mutations in an unselected population of sudden unexplained deaths in a nationwide setting. METHODS DNA for genetic testing was available for 44 cases of sudden unexplained death in Denmark in the period 2000-2006 (equaling 33% of all cases of sudden unexplained death in the age group). KCNQ1, KCNH2, and SCN5A were sequenced and in vitro electrophysiological studies were performed on novel mutations. RESULTS In total, 5 of 44 cases (11%) carried a mutation in 1 of the 3 genes corresponding to 11% of all investigated cases (R190W KCNQ1, F29L KCNH2 (2 cases), P297S KCNH2 and P1177L SCN5A). P1177L SCN5A has not been reported before. In vitro electrophysiological studies of P1177L SCN5A revealed an increased sustained current suggesting a LQTS phenotype. CONCLUSION In a nationwide setting, the genetic investigation of an unselected population of sudden unexplained death cases aged 1-35 years finds a lower than expected number of mutations compared to referred populations previously reported. We therefore conclude that the prevalence of mutations in the 3 major LQTS associated genes may not be as abundant as previously estimated.
Collapse
Affiliation(s)
- Bo Gregers Winkel
- Department of Cardiology, Rigshospitalet and Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Olesen MS, Yuan L, Liang B, Holst AG, Nielsen N, Nielsen JB, Hedley PL, Christiansen M, Olesen SP, Haunsø S, Schmitt N, Jespersen T, Svendsen JH. High prevalence of long QT syndrome-associated SCN5A variants in patients with early-onset lone atrial fibrillation. ACTA ACUST UNITED AC 2012; 5:450-9. [PMID: 22685113 DOI: 10.1161/circgenetics.111.962597] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common cardiac arrhythmia. The cardiac sodium channel, Na(V)1.5, plays a pivotal role in setting the conduction velocity and the initial depolarization of the cardiac myocytes. We hypothesized that early-onset lone AF was associated with genetic variation in SCN5A. METHODS AND RESULTS The coding sequence of SCN5A was sequenced in 192 patients with early-onset lone AF. Eight nonsynonymous mutations (T220I, R340Q, T1304M, F1596I, R1626H, D1819N, R1897W, and V1951M) and 2 rare variants (S216L in 2 patients and F2004L) were identified. Of 11 genopositive probands, 6 (3.2% of the total population) had a variant previously associated with long QT syndrome type 3 (LQTS3). The prevalence of LQTS3-associated variants in the patients with lone AF was much higher than expected, compared with the prevalence in recent exome data (minor allele frequency, 1.6% versus 0.3%; P=0.003), mainly representing the general population. The functional effects of the mutations were analyzed by whole cell patch clamp in HEK293 cells; for 5 of the mutations previously associated with LQTS3, patch-clamp experiments showed an increased sustained sodium current, suggesting a mechanistic overlap between LQTS3 and early-onset lone AF. In 9 of 10 identified mutations and rare variants, we observed compromised biophysical properties affecting the transient peak current. CONCLUSIONS In a cohort of patients with early-onset lone AF, we identified a high prevalence of SCN5A mutations previously associated with LQTS3. Functional investigations of the mutations revealed both compromised transient peak current and increased sustained current.
Collapse
Affiliation(s)
- Morten S Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wilders R. Arrhythmogenic right ventricular cardiomyopathy: considerations from in silico experiments. Front Physiol 2012; 3:168. [PMID: 22754532 PMCID: PMC3385583 DOI: 10.3389/fphys.2012.00168] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/09/2012] [Indexed: 11/22/2022] Open
Abstract
Objective: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with remodeling of gap junctions and also, although less well-defined, down-regulation of the fast sodium current. The gap junction remodeling and down-regulation of sodium current have been proposed as contributors to arrhythmogenesis in ARVC by slowing conduction. The objective of the present study was to assess the amount of conduction slowing due to the observed gap junction remodeling and down-regulation of sodium current. Methods: The effects of (changes in) gap junctional conductance, cell dimensions, and sodium current on both longitudinal and transversal conduction velocity were tested by simulating action potential propagation in linear strands of human ventricular cells that were either arranged end-to-end or side-by-side. Results: A 50% reduction in gap junction content, as commonly observed in ARVC, gives rise to an 11% decrease in longitudinal conduction velocity and a 29% decrease in transverse conduction velocity. A down-regulation of the sodium current through a 50% decrease in peak current density as well as a −15 mV shift in steady-state inactivation, as observed in an experimental model of ARVC, decreases conduction velocity in either direction by 32%. In combination, the gap junction remodeling and down-regulation of sodium current result in a 40% decrease in longitudinal conduction velocity and a 52% decrease in transverse conduction velocity. Conclusion: The gap junction remodeling and down-regulation of sodium current do result in conduction slowing, but heterogeneity of gap junction remodeling, in combination with down-regulation of sodium current, rather than gap junction remodeling per se may be a critical factor in arrhythmogenesis in ARVC.
Collapse
Affiliation(s)
- Ronald Wilders
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
18
|
Tfelt-Hansen J, Winkel BG, Grunnet M, Jespersen T. Cardiac channelopathies and sudden infant death syndrome. Cardiology 2011; 119:21-33. [PMID: 21778721 DOI: 10.1159/000329047] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/24/2011] [Indexed: 12/19/2022]
Abstract
Sudden infant death syndrome (SIDS) is always a devastating and unexpected occurrence. SIDS is the leading cause of death in the first 6 months after birth in the industrialized world. Since the discovery in 1998 of long QT syndrome as an underlying substrate for SIDS, around 10-20% of SIDS cases have been proposed as being caused by genetic variants in either ion channel or ion channel-associated proteins. Until now, 10 cardiac channelopathy susceptibility genes have been found to be implicated in the pathogenesis of SIDS. Four of the genes encode cardiac ion channel α-subunits, 3 genes encode ion channel β-subunits, and 3 genes encode other channel-interacting proteins. All 10 genes have been associated with primary electrical heart diseases. SIDS may hereby be the initial symptom of rare primary electric channelopathies such as long QT, short QT and Brugada syndrome, as well as catecholaminergic polymorphic ventricular tachycardia. In this review we describe the functional role of sodium, potassium and calcium channels in propagation, depolarization and repolarization in the context of the 4 arrhythmogenic diseases reported to be associated with SIDS. Lastly, the possibility of postmortem genetic testing and potential recommendations on how to deal with family members are discussed.
Collapse
Affiliation(s)
- Jacob Tfelt-Hansen
- Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Copenhagen, Denmark.
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- T Jespersen
- Department of Biomedical Sciences 16.5, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Gurkiewicz M, Korngreen A, Waxman SG, Lampert A. Kinetic modeling of Nav1.7 provides insight into erythromelalgia-associated F1449V mutation. J Neurophysiol 2011; 105:1546-57. [PMID: 21289137 DOI: 10.1152/jn.00703.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gain-of-function mutations of the voltage-gated sodium channel (VGSC) Na(v)1.7 have been linked to human pain disorders. The mutation F1449V, located at the intracellular end of transmembrane helix S6 of domain III, induces the inherited pain syndrome erythromelalgia. A kinetic model of wild-type (WT) and F1449V Na(v)1.7 may provide a basis for predicting putative intraprotein interactions. We semiautomatically constrained a Markov model using stochastic search algorithms and whole cell patch-clamp recordings from human embryonic kidney cells transfected with Na(v)1.7 and its F1449V mutation. The best models obtained simulated known differences in action potential thresholds and firing patterns in spinal sensory neurons expressing WT and F1449V. The most suitable Markov model consisted of three closed, one open, and two inactivated states. The model predicted that the F1449V mutation shifts occupancy of the closed states closer to the open state, making it easier for the channel pore to open. It also predicted that F1449V's second inactivated state is more than four times more likely to be occupied than the equivalent state in WT at hyperpolarized potentials, although the mutation still lowered the firing threshold of action potentials. The differences between WT and F1449V were not limited to a single transition. Thus a point mutation in position F1449, while phenotypically most probably affecting the activation gate, may also modify channel functions mediated by structures in more distant areas of the channel protein.
