1
|
Ma T, Wang M, Wang S, Hu H, Zhang X, Wang H, Wang G, Jin Y. BMSC derived EVs inhibit colorectal Cancer progression by transporting MAGI2-AS3 or something similar. Cell Signal 2024; 121:111235. [PMID: 38806109 DOI: 10.1016/j.cellsig.2024.111235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
In this study, we investigated the molecular mechanisms underlying the impact of extracellular vesicles (EVs) derived from bone marrow stromal cells (BMSCs) on colorectal cancer (CRC) development. The focus was on the role of MAGI2-AS3, delivered by BMSC-EVs, in regulating USP6NL DNA methylation-mediated MYC protein translation modification to promote CDK2 downregulation. Utilizing bioinformatics analysis, we identified significant enrichment of MAGI2-AS3 related to copper-induced cell death in CRC. In vitro experiments demonstrated the downregulation of MAGI2-AS3 in CRC cells, and BMSC-EVs were found to deliver MAGI2-AS3 to inhibit CRC cell proliferation, migration, and invasion. Further exploration revealed that MAGI2-AS3 suppressed MYC protein translation modification by regulating USP6NL DNA methylation, leading to CDK2 downregulation and prevention of colorectal cancer. Overexpression of MYC reversed the functional effects of BMSC-EVs-MAGI2-AS3. In vivo experiments validated the inhibitory impact of BMSC-EVs-MAGI2-AS3 on CRC tumorigenicity by promoting CDK2 downregulation through USP6NL DNA methylation-mediated MYC protein translation modification. Overall, BMSC-EVs-MAGI2-AS3 may serve as a potential intervention to prevent CRC occurrence by modulating key molecular pathways.
Collapse
Affiliation(s)
- Tianyi Ma
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Meng Wang
- Department of Colorectal Surgery, Zhejiang Cancer Hospital (Affiliated Cancer Hospital of the Chinese Academy of Sciences), Hangzhou 310000, China
| | - Song Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hanqing Hu
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xin Zhang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Hufei Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Guiyu Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| | - Yinghu Jin
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
2
|
Wan M, Yu Q, Xu F, You LX, Liang X, Kang Ren K, Zhou J. Novel hypoxia-induced HIF-1αactivation in asthma pathogenesis. Respir Res 2024; 25:287. [PMID: 39061007 PMCID: PMC11282634 DOI: 10.1186/s12931-024-02869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Asthma's complexity, marked by airway inflammation and remodeling, is influenced by hypoxic conditions. This study focuses on the role of Hypoxia-Inducible Factor-1 Alpha (HIF-1α) and P53 ubiquitination in asthma exacerbation. METHODS High-throughput sequencing and bioinformatics were used to identify genes associated with asthma progression, with an emphasis on GO and KEGG pathway analyses. An asthma mouse model was developed, and airway smooth muscle cells (ASMCs) were isolated to create an in vitro hypoxia model. Cell viability, proliferation, migration, and apoptosis were assessed, along with ELISA and Hematoxylin and Eosin (H&E) staining. RESULTS A notable increase in HIF-1α was observed in both in vivo and in vitro asthma models. HIF-1α upregulation enhanced ASMCs' viability, proliferation, and migration, while reducing apoptosis, primarily via the promotion of P53 ubiquitination through MDM2. In vivo studies showed increased inflammatory cell infiltration and airway structural changes, which were mitigated by the inhibitor IDF-11,774. CONCLUSION The study highlights the critical role of the HIF-1α-MDM2-P53 axis in asthma, suggesting its potential as a target for therapeutic interventions. The findings indicate that modulating this pathway could offer new avenues for treating the complex respiratory disorder of asthma.
Collapse
Affiliation(s)
- Mengzhi Wan
- Department of Respiratory Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, PR China
| | - Qi Yu
- Department of Respiratory Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, PR China
| | - Fei Xu
- Department of Respiratory Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, PR China
| | - Lu Xia You
- Department of Respiratory Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, PR China
| | - Xiao Liang
- Department of Respiratory Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, PR China
| | - Kang Kang Ren
- Department of Respiratory Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, PR China
| | - Jing Zhou
- Department of Respiratory Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, PR China.
| |
Collapse
|
3
|
He W, Xu C, Huang Y, Zhang Q, Chen W, Zhao C, Chen Y, Zheng D, XinyueLin, Luo Q, Chen X, Zhang Z, Wu X, Huang J, Lin C, Huang Y, Zhang S. Therapeutic potential of ADSC-EV-derived lncRNA DLEU2: A novel molecular pathway in alleviating sepsis-induced lung injury via the miR-106a-5p/LXN axis. Int Immunopharmacol 2024; 130:111519. [PMID: 38442573 DOI: 10.1016/j.intimp.2024.111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 03/07/2024]
Abstract
This study investigates the molecular mechanisms by which extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSCs) promote M2 polarization of macrophages and thus reduce lung injury caused by sepsis. High-throughput sequencing was used to identify differentially expressed genes related to long non-coding RNA (lncRNA) in ADSC-derived EVs (ADSC-EVs) in sepsis lung tissue. Weighted gene co-expression network analysis (WGCNA) was employed to predict the downstream target genes of the lncRNA DLEU2. The RNAInter database predicted miRNAs that interact with DLEU2 and LXN. Functional and pathway enrichment analyses were performed using GO and KEGG analysis. A mouse model of sepsis was established, and treatment with a placebo or ADSC-EVs was administered, followed by RT-qPCR analysis. ADSC-EVs were isolated and identified. In vitro cell experiments were conducted using the mouse lung epithelial cell line MLE-12, mouse macrophage cell line RAW264.7, and mouse lung epithelial cell line (LEPC). ADSC-EVs were co-cultured with RAW264.7 and MLE-12/LEPC cells to study the regulatory mechanism of the lncRNA DLEU2. Cell viability, proliferation, and apoptosis of lung injury cells were assessed using CCK-8, EdU, and flow cytometry. ELISA was used to measure the levels of inflammatory cytokines in the sepsis mouse model, flow cytometry was performed to determine the number of M1 and M2 macrophages, lung tissue pathology was evaluated by H&E staining, and immunohistochemistry was conducted to examine the expression of proliferation- and apoptosis-related proteins. High-throughput sequencing and bioinformatics analysis revealed enrichment of the lncRNA DLEU2 in ADSC-EVs in sepsis lung tissue. Animal and in vitro cell experiments showed increased expression of the lncRNA DLEU2 in sepsis lung tissue after treatment with ADSC-EVs. Furthermore, ADSC-EVs were found to transfer the lncRNA DLEU2 to macrophages, promoting M2 polarization, reducing inflammation response in lung injury cells, and enhancing their viability, proliferation, and apoptosis inhibition. Further functional experiments indicated that lncRNA DLEU2 promotes M2 polarization of macrophages by regulating miR-106a-5p/LXN, thereby enhancing the viability and proliferation of lung injury cells and inhibiting apoptosis. Overexpression of miR-106a-5p could reverse the biological effects of ADSC-EVs-DLEU2 on MLE-12 and LEPC in vitro cell models. Lastly, in vivo animal experiments confirmed that ADSC-EVs-DLEU2 promotes high expression of LXN by inhibiting the expression of miR-106a-5p, further facilitating M2 macrophage polarization and reducing lung edema, thus alleviating sepsis-induced lung injury. lncRNA DLEU2 in ADSC-EVs may promote M2 polarization of macrophages and enhance the viability and proliferation of lung injury cells while inhibiting inflammation and apoptosis reactions, thus ameliorating sepsis-induced lung injury in a mechanism involving the regulation of the miR-106a-5p/LXN axis.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Chengcheng Xu
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Yuying Huang
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, PR China
| | - Qiuzhen Zhang
- Department of Pharmacy, Jiangmen central Hospital, Jiangmen 529030, PR China
| | - Wang Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Chengkuan Zhao
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Yun Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Danling Zheng
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China; Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - XinyueLin
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Qianhua Luo
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Xiaoshan Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Zhihan Zhang
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, PR China
| | - Xiaolong Wu
- College of Pharmacy, Jinan University, Guangzhou 510220, PR China
| | - Jianxiang Huang
- College of Pharmacy, Jinan University, Guangzhou 510220, PR China
| | - Chaoxian Lin
- Shantou Chaonan Minsheng Hospital, Shantou 515041, PR China.
| | - Yihui Huang
- Department of Pediatrics, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China.
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China.
| |
Collapse
|
4
|
Zhao J, Hu J, Zhang R, Deng J. CEBPD REGULATES OXIDATIVE STRESS AND INFLAMMATORY RESPONSES IN HYPERTENSIVE CARDIAC REMODELING. Shock 2023; 60:713-723. [PMID: 37752084 DOI: 10.1097/shk.0000000000002228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
ABSTRACT Hypertension seems to inevitably cause cardiac remodeling, increasing the mortality of patients. This study aimed to explore the molecular mechanism of CCAAT/enhancer-binding protein delta (CEBPD)-mediated oxidative stress and inflammation in hypertensive cardiac remodeling. The hypertensive murine model was established through angiotensin-II injection, and hypertensive mice underwent overexpressed CEBPD vector injection, cardiac function evaluation, and observation of histological changes. The cell model was established by angiotensin-II treatment and transfected with overexpressed CEBPD vector. Cell viability and surface area and oxidative stress (reactive oxygen species/superoxide dismutase/lactate dehydrogenase/malondialdehyde) were assessed, and inflammatory factors (TNF-α/IL-1β/IL-6/IL-10) were determined both in vivo and in vitro . The levels of CEBPD, miR-96-5p, inositol 1,4,5-trisphosphate receptor 1 (IP3R), natriuretic peptide B, and natriuretic peptide A, collagen I, and collagen III in tissues and cells were determined. The binding relationships of CEBPD/miR-96-5p/IP3R 3' untranslated region were validated. CEBPD was reduced in cardiac tissue of hypertensive mice, and CEBPD upregulation improved cardiac function and attenuated fibrosis and hypertrophy, along with reductions of reactive oxygen species/lactate dehydrogenase/malondialdehyde/TNF-α/IL-1β/IL-6 and increases in superoxide dismutase/IL-10. CEBPD enriched on the miR-96-5p promoter to promote miR-96-5p expression, whereas CEBPD and miR-96-5p negatively regulated IP3R. miR-96-5p silencing/IP3R overexpression reversed the alleviative role of CEBPD overexpression in hypertensive mice. In summary, CEBPD promoted miR-96-5p to negatively regulate IP3R expression to inhibit oxidative stress and inflammation, thereby alleviating hypertensive cardiac remodeling.
Collapse
Affiliation(s)
- Jinghong Zhao
- Department of Cardiology, Nanchong Central Hospital, Nanchong, China
| | | | | | | |
Collapse
|
5
|
Distefano R, Ilieva M, Madsen JH, Rennie S, Uchida S. DoxoDB: A Database for the Expression Analysis of Doxorubicin-Induced lncRNA Genes. Noncoding RNA 2023; 9:39. [PMID: 37489459 PMCID: PMC10366827 DOI: 10.3390/ncrna9040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Cancer and cardiovascular disease are the leading causes of death worldwide. Recent evidence suggests that these two life-threatening diseases share several features in disease progression, such as angiogenesis, fibrosis, and immune responses. This has led to the emergence of a new field called cardio-oncology. Doxorubicin is a chemotherapy drug widely used to treat cancer, such as bladder and breast cancer. However, this drug causes serious side effects, including acute ventricular dysfunction, cardiomyopathy, and heart failure. Based on this evidence, we hypothesize that comparing the expression profiles of cells and tissues treated with doxorubicin may yield new insights into the adverse effects of the drug on cellular activities. To test this hypothesis, we analyzed published RNA sequencing (RNA-seq) data from doxorubicin-treated cells to identify commonly differentially expressed genes, including long non-coding RNAs (lncRNAs) as they are known to be dysregulated in diseased tissues and cells. From our systematic analysis, we identified several doxorubicin-induced genes. To confirm these findings, we treated human cardiac fibroblasts with doxorubicin to record expression changes in the selected doxorubicin-induced genes and performed a loss-of-function experiment of the lncRNA MAP3K4-AS1. To further disseminate the analyzed data, we built the web database DoxoDB.
Collapse
Affiliation(s)
- Rebecca Distefano
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Mirolyuba Ilieva
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark
| | - Jens Hedelund Madsen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark
| | - Sarah Rennie
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark
| |
Collapse
|
6
|
Liu W, Hu C, Zhang B, Li M, Deng F, Zhao S. Exosomal microRNA-342-5p secreted from adipose-derived mesenchymal stem cells mitigates acute kidney injury in sepsis mice by inhibiting TLR9. Biol Proced Online 2023; 25:10. [PMID: 37085762 PMCID: PMC10120132 DOI: 10.1186/s12575-023-00198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Sepsis-related acute kidney injury (AKI) is an inflammatory disease associated with extremely high mortality and health burden. This study explored the possibility of exosomes secreted by adipose-derived mesenchymal stem cells (AMSCs) serving as a carrier for microRNA (miR)-342-5p to alleviate sepsis-related AKI and investigated the possible mechanism. METHODS Serum was obtained from 30 patients with sepsis-associated AKI and 30 healthy volunteers for the measurement of miR-342-5p, blood urea nitrogen (BUN), and serum creatinine (SCr) levels. For in vitro experiments, AMSCs were transfected with LV-miR-342-5p or LV-miR-67 to acquire miR-342-5p-modified AMSCs and miR-67-modified AMSCs, from which the exosomes (AMSC-Exo-342 and AMSC-Exo-67) were isolated. The human renal proximal tubular epithelial cell line HK-2 was induced by lipopolysaccharide (LPS) to construct a cellular model of sepsis. The expression of Toll-like receptor 9 (TLR9) was also detected in AKI cells and mouse models. The interaction between miR-342-5p and TLR9 was predicted by dual luciferase reporter gene assay. RESULTS Detection on clinical serum samples showed that BUN, SCr, and TLR9 were elevated and miR-342-5p level was suppressed in the serum of patients with sepsis-associated AKI. Transfection with LV-miR-342-5p reinforced miR-342-5p expression in AMSCs and AMSC-secreted exosomes. miR-342-5p negatively targeted TLR9. LPS treatment enhanced TLR9 expression, reduced miR-342-5p levels, suppressed autophagy, and increased inflammation in HK-2 cells, while the opposite trends were observed in LPS-induced HK-2 cells exposed to AMSC-Exo-342, Rapa, miR-342-5p mimic, or si-TLR9. Additionally, the effects of AMSC-Exo-342 on autophagy and inflammation in LPS-induced cells could be weakened by 3-MA or pcDNA3.1-TLR9 treatment. Injection of AMSC-Exo-342 enhanced autophagy, mitigated kidney injury, suppressed inflammation, and reduced BUN and SCr levels in sepsis-related AKI mouse models. CONCLUSION miR-342-5p transferred by exosomes from miR-342-5p-modified AMSCs ameliorated AKI by inhibiting TLR9 to accelerate autophagy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Chenghuan Hu
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Buyao Zhang
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Mingxia Li
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Fuxing Deng
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Shuangping Zhao
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
7
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
Genetic Disruption of Guanylyl Cyclase/Natriuretic Peptide Receptor-A Triggers Differential Cardiac Fibrosis and Disorders in Male and Female Mutant Mice: Role of TGF-β1/SMAD Signaling Pathway. Int J Mol Sci 2022; 23:ijms231911487. [PMID: 36232788 PMCID: PMC9569686 DOI: 10.3390/ijms231911487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/01/2023] Open
Abstract
The global targeted disruption of the natriuretic peptide receptor-A (NPRA) gene (Npr1) in mice provokes hypertension and cardiovascular dysfunction. The objective of this study was to determine the mechanisms regulating the development of cardiac fibrosis and dysfunction in Npr1 mutant mice. Npr1 knockout (Npr1-/-, 0-copy), heterozygous (Npr1+/-, 1-copy), and wild-type (Npr1+/+, 2-copy) mice were treated with the transforming growth factor (TGF)-β1 receptor (TGF-β1R) antagonist GW788388 (2 µg/g body weight/day; ip) for 28 days. Hearts were isolated and used for real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and immunohistochemical analyses. The Npr1-/- (0-copy) mice showed a 6-fold induction of cardiac fibrosis and dysfunction with markedly induced expressions of collagen-1α (3.8-fold), monocyte chemoattractant protein (3.7-fold), connective tissue growth factor (CTGF, 5.3-fold), α-smooth muscle actin (α-SMA, 6.1-fold), TGF-βRI (4.3-fold), TGF-βRII (4.7-fold), and phosphorylated small mothers against decapentaplegic (pSMAD) proteins, including pSMAD-2 (3.2-fold) and pSMAD-3 (3.7-fold), compared with wild-type mice. The expressions of phosphorylated extracellular-regulated kinase ERK1/2 (pERK1/2), matrix metalloproteinases-2, -9, (MMP-2, -9), and proliferating cell nuclear antigen (PCNA) were also significantly upregulated in Npr1 0-copy mice. The treatment of mutant mice with GW788388 significantly blocked the expression of fibrotic markers, SMAD proteins, MMPs, and PCNA compared with the vehicle-treated control mice. The treatment with GW788388 significantly prevented cardiac dysfunctions in a sex-dependent manner in Npr1 0-copy and 1-copy mutant mice. The results suggest that the development of cardiac fibrosis and dysfunction in mutant mice is predominantly regulated through the TGF-β1-mediated SMAD-dependent pathway.
Collapse
|
9
|
A light-induced small G-protein gem limits the circadian clock phase-shift magnitude by inhibiting voltage-dependent calcium channels. Cell Rep 2022; 39:110844. [PMID: 35613591 DOI: 10.1016/j.celrep.2022.110844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/09/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
Calcium signaling is pivotal to the circadian clockwork in the suprachiasmatic nucleus (SCN), particularly in rhythm entrainment to environmental light-dark cycles. Here, we show that a small G-protein Gem, an endogenous inhibitor of high-voltage-activated voltage-dependent calcium channels (VDCCs), is rapidly induced by light in SCN neurons via the calcium (Ca2+)-mediated CREB/CRE transcriptional pathway. Gem attenuates light-induced calcium signaling through its interaction with VDCCs. The phase-shift magnitude of locomotor activity rhythms by light, at night, increases in Gem-deficient (Gem-/-) mice. Similarly, in SCN slices from Gem-/- mice, depolarizing stimuli induce larger phase shifts of clock gene transcription rhythms that are normalized by the application of an L-type VDCC blocker, nifedipine. Voltage-clamp recordings from SCN neurons reveal that Ca2+ currents through L-type channels increase in Gem-/- mice. Our findings suggest that transcriptionally activated Gem feeds back to suppress excessive light-evoked L-type VDCC activation, adjusting the light-induced phase-shift magnitude to an appropriate level in mammals.
Collapse
|
10
|
Huang K, Zhang X, Duan J, Wang R, Wu Z, Yang C, Yang L. STAT4 and COL1A2 are potential diagnostic biomarkers and therapeutic targets for heart failure comorbided with depression. Brain Res Bull 2022; 184:68-75. [PMID: 35367598 DOI: 10.1016/j.brainresbull.2022.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Heart failure (HF) and depression are common disorders that markedly compromise quality of life and impose a great financial burden on the society. Although increasing evidence has supported the closely linkage between the two disorders, the comorbidity mechanisms remain to be fully illuminated. We performed a bioinformatics network analysis to understand potential diagnostic biomarkers and therapeutic targets for HF comorbided with depression. METHODS We downloaded the datasets of HF and depression from the Gene Expression Omnibus (GEO) database and constructed co-expression networks by Weighted Gene Co-Expression Network Analysis (WGCNA) to identify key modules. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on the common genes existing in the HF and depression related modules. Then, we employed the STRING database to construct the protein-protein interaction (PPI) network and detected the hub genes in the network. Finally, we validated the expression difference of hub genes from additional datasets of HF and depression. RESULTS Functional enrichment analysis indicated that platelet activation, chemokine signaling and focal adhesion were probably involved in HF comorbided with depression. PPI network construction indicated that HF comorbided with depression is likely related to 5 hub genes, including STAT4, CD83, CX3CR1, COL1A2, and SH2D1B. In validated datasets, STAT4 and COL1A2 were especially involved in the comorbidity of HF and depression. CONCLUSION Our work indicated a total of 5 hub genes including STAT4, CD83, CX3CR1, COL1A2, and SH2D1B, in which STAT4 and COL1A2 especially underlie the comorbidity mechanisms of HF and depression. These shared pathways might provide new targets for further mechanistic studies of the pathogenesis and treatment of HF and depression.
Collapse
Affiliation(s)
- Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Xinying Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ruting Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zifeng Wu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| |
Collapse
|
11
|
Ullmann T, Luckhardt S, Wolf M, Parnham MJ, Resch E. High-Throughput Screening for CEBPD-Modulating Compounds in THP-1-Derived Reporter Macrophages Identifies Anti-Inflammatory HDAC and BET Inhibitors. Int J Mol Sci 2021; 22:ijms22063022. [PMID: 33809617 PMCID: PMC8002291 DOI: 10.3390/ijms22063022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
This study aimed to identify alternative anti-inflammatory compounds that modulate the activity of a relevant transcription factor, CCAAT/enhancer binding protein delta (C/EBPδ). C/EBPδ is a master regulator of inflammatory responses in macrophages (Mϕ) and is mainly regulated at the level of CEBPD gene transcription initiation. To screen for CEBPD-modulating compounds, we generated a THP-1-derived reporter cell line stably expressing secreted alkaline phosphatase (SEAP) under control of the defined CEBPD promoter (CEBPD::SEAP). A high-throughput screening of LOPAC®1280 and ENZO®774 libraries on LPS- and IFN-γ-activated THP-1 reporter Mϕ identified four epigenetically active hits: two bromodomain and extraterminal domain (BET) inhibitors, I-BET151 and Ro 11-1464, as well as two histone deacetylase (HDAC) inhibitors, SAHA and TSA. All four hits markedly and reproducibly upregulated SEAP secretion and CEBPD::SEAP mRNA expression, confirming screening assay reliability. Whereas BET inhibitors also upregulated the mRNA expression of the endogenous CEBPD, HDAC inhibitors completely abolished it. All hits displayed anti-inflammatory activity through the suppression of IL-6 and CCL2 gene expression. However, I-BET151 and HDAC inhibitors simultaneously upregulated the mRNA expression of pro-inflammatory IL-1ß. The modulation of CEBPD gene expression shown in this study contributes to our understanding of inflammatory responses in Mϕ and may offer an approach to therapy for inflammation-driven disorders.
Collapse
Affiliation(s)
- Tatjana Ullmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
- Correspondence:
| | - Sonja Luckhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
| | - Markus Wolf
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany;
| | - Michael J. Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
- EpiEndo Pharmaceuticals ehf, Eiðistorg 13-15, 170 Seltjarnarnes, Iceland
| | - Eduard Resch
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
| |
Collapse
|
12
|
Endothelial ERG alleviates cardiac fibrosis via blocking endothelin-1-dependent paracrine mechanism. Cell Biol Toxicol 2021; 37:873-890. [PMID: 33469864 DOI: 10.1007/s10565-021-09581-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Cardiac endothelium communicates closely with adjacent cardiac cells by multiple cytokines and plays critical roles in regulating fibroblasts proliferation, activation, and collagen synthesis during cardiac fibrosis. E26 transformation-specific (ETS)-related gene (ERG) belongs to the ETS transcriptional factor family and is required for endothelial cells (ECs) homeostasis and cardiac development. This study aims at investigating the potential role and molecular basis of ERG in fibrotic remodeling within the adult heart. We observed that ERG was abundant in murine hearts, especially in cardiac ECs, but decreased during cardiac fibrosis. ERG knockdown within murine hearts caused spontaneously cardiac fibrosis and dysfunction, accompanied by the activation of multiple Smad-dependent and independent pathways. However, the direct silence of ERG in cardiac fibroblasts did not affect the expression of fibrotic markers. Intriguingly, ERG knockdown in human umbilical vein endothelial cells (HUVECs) promoted the secretion of endothelin-1 (ET-1), which subsequently accelerated the proliferation, phenotypic transition, and collagen synthesis of cardiac fibroblasts in a paracrine manner. Suppressing ET-1 with either a neutralizing antibody or a receptor blocker abolished ERG knockdown-mediated deleterious effect in vivo and in vitro. This pro-fibrotic effect was also negated by RGD (Arg-Gly-Asp)-peptide magnetic nanoparticles target delivery of ET-1 small interfering RNA to ECs in mice. More importantly, we proved that endothelial ERG overexpression notably prevented pressure overload-induced cardiac fibrosis. Collectively, endothelial ERG alleviates cardiac fibrosis via blocking ET-1-dependent paracrine mechanism and it functions as a candidate for treating cardiac fibrosis. • ERG is abundant in murine hearts, especially in cardiac ECs, but decreased during fibrotic remodeling. • ERG knockdown causes spontaneously cardiac fibrosis and dysfunction. • ERG silence in HUVECs promotes the secretion of endothelin-1, which in turn activates cardiac fibroblasts in a paracrine manner. • Endothelial ERG overexpression prevents pressure overload-induced cardiac fibrosis.
Collapse
|
13
|
Li Y, Chang Y, Li X, Li X, Gao J, Zhou Y, Wu F, Bai R, Dong T, Ma S, Zhang S, Lu WJ, Tan X, Wang Y, Lan F. RAD-Deficient Human Cardiomyocytes Develop Hypertrophic Cardiomyopathy Phenotypes Due to Calcium Dysregulation. Front Cell Dev Biol 2020; 8:585879. [PMID: 33195237 PMCID: PMC7642210 DOI: 10.3389/fcell.2020.585879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
Ras associated with diabetes (RAD) is a membrane protein that acts as a calcium channel regulator by interacting with cardiac L-type Ca2 + channels (LTCC). RAD defects can disrupt intracellular calcium dynamics and lead to cardiac hypertrophy. However, due to the lack of reliable human disease models, the pathological mechanism of RAD deficiency leading to cardiac hypertrophy is not well understood. In this study, we created a RRAD–/– H9 cell line using CRISPR/Cas9 technology. RAD disruption did not affect the ability and efficiency of cardiomyocytes differentiation. However, RAD deficient hESC-CMs recapitulate hypertrophic phenotype in vitro. Further studies have shown that elevated intracellular calcium level and abnormal calcium regulation are the core mechanisms by which RAD deficiency leads to cardiac hypertrophy. More importantly, management of calcium dysregulation has been found to be an effective way to prevent the development of cardiac hypertrophy in vitro.
Collapse
Affiliation(s)
- Ya'nan Li
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yun Chang
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaolei Li
- Department of Cardiology, Heart Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaowei Li
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jian Gao
- Experimental Medicine, Faculty of Medicine, Vancouver, BC, Canada
| | - Yafei Zhou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Fujian Wu
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Rui Bai
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Tao Dong
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shuhong Ma
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Siyao Zhang
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Wen-Jing Lu
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yongming Wang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Yu B, Sladojevic N, Blair JE, Liao JK. Targeting Rho-associated coiled-coil forming protein kinase (ROCK) in cardiovascular fibrosis and stiffening. Expert Opin Ther Targets 2020; 24:47-62. [PMID: 31906742 PMCID: PMC7662835 DOI: 10.1080/14728222.2020.1712593] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Pathological cardiac fibrosis, through excessive extracellular matrix protein deposition from fibroblasts and pro-fibrotic immune responses and vascular stiffening is associated with most forms of cardiovascular disease. Pathological cardiac fibrosis and stiffening can lead to heart failure and arrythmias and vascular stiffening may lead to hypertension. ROCK, a serine/threonine kinase downstream of the Rho-family of GTPases, may regulate many pro-fibrotic and pro-stiffening signaling pathways in numerous cell types.Areas covered: This article outlines the molecular mechanisms by which ROCK in fibroblasts, T helper cells, endothelial cells, vascular smooth muscle cells, and macrophages mediate fibrosis and stiffening. We speculate on how ROCK could be targeted to inhibit cardiovascular fibrosis and stiffening.Expert opinion: Critical gaps in knowledge must be addressed if ROCK inhibitors are to be used in the clinic. Numerous studies indicate that each ROCK isoform may play differential roles in regulating fibrosis and may have opposing roles in specific tissues. Future work needs to highlight the isoform- and tissue-specific contributions of ROCK in fibrosis, and how isoform-specific ROCK inhibitors in murine models and in clinical trials affect the pathophysiology of cardiac fibrosis and stiffening. This could progress knowledge regarding new treatments for heart failure, arrythmias and hypertension and the repair processes after myocardial infarction.
Collapse
Affiliation(s)
- Brian Yu
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nikola Sladojevic
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - John E Blair
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - James K Liao
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Ras associated with diabetes may play a role in fracture nonunion development in rats. BMC Musculoskelet Disord 2019; 20:602. [PMID: 31830958 PMCID: PMC6909478 DOI: 10.1186/s12891-019-2970-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Rad is the prototypic member of a subfamily of Ras-related small G-proteins and is highly expressed in the skeletal muscle of patients with type II diabetes. Our previous microarray analysis suggested that Rad may mediate fracture nonunion development. Thus, the present study used rat experimental models to investigate and compare the gene and protein expression patterns of both Rad and Rem1, another RGK subfamily member, in nonunions and standard healing fractures. Methods Standard healing fractures and nonunions (produced via periosteal cauterization at the fracture site) were created in the femurs of 3-month-old male Sprague-Dawley rats. At post-fracture days 7, 14, 21, and 28, the fracture callus and fibrous tissue from the standard healing fractures and nonunions, respectively, were harvested and screened (via real-time PCR) for Rad and Rem1 expression. The immunolocalization of both encoded proteins was analyzed at post-fracture days 14 and 21. At the same time points, hematoxylin and eosin staining was performed to identify the detailed tissue structures. Results Results of real-time PCR analysis showed that Rad expression increased significantly in the nonunions, compared to that in the standard healing fractures, at post-fracture days 14, 21, and 28. Conversely, immunohistochemical analysis revealed the immunolocalization of Rad to be similar to that of Rem1 in both fracture types at post-fracture days 14 and 21. Conclusions Rad may mediate nonunion development, and thus, may be a promising therapeutic target to treat these injuries.
Collapse
|
16
|
Ahern BM, Levitan BM, Veeranki S, Shah M, Ali N, Sebastian A, Su W, Gong MC, Li J, Stelzer JE, Andres DA, Satin J. Myocardial-restricted ablation of the GTPase RAD results in a pro-adaptive heart response in mice. J Biol Chem 2019; 294:10913-10927. [PMID: 31147441 PMCID: PMC6635439 DOI: 10.1074/jbc.ra119.008782] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/16/2019] [Indexed: 12/25/2022] Open
Abstract
Existing therapies to improve heart function target β-adrenergic receptor (β-AR) signaling and Ca2+ handling and often lead to adverse outcomes. This underscores an unmet need for positive inotropes that improve heart function without any adverse effects. The GTPase Ras associated with diabetes (RAD) regulates L-type Ca2+ channel (LTCC) current (ICa,L). Global RAD-knockout mice (gRAD-/-) have elevated Ca2+ handling and increased cardiac hypertrophy, but RAD is expressed also in noncardiac tissues, suggesting the possibility that pathological remodeling is due also to noncardiac effects. Here, we engineered a myocardial-restricted inducible RAD-knockout mouse (RADΔ/Δ). Using an array of methods and techniques, including single-cell electrophysiological and calcium transient recordings, echocardiography, and radiotelemetry monitoring, we found that RAD deficiency results in a sustained increase of inotropy without structural or functional remodeling of the heart. ICa,L was significantly increased, with RAD loss conferring a β-AR-modulated phenotype on basal ICa,L Cardiomyocytes from RADΔ/Δ hearts exhibited enhanced cytosolic Ca2+ handling, increased contractile function, elevated sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2a) expression, and faster lusitropy. These results argue that myocardial RAD ablation promotes a beneficial elevation in Ca2+ dynamics, which would obviate a need for increased β-AR signaling to improve cardiac function.
Collapse
Affiliation(s)
| | - Bryana M Levitan
- Department of Physiology,; Gill Heart and Vascular Institute, and
| | - Sudhakar Veeranki
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536 and
| | | | - Nemat Ali
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536 and
| | | | | | | | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Douglas A Andres
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536 and.
| | | |
Collapse
|
17
|
Wei Z, Guo H, Qin J, Lu S, Liu Q, Zhang X, Zou Y, Gong Y, Shao C. Pan-senescence transcriptome analysis identified RRAD as a marker and negative regulator of cellular senescence. Free Radic Biol Med 2019; 130:267-277. [PMID: 30391675 DOI: 10.1016/j.freeradbiomed.2018.10.457] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
Cellular senescence, an irreversible proliferative arrest, functions in tissue remodeling during development and is implicated in multiple aging-associated diseases. While senescent cells often manifest an array of senescence-associated phenotypes, such as cell cycle arrest, altered heterochromatin architecture, reprogrammed metabolism and senescence-associated secretory phenotype (SASP), the identification of senescence cells has been hindered by lack of specific and universal biomarkers. To systematically identify universal biomarkers of cellular senescence, we integrated multiple transcriptome data sets of senescent cells obtained through different in vitro manipulation modes as well as age-related gene expression data of human tissues. Our analysis showed that RRAD (Ras-related associated with diabetes) expression is up-regulated in all the manipulation modes and increases with age in human skin and adipose tissues. The elevated RRAD expression was then confirmed in senescent human fibroblasts that were induced by Ras, H2O2, ionizing radiation, hydroxyurea, etoposide and replicative passage, respectively. Further functional study suggests that RRAD up-regulation acts as a negative feedback mechanism to counter cellular senescence by reducing the level of reactive oxygen species. Finally, we found both p53 and NF-κB bind to RRAD genomic regions and modulate RRAD transcription. This study established RRAD to be a biomarker as well as a novel negative regulator of cellular senescence.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, China; Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Haiyang Guo
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada.
| | - Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Shihua Lu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Changshun Shao
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China; State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
18
|
Ma ZG, Yuan YP, Wu HM, Zhang X, Tang QZ. Cardiac fibrosis: new insights into the pathogenesis. Int J Biol Sci 2018; 14:1645-1657. [PMID: 30416379 PMCID: PMC6216032 DOI: 10.7150/ijbs.28103] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Cardiac fibrosis is defined as the imbalance of extracellular matrix (ECM) production and degradation, thus contributing to cardiac dysfunction in many cardiac pathophysiologic conditions. This review discusses specific markers and origin of cardiac fibroblasts (CFs), and the underlying mechanism involved in the development of cardiac fibrosis. Currently, there are no CFs-specific molecular markers. Most studies use co-labelling with panels of antibodies that can recognize CFs. Origin of fibroblasts is heterogeneous. After fibrotic stimuli, the levels of myocardial pro-fibrotic growth factors and cytokines are increased. These pro-fibrotic growth factors and cytokines bind to its receptors and then trigger the activation of signaling pathway and transcriptional factors via Smad-dependent or Smad independent-manners. These fibrosis-related transcriptional factors regulate gene expression that are involved in the fibrosis to amplify the fibrotic response. Understanding the mechanisms responsible for initiation, progression, and amplification of cardiac fibrosis are of great clinical significance to find drugs that can prevent the progression of cardiac fibrosis.
Collapse
Affiliation(s)
- Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| |
Collapse
|
19
|
Meza U, Beqollari D, Bannister RA. Molecular mechanisms and physiological relevance of RGK proteins in the heart. Acta Physiol (Oxf) 2018; 222:e13016. [PMID: 29237245 DOI: 10.1111/apha.13016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022]
Abstract
The primary route of Ca2+ entry into cardiac myocytes is via 1,4-dihydropyridine-sensitive, voltage-gated L-type Ca2+ channels. Ca2+ influx through these channels influences duration of action potential and engages excitation-contraction (EC) coupling in both the atria and the myocardium. Members of the RGK (Rad, Rem, Rem2 and Gem/Kir) family of small GTP-binding proteins are potent, endogenously expressed inhibitors of cardiac L-type channels. Although much work has focused on the molecular mechanisms by which RGK proteins inhibit the CaV 1.2 and CaV 1.3 L-type channel isoforms that expressed in the heart, their impact on greater cardiac function is only beginning to come into focus. In this review, we summarize recent findings regarding the influence of RGK proteins on normal cardiac physiology and the pathological consequences of aberrant RGK activity.
Collapse
Affiliation(s)
- U. Meza
- Departamento de Fisiología y Biofísica; Facultad de Medicina; Universidad Autónoma de San Luis Potosí; San Luis Potosí México
| | - D. Beqollari
- Department of Medicine-Cardiology Division; University of Colorado School of Medicine; Aurora CO USA
| | - R. A. Bannister
- Department of Medicine-Cardiology Division; University of Colorado School of Medicine; Aurora CO USA
| |
Collapse
|
20
|
Manning JR, Chelvarajan L, Levitan BM, Withers CN, Nagareddy PR, Haggerty CM, Fornwalt BK, Gao E, Tripathi H, Abdel-Latif A, Andres DA, Satin J. Rad GTPase deletion attenuates post-ischemic cardiac dysfunction and remodeling. ACTA ACUST UNITED AC 2018; 3:83-96. [PMID: 29732439 PMCID: PMC5931223 DOI: 10.1016/j.jacbts.2017.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rad-GTPase is an LTCC component that functions to govern calcium current in the myocardium. Deletion of Rad increases myocardial contractility secondary to increased trigger calcium entry. AMI induces heart failure, including reduced calcium homeostasis, but deletion of Rad prevents AMI myocardial calcium alterations. Rad deletion prevents post-MI scar spread by attenuating the inflammatory response. Future studies will explore whether Rad deletion is an effective therapeutic direction for providing combined safe, stable inotropic support to the failing heart in concert with protection against inflammatory signaling.
The protein Rad interacts with the L-type calcium channel complex to modulate trigger Ca2+ and hence to govern contractility. Reducing Rad levels increases cardiac output. Ablation of Rad also attenuated the inflammatory response following acute myocardial infarction. Future studies to target deletion of Rad in the heart could be conducted to establish a novel treatment paradigm whereby pathologically stressed hearts would be given safe, stable positive inotropic support without arrhythmias and without pathological structural remodeling. Future investigations will also focus on establishing inhibitors of Rad and testing the efficacy of Rad deletion in cardioprotection relative to the time of onset of acute myocardial infarction.
Collapse
Affiliation(s)
- Janet R Manning
- Department of Physiology, University of Kentucky, Lexington KY.,Department of Biochemistry, University of Kentucky, Lexington KY
| | - Lakshman Chelvarajan
- Saha Cardiovascular Research Center, Department of Medicine, University of Kentucky, Lexington, KY
| | - Bryana M Levitan
- Department of Physiology, University of Kentucky, Lexington KY.,Gill Heart and Vascular Institute, University of Kentucky, Lexington KY
| | | | | | - Christopher M Haggerty
- Saha Cardiovascular Research Center, Department of Medicine, University of Kentucky, Lexington, KY.,Department of Imaging Science and Innovation, Geisinger, Danville PA
| | - Brandon K Fornwalt
- Saha Cardiovascular Research Center, Department of Medicine, University of Kentucky, Lexington, KY.,Department of Imaging Science and Innovation, Geisinger, Danville PA
| | - Erhe Gao
- Department of Physiology, University of Kentucky, Lexington KY.,Center for Translational Medicine, Temple University School of Medicine, Philadelphia PA
| | - Himi Tripathi
- Saha Cardiovascular Research Center, Department of Medicine, University of Kentucky, Lexington, KY
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, Department of Medicine, University of Kentucky, Lexington, KY.,Gill Heart and Vascular Institute, University of Kentucky, Lexington KY
| | - Douglas A Andres
- Department of Biochemistry, University of Kentucky, Lexington KY
| | - Jonathan Satin
- Department of Physiology, University of Kentucky, Lexington KY
| |
Collapse
|
21
|
Withers CN, Brown DM, Byiringiro I, Allen MR, Condon KW, Satin J, Andres DA. Rad GTPase is essential for the regulation of bone density and bone marrow adipose tissue in mice. Bone 2017; 103:270-280. [PMID: 28732776 PMCID: PMC6886723 DOI: 10.1016/j.bone.2017.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 01/03/2023]
Abstract
The small GTP-binding protein Rad (RRAD, Ras associated with diabetes) is the founding member of the RGK (Rad, Rem, Rem2, and Gem/Kir) family that regulates cardiac voltage-gated Ca2+ channel function. However, its cellular and physiological functions outside of the heart remain to be elucidated. Here we report that Rad GTPase function is required for normal bone homeostasis in mice, as Rad deletion results in significantly lower bone mass and higher bone marrow adipose tissue (BMAT) levels. Dynamic histomorphometry in vivo and primary calvarial osteoblast assays in vitro demonstrate that bone formation and osteoblast mineralization rates are depressed, while in vitro osteoclast differentiation is increased, in the absence of Rad. Microarray analysis revealed that canonical osteogenic gene expression (Runx2, osterix, etc.) is not altered in Rad-/- calvarial osteoblasts; instead robust up-regulation of matrix Gla protein (MGP, +11-fold), an inhibitor of extracellular matrix mineralization and a protein secreted during adipocyte differentiation, was observed. Strikingly, Rad deficiency also resulted in significantly higher marrow adipose tissue levels in vivo and promoted spontaneous in vitro adipogenesis of primary calvarial osteoblasts. Adipogenic differentiation of wildtype calvarial osteoblasts resulted in the loss of endogenous Rad protein, further supporting a role for Rad in the control of BMAT levels. These findings reveal a novel in vivo function for Rad and establish a role for Rad signaling in the complex physiological control of skeletal homeostasis and bone marrow adiposity.
Collapse
Affiliation(s)
- Catherine N Withers
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S Limestone Street, Lexington, KY 40536-0509, USA.
| | - Drew M Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Innocent Byiringiro
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Keith W Condon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Jonathan Satin
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | - Douglas A Andres
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S Limestone Street, Lexington, KY 40536-0509, USA.
| |
Collapse
|
22
|
Li Z, Shen Z, Du L, He J, Chen S, Zhang J, Luan Y, Fu G. Fn14 is regulated via the RhoA pathway and mediates nuclear factor-kappaB activation by Angiotensin II. Am J Transl Res 2016; 8:5386-5398. [PMID: 28078010 PMCID: PMC5209490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/06/2016] [Indexed: 06/06/2023]
Abstract
Angiotesin II (Ang II) plays an important role in cardiac remodeling. Fibroblast growth factor inducible-14 (Fn14) is the smallest member of the tumor necrosis factor superfamily of receptors. Currently, little is known about the functional role of Fn14 in the heart. Chiefly, we observe the up-regulation of extracellular matrix in in vivo model. We therefore assess the expression and regulation of Fn14 in cardiomyocytes and in vivo models induced by Ang II. In order to study the regulation of Fn14, cardiac remodeling was established in rats and neonatal cardiomyocytes were used in in vitro model. As well, Ang II is able to strongly induce Fn14 expression in in vivo and in vitro models. Fn14 is mediated via RhoA pathways, since siRNA against RhoA prevented the expression of Fn14 in cardiomyocytes. Pretreatment of cardiomyoctes with siRNA against NF-κB and IκBα also decreased Fn14 expression induced by Ang II. We here describe for the first time Ang II regulation of Fn14 in in vivo and in vitro models via RhoA, NF-κB and NF-κB driven gene signaling pathway. In conclusion, Fn14 may be important in regulating the process of cardiac remodeling induced by Ang II.
Collapse
Affiliation(s)
- Zhengwei Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Lailing Du
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Jialin He
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Shengyu Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Jiefang Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Yi Luan
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| |
Collapse
|
23
|
Xiao C, Gao L, Hou Y, Xu C, Chang N, Wang F, Hu K, He A, Luo Y, Wang J, Peng J, Tang F, Zhu X, Xiong JW. Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish. Nat Commun 2016; 7:13787. [PMID: 27929112 PMCID: PMC5476829 DOI: 10.1038/ncomms13787] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/01/2016] [Indexed: 12/15/2022] Open
Abstract
The zebrafish possesses a remarkable capacity of adult heart regeneration, but the underlying mechanisms are not well understood. Here we report that chromatin remodelling factor Brg1 is essential for adult heart regeneration. Brg1 mRNA and protein are induced during heart regeneration. Transgenic over-expression of dominant-negative Xenopus Brg1 inhibits the formation of BrdU+/Mef2C+ and Tg(gata4:EGFP) cardiomyocytes, leading to severe cardiac fibrosis and compromised myocardial regeneration. RNA-seq and RNAscope analyses reveal that inhibition of Brg1 increases the expression of cyclin-dependent kinase inhibitors such as cdkn1a and cdkn1c in the myocardium after ventricular resection; and accordingly, myocardial-specific expression of dn-xBrg1 blunts myocardial proliferation and regeneration. Mechanistically, injury-induced Brg1, via its interaction with Dnmt3ab, suppresses the expression of cdkn1c by increasing the methylation level of CpG sites at the cdkn1c promoter. Taken together, our results suggest that Brg1 promotes heart regeneration by repressing cyclin-dependent kinase inhibitors partly through Dnmt3ab-dependent DNA methylation.
Collapse
Affiliation(s)
- Chenglu Xiao
- Institute of Molecular Medicine, Peking University, Beijing 100871, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100871, China
| | - Lu Gao
- Institute of Molecular Medicine, Peking University, Beijing 100871, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100871, China
| | - Yu Hou
- Biodynamic Optical Imaging Center, Peking University, Beijing 100871, China.,College of Life Sciences, Peking University, Beijing 100871, China
| | - Congfei Xu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Nannan Chang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100871, China
| | - Fang Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Keping Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China.,Peking Union Medical College, Beijing 100730, China
| | - Aibin He
- Institute of Molecular Medicine, Peking University, Beijing 100871, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jun Wang
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, Peking University, Beijing 100871, China.,College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaojun Zhu
- Institute of Molecular Medicine, Peking University, Beijing 100871, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100871, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, Peking University, Beijing 100871, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100871, China
| |
Collapse
|
24
|
Levitan BM, Manning JR, Withers CN, Smith JD, Shaw RM, Andres DA, Sorrell VL, Satin J. Rad-deletion Phenocopies Tonic Sympathetic Stimulation of the Heart. J Cardiovasc Transl Res 2016; 9:432-444. [PMID: 27798760 DOI: 10.1007/s12265-016-9716-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022]
Abstract
Sympathetic stimulation modulates L-type calcium channel (LTCC) gating to contribute to increased systolic heart function. Rad is a monomeric G-protein that interacts with LTCC. Genetic deletion of Rad (Rad-/-) renders LTCC in a sympathomimetic state. The study goal was to use a clinically inspired pharmacological stress echocardiography test, including analysis of global strain, to determine whether Rad-/- confers tonic positive inotropic heart function. Sarcomere dynamics and strain showed partial parallel isoproterenol (ISO) responsiveness for wild-type (WT) and for Rad-/-. Rad-/- basal inotropy was elevated compared to WT but was less responsiveness to ISO. Rad protein levels were lower in human patients with end-stage non-ischemic heart failure. These results show that Rad reduction provides a stable inotropic response rooted in sarcomere level function. Thus, reduced Rad levels in heart failure patients may be a compensatory response to need for increased output in the setting of HF. Rad deletion suggests a future therapeutic direction for inotropic support.
Collapse
Affiliation(s)
- Bryana M Levitan
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose St, Lexington, KY, 40536-0298, USA
- Gill Heart Institute, University of Kentucky, Lexington, KY, USA
| | - Janet R Manning
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose St, Lexington, KY, 40536-0298, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Catherine N Withers
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Jeffrey D Smith
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Robin M Shaw
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Douglas A Andres
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | | | - Jonathan Satin
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose St, Lexington, KY, 40536-0298, USA.
| |
Collapse
|
25
|
Zhang J, Qiao C, Chang L, Guo Y, Fan Y, Villacorta L, Chen YE, Zhang J. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy. PLoS One 2016; 11:e0157372. [PMID: 27294862 PMCID: PMC4905683 DOI: 10.1371/journal.pone.0157372] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/28/2016] [Indexed: 12/23/2022] Open
Abstract
Fatty acid binding protein 4 (FABP4) is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG) mice using α myosin-heavy chain (α-MHC) promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC) procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- * E-mail: (JZ); (YEC)
| | - Congzhen Qiao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Yanbo Fan
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Luis Villacorta
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- * E-mail: (JZ); (YEC)
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| |
Collapse
|
26
|
Fountoulaki K, Dagres N, Iliodromitis EK. Cellular Communications in the Heart. Card Fail Rev 2015; 1:64-68. [PMID: 28785434 PMCID: PMC5490974 DOI: 10.15420/cfr.2015.1.2.64] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/12/2015] [Indexed: 11/04/2022] Open
Abstract
Heart failure is one of the leading causes of morbidity and mortality worldwide. Cardiac remodelling is first an adaptive, becoming a maladaptive, compensatory mechanism that finally causes ventricular dysfunction independently of the etiology of the initial insult. In the present article the authors describe the elements of the human heart, examining their basic functions and their inter-communication under both normal and pathological circumstances. Cardiac myocytes carry out mechanical and electrical functions of the heart and cardiac fibroblasts maintain its structural integrity. Several factors can affect fibroblast activation and under pathological stress they transdifferentiate into myofibroblasts. Endothelial cells have complex biological functions, including the control of vascular permeability, vasomotion, regulation of haemostasis, immune responses and angiogenesis. The extracellular matrix is a complex architectural network consisting of a variety of proteins. Various routes using a plethora of products and mediators contribute to the cross-talk of the myocytes with endothelial cells, extracellular matrix and cardiac fibroblasts. A better understanding of the entire mechanism of cellular communication by the established or the more recently discovered agents will certainly emerge promising new perspectives when looking at the prevention of heart failure and leading to more substantial therapeutic interventions.
Collapse
Affiliation(s)
- Katerina Fountoulaki
- Cardiothoracic Intensive Care Unit, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Nikolaos Dagres
- Second University Department of Cardiology, Attikon General Hospial, University of Athens, Athens, Greece
| | - Efstathios K Iliodromitis
- Second University Department of Cardiology, Attikon General Hospial, University of Athens, Athens, Greece
| |
Collapse
|
27
|
Liao WL, Tan MW, Yuan Y, Wang GK, Wang C, Tang H, Xu ZY. Brahma-related gene 1 inhibits proliferation and migration of human aortic smooth muscle cells by directly up-regulating Ras-related associated with diabetes in the pathophysiologic processes of aortic dissection. J Thorac Cardiovasc Surg 2015; 150:1292-301.e2. [PMID: 26344687 DOI: 10.1016/j.jtcvs.2015.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/29/2015] [Accepted: 08/01/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To elucidate the mechanisms of Brahma-related gene 1 (Brg1) involvement in the pathophysiologic processes of aortic dissection. METHODS Seventeen dissecting, 4 dilated, and 10 healthy human aorta samples were collected. Expression of Brg1 in the medium of aorta was evaluated by quantitative real-time polymerase chain reaction, Western blot, and immunohistochemical staining, respectively. The regulation effect of Brg1 on proliferation and migration of human aortic smooth muscle cells (HASMCs) was analyzed in 3 ways: using cell counting, a migration chamber, and a wound scratch assay. A polymerase chain reaction array was used for screening potential target genes of Brg1. A chromatin immunoprecipitation assay was adopted for direct deoxyribonucleic acid-protein binding detection. RESULTS Expression levels of Brg1 were increased in aortic dissection and aortic dilation patients. In vitro results indicated that overexpression of Brg1 inhibited proliferation and migration of HASMCs. The candidate proliferation- and migration-related Brg1 target gene found was Ras-related associated with diabetes (RRAD), expression levels of which were enhanced in dissecting aortic specimens. The direct regulation effect of Brg1 on RRAD was verified by chromatin immunoprecipitation assay results. Furthermore, down-regulating RRAD significantly alleviated the suppression effects of Brg1 on proliferation and migration of HASMCs. CONCLUSIONS Our study illustrated that Brg1 inhibited the proliferation and migration capacity of HASMCs, via the mechanism of direct up-regulation of RRAD, thus playing an important role in the pathophysiologic processes of aortic dissection.
Collapse
MESH Headings
- Adult
- Aged
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/physiopathology
- Aorta/metabolism
- Aorta/pathology
- Aorta/physiopathology
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/pathology
- Aortic Aneurysm/physiopathology
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Female
- Humans
- Male
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA, Messenger/metabolism
- Signal Transduction
- Time Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Up-Regulation
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Wei-Lin Liao
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Meng-Wei Tan
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yang Yuan
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Guo-Kun Wang
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Chong Wang
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Hao Tang
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| | - Zhi-Yun Xu
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
28
|
Zhang C, Liu J, Wu R, Liang Y, Lin M, Liu J, Chan CS, Hu W, Feng Z. Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD. Oncotarget 2015; 5:5535-46. [PMID: 25114038 PMCID: PMC4170611 DOI: 10.18632/oncotarget.2137] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer cells display enhanced glycolysis to meet their energetic and biosynthetic demands even under normal oxygen concentrations. Recent studies have revealed that tumor suppressor p53 represses glycolysis under normoxia as a novel mechanism for tumor suppression. As the common microenvironmental stress for tumors, hypoxia drives the metabolic switch from the oxidative phosphorylation to glycolysis, which is crucial for survival and proliferation of cancer cells under hypoxia. The p53's role and mechanism in regulating glycolysis under hypoxia is poorly understood. Here, we found that p53 represses hypoxia-stimulated glycolysis in cancer cells through RRAD, a newly-identified p53 target. RRAD expression is frequently decreased in lung cancer. Ectopic expression of RRAD greatly reduces glycolysis whereas knockdown of RRAD promotes glycolysis in lung cancer cells. Furthermore, RRAD represses glycolysis mainly through inhibition of GLUT1 translocation to the plasma membrane. Under hypoxic conditions, p53 induces RRAD, which in turn inhibits the translocation of GLUT1 and represses glycolysis in lung cancer cells. Blocking RRAD by siRNA greatly abolishes p53's function in repressing glycolysis under hypoxia. Taken together, our results revealed an important role and mechanism of p53 in antagonizing the stimulating effect of hypoxia on glycolysis, which contributes to p53's function in tumor suppression.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA; These two authors contributed equally to this work
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA; These two authors contributed equally to this work
| | - Rui Wu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Yingjian Liang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Meihua Lin
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Jia Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Chang S Chan
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| |
Collapse
|
29
|
Galindo CL, Kasasbeh E, Murphy A, Ryzhov S, Lenihan S, Ahmad FA, Williams P, Nunnally A, Adcock J, Song Y, Harrell FE, Tran TL, Parry TJ, Iaci J, Ganguly A, Feoktistov I, Stephenson MK, Caggiano AO, Sawyer DB, Cleator JH. Anti-remodeling and anti-fibrotic effects of the neuregulin-1β glial growth factor 2 in a large animal model of heart failure. J Am Heart Assoc 2014; 3:e000773. [PMID: 25341890 PMCID: PMC4323814 DOI: 10.1161/jaha.113.000773] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Neuregulin-1β (NRG-1β) is a growth factor critical for cardiac development and repair with therapeutic potential for heart failure. We previously showed that the glial growth factor 2 (GGF2) isoform of NRG-1β improves cardiac function in rodents after myocardial infarction (MI), but its efficacy in a large animal model of cardiac injury has not been examined. We therefore sought to examine the effects of GGF2 on ventricular remodeling, cardiac function, and global transcription in post-MI swine, as well as potential mechanisms for anti-remodeling effects. METHODS AND RESULTS MI was induced in anesthetized swine (n=23) by intracoronary balloon occlusion. At 1 week post-MI, survivors (n=13) received GGF2 treatment (intravenous, biweekly for 4 weeks; n=8) or were untreated (n=5). At 5 weeks post-MI, fractional shortening was higher (32.8% versus 25.3%, P=0.019), and left ventricular (LV) end-diastolic dimension lower (4.5 versus 5.3 cm, P=0.003) in GGF2-treated animals. Treatment altered expression of 528 genes, as measured by microarrays, including collagens, basal lamina components, and matricellular proteins. GGF2-treated pigs exhibited improvements in LV cardiomyocyte mitochondria and intercalated disk structures and showed less fibrosis, altered matrix structure, and fewer myofibroblasts (myoFbs), based on trichrome staining, electron microscopy, and immunostaining. In vitro experiments with isolated murine and rat cardiac fibroblasts demonstrate that NRG-1β reduces myoFbs, and suppresses TGFβ-induced phospho-SMAD3 as well as αSMA expression. CONCLUSIONS These results suggest that GGF2/NRG-1β prevents adverse remodeling after injury in part via anti-fibrotic effects in the heart.
Collapse
Affiliation(s)
- Cristi L Galindo
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Ehab Kasasbeh
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Abigail Murphy
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Sergey Ryzhov
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Sean Lenihan
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Farhaan A Ahmad
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Philip Williams
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Amy Nunnally
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Jamie Adcock
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Yanna Song
- Department of Biostatistics, Vanderbilt University, Nashville, TN (Y.S., F.E.H.)
| | - Frank E Harrell
- Department of Biostatistics, Vanderbilt University, Nashville, TN (Y.S., F.E.H.)
| | - Truc-Linh Tran
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Tom J Parry
- Acorda Therapeutics, Ardsley, NY (T.J.P., J.I., A.G., A.O.C.)
| | - Jen Iaci
- Acorda Therapeutics, Ardsley, NY (T.J.P., J.I., A.G., A.O.C.)
| | | | - Igor Feoktistov
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | | | | | - Douglas B Sawyer
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - John H Cleator
- Department of Pharmacology, Vanderbilt University, Nashville, TN (J.H.C.)
| |
Collapse
|
30
|
Puhl HL, Lu VB, Won YJ, Sasson Y, Hirsch JA, Ono F, Ikeda SR. Ancient origins of RGK protein function: modulation of voltage-gated calcium channels preceded the protostome and deuterostome split. PLoS One 2014; 9:e100694. [PMID: 24992013 PMCID: PMC4081519 DOI: 10.1371/journal.pone.0100694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/23/2014] [Indexed: 11/21/2022] Open
Abstract
RGK proteins, Gem, Rad, Rem1, and Rem2, are members of the Ras superfamily of small GTP-binding proteins that interact with Ca2+ channel β subunits to modify voltage-gated Ca2+ channel function. In addition, RGK proteins affect several cellular processes such as cytoskeletal rearrangement, neuronal dendritic complexity, and synapse formation. To probe the phylogenetic origins of RGK protein–Ca2+ channel interactions, we identified potential RGK-like protein homologs in genomes for genetically diverse organisms from both the deuterostome and protostome animal superphyla. RGK-like protein homologs cloned from Danio rerio (zebrafish) and Drosophila melanogaster (fruit flies) expressed in mammalian sympathetic neurons decreased Ca2+ current density as reported for expression of mammalian RGK proteins. Sequence alignments from evolutionarily diverse organisms spanning the protostome/deuterostome divide revealed conservation of residues within the RGK G-domain involved in RGK protein – Cavβ subunit interaction. In addition, the C-terminal eleven residues were highly conserved and constituted a signature sequence unique to RGK proteins but of unknown function. Taken together, these data suggest that RGK proteins, and the ability to modify Ca2+ channel function, arose from an ancestor predating the protostomes split from deuterostomes approximately 550 million years ago.
Collapse
Affiliation(s)
- Henry L. Puhl
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Van B. Lu
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yu-Jin Won
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yehezkel Sasson
- Department of Biochemistry & Molecular Biology, Faculty of Life Sciences, Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Joel A. Hirsch
- Department of Biochemistry & Molecular Biology, Faculty of Life Sciences, Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Fumihito Ono
- Laboratory of Molecular Physiology, Section on Model Synaptic Systems, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Stephen R. Ikeda
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
Li Z, Bi X, Wang M, Zhang J, Song J, Shen X, Han J, Fu G, Ye Y. Inhibition of farnesyl pyrophosphate synthase prevents angiotensin II-induced cardiac fibrosis in vitro. Clin Exp Immunol 2014; 176:429-37. [PMID: 24527834 DOI: 10.1111/cei.12282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 12/19/2022] Open
Abstract
Farnesyl pyrophosphate synthase (FPPS)-catalysed isoprenoid intermediates are important for the activation of Ras homologue gene family, member A (RhoA) in angiotensin (Ang) II-induced cardiac fibrosis. This study was designed to investigate the specific role of FPPS in the development of cardiac fibrosis. We demonstrated that FPPS expression was elevated in both in-vivo and in-vitro models of Ang II-mediated cardiac fibrosis. FPPS inhibition by zolendronate and FPPS knock-down by a silencing lentivirus decreased the expression of cardiac fibrosis marker genes, including collagen I, collagen III and transforming growth factor (TGF)-β1. FPPS inhibition was reversed by geranylgeraniol (GGOH) and mimicked by RhoA knock-down with siRhoA. The antagonistic effect of GGOH on the zolendronate-mediated modulation of RhoA activation in Ang II-stimulated cardiac fibroblasts was demonstrated by a pull-down assay. Furthermore, FPPS knock-down also prevented RhoA activation by Ang II in vitro. In conclusion, FPPS and RhoA may be part of a signalling pathway that plays an important role in Ang II-induced cardiac fibrosis in vitro.
Collapse
Affiliation(s)
- Z Li
- Department of Cardiology, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Left ventricular mass in dialysis patients, determinants and relation with outcome. Results from the COnvective TRansport STudy (CONTRAST). PLoS One 2014; 9:e84587. [PMID: 24505249 PMCID: PMC3914777 DOI: 10.1371/journal.pone.0084587] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/17/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Left ventricular mass (LVM) is known to be related to overall and cardiovascular mortality in end stage kidney disease (ESKD) patients. The aims of the present study are 1) to determine whether LVM is associated with mortality and various cardiovascular events and 2) to identify determinants of LVM including biomarkers of inflammation and fibrosis. DESIGN SETTING PARTICIPANTS & MEASUREMENTS Analysis was performed with data of 327 ESKD patients, a subset from the CONvective TRAnsport STudy (CONTRAST). Echocardiography was performed at baseline. Cox regression analysis was used to assess the relation of LVM tertiles with clinical events. Multivariable linear regression models were used to identify factors associated with LVM. RESULTS Median age was 65 (IQR: 54-73) years, 203 (61%) were male and median LVM was 227 (IQR: 183-279) grams. The risk of all-cause mortality (hazard ratio (HR) = 1.73, 95% CI: 1.11-2.99), cardiovascular death (HR = 3.66, 95% CI: 1.35-10.05) and sudden death (HR = 13.06; 95% CI: 6.60-107) was increased in the highest tertile (>260 grams) of LVM. In the multivariable analysis positive relations with LVM were found for male gender (B = 38.8±10.3), residual renal function (B = 17.9±8.0), phosphate binder therapy (B = 16.9±8.5), and an inverse relation for a previous kidney transplantation (B = -41.1±7.6) and albumin (B = -2.9±1.1). Interleukin-6 (Il-6), high-sensitivity C-reactive protein (hsCRP), hepcidin-25 and connective tissue growth factor (CTGF) were not related to LVM. CONCLUSION We confirm the relation between a high LVM and outcome and expand the evidence for increased risk of sudden death. No relationship was found between LVM and markers of inflammation and fibrosis. TRIAL REGISTRATION Controlled-Trials.com ISRCTN38365125.
