1
|
He Q, Wang Y, Zhao F, Wei S, Li X, Zeng G. APE1: A critical focus in neurodegenerative conditions. Biomed Pharmacother 2024; 179:117332. [PMID: 39191031 DOI: 10.1016/j.biopha.2024.117332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
The global growth of the aging population has resulted in an increased prevalence of neurodegenerative diseases, characterized by the progressive loss of central nervous system (CNS) structure and function. Given the high incidence and debilitating nature of neurodegenerative diseases, there is an urgent need to identify potential biomarkers and novel therapeutic targets thereof. Apurinic/apyrimidinic endonuclease 1 (APE1), has been implicated in several neurodegenerative diseases, as having a significant role. Abnormal APE1 expression has been observed in conditions including Alzheimer's disease, stroke, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and epilepsy. However, whether this dysregulation is protective or harmful remains unclear. This review aims to comprehensively review the current understanding of the involvement of APE1 in neurodegenerative diseases.
Collapse
Affiliation(s)
- Qianxiong He
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yi Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Shigang Wei
- Department of Clinical Laboratory, People's Hospital of Pengzhou city, Pengzhou, Sichuan province 611930, China
| | - Xingfu Li
- Department of Clinical Laboratory, The Honghe Autonomous Prefecture 3rd Hospital, Honghe 661021, China
| | - Guangqun Zeng
- Department of Clinical Laboratory, People's Hospital of Pengzhou city, Pengzhou, Sichuan province 611930, China.
| |
Collapse
|
2
|
Xu H, Tan L, Qu Q, Zhang W. NEDD4 attenuates oxidized low‑density lipoprotein‑induced inflammation and dysfunction in vascular endothelial cells via regulating APEX1 expression. Exp Ther Med 2023; 25:88. [PMID: 36684652 PMCID: PMC9849851 DOI: 10.3892/etm.2023.11787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/05/2022] [Indexed: 01/06/2023] Open
Abstract
Atherosclerosis chiefly results from inflammation as well as vascular endothelial cell dysfunction. Methylation levels of neuronally expressed developmentally downregulated 4 (NEDD4) were found to be fortified in atherosclerosis patients and NEDD4 deficiency enhanced vascular calcification. However, the exact function of NEDD4 in inflammation and vascular endothelial dysfunction remains to be elucidated. In the present study, CCK-8 assay was used to estimate cell viability. Reverse transcription-quantitative PCR was adopted to examine the expression of NEDD4, inflammation-associated enzymes and apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1). Western blotting was used to test NEDD4, endothelial nitric oxide synthase, inducible nitric oxide synthase and APEX1 protein levels. Cytotoxicity was detected by a lactate dehydrogenase (LDH) kit. Reactive oxygen species level was tested by a corresponding kit. Vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 contents were examined with ELISA. Cell adhesion assays evaluated the adhesion of endothelial cells. Co-immunoprecipitation assay was used to test the relationship between NEDD4 and APEX1. The data revealed that NEDD4 expression rapidly declined in oxidized low density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs). Following NEDD4 overexpression, the active damage, inflammatory release and endothelial cell dysfunction in ox-LDL-induced HUVECs were attenuated. After co-transfection of APEX1 interference plasmids and NEDD4 overexpression plasmids, cell damage, inflammatory release and endothelial cell dysfunction in ox-LDL-induced HUVECs were improved again. Taken together, NEDD4 attenuated ox-LDL-induced inflammation and endothelial dysfunction by regulating APEX1 expression.
Collapse
Affiliation(s)
- Huiyu Xu
- Department of Critical Care Medicine, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Lijuan Tan
- Department of Critical Care Medicine, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Qiaofang Qu
- Department of Critical Care Medicine, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Wutang Zhang
- Department of Critical Care Medicine, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China,Correspondence to: Dr Wutang Zhang, Department of Critical Care Medicine, Shanxi Cardiovascular Hospital, 18 Yifen Road, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
3
|
Miner KM, Jamenis AS, Bhatia TN, Clark RN, Rajasundaram D, Sauvaigo S, Mason DM, Posimo JM, Abraham N, DeMarco BA, Hu X, Stetler RA, Chen J, Sanders LH, Luk KC, Leak RK. α-synucleinopathy exerts sex-dimorphic effects on the multipurpose DNA repair/redox protein APE1 in mice and humans. Prog Neurobiol 2022; 216:102307. [PMID: 35710046 PMCID: PMC9514220 DOI: 10.1016/j.pneurobio.2022.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/05/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Lewy body disorders are characterized by oxidative damage to DNA and inclusions rich in aggregated forms of α-synuclein. Among other roles, apurinic/apyrimidinic endonuclease 1 (APE1) repairs oxidative DNA damage, and APE1 polymorphisms have been linked to cases of Lewy body disorders. However, the link between APE1 and α-synuclein is unexplored. We report that knockdown or inhibition of APE1 amplified inclusion formation in primary hippocampal cultures challenged with preformed α-synuclein fibrils. Fibril infusions into the mouse olfactory bulb/anterior olfactory nucleus (OB/AON) elicited a modest decrease in APE1 expression in the brains of male mice but an increase in females. Similarly, men with Lewy body disorders displayed lower APE1 expression in the OB and amygdala compared to women. Preformed fibril infusions of the mouse OB/AON induced more robust base excision repair of DNA lesions in females than males. No fibril-mediated loss of APE1 expression was observed in male mice when the antioxidant N-acetylcysteine was added to their diet. These findings reveal a potential sex-biased link between α-synucleinopathy and APE1 in mice and humans. Further studies are warranted to determine how this multifunctional protein modifies α-synuclein inclusions and, conversely, how α-synucleinopathy and biological sex interact to modify APE1.
Collapse
Affiliation(s)
- Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Rangos Research Center, UPMC Children's Hospital of Pittsburgh, PA 15224, USA
| | | | - Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jessica M Posimo
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Nevil Abraham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Brett A DeMarco
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - R Anne Stetler
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Laurie H Sanders
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19147, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| |
Collapse
|
4
|
Sheng C, Zhao J, Di Z, Huang Y, Zhao Y, Li L. Spatially resolved in vivo imaging of inflammation-associated mRNA via enzymatic fluorescence amplification in a molecular beacon. Nat Biomed Eng 2022; 6:1074-1084. [PMID: 36050523 DOI: 10.1038/s41551-022-00932-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/26/2022] [Indexed: 11/09/2022]
Abstract
The in vivo optical imaging of RNA biomarkers of inflammation is hindered by low signal-to-background ratios, owing to non-specific signal amplification in healthy tissues. Here we report the design and in vivo applicability, for the imaging of inflammation-associated messenger RNAs (mRNAs), of a molecular beacon bearing apurinic/apyrimidinic sites, whose amplification of fluorescence is triggered by human apurinic/apyrimidinic endonuclease 1 on translocation from the nucleus into the cytoplasm specifically in inflammatory cells. We assessed the sensitivity and tissue specificity of an engineered molecular beacon targeting interleukin-6 (IL-6) mRNA in live mice, by detecting acute inflammation in their paws and drug-induced inflammation in their livers. This enzymatic-amplification strategy may enable the specific and sensitive imaging of other disease-relevant RNAs in vivo.
Collapse
Affiliation(s)
- Chuangui Sheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenghan Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China.,GBA Research Innovation Institute for Nanotechnology, Guangdong, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China. .,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China. .,GBA Research Innovation Institute for Nanotechnology, Guangdong, China.
| |
Collapse
|
5
|
Lee I, Nagar H, Kim S, Choi SJ, Piao S, Ahn M, Jeon BH, Oh SH, Kang SK, Kim CS. Ref-1 protects against FeCl 3-induced thrombosis and tissue factor expression via the GSK3β-NF-κB pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:59-68. [PMID: 33361538 PMCID: PMC7756532 DOI: 10.4196/kjpp.2021.25.1.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Arterial thrombosis and its associated diseases are considered to constitute a major healthcare problem. Arterial thrombosis, defined as blood clot formation in an artery that interrupts blood circulation, is associated with many cardiovascular diseases. Oxidative stress is one of many important factors that aggravates the pathophysiological process of arterial thrombosis. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (Ref-1) has a multifunctional role in cells that includes the regulation of oxidative stress and anti-inflammatory function. The aim of this study was to investigate the therapeutic effect of adenovirus-mediated Ref-1 overexpression on arterial thrombosis induced by 60% FeCl3 solution in rats. Blood flow was measured to detect the time to occlusion, thrombus formation was detected by hematoxylin and eosin staining, reactive oxygen species (ROS) levels were detected by high-performance liquid chromatography, and the expression of tissue factor and other proteins was detected by Western blot. FeCl3 aggravated thrombus formation in carotid arteries and reduced the time to artery occlusion. Ref-1 significantly delayed arterial obstruction via the inhibition of thrombus formation, especially by downregulating tissue factor expression through the Akt-GSK3β-NF-κB signaling pathway. Ref-1 also reduced the expression of vascular inflammation markers ICAM-1 and VCAM-1, and reduced the level of ROS that contributed to thrombus formation. The results showed that adenovirus-mediated Ref-1 overexpression reduced thrombus formation in the rat carotid artery. In summary, Ref-1 overexpression had anti-thrombotic effects in a carotid artery thrombosis model and could be a target for the treatment of arterial thrombosis.
Collapse
Affiliation(s)
- Ikjun Lee
- Department of Physiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Harsha Nagar
- Department of Physiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Seonhee Kim
- Department of Physiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Su-Jeong Choi
- Department of Physiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Shuyu Piao
- Department of Physiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Moonsang Ahn
- Department of Surgery, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Byeong Hwa Jeon
- Department of Physiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Sang-Ha Oh
- Department of Plastic Reconstructive Surgery, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Shin Kwang Kang
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Cuk-Seong Kim
- Department of Physiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| |
Collapse
|
6
|
Plasma APE1/Ref-1 Correlates with Atherosclerotic Inflammation in ApoE -/- Mice. Biomedicines 2020; 8:biomedicines8090366. [PMID: 32967121 PMCID: PMC7555038 DOI: 10.3390/biomedicines8090366] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is involved in DNA base repair and reducing activity. However, the role of APE1/Ref-1 in atherosclerosis is unclear. Herein, we investigated the role of APE1/Ref-1 in atherosclerotic apolipoprotein E (ApoE−/−) mice fed with a Western-type diet. We found that serologic APE1/Ref-1 was strongly correlated with vascular inflammation in these mice. Neutrophil/lymphocyte ratio (NLR), endothelial cell/macrophage activation, and atherosclerotic plaque formation, reflected by atherosclerotic inflammation, were increased in the ApoE−/− mice fed with a Western-type diet. APE1/Ref-1 expression was upregulated in aortic tissues of these mice, and was co-localized with cells positive for cluster of differentiation 31 (CD31) and galectin-3, suggesting endothelial cell/macrophage expression of APE1/Ref-1. Interestingly, APE1/Ref-1 plasma levels of ApoE−/− mice fed with a Western-type diet were significantly increased compared with those of the mice fed with normal diet (15.76 ± 3.19 ng/mL vs. 3.51 ± 0.50 ng/mL, p < 0.05), and were suppressed by atorvastatin administration. Correlation analysis showed high correlation between plasma APE1/Ref-1 levels and NLR, a marker of systemic inflammation. The cut-off value for APE1/Ref-1 for predicting atherosclerotic inflammation at 4.903 ng/mL showed sensitivity of 100% and specificity of 91%. We conclude that APE1/Ref-1 expression is upregulated in aortic endothelial cells/macrophages of atherosclerotic mice, and that plasma APE1/Ref-1 levels could predict atherosclerotic inflammation.
Collapse
|
7
|
The Biological Role of Apurinic/Apyrimidinic Endonuclease1/Redox Factor-1 as a Therapeutic Target for Vascular Inflammation and as a Serologic Biomarker. Biomedicines 2020; 8:biomedicines8030057. [PMID: 32164272 PMCID: PMC7148461 DOI: 10.3390/biomedicines8030057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial dysfunction promotes vascular inflammation by inducing the production of reactive oxygen species and adhesion molecules. Vascular inflammation plays a key role in the pathogenesis of vascular diseases and atherosclerotic disorders. However, whether there is an endogenous system that can participate in circulating immune surveillance or managing a balance in homeostasis is unclear. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (henceforth referred to as APE1/Ref-1) is a multifunctional protein that can be secreted from cells. It functions as an apurinic/apyrimidinic endonuclease in the DNA base repair pathway and modulates redox status and several types of transcriptional factors, in addition to its anti-inflammatory activity. Recently, it was reported that the secretion of APE1/Ref-1 into the extracellular medium of cultured cells or its presence in the plasma can act as a serological biomarker for certain disorders. In this review, we summarize the possible biological functions of APE1/Ref-1 according to its subcellular localization or its extracellular secretions, as therapeutic targets for vascular inflammation and as a serologic biomarker.
Collapse
|
8
|
Jiang W, Xiao T, Han W, Xiong J, He T, Liu Y, Huang Y, Yang K, Bi X, Xu X, Yu Y, Li Y, Gu J, Zhang J, Huang Y, Zhang B, Zhao J. Klotho inhibits PKCα/p66SHC-mediated podocyte injury in diabetic nephropathy. Mol Cell Endocrinol 2019; 494:110490. [PMID: 31207271 DOI: 10.1016/j.mce.2019.110490] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
Diabetic nephropathy (DN) is a progressive disease, the main pathogeny of which is podocyte injury. As a calcium-dependent serine/threonine protein kinase involved in podocyte injury, protein kinase C isoform α (PKCα) was reported to regulate the phosphorylation of p66SHC. However, the role of PKCα/p66SHC in DN remains unknown. Klotho, an anti-aging protein with critical roles in protecting kidney, is expressed predominantly in the kidney and secreted in the blood. Nonetheless, the mechanism underlying amelioration of podocyte injury by Klotho in DN remains unclear. Our data showed that Klotho was decreased in STZ-treated mice and was further declined in diabetic KL ± mice. As expected, Klotho deficiency aggravated diabetes-induced proteinuria and podocyte injury, accompanied by the activation of PKCα and p66SHC. In contrast, overexpression of Klotho partially ameliorated PKCα/p66SHC-mediated podocyte injury and proteinuria. In addition, in vitro experiments showed that activation of PKCα and subsequently increased intracellular reactive oxygen species (ROS) was involved in podocytic apoptosis induced by high glucose (HG), which could be partially reversed by Klotho. Hence, we conclude that Klotho might inhibit PKCα/p66SHC-mediated podocyte injury in diabetic nephropathy.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Tangli Xiao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wenhao Han
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiachuan Xiong
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ting He
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yong Liu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yinghui Huang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ke Yang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xianjin Bi
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xinli Xu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yanlin Yu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yan Li
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jun Gu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
| | - Jingbo Zhang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yunjian Huang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Jinghong Zhao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
9
|
Boengler K, Bornbaum J, Schlüter KD, Schulz R. P66shc and its role in ischemic cardiovascular diseases. Basic Res Cardiol 2019; 114:29. [PMID: 31165272 DOI: 10.1007/s00395-019-0738-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
Oxidative stress caused by an imbalance in the formation and removal of reactive oxygen species (ROS) plays an important role in the development of several cardiovascular diseases. ROS originate from various cellular origins; however, the highest amount of ROS is produced by mitochondria. One of the proteins contributing to mitochondrial ROS formation is the adaptor protein p66shc, which upon cellular stresses translocates from the cytosol to the mitochondria. In the present review, we focus on the role of p66shc in longevity, in the development of cardiovascular diseases including diabetes, atherosclerosis and its risk factors, myocardial ischemia/reperfusion injury and the protection from it by ischemic preconditioning. Also, the contribution of p66shc towards cerebral pathologies and the potential of the protein as a therapeutic target for the treatment of the aforementioned diseases are discussed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Julia Bornbaum
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Klaus-Dieter Schlüter
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Rainer Schulz
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany.
| |
Collapse
|
10
|
Zaky A, Bouali-Benazzouz R, Favereaux A, Tell G, Landry M. APE1/Ref-1 redox function contributes to inflammatory pain sensitization. Exp Neurol 2018; 307:1-11. [PMID: 29772245 DOI: 10.1016/j.expneurol.2018.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/09/2018] [Accepted: 05/12/2018] [Indexed: 11/17/2022]
Abstract
Inflammatory pain is a complex and multifactorial disorder. Apurinic/apyrimidinic endonuclease 1 (APE1), also called Redox Factor-1 (Ref-1), is constitutively expressed in the central nervous system and regulates various cellular functions including oxidative stress. In the present study, we investigated APE1 modulation and associated pain behavior changes in the complete Freund's adjuvant (CFA) model of inflammatory pain in rats. In addition we tested the anti-inflammatory effects of E3330, a selective inhibitor of APE1-redox activity, in CFA pain condition. We demonstrate that APE1 expression and subcellular distribution are significantly altered in rats at 4 days post CFA injection. We observed around 30% reduction in the overall APE1 mRNA and protein levels. Interestingly, our data point to an increased nuclear accumulation in the inflamed group as compared to the sham group. E3330 inhibitor injection in CFA rats normalized APE1 mRNA expression and changed its distribution toward cytosolic accumulation. Furthermore, intrathecal injection of E3330 decreased inflammation (i.e. reduced IL-6 expression) and alleviated pain, as assessed by measuring the paw withdrawal threshold with the von Frey test. In conclusion, our data indicate that changes in APE1 expression and sub-cellular distribution are implicated in inflammatory pain mechanisms mediated by APE1 redox functions. Further studies are required to elucidate the exact function of APE1 in inflammatory pain processes.
Collapse
Affiliation(s)
- Amira Zaky
- Department of Biochemistry, Faculty of Science, Alexandria University, Moharram Bek, PO Box 21511, Egypt; Bordeaux University, Bordeaux, France; Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France.
| | - Rabia Bouali-Benazzouz
- Bordeaux University, Bordeaux, France; Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France.
| | - Alexandre Favereaux
- Bordeaux University, Bordeaux, France; Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France.
| | - Gianluca Tell
- Department of Medicine, University of Udine, Udine 33100, Italy.
| | - Marc Landry
- Bordeaux University, Bordeaux, France; Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France.
| |
Collapse
|
11
|
Joo HK, Lee YR, Choi S, Park MS, Kang G, Kim CS, Jeon BH. Protein kinase C beta II upregulates intercellular adhesion molecule-1 via mitochondrial activation in cultured endothelial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:377-384. [PMID: 28706451 PMCID: PMC5507776 DOI: 10.4196/kjpp.2017.21.4.377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 01/31/2023]
Abstract
Activation of protein kinase C (PKC) is closely linked with endothelial dysfunction. However, the effect of PKCβII on endothelial dysfunction has not been characterized in cultured endothelial cells. Here, using adenoviral PKCβII gene transfer and pharmacological inhibitors, the role of PKCβII on endothelial dysfucntion was investigated in cultured endothelial cells. Phorbol 12-myristate 13-acetate (PMA) increased reactive oxygen species (ROS), p66shc phosphorylation, intracellular adhesion molecule-1, and monocyte adhesion, which were inhibited by PKCβi (10 nM), a selective inhibitor of PKCβII. PMA increased the phosphorylation of CREB and manganese superoxide dismutase (MnSOD), which were also inhibited by PKCβi. Gene silencing of CREB inhibited PMA-induced MnSOD expression, suggesting that CREB plays a key role in MnSOD expression. Gene silencing of PKCβII inhibited PMA-induced mitochondrial ROS, MnSOD, and ICAM-1 expression. In contrast, overexpression of PKCβII using adenoviral PKCβII increased mitochondrial ROS, MnSOD, ICAM-1, and p66shc phosphorylation in cultured endothelial cells. Finally, PKCβII-induced ICAM-1 expression was inhibited by Mito-TEMPO, a mitochondrial ROS scavenger, suggesting the involvement of mitochondrial ROS in PKC-induced vascular inflammation. Taken together, the results suggest that PKCβII plays an important role in PMA-induced endothelial dysfunction, and that the inhibition of PKCβII-dependent p66shc signaling acts as a therapeutic target for vascular inflammatory diseases.
Collapse
Affiliation(s)
- Hee Kyoung Joo
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yu Ran Lee
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Sunga Choi
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Myoung Soo Park
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Gun Kang
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Cuk-Seong Kim
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Byeong Hwa Jeon
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
12
|
Di Lisa F, Giorgio M, Ferdinandy P, Schulz R. New aspects of p66Shc in ischaemia reperfusion injury and other cardiovascular diseases. Br J Pharmacol 2017; 174:1690-1703. [PMID: 26990284 PMCID: PMC5446581 DOI: 10.1111/bph.13478] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/13/2022] Open
Abstract
Although reactive oxygen species (ROS) act as crucial factors in the onset and progression of a wide array of diseases, they are also involved in numerous signalling pathways related to cell metabolism, growth and survival. ROS are produced at various cellular sites, and it is generally agreed that mitochondria generate the largest amount, especially those in cardiomyocytes. However, the identification of the most relevant sites within mitochondria, the interaction among the various sources, and the events responsible for the increase in ROS formation under pathological conditions are still highly debated, and far from being clarified. Here, we review the information linking the adaptor protein p66Shc with cardiac injury induced by ischaemia and reperfusion (I/R), including the contribution of risk factors, such as metabolic syndrome and ageing. In response to several stimuli, p66Shc migrates into mitochondria where it catalyses electron transfer from cytochrome c to oxygen resulting in hydrogen peroxide formation. Deletion of p66Shc has been shown to reduce I/R injury as well as vascular abnormalities associated with diabetes and ageing. However, p66Shc-induced ROS formation is also involved in insulin signalling and might contribute to self-endogenous defenses against mild I/R injury. In addition to its role in physiological and pathological conditions, we discuss compounds and conditions that can modulate the expression and activity of p66Shc. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Fabio Di Lisa
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaPadovaItaly
| | - Marco Giorgio
- Department of Experimental OncologyInstitute of OncologyMilanItaly
| | - Peter Ferdinandy
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- Pharmahungary GroupSzegedHungary
| | - Rainer Schulz
- Institut für PhysiologieJustus‐Liebig Universität GiessenGiessenGermany
| |
Collapse
|
13
|
Abstract
The Shc family of adaptor proteins is a group of proteins that lacks intrinsic enzymatic activity. Instead, Shc proteins possess various domains that allow them to recruit different signalling molecules. Shc proteins help to transduce an extracellular signal into an intracellular signal, which is then translated into a biological response. The Shc family of adaptor proteins share the same structural topography, CH2-PTB-CH1-SH2, which is more than an isoform of Shc family proteins; this structure, which includes multiple domains, allows for the posttranslational modification of Shc proteins and increases the functional diversity of Shc proteins. The deregulation of Shc proteins has been linked to different disease conditions, including cancer and Alzheimer’s, which indicates their key roles in cellular functions. Accordingly, a question might arise as to whether Shc proteins could be targeted therapeutically to correct their disturbance. To answer this question, thorough knowledge must be acquired; herein, we aim to shed light on the Shc family of adaptor proteins to understand their intracellular role in normal and disease states, which later might be applied to connote mechanisms to reverse the disease state.
Collapse
|
14
|
Baek H, Lim CS, Byun HS, Cho HS, Lee YR, Shin YS, Kim HW, Jeon BH, Kim DW, Hong J, Hur GM, Park JB. The anti-inflammatory role of extranuclear apurinic/apyrimidinic endonuclease 1/redox effector factor-1 in reactive astrocytes. Mol Brain 2016; 9:99. [PMID: 27986089 PMCID: PMC5162091 DOI: 10.1186/s13041-016-0280-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1), a ubiquitous multipurpose protein, is also known as redox effector factor-1 (Ref-1). It is involved in DNA repair and redox signaling and, in turn, oxidative stress-induced neurodegeneration. Although previous studies have demonstrated that APE1/Ref-1 functions as a negative regulator of inflammatory response via several mechanisms in neuronal cells, little is known about the roles of APE1/Ref-1 in glial cells. In this study, we found that cytoplasmic APE1/Ref-1 expression was upregulated in reactive astrocytes of the kainic acid- or lipopolysaccharide (LPS)-injected hippocampus. Analysis of the inflammatory response induced by extranuclear APE1/Ref-1 (ΔNLS-Ref-1) in cultured primary astrocytes revealed that it markedly suppressed inducible nitric oxide synthase (iNOS) expression and tumor necrosis factor-α (TNF-α) secretion induced by LPS to a similar extent as did wild type APE1/Ref-1 (WT-Ref-1), supporting the concept an anti-inflammatory role of extranuclear APE1/Ref-1 in astrocytes. Additionally, overexpression of WT- and ΔNLS-Ref-1 suppressed the transcriptional activity of nuclear factor-κB (NF-κB), although it effectively enhanced activator protein 1 (AP-1) activity. The blunting effect of APE1/Ref-1 on LPS-induced NF-κB activation was not mediated by IκB kinase (IKK) activity. Instead, APE1/Ref-1 inhibited p300-mediated acetylation of p65 by suppressing intracellular reactive oxygen species (ROS) levels following LPS treatment. Taken together, our results showed that altered expression and/or subcellular distribution of APE1/Ref-1 in activated astrocytes regulated the neuroinflammatory response to excitotoxin and endotoxin insults used in model of neurodegenerative brain diseases.
Collapse
Affiliation(s)
- Hyunjung Baek
- Department of Physiology and Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwa-Ro, Jung-gu, Daejeon, 30501, Republic of Korea
| | - Chae Seong Lim
- Department of Anesthesiology & Pain Medicine, School of Medicine, Chungnam National University, Daejeon, 30501, Republic of Korea
| | - Hee Sun Byun
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, 30501, Republic of Korea
| | - Hyun Sil Cho
- Department of Physiology and Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwa-Ro, Jung-gu, Daejeon, 30501, Republic of Korea
| | - Yu Ran Lee
- Department of Physiology and Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwa-Ro, Jung-gu, Daejeon, 30501, Republic of Korea
| | - Yong Sup Shin
- Department of Anesthesiology & Pain Medicine, School of Medicine, Chungnam National University, Daejeon, 30501, Republic of Korea
| | - Hyun-Woo Kim
- Department of Physiology and Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwa-Ro, Jung-gu, Daejeon, 30501, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Physiology and Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwa-Ro, Jung-gu, Daejeon, 30501, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy and Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 30501, Republic of Korea
| | - Jinpyo Hong
- Department of Anatomy and Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 30501, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, 30501, Republic of Korea.
| | - Jin Bong Park
- Department of Physiology and Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwa-Ro, Jung-gu, Daejeon, 30501, Republic of Korea.
| |
Collapse
|
15
|
Choi S, Joo HK, Jeon BH. Dynamic Regulation of APE1/Ref-1 as a Therapeutic Target Protein. Chonnam Med J 2016; 52:75-80. [PMID: 27231670 PMCID: PMC4880582 DOI: 10.4068/cmj.2016.52.2.75] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 11/24/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that plays a central role in the cellular response to DNA damage and redox regulation against oxidative stress. APE1/Ref-1 functions in the DNA base excision repair pathway, the redox regulation of several transcription factors, and the control of intracellular redox status through the inhibition of reactive oxygen species (ROS) production. APE1/Ref-1 is predominantly localized in the nucleus; however, its subcellular localization is dynamically regulated and it may be found in the mitochondria or elsewhere in the cytoplasm. Studies have identified a nuclear localization signal and a mitochondrial target sequence in APE1/Ref-1, as well as the involvement of the nuclear export system, as determinants of APE1/Ref-1 subcellular distribution. Recently, it was shown that APE1/Ref-1 is secreted in response to hyperacetylation at specific lysine residues. Additionally, post-translational modifications such as phosphorylation, S-nitrosation, and ubiquitination appear to play a role in fine-tuning the activities and subcellular localization of APE1/Ref-1. In this review, we will introduce the multifunctional role of APE1/Ref-1 and its potential usefulness as a therapeutic target in cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Sunga Choi
- Research Institute of Medical Sciences, Department of Physiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Hee Kyoung Joo
- Research Institute of Medical Sciences, Department of Physiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Byeong Hwa Jeon
- Research Institute of Medical Sciences, Department of Physiology, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
16
|
Wu H, Chen L, Xie J, Li R, Li GN, Chen QH, Zhang XL, Kang LN, Xu B. Periostin expression induced by oxidative stress contributes to myocardial fibrosis in a rat model of high salt-induced hypertension. Mol Med Rep 2016; 14:776-82. [PMID: 27220372 PMCID: PMC4918522 DOI: 10.3892/mmr.2016.5308] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 05/09/2016] [Indexed: 12/25/2022] Open
Abstract
Periostin is an extracellular matrix protein involved in fibrosis. The present study investigated the importance of periostin in hypertension-induced myocardial fibrosis. Rats were randomly divided into either the normal group (0.4% NaCl diet; n=8) or hypertension group (8% NaCl diet; n=8). For 36 weeks, the blood pressure and heart rate of the rats were monitored. At week 36, the hearts were extracted for further analysis. Masson's staining and western blotting were performed to determine the levels of periostin protein expression, oxidative stress and fibrosis. In addition, fibroblasts were isolated from adult rats and cultured in vitro, and following treatment with angiotensin II (Ang II) and N-acetyl-L-cysteine (NAC), western blotting, immunofluorescence and 2′,7′ dichlorodihydrofluorescin staining were performed to examine reactive oxygen species production, and periostin and α-smooth muscle actin (α-SMA) expression levels. The results demonstrated that periostin expression and oxidative stress were increased in hypertensive hearts compared with normal hearts. The in vitro experiments demonstrated that Ang II upregulated the expression levels of periostin and α-SMA compared with the control, whereas, pretreatment with NAC inhibited oxidative stress, periostin and α-SMA expression in fibroblasts. In conclusion, the results of the current study suggested that oxidative stress-induced periostin is involved in myocardial fibrosis and hypertension. The present study demonstrated that periostin inhibition may be a promising approach for the inhibition of hypertension-induced cardiac remodeling.
Collapse
Affiliation(s)
- Han Wu
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Liang Chen
- Department of Gynaecology and Obstetrics, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Jun Xie
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Ran Li
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Guan-Nan Li
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Qin-Hua Chen
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xin-Lin Zhang
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Li-Na Kang
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Biao Xu
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
17
|
Wieckowski MR, Deus CM, Couto R, Oparka M, Lebiedzińska‐Arciszewska M, Duszyński J, Oliveira PJ. Measuring p66Shc Signaling Pathway Activation and Mitochondrial Translocation in Cultured Cells. ACTA ACUST UNITED AC 2015; 66:25.6.1-25.6.21. [DOI: 10.1002/0471140856.tx2506s66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences Warsaw Poland
| | - Cláudia M. Deus
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra Cantanhede Portugal
| | - Renata Couto
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra Cantanhede Portugal
| | - Monika Oparka
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences Warsaw Poland
| | | | - Jerzy Duszyński
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences Warsaw Poland
| | - Paulo J. Oliveira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra Cantanhede Portugal
| |
Collapse
|
18
|
Li M, Li W, Yoon JH, Jeon BH, Lee SK. Resistance exercise training increase activation of AKT-eNOS and Ref-1 expression by FOXO-1 activation in aorta of F344 rats. J Exerc Nutrition Biochem 2015; 19:165-71. [PMID: 26526775 PMCID: PMC4624117 DOI: 10.5717/jenb.2015.15071702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/12/2015] [Accepted: 07/17/2015] [Indexed: 02/02/2023] Open
Abstract
PURPOSE This study investigated the effects of resistance exercise on the Akt-eNOS, the activation of antioxidant protein and FOXO1 in the aorta of F344 rats. METHODS Male 7 week-old F344 rats were randomly divided into 2 groups: a climbing group (n = 6) and a sedentary group (n = 6). H&E staining and western blotting were used to analyze the rat aortas and target proteins. RESULTS Resistance exercise training did not significantly affect aortic structure. Phosphorylation of AKT and eNOS and expression of MnSOD and Ref-1 were significantly increased while FOXO1 phosphorylation was significantly decreased in the resistance exercise group compared with the sedentary group. CONCLUSION We demonstrate that resistance exercise activates the Akt-eNOS and Ref-1 protein without changes to aortic thickness via FOXO-1 activation in the aorta of F344 rats.