Collapse
Affiliation(s)
- Meron Gurkiewicz
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | |
Collapse
|
21
|
Berecki G, Wilders R, de Jonge B, van Ginneken ACG, Verkerk AO. Re-evaluation of the action potential upstroke velocity as a measure of the Na+ current in cardiac myocytes at physiological conditions. PLoS One 2010; 5:e15772. [PMID: 21217835 PMCID: PMC3013114 DOI: 10.1371/journal.pone.0015772] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/26/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The SCN5A encoded sodium current (I(Na)) generates the action potential (AP) upstroke and is a major determinant of AP characteristics and AP propagation in cardiac myocytes. Unfortunately, in cardiac myocytes, investigation of kinetic properties of I(Na) with near-physiological ion concentrations and temperature is technically challenging due to the large amplitude and rapidly activating nature of I(Na), which may seriously hamper the quality of voltage control over the membrane. We hypothesized that the alternating voltage clamp-current clamp (VC/CC) technique might provide an alternative to traditional voltage clamp (VC) technique for the determination of I(Na) properties under physiological conditions. PRINCIPAL FINDINGS We studied I(Na) under close-to-physiological conditions by VC technique in SCN5A cDNA-transfected HEK cells or by alternating VC/CC technique in both SCN5A cDNA-transfected HEK cells and rabbit left ventricular myocytes. In these experiments, peak I(Na) during a depolarizing VC step or maximal upstroke velocity, dV/dt(max), during VC/CC served as an indicator of available I(Na). In HEK cells, biophysical properties of I(Na), including current density, voltage dependent (in)activation, development of inactivation, and recovery from inactivation, were highly similar in VC and VC/CC experiments. As an application of the VC/CC technique we studied I(Na) in left ventricular myocytes isolated from control or failing rabbit hearts. CONCLUSIONS Our results demonstrate that the alternating VC/CC technique is a valuable experimental tool for I(Na) measurements under close-to-physiological conditions in cardiac myocytes.
Collapse
Affiliation(s)
- Géza Berecki
- Department of Anatomy, Embryology, and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Anatomy, Embryology, and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Berend de Jonge
- Department of Anatomy, Embryology, and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoni C. G. van Ginneken
- Department of Anatomy, Embryology, and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie O. Verkerk
- Department of Anatomy, Embryology, and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Chagot B, Chazin WJ. Solution NMR structure of Apo-calmodulin in complex with the IQ motif of human cardiac sodium channel NaV1.5. J Mol Biol 2010; 406:106-19. [PMID: 21167176 DOI: 10.1016/j.jmb.2010.11.046] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 12/19/2022]
Abstract
The function of the human voltage-gated sodium channel Na(V)1.5 is regulated in part by intracellular calcium signals. The ubiquitous calcium sensor protein calmodulin (CaM) is an important part of the complex calcium-sensing apparatus in Na(V)1.5. CaM interacts with an IQ (isoleucine-glutamine) motif in the large intracellular C-terminal domain of the channel. Using co-expression and co-purification, we have been able to isolate a CaM-IQ motif complex and to determine its high-resolution structure in absence of calcium using multi-dimensional solution NMR. Under these conditions, the Na(V)1.5 IQ motif interacts with the C-terminal domain (C-lobe) of CaM, with the N-terminal domain remaining free in solution. The structure reveals that the C-lobe adopts a semi-open conformation with the IQ motif bound in a narrow hydrophobic groove. Sequence similarities between voltage-gated sodium channels and voltage-gated calcium channels suggest that the structure of the CaM-Na(V)1.5 IQ motif complex can serve as a general model for the interaction between CaM and ion channel IQ motifs under low-calcium conditions. The structure also provides insight into the biochemical basis for disease-associated mutations that map to the IQ motif in Na(V)1.5.
Collapse
Affiliation(s)
- Benjamin Chagot
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
23
|
Olesen MS, Jespersen T, Nielsen JB, Liang B, Møller DV, Hedley P, Christiansen M, Varró A, Olesen SP, Haunsø S, Schmitt N, Svendsen JH. Mutations in sodium channel β-subunit SCN3B are associated with early-onset lone atrial fibrillation. Cardiovasc Res 2010; 89:786-93. [PMID: 21051419 DOI: 10.1093/cvr/cvq348] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS Atrial fibrillation (AF) is the most frequent arrhythmia. Screening of SCN5A-the gene encoding the α-subunit of the cardiac sodium channel-has indicated that disturbances of the sodium current may play a central role in the mechanism of lone AF. We tested the hypothesis that lone AF in young patients is associated with genetic mutations in SCN3B and SCN4B, the genes encoding the two β-subunits of the cardiac sodium channel. METHODS AND RESULTS In 192 unrelated lone AF patients, the entire coding sequence and splice junctions of SCN3B and SCN4B were bidirectionally sequenced. Three non-synonymous mutations were found in SCN3B (R6K, L10P, and M161T). Two mutations were novel (R6K and M161T). None of the mutations were present in the control group (n = 432 alleles), nor have any been previously reported in conjunction with AF. All SCN3B mutations affected residues that are evolutionarily conserved across species. Electrophysiological studies on the SCN3B mutation were carried out and all three SCN3B mutations caused a functionally reduced sodium channel current. One synonymous variant was found in SCN4B. CONCLUSION In 192 young lone AF patients, we found three patients with suspected disease-causing non-synonymous mutations in SCN3B, indicating that mutations in this gene contribute to the mechanism of lone AF. The three mutations in SCN3B were investigated electrophysiologically and all led to loss of function in the sodium current, supporting the hypothesis that decreased sodium current enhances AF susceptibility.
Collapse
Affiliation(s)
- Morten S Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hedley PL, Jørgensen P, Schlamowitz S, Moolman-Smook J, Kanters JK, Corfield VA, Christiansen M. The genetic basis of Brugada syndrome: a mutation update. Hum Mutat 2009; 30:1256-66. [PMID: 19606473 DOI: 10.1002/humu.21066] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Brugada syndrome (BrS) is a condition characterized by a distinct ST-segment elevation in the right precordial leads of the electrocardiogram and, clinically, by an increased risk of cardiac arrhythmia and sudden death. The condition predominantly exhibits an autosomal dominant pattern of inheritance with an average prevalence of 5:10,000 worldwide. Currently, more than 100 mutations in seven genes have been associated with BrS. Loss-of-function mutations in SCN5A, which encodes the alpha-subunit of the Na(v)1.5 sodium ion channel conducting the depolarizing I(Na) current, causes 15-20% of BrS cases. A few mutations have been described in GPD1L, which encodes glycerol-3-phosphate dehydrogenase-1 like protein; CACNA1C, which encodes the alpha-subunit of the Ca(v)1.2 ion channel conducting the depolarizing I(L,Ca) current; CACNB2, which encodes the stimulating beta2-subunit of the Ca(v)1.2 ion channel; SCN1B and SCN3B, which, in the heart, encodes beta-subunits of the Na(v)1.5 sodium ion channel, and KCNE3, which encodes the ancillary inhibitory beta-subunit of several potassium channels including the Kv4.3 ion channel conducting the repolarizing potassium I(to) current. BrS exhibits variable expressivity, reduced penetrance, and "mixed phenotypes," where families contain members with BrS as well as long QT syndrome, atrial fibrillation, short QT syndrome, conduction disease, or structural heart disease, have also been described.
Collapse
Affiliation(s)
- Paula L Hedley
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
25
|
Tfelt-Hansen J, Winkel BG, Grunnet M, Jespersen T. Inherited cardiac diseases caused by mutations in the Nav1.5 sodium channel. J Cardiovasc Electrophysiol 2009; 21:107-15. [PMID: 19845816 DOI: 10.1111/j.1540-8167.2009.01633.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A prerequisite for a normal cardiac function is a proper generation and propagation of electrical impulses. Contraction of the heart is obtained through a delicate matched transmission of the electrical impulses. A pivotal element of the impulse propagation is the depolarizing sodium current, responsible for the initial depolarization of the cardiomyocytes. Recent research has shown that mutations in the SCN5A gene, encoding the cardiac sodium channel Nav1.5, are associated with both rare forms of ventricular arrhythmia, as well as the most frequent form of arrhythmia, atrial fibrillation (AF). In this comprehensive review, we describe the functional role of Nav1.5 and its associated proteins in propagation and depolarization both in a normal- and in a pathophysiological setting. Furthermore, several of the arrhythmogenic diseases, such as long-QT syndrome, Brugada syndrome, and AF, reported to be associated with mutations in SCN5A, are thoroughly described.
Collapse
Affiliation(s)
- Jacob Tfelt-Hansen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Copenhagen, Denmark.
| | | | | | | |
Collapse
|
26
|
Using computational modeling to predict arrhythmogenesis and antiarrhythmic therapy. ACTA ACUST UNITED AC 2009; 6:71-84. [PMID: 20652086 DOI: 10.1016/j.ddmod.2010.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of computational modeling to predict arrhythmia and arrhythmogensis is a relatively new field, but has nonetheless dramatically enhanced our understanding of the physiological and pathophysiological mechanisms that lead to arrhythmia. This review summarizes recent advances in the field of computational modeling approaches with a brief review of the evolution of cellular action potential models, and the incorporation of genetic mutations to understand fundamental arrhythmia mechanisms, including how simulations have revealed situation specific mechanisms leading to multiple phenotypes for the same genotype. The review then focuses on modeling drug blockade to understand how the less-than-intuitive effects some drugs have to either ameliorate or paradoxically exacerbate arrhythmia. Quantification of specific arrhythmia indicies are discussed at each spatial scale, from channel to tissue. The utility of hERG modeling to assess altered repolarization in response to drug blockade is also briefly discussed. Finally, insights gained from Ca(2+) dynamical modeling and EC coupling, neurohumoral regulation of cardiac dynamics, and cell signaling pathways are also reviewed.
Collapse
|
27
|
Chiang KC, Lai LP, Shieh RC. Characterization of a novel Nav1.5 channel mutation, A551T, associated with Brugada syndrome. J Biomed Sci 2009; 16:76. [PMID: 19706159 PMCID: PMC2749822 DOI: 10.1186/1423-0127-16-76] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/25/2009] [Indexed: 01/03/2023] Open
Abstract
Brugada syndrome is a life-threatening, inherited arrhythmia disorder associated with autosomal dominant mutations in SCN5A, the gene encoding the human cardiac Na+ channel α subunit (Nav1.5). Here, we characterized the biophysical properties of a novel Brugada syndrome-associated Nav1.5 mutation, A551T, identified in a proband who was successfully resuscitated from an episode of ventricular fibrillation with sudden collapse. Whole-cell currents through wild-type (WT) Nav1.5 and mutant (A551T) channels were recorded and compared in the human embryonic kidney cell line HEK293T transfected with SCN5A cDNA and SCN1B cDNA, using the patch-clamp technique. Current density was decreased in the A551T mutant compared to the WT. In addition, the A551T mutation reduced Nav1.5 activity by promoting entry of the channel into fast inactivation from the closed state, thereby shifting the steady-state inactivation curve by -5 mV. Furthermore, when evaluated at -90 mV, the resting membrane potential, but not at the conventionally used -120 mV, both the percentage, and rate, of channel recovery from inactivation were reduced in the mutant. These results suggest that the DI-DII linker may be involved in the stability of inactivation gating process. This study supports the notion that a reduction in Nav1.5 channel function is involved in the pathogenesis of Brugada syndrome. The structural-functional study of the Nav1.5 channel advances our understanding of its pathophysiolgocial function.
Collapse
Affiliation(s)
- Kun-Chi Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China.
| | | | | |
Collapse
|
28
|
Instability in action potential morphology underlies phase 2 reentry: A mathematical modeling study. Heart Rhythm 2009; 6:813-22. [PMID: 19467510 DOI: 10.1016/j.hrthm.2009.02.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 02/25/2009] [Indexed: 11/22/2022]
|
29
|
Cantalapiedra IR, Peñaranda A, Mont L, Brugada J, Echebarria B. Reexcitation mechanisms in epicardial tissue: role of I(to) density heterogeneities and I(Na) inactivation kinetics. J Theor Biol 2009; 259:850-9. [PMID: 19410581 DOI: 10.1016/j.jtbi.2009.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/17/2009] [Accepted: 04/23/2009] [Indexed: 01/23/2023]
Abstract
Dispersion of action potential repolarization is known to be an important arrhythmogenic factor in cardiopathies such as Brugada syndrome. In this work, we analyze the effect of a variation in sodium current (I(Na)) inactivation and a heterogeneous rise of transient outward current (I(to)) in the probability of reentry in epicardial tissue. We use the Luo-Rudy model of epicardial ventricular action potential to study wave propagation in a one-dimensional fiber. Spatial dispersion in repolarization is introduced by splitting the fiber into zones with different strength of I(to). We then analyze the pro-arrhythmic effect of a variation in the relaxation time and steady-state of the sodium channel fast inactivating gate h. We quantify the probability of reentry measuring the percentage of reexcitations that occurs in 200 beats. We find that, for high stimulation rates, this percentage is negligible, but increases notably for pacing periods above 700ms. Surprisingly, with decreasing I(Na) inactivation time, the percentage of reexcitations does not grow monotonically, but presents vulnerable windows, separated by values of the I(Na) inactivation speed-up where reexcitation does not occur. By increasing the strength of L-type calcium current I(CaL) above a certain threshold, reexcitation disappears. Finally, we show the formation of reentry in stimulated two-dimensional epicardial tissue with modified I(Na) kinetics and I(to) heterogeneity. Thus, we confirm that while I(to) dispersion is necessary for phase-2 reentry, altered sodium inactivation kinetics influences the probability of reexcitation in a highly nonlinear fashion.
Collapse
Affiliation(s)
- Inma R Cantalapiedra
- Departament de Física Aplicada, Universitat Politècnica de Catalunya, EPSEB, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
30
|
Chagot B, Potet F, Balser JR, Chazin WJ. Solution NMR structure of the C-terminal EF-hand domain of human cardiac sodium channel NaV1.5. J Biol Chem 2009; 284:6436-45. [PMID: 19074138 PMCID: PMC2649110 DOI: 10.1074/jbc.m807747200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/05/2008] [Indexed: 12/20/2022] Open
Abstract
The voltage-gated sodium channel NaV1.5 is responsible for the initial upstroke of the action potential in cardiac tissue. Levels of intracellular calcium modulate inactivation gating of NaV1.5, in part through a C-terminal EF-hand calcium binding domain. The significance of this structure is underscored by the fact that mutations within this domain are associated with specific cardiac arrhythmia syndromes. In an effort to elucidate the molecular basis for calcium regulation of channel function, we have determined the solution structure of the C-terminal EF-hand domain using multidimensional heteronuclear NMR. The structure confirms the existence of the four-helix bundle common to EF-hand domain proteins. However, the location of this domain is shifted with respect to that predicted on the basis of a consensus 12-residue EF-hand calcium binding loop in the sequence. This finding is consistent with the weak calcium affinity reported for the isolated EF-hand domain; high affinity binding is observed only in a construct with an additional 60 residues C-terminal to the EF-hand domain, including the IQ motif that is central to the calcium regulatory apparatus. The binding of an IQ motif peptide to the EF-hand domain was characterized by isothermal titration calorimetry and nuclear magnetic resonance spectroscopy. The peptide binds between helices I and IV in the EF-hand domain, similar to the binding of target peptides to other EF-hand calcium-binding proteins. These results suggest a molecular basis for the coupling of the intrinsic (EF-hand domain) and extrinsic (calmodulin) components of the calcium-sensing apparatus of NaV1.5.