Collapse
|
33
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
34
|
Balamurugan K, Sterneck E. The many faces of C/EBPδ and their relevance for inflammation and cancer. Int J Biol Sci 2013; 9:917-33. [PMID: 24155666 PMCID: PMC3805898 DOI: 10.7150/ijbs.7224] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/27/2013] [Indexed: 12/29/2022] Open
Abstract
The CCAAT/enhancer binding protein delta (CEBPD, C/EBPδ) is a transcription factor that modulates many biological processes including cell differentiation, motility, growth arrest, proliferation, and cell death. The diversity of C/EBPδ's functions depends in part on the cell type and cellular context and can have opposing outcomes. For example, C/EBPδ promotes inflammatory signaling, but it can also inhibit pro-inflammatory pathways, and in a mouse model of mammary tumorigenesis, C/EBPδ reduces tumor incidence but promotes tumor metastasis. This review highlights the multifaceted nature of C/EBPδ's functions, with an emphasis on pathways that are relevant for cancer and inflammation, and illustrates how C/EBPδ emerged from the shadow of its family members as a fascinating “jack of all trades.” Our current knowledge on C/EBPδ indicates that, rather than being essential for a specific cellular process, C/EBPδ helps to interpret a variety of cues in a cell-type and context-dependent manner, to adjust cellular functions to specific situations. Therefore, insights into the roles and mechanisms of C/EBPδ signaling can lead to a better understanding of how the integration of different signaling pathways dictates normal and pathological cell functions and physiology.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD-21702-1201, U.S.A
| | | |
Collapse
|
35
|
Meza U, Beqollari D, Romberg CF, Papadopoulos S, Bannister RA. Potent inhibition of L-type Ca2+ currents by a Rad variant associated with congestive heart failure. Biochem Biophys Res Commun 2013; 439:270-4. [PMID: 23973784 DOI: 10.1016/j.bbrc.2013.08.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
Ca(2+) influx via L-type voltage-gated Ca(2+) channels supports the plateau phase of ventricular action potentials and is the trigger for excitation-contraction (EC) coupling in the myocardium. Rad, a member of the RGK (Rem, Rem2, Rad, Gem/Kir) family of monomeric G proteins, regulates ventricular action potential duration and EC coupling gain through its ability to inhibit cardiac L-type channel activity. In this study, we have investigated the potential dysfunction of a naturally occurring Rad variant (Q66P) that has been associated with congestive heart failure in humans. Specifically, we have tested whether Rad Q66P limits, or even eliminates, the inhibitory actions of Rad on CaV1.2 and CaV1.3, the two L-type channel isoforms known to be expressed in the heart. We have found that mouse Rad Q65P (the murine equivalent of human Rad Q66P) inhibits L-type currents conducted by CaV1.2 or CaV1.3 channels as potently as wild-type Rad (>95% inhibition of both channels). In addition, Rad Q65P attenuates the gating movement of both channels as effectively as wild-type Rad, indicating that the Q65P substitution does not differentially impair any of the three described modes of L-type channel inhibition by RGK proteins. Thus, we conclude that if Rad Q66P contributes to cardiomyopathy, it does so via a mechanism that is not related to its ability to inhibit L-type channel-dependent processes per se. However, our results do not rule out the possibility that decreased expression, mistargeting or altered regulation of Rad Q66P may reduce the RGK protein's efficacy in vivo.
Collapse
Affiliation(s)
- U Meza
- Department of Medicine-Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, 12700 East 19th Avenue, P15-8006, B-139, Aurora, CO 80045, USA; Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Venustiano Carranza #2405, San Luis Potosí, SLP 78210, México.
| | | | | | | | | |
Collapse
|
36
|
Pope NJ, Bresnick EH. Establishment of a cell-type-specific genetic network by the mediator complex component Med1. Mol Cell Biol 2013; 33:1938-55. [PMID: 23459945 PMCID: PMC3647965 DOI: 10.1128/mcb.00141-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/23/2013] [Indexed: 01/11/2023] Open
Abstract
The intense physiologic demand to generate vast numbers of red blood cells requires the establishment of a complex genetic network by the master regulatory transcription factor GATA-1 and its coregulators. This network dictates the genesis of enucleated erythrocytes by orchestrating the survival, proliferation, and differentiation of progenitor cells. In addition to the crucial GATA-1 coregulator Friend of GATA-1 (FOG-1), a component of the Mediator complex, Med1, facilitates GATA-1-dependent transcription at select target genes and controls erythropoiesis. It is not known to what extent Med1 contributes to GATA-1 function or whether Med1 controls a large or restricted cohort of genes that are not regulated by GATA-1. Using a genetic complementation assay in GATA-1-null erythroid cells, we demonstrate that Med1 and another Mediator component, Med25, regulate a restricted cohort of genes that are predominantly not controlled by GATA-1. Most of these genes were not regulated by Med1 in fibroblasts. Loss-of-function analyses with GATA-1-independent Med1 target genes indicate that Rrad, which encodes a small GTPase induced during human erythropoiesis, conferred erythroid cell survival. Thus, while Med1 is a context-dependent GATA-1 coregulator, it also exerts specialized functions in erythroid cells to control GATA-1-independent, cell-type-specific genes, which include candidate regulators of erythroid cell development and function.
Collapse
Affiliation(s)
- Nathaniel J Pope
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | |
Collapse
|
37
|
Zhang P, Su J, Mende U. Cross talk between cardiac myocytes and fibroblasts: from multiscale investigative approaches to mechanisms and functional consequences. Am J Physiol Heart Circ Physiol 2012; 303:H1385-96. [PMID: 23064834 DOI: 10.1152/ajpheart.01167.2011] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The heart is comprised of a syncytium of cardiac myocytes (CM) and surrounding nonmyocytes, the majority of which are cardiac fibroblasts (CF). CM and CF are highly interspersed in the myocardium with one CM being surrounded by one or more CF. Bidirectional cross talk between CM and CF plays important roles in determining cardiac mechanical and electrical function in both normal and diseased hearts. Genetically engineered animal models and in vitro studies have provided evidence that CM and CF can regulate each other's function. Their cross talk contributes to structural and electrical remodeling in both atria and ventricles and appears to be involved in the pathogenesis of various heart diseases that lead to heart failure and arrhythmia disorders. Mechanisms of CM-CF cross talk, which are not yet fully understood, include release of paracrine factors, direct cell-cell interactions via gap junctions and potentially adherens junctions and nanotubes, and cell interactions with the extracellular matrix. In this article, we provide an overview of the existing multiscale experimental and computational approaches for the investigation of cross talk between CM and CF and review recent progress in our understanding of the functional consequences and underlying mechanisms. Targeting cross talk between CM and CF could potentially be used therapeutically for the modulation of the cardiac remodeling response in the diseased heart and may lead to new strategies for the treatment of heart failure or rhythm disturbances.
Collapse
Affiliation(s)
- P Zhang
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital, Providence, USA
| | | | | |
Collapse
|
38
|
Alteration of purinergic neurotransmission in isolated atria of streptozotocin-induced diabetic rats. J Cardiovasc Pharmacol 2012; 59:158-64. [PMID: 21983745 DOI: 10.1097/fjc.0b013e31823a0f31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cardiac dysfunctions are described in diabetes. However, the role of purinergic neurotransmission in diabetes-related cardiovascular diseases is unknown. The purpose of this study was to evaluate the purinergic neurotransmission in isolated atria from streptozotocin-induced diabetic rats. The animals were grouped as control and diabetic with 30 days (D30) and 60 days (D60) after streptozotocin-induced diabetes. The isolated left and right atria were used in functional experiments. The effects of adenosine triphosphate, uridine diphosphate, and adenosine were evaluated on atrial inotropism and chronotropism. The antagonists 8-cyclopentyl-1,3-dipropylxanthine and pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate were also used, as blockers of P1 and P2 receptors, respectively. A negative inotropic effect followed by a positive inotropic effect was induced by adenosine triphosphate in isolated atria. This negative inotropic effect was decreased by 25% in left atria of D30. Additionally, the apparent affinity for adenosine was diminished in left atria of D30, suggesting changes in P1 receptor function. No changes were found in the right atria of D30 stimulated by adenosine. The left atria and right atria stimulated by uridine diphosphate showed an increased inotropic effect of 92% and 17%, respectively. No changes were observed in left and right atria of D30 stimulated by uridine diphosphate. Our data showed the involvement of purinergic neurotransmission in diabetes-related cardiovascular changes.
Collapse
|
39
|
Sun Z, Zhang J, Zhang J, Chen C, Du Q, Chang L, Cao C, Zheng M, Garcia-Barrio MT, Chen YE, Xiao RP, Mao J, Zhu X. Rad GTPase induces cardiomyocyte apoptosis through the activation of p38 mitogen-activated protein kinase. Biochem Biophys Res Commun 2011; 409:52-7. [PMID: 21549102 DOI: 10.1016/j.bbrc.2011.04.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/22/2011] [Indexed: 11/28/2022]
Abstract
Rad is a member of a subclass of small GTP-binding proteins, the RGK family. In the present study we investigated the role of Rad protein in regulating cardiomyocyte viability. DNA fragmentation and TUNEL assays demonstrated that Rad promoted rat neonatal cardiomyocyte apoptosis. Rad silencing fully blocked serum deprivation induced apoptosis, indicating Rad is necessary for trigger cardiomyocyte apoptosis. Rad overexpression caused a dramatic decrease of the anti-apoptotic molecule Bcl-x(L), whereas Bcl-x(L) overexpression protected cardiomyocytes against Rad-induced apoptosis. Rad-triggered apoptosis was mediated by the activation of p38 MAPK. The p38 blocker SB203580 effectively protected cardiomyocytes against Rad-evoked apoptosis.
Collapse
Affiliation(s)
- Zhongcui Sun
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|