Collapse
Affiliation(s)
- Meng Li
- Department of Sports Science, Chungnam National University, Daejeon,
Republic of Korea
| | - Wei Li
- Department of Sports Science, Chungnam National University, Daejeon,
Republic of Korea
| | - Jin-Hwan Yoon
- Department of Sports Science, Hannam University, Daejeon,
Republic of Korea
| | - Byeong Hwa Jeon
- Department of physiology, Chungnam National University, Deajeon,
Republic of Korea
| | - Sang Ki Lee
- Department of Sports Science, Chungnam National University, Daejeon,
Republic of Korea
| |
Collapse
|
19
|
Kang G, Lee YR, Joo HK, Park MS, Kim CS, Choi S, Jeon BH. Trichostatin A Modulates Angiotensin II-induced Vasoconstriction and Blood Pressure Via Inhibition of p66shc Activation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:467-72. [PMID: 26330760 PMCID: PMC4553407 DOI: 10.4196/kjpp.2015.19.5.467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 01/21/2023]
Abstract
Histone deacetylase (HDAC) has been recognized as a potentially useful therapeutic target for cardiovascular disorders. However, the effect of the HDAC inhibitor, trichostatin A (TSA), on vasoreactivity and hypertension remains unknown. We performed aortic coarctation at the inter-renal level in rats in order to create a hypertensive rat model. Hypertension induced by abdominal aortic coarctation was significantly suppressed by chronic treatment with TSA (0.5 mg/kg/day for 7 days). Nicotinamide adenine dinucleotide phosphate-driven reactive oxygen species production was also reduced in the aortas of TSA-treated aortic coarctation rats. The vasoconstriction induced by angiotensin II (Ang II, 100 nM) was inhibited by TSA in both endothelium-intact and endothelium-denuded rat aortas, suggesting that TSA has mainly acted in vascular smooth muscle cells (VSMCs). In cultured rat aortic VSMCs, Ang II increased p66shc phosphorylation, which was inhibited by the Ang II receptor type I (AT1R) inhibitor, valsartan (10 µM), but not by the AT2R inhibitor, PD123319. TSA (1~10 µM) inhibited Ang II-induced p66shc phosphorylation in VSMCs and in HEK293T cells expressing AT1R. Taken together, these results suggest that TSA treatment inhibited vasoconstriction and hypertension via inhibition of Ang II-induced phosphorylation of p66shc through AT1R.
Collapse
Affiliation(s)
- Gun Kang
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Yu Ran Lee
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Hee Kyoung Joo
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Myoung Soo Park
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Cuk-Seong Kim
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Sunga Choi
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Byeong Hwa Jeon
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| |
Collapse
|
20
|
Thakur S, Dhiman M, Tell G, Mantha AK. A review on protein-protein interaction network of APE1/Ref-1 and its associated biological functions. Cell Biochem Funct 2015; 33:101-12. [DOI: 10.1002/cbf.3100] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/10/2015] [Accepted: 02/24/2015] [Indexed: 12/17/2022]
Affiliation(s)
- S. Thakur
- Center for Biosciences, School of Basic and Applied Sciences; Central University of Punjab; Bathinda Punjab India
| | - M. Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies; Central University of Punjab; Bathinda Punjab India
| | - G. Tell
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - A. K. Mantha
- Center for Biosciences, School of Basic and Applied Sciences; Central University of Punjab; Bathinda Punjab India
- Department of Biochemistry and Molecular Biology; University of Texas Medical Branch; Galveston TX USA
| |
Collapse
|
21
|
Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med 2014; 46:e106. [PMID: 25033834 PMCID: PMC4119211 DOI: 10.1038/emm.2014.42] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/27/2014] [Accepted: 03/05/2014] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1α, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a ‘hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Shweta Thakur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Bibekananda Sarkar
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Ravi P Cholia
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Nandini Gautam
- Center for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Punjab, India
| | - Monisha Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies, Central University of Punjab, Punjab, India
| | - Anil K Mantha
- 1] Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India [2] Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
22
|
Joo HK, Lee YR, Park MS, Choi S, Park K, Lee SK, Kim CS, Park JB, Jeon BH. Mitochondrial APE1/Ref-1 suppressed protein kinase C-induced mitochondrial dysfunction in mouse endothelial cells. Mitochondrion 2014; 17:42-9. [DOI: 10.1016/j.mito.2014.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 04/23/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
|
23
|
Park MS, Kim CS, Joo HK, Lee YR, Kang G, Kim SJ, Choi S, Lee SD, Park JB, Jeon BH. Cytoplasmic localization and redox cysteine residue of APE1/Ref-1 are associated with its anti-inflammatory activity in cultured endothelial cells. Mol Cells 2013; 36:439-45. [PMID: 24213673 PMCID: PMC3887937 DOI: 10.1007/s10059-013-0195-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 01/10/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in base excision DNA repair and transcriptional regulation of gene expression. APE1/Ref-1 is mainly localized in the nucleus, but cytoplasmic localization has also been reported. However, the functional role of cytoplasmic APE1/Ref-1 and its redox cysteine residue are still unknown. We investigated the role of cytoplasmic APE1/Ref-1 on tumor necrosis factor-α (TNF-α)-induced vascular cell adhesion molecule-1 (VCAM-1) expressions in endothelial cells. Endogenous APE1/Ref-1 was mainly observed in the nucleus, however, cytoplasmic APE1/Ref-1 was increased by TNF-α. Cytoplasmic APE1/Ref-1 expression was not blunted by cycloheximide, a protein synthesis inhibitor, suggesting cytoplasmic translocation of APE1/Ref-1. Transfection of an N-terminus deletion mutant APE1/Ref-1(29-318) inhibited TNF-α-induced VCAM-1 expression, indicating an anti-inflammatory role for APE1/Ref-1 in the cytoplasm. In contrast, redox mutant of APE1/Ref-1 (C65A/C93A) transfection led to increased TNF-α-induced VCAM-1 expression. Our findings suggest cytoplasmic APE1/Ref-1 localization and redox cysteine residues of APE1/Ref-1 are associated with its anti-inflammatory activity in endothelial cells.
Collapse
Affiliation(s)
- Myoung Soo Park
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Cuk-Seong Kim
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Hee Kyoung Joo
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Yu Ran Lee
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Gun Kang
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Soo Jin Kim
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Sunga Choi
- Infection Signaling Network Research Center, Chungnam National University, Daejeon 301-747, Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Sang Do Lee
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Jin Bong Park
- Infection Signaling Network Research Center, Chungnam National University, Daejeon 301-747, Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Byeong Hwa Jeon
- Infection Signaling Network Research Center, Chungnam National University, Daejeon 301-747, Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| |
Collapse
|
24
|
Choi S, Lee YR, Park MS, Joo HK, Cho EJ, Kim HS, Kim CS, Park JB, Irani K, Jeon BH. Histone deacetylases inhibitor trichostatin A modulates the extracellular release of APE1/Ref-1. Biochem Biophys Res Commun 2013; 435:403-7. [PMID: 23665318 DOI: 10.1016/j.bbrc.2013.04.101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 04/30/2013] [Indexed: 11/16/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1/Redox factor-1 (APE1/Ref-1) can be acetylated via post-translational modification. We investigated the effect of an inhibitor of histone deacetylases on the extracellular release of APE1/Ref-1 in HEK293 cells. Trichostatin A (TSA), an inhibitor of histone deacetylases, induced APE1/Ref-1 secretion without changing cell viability. In a fluorescence quantitative assay, the secreted APE1/Ref-1 was estimated to be about 10 ng/mL in response to TSA (1 μM). However, TSA did not induce the secretion of lysine-mutated APE1/Ref-1 (K6R/K7R). TSA also caused nuclear to cytoplasmic translocation of APE1/Ref-1. Taken together, these findings suggest that APE1/Ref-1 is a protein whose secretion is governed by lysine acetylation.
Collapse
Affiliation(s)
- Sunga Choi
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Protein kinase C (PKC) has been a tantalizing target for drug discovery ever since it was first identified as the receptor for the tumour promoter phorbol ester in 1982. Although initial therapeutic efforts focused on cancer, additional indications--including diabetic complications, heart failure, myocardial infarction, pain and bipolar disorder--were targeted as researchers developed a better understanding of the roles of eight conventional and novel PKC isozymes in health and disease. Unfortunately, both academic and pharmaceutical efforts have yet to result in the approval of a single new drug that specifically targets PKC. Why does PKC remain an elusive drug target? This Review provides a short account of some of the efforts, challenges and opportunities in developing PKC modulators to address unmet clinical needs.
Collapse
|
26
|
Lee SK, Lee JY, Joo HK, Cho EJ, Kim CS, Lee SD, Park JB, Jeon BH. Tat-Mediated p66shc Transduction Decreased Phosphorylation of Endothelial Nitric Oxide Synthase in Endothelial Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:199-204. [PMID: 22802702 PMCID: PMC3394923 DOI: 10.4196/kjpp.2012.16.3.199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 04/30/2012] [Accepted: 05/12/2012] [Indexed: 11/30/2022]
Abstract
We evaluated the role of Tat-mediated p66shc transduction on the activation of endothelial nitric oxide synthase in cultured mouse endothelial cells. To construct the Tat-p66shc fusion protein, human full length p66shc cDNA was fused with the Tat-protein transduction domain. Transduction of TAT-p66shc showed a concentration- and time-dependent manner in endothelial cells. Tat-mediated p66shc transduction showed increased hydrogen peroxide and superoxide production, compared with Tat-p66shc (S/A), serine 36 residue mutant of p66shc. Tat-mediated p66shc transduction decreased endothelial nitric oxide synthase phosphorylation in endothelial cells. Furthermore, Tat-mediated p66shc transduction augmented TNF-α-induced p38 MAPK phosphorylation in endothelial cells. These results suggest that Tat-mediated p66shc transduction efficiently inhibited endothelial nitric oxide synthase phosphorylation in endothelial cells.
Collapse
Affiliation(s)
- Sang Ki Lee
- Infection Signaling Network Research Center, Research Institute of Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-131, Korea
| | | | | | | | | | | | | | | |
Collapse
|