Collapse
Affiliation(s)
- Benjamin Chagot
- Department of Anesthesiology, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-8725, USA
| | | | | | | |
Collapse
|
31
|
Hsueh CH, Chen WP, Lin JL, Tsai CT, Liu YB, Juang JM, Tsao HM, Su MJ, Lai LP. Distinct functional defect of three novel Brugada syndrome related cardiac sodium channel mutations. J Biomed Sci 2009; 16:23. [PMID: 19272188 PMCID: PMC2653527 DOI: 10.1186/1423-0127-16-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 02/20/2009] [Indexed: 01/24/2023] Open
Abstract
The Brugada syndrome is characterized by ST segment elevation in the right precodial leads V1-V3 on surface ECG accompanied by episodes of ventricular fibrillation causing syncope or even sudden death. The molecular and cellular mechanisms that lead to Brugada syndrome are not yet completely understood. However, SCN5A is the most well known responsible gene that causes Brugada syndrome. Until now, more than a hundred mutations in SCN5A responsible for Brugada syndrome have been described. Functional studies of some of the mutations have been performed and show that a reduction of human cardiac sodium current accounts for the pathogenesis of Brugada syndrome. Here we reported three novel SCN5A mutations identified in patients with Brugada syndrome in Taiwan (p.I848fs, p.R965C, and p.1876insM). Their electrophysiological properties were altered by patch clamp analysis. The p.I848fs mutant generated no sodium current. The p.R965C and p.1876insM mutants produced channels with steady state inactivation shifted to a more negative potential (9.4 mV and 8.5 mV respectively), and slower recovery from inactivation. Besides, the steady state activation of p.1876insM was altered and was shifted to a more positive potential (7.69 mV). In conclusion, the SCN5A channel defect related to Brugada syndrome might be diverse but all resulted in a decrease of sodium current.
Collapse
Affiliation(s)
- Chia-Hsiang Hsueh
- Institute of Pharmacology, School of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
SCN5A channelopathies--an update on mutations and mechanisms. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:120-36. [PMID: 19027780 DOI: 10.1016/j.pbiomolbio.2008.10.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na+ channels mediate the rapid upstroke of the action potential in excitable tissues. Na(v)1.5, encoded by the SCN5A gene, is the predominant isoform in the heart. Mutations in SCN5A are associated with distinct cardiac excitation disorders often resulting in life-threatening arrhythmias. This review outlines the currently known SCN5A mutations linked to three distinct cardiac rhythm disorders: long QT syndrome subtype 3 (LQT3), Brugada syndrome (BS), and cardiac conduction disease (CCD). Electrophysiological properties of the mutant channels are summarized and discussed in terms of Na+ channel structure-function relationships and regarding molecular mechanisms underlying the respective cardiac dysfunction. Possible reasons for less convincing genotype-phenotype correlations are suggested.
Collapse
|
33
|
Crosstalk between cardiac ion channel subunits: an encrypted language to be deciphered. J Mol Cell Cardiol 2008; 45:333-5. [PMID: 18582471 DOI: 10.1016/j.yjmcc.2008.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 11/22/2022]
|