1
|
Hou X, Xu X, Dong L, Li Y, Liang R, Zhang M, Nie J, Shi Y, Qin X. Cx43 Regulates Nicotine-Induced Proliferation and Migration of Distal Pulmonary Artery Smooth Muscle Cells by the ERK1/2 Signaling Pathway. J Biochem Mol Toxicol 2025; 39:e70106. [PMID: 39718028 DOI: 10.1002/jbt.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/22/2024] [Accepted: 12/08/2024] [Indexed: 12/25/2024]
Abstract
Pulmonary hypertension is a progressive disease associated with remodeling of the pulmonary vasculature. Excessive proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) play important roles in nicotine-induced vascular injury. Connexin 43 (Cx43) is involved in intracellular communication and regulation of the pulmonary vasculature. However, the role of Cx43 and the potential mechanisms in PASMCs proliferation and migration induced by nicotine remains not very clear. In this study, we used both in vitro and in vivo models to explore the crucial role of Cx43 in pulmonary artery remodeling in nicotine treatment Tagln-Cre; Cx43+/+ and Cx43 heterozygous (Tagln-Cre; Cx43flox/+) or Cx43 Homozygous (Tagln-Cre; Cx43flox/flox) deletion mice, and further explore the mechanism. We found that nicotine exposure led to modifications in the morphology and ultrastructure of pulmonary arteries in Tagln-Cre; Cx43+/+ mice. Nicotine increased the Cx43 expression of pulmonary arteries and promoted the proliferation and migration of PASMCs of Tagln-Cre; Cx43+/+ mice in a concentration-dependent manner by promoting ERK1/2 phosphorylation. Compared with the Tagln-Cre; Cx43+/+ mice, the Tagln-Cre; Cx43flox/+ mice were protected against increased ERK1/2 phosphorylation induced by nicotine. These results demonstrated that the downregulation of Cx43 reduced nicotine-induced proliferation and migration of distal PASMCs by inhibiting ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
- Environmental Exposures Vascular Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China
- China Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinrong Xu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lin Dong
- Academy of Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhua Li
- Department of Foreign Languages, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruifeng Liang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jisheng Nie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan, Shanxi, China
| | - Yiwei Shi
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan, Shanxi, China
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Pneumoconiosis, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaojiang Qin
- Environmental Exposures Vascular Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan, Shanxi, China
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Pneumoconiosis, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Sun R, Pan X, Ward E, Intrevado R, Morozan A, Lauzon AM, Martin JG. Serum Response Factor Expression in Excess Permits a Dual Contractile-Proliferative Phenotype of Airway Smooth Muscle. Am J Respir Cell Mol Biol 2024; 71:182-194. [PMID: 38775474 DOI: 10.1165/rcmb.2024-0081oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/18/2024] [Indexed: 08/02/2024] Open
Abstract
The transcription factors (TFs) MyoCD (myocardin) and Elk-1 (ETS Like-1 protein) competitively bind to SRF (serum response factor) and control myogenic- and mitogenic-related gene expression in smooth muscle, respectively. Their functions are therefore mutually inhibitory, which results in a contractile-versus-proliferative phenotype dichotomy. Airway smooth muscle cell (ASMC) phenotype alterations occur in various inflammatory airway diseases, promoting pathological remodeling and contributing to airflow obstruction. We characterized MyoCD and Elk-1 interactions and their roles in phenotype determination in human ASMCs. MyoCD overexpression in ASMCs increased smooth muscle gene expression, force generation, and partially restored the loss of smooth muscle protein associated with prolonged culturing while inhibiting Elk-1 transcriptional activities and proliferation induced by EGF (epidermal growth factor). However, MyoCD overexpression failed to suppress these responses induced by FBS, as FBS also upregulated SRF expression to a degree that allowed unopposed function of both TFs. Inhibition of the RhoA pathway reversed said SRF changes, allowing inhibition of Elk-1 by MyoCD overexpression and suppressing FBS-mediated contractile protein gene upregulation. Our study confirmed that MyoCD in increased abundance can competitively inhibit Elk-1 function. However, SRF upregulation permits a dual contractile-proliferative ASMC phenotype that is anticipated to exacerbate pathological alterations, whereas therapies targeting SRF may inhibit pathological ASMC proliferation and contractile protein gene expression.
Collapse
Affiliation(s)
- Rui Sun
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| | - Xingning Pan
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| | - Erin Ward
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| | - Rafael Intrevado
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| | - Arina Morozan
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| | - James G Martin
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
3
|
Wang X, Zou Z, Li K, Ren C, Yu X, Zhang Y, Zhao P, Yan S, Li Q. Design and fabrication of dual-layer PCL nanofibrous scaffolds with inductive influence on vascular cell responses. Colloids Surf B Biointerfaces 2024; 240:113988. [PMID: 38810467 DOI: 10.1016/j.colsurfb.2024.113988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Confronted with the profound threat of cardiovascular diseases to health, vascular tissue engineering presents potential beyond the limitations of autologous and allogeneic grafts, offering a promising solution. This study undertakes an initial exploration into the impact of a natural active protein, elastin, on vascular cell behavior, by incorporating with polycaprolactone to prepare fibrous tissue engineering scaffold. The results reveal that elastin serves to foster endothelial cell adhesion and proliferation, suppress smooth muscle cell proliferation, and induce macrophage polarization. Furthermore, the incorporation of elastin contributes to heightened scaffold strength, compliance, and elongation, concomitantly lowering the elastic modulus. Subsequently, a bilayer oriented polycaprolactone (PCL) scaffold infused with elastin is proposed. This design draws inspiration from the cellular arrangement of native blood vessels, leveraging oriented fibers to guide cell orientation. The resulting fiber scaffold exhibits commendable mechanical properties and cell infiltration capacity, imparting valuable insights for the rapid endothelialization of vascular scaffolds.
Collapse
Affiliation(s)
- Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zifan Zou
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Kecheng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Cuihong Ren
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaorong Yu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China.
| | - Yang Zhang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Shujie Yan
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China.
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Saavedra-Alvarez A, Pereyra KV, Toledo C, Iturriaga R, Del Rio R. Vascular dysfunction in HFpEF: Potential role in the development, maintenance, and progression of the disease. Front Cardiovasc Med 2022; 9:1070935. [PMID: 36620616 PMCID: PMC9810809 DOI: 10.3389/fcvm.2022.1070935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex, heterogeneous disease characterized by autonomic imbalance, cardiac remodeling, and diastolic dysfunction. One feature that has recently been linked to the pathology is the presence of macrovascular and microvascular dysfunction. Indeed, vascular dysfunction directly affects the functionality of cardiomyocytes, leading to decreased dilatation capacity and increased cell rigidity, which are the outcomes of the progressive decline in myocardial function. The presence of an inflammatory condition in HFpEF produced by an increase in proinflammatory molecules and activation of immune cells (i.e., chronic low-grade inflammation) has been proposed to play a pivotal role in vascular remodeling and endothelial cell death, which may ultimately lead to increased arterial elastance, decreased myocardium perfusion, and decreased oxygen supply to the tissue. Despite this, the precise mechanism linking low-grade inflammation to vascular alterations in the setting of HFpEF is not completely known. However, the enhanced sympathetic vasomotor tone in HFpEF, which may result from inflammatory activation of the sympathetic nervous system, could contribute to orchestrate vascular dysfunction in the setting of HFpEF due to the exquisite sympathetic innervation of both the macro and microvasculature. Accordingly, the present brief review aims to discuss the main mechanisms that may be involved in the macro- and microvascular function impairment in HFpEF and the potential role of the sympathetic nervous system in vascular dysfunction.
Collapse
Affiliation(s)
- Andrea Saavedra-Alvarez
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherine V. Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Iturriaga
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile,Facultad de la Salud, Centro de Investigación en Fisiología y Medicina de Altura (MedAlt), Universidad de Antofagasta, Antofagasta, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile,Facultad de la Salud, Centro de Investigación en Fisiología y Medicina de Altura (MedAlt), Universidad de Antofagasta, Antofagasta, Chile,*Correspondence: Rodrigo Del Rio
| |
Collapse
|
5
|
Lei L, Zhou Y, Wang T, Zheng Z, Chen L, Pan Y. Activation of AMP-activated protein kinase ablated the formation of aortic dissection by suppressing vascular inflammation and phenotypic switching of vascular smooth muscle cells. Int Immunopharmacol 2022; 112:109177. [PMID: 36049351 DOI: 10.1016/j.intimp.2022.109177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Aortic dissection (AD) is a fatal vascular disease in absence of effective pharmaceutical therapy. Adenosine monophosphate-activated protein kinase α (AMPKα) plays a critical role in various cardiovascular diseases. Whether AMPKα is involved in the pathogenesis of aortic dissection remains unknown. We aimed to determine whether activation of AMPKα prevents the formation of AD. METHODS AND RESULTS Reduced expression of phosphorylated AMPKα (Thr172) and exacerbated phenotypic switching were observed in human aortic tissues from aortic dissection patients compared with those in tissues from controls. In vivo, the formation of aortic dissection in ApoE-/- mice was successfully induced by continuous infusion of angiotensin II (AngII) for two weeks, characterized by the activation of vascular inflammation, infiltration of macrophages and phenotypic switching of vascular smooth muscle cells (VSMCs). rAAV2-mediated overexpression of constitutively active AMPKα (CA-AMPKα) enhanced the expression of phosphorylated AMPKα (Thr172) and attenuated AngII-induced occurrence of aortic dissection by suppressing the infiltration of macrophages, activation of vascular inflammation and phenotypic switching of VSMCs. The pathogenesis above was conversely exacerbated by rAAV2-mediated overexpression of dominant negative AMPKα2 (DN-AMPKα). In vitro, we demonstrated that the administration of an AMPK agonist (AICAR) or transfection of CA-AMPKα induced the activation of AMPKα and then ameliorated AngII-induced phenotypic switching in the VSMCs and inflammation in the bone marrow-derived macrophages (BMDMs). This could be reversed by the addition of AMPK inhibitor compound C or transfection of DN-AMPKα. CONCLUSION Impaired activation of AMPKα may increase the susceptibility to aortic dissection. Our findings verified the protective effects of AMPKα on the formation of aortic dissection and may provide evidence for clinical prevention or treatment.
Collapse
Affiliation(s)
- Lei Lei
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanrong Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiemao Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi Zheng
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Chen
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Youmin Pan
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Xiong X, Ma H, Ma J, Wang X, Li D, Xu L. αSMA-Cre-mediated Ogt deletion leads to heart failure and vascular smooth muscle cell dysfunction in mice. Biochem Biophys Res Commun 2022; 625:31-37. [DOI: 10.1016/j.bbrc.2022.07.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
|
7
|
S S, Dahal S, Bastola S, Dayal S, Yau J, Ramamurthi A. Stem Cell Based Approaches to Modulate the Matrix Milieu in Vascular Disorders. Front Cardiovasc Med 2022; 9:879977. [PMID: 35783852 PMCID: PMC9242410 DOI: 10.3389/fcvm.2022.879977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) represents a complex and dynamic framework for cells, characterized by tissue-specific biophysical, mechanical, and biochemical properties. ECM components in vascular tissues provide structural support to vascular cells and modulate their function through interaction with specific cell-surface receptors. ECM–cell interactions, together with neurotransmitters, cytokines, hormones and mechanical forces imposed by blood flow, modulate the structural organization of the vascular wall. Changes in the ECM microenvironment, as in post-injury degradation or remodeling, lead to both altered tissue function and exacerbation of vascular pathologies. Regeneration and repair of the ECM are thus critical toward reinstating vascular homeostasis. The self-renewal and transdifferentiating potential of stem cells (SCs) into other cell lineages represents a potentially useful approach in regenerative medicine, and SC-based approaches hold great promise in the development of novel therapeutics toward ECM repair. Certain adult SCs, including mesenchymal stem cells (MSCs), possess a broader plasticity and differentiation potential, and thus represent a viable option for SC-based therapeutics. However, there are significant challenges to SC therapies including, but not limited to cell processing and scaleup, quality control, phenotypic integrity in a disease milieu in vivo, and inefficient delivery to the site of tissue injury. SC-derived or -inspired strategies as a putative surrogate for conventional cell therapy are thus gaining momentum. In this article, we review current knowledge on the patho-mechanistic roles of ECM components in common vascular disorders and the prospects of developing adult SC based/inspired therapies to modulate the vascular tissue environment and reinstate vessel homeostasis in these disorders.
Collapse
|
8
|
Tong S, Zhao W, Zhao D, Zhang W, Zhang Z. Biomaterials-Mediated Tumor Infarction Therapy. Front Bioeng Biotechnol 2022; 10:916926. [PMID: 35757801 PMCID: PMC9218593 DOI: 10.3389/fbioe.2022.916926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Agents for tumor vascular infarction are recently developed therapeutic agents for the vascular destruction of tumors. They can suppress the progression of the tumor by preventing the flow of nutrition and oxygen to its tissues. Agents of tumor vascular infarction can be divided into three categories according to the differences in their pathways of action: those that use the thrombin-activating pathway, fibrin-activating pathway, and platelet-activating pathway. However, poor targeting ability, low permeation, and potential side-effects restrict the development of the corresponding drugs. Biomaterials can subtly avoid these drawbacks to suppress the tumor. In this article, the authors summarize currently used biomaterials for tumor infarction therapy with the goal of identifying its mechanism, and discuss outstanding deficiencies in methods of this kind.
Collapse
Affiliation(s)
| | | | | | | | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Vaidyanathan K, Wang C, Krajnik A, Yu Y, Choi M, Lin B, Jang J, Heo SJ, Kolega J, Lee K, Bae Y. A machine learning pipeline revealing heterogeneous responses to drug perturbations on vascular smooth muscle cell spheroid morphology and formation. Sci Rep 2021; 11:23285. [PMID: 34857846 PMCID: PMC8640073 DOI: 10.1038/s41598-021-02683-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Machine learning approaches have shown great promise in biology and medicine discovering hidden information to further understand complex biological and pathological processes. In this study, we developed a deep learning-based machine learning algorithm to meaningfully process image data and facilitate studies in vascular biology and pathology. Vascular injury and atherosclerosis are characterized by neointima formation caused by the aberrant accumulation and proliferation of vascular smooth muscle cells (VSMCs) within the vessel wall. Understanding how to control VSMC behaviors would promote the development of therapeutic targets to treat vascular diseases. However, the response to drug treatments among VSMCs with the same diseased vascular condition is often heterogeneous. Here, to identify the heterogeneous responses of drug treatments, we created an in vitro experimental model system using VSMC spheroids and developed a machine learning-based computational method called HETEROID (heterogeneous spheroid). First, we established a VSMC spheroid model that mimics neointima-like formation and the structure of arteries. Then, to identify the morphological subpopulations of drug-treated VSMC spheroids, we used a machine learning framework that combines deep learning-based spheroid segmentation and morphological clustering analysis. Our machine learning approach successfully showed that FAK, Rac, Rho, and Cdc42 inhibitors differentially affect spheroid morphology, suggesting that multiple drug responses of VSMC spheroid formation exist. Overall, our HETEROID pipeline enables detailed quantitative drug characterization of morphological changes in neointima formation, that occurs in vivo, by single-spheroid analysis.
Collapse
Affiliation(s)
- Kalyanaraman Vaidyanathan
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14203, USA
| | - Chuangqi Wang
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Amanda Krajnik
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14203, USA
| | - Yudong Yu
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Moses Choi
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Bolun Lin
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Junbong Jang
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Su-Jin Heo
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Kolega
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14203, USA
| | - Kwonmoo Lee
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14203, USA.
| |
Collapse
|
10
|
Cheng CK, Huang Y. The gut-cardiovascular connection: new era for cardiovascular therapy. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:23-46. [PMID: 37724079 PMCID: PMC10388818 DOI: 10.1515/mr-2021-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/02/2021] [Indexed: 09/20/2023]
Abstract
Our gut microbiome is constituted by trillions of microorganisms including bacteria, archaea and eukaryotic microbes. Nowadays, gut microbiome has been gradually recognized as a new organ system that systemically and biochemically interact with the host. Accumulating evidence suggests that the imbalanced gut microbiome contributes to the dysregulation of immune system and the disruption of cardiovascular homeostasis. Specific microbiome profiles and altered intestinal permeability are often observed in the pathophysiology of cardiovascular diseases. Gut-derived metabolites, toxins, peptides and immune cell-derived cytokines play pivotal roles in the induction of inflammation and the pathogenesis of dysfunction of heart and vasculature. Impaired crosstalk between gut microbiome and multiple organ systems, such as gut-vascular, heart-gut, gut-liver and brain-gut axes, are associated with higher cardiovascular risks. Medications and strategies that restore healthy gut microbiome might therefore represent novel therapeutic options to lower the incidence of cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science; The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Yu Huang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science; The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| |
Collapse
|
11
|
Vijakumaran U, Yazid MD, Hj Idrus RB, Abdul Rahman MR, Sulaiman N. Molecular Action of Hydroxytyrosol in Attenuation of Intimal Hyperplasia: A Scoping Review. Front Pharmacol 2021; 12:663266. [PMID: 34093194 PMCID: PMC8176091 DOI: 10.3389/fphar.2021.663266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/29/2021] [Indexed: 12/28/2022] Open
Abstract
Objective: Hydroxytyrosol (HT), a polyphenol of olive plant is well known for its antioxidant, anti-inflammatory and anti-atherogenic properties. The aim of this systematic search is to highlight the scientific evidence evaluating molecular efficiency of HT in halting the progression of intimal hyperplasia (IH), which is a clinical condition arises from endothelial inflammation. Methods: A systematic search was performed through PubMed, Web of Science and Scopus, based on pre-set keywords which are Hydroxytyrosol OR 3,4-dihydroxyphenylethanol, AND Intimal hyperplasia OR Neointimal hyperplasia OR Endothelial OR Smooth muscles. Eighteen in vitro and three in vitro and in vivo studies were selected based on a pre-set inclusion and exclusion criteria. Results: Based on evidence gathered, HT was found to upregulate PI3K/AKT/mTOR pathways and supresses inflammatory factors and mediators such as IL-1β, IL-6, E-selectin, P-selectin, VCAM-1, and ICAM-1 in endothelial vascularization and functioning. Two studies revealed HT disrupted vascular smooth muscle cells (SMC) cell cycle by dephosphorylating ERK1/2 and AKT pathways. Therefore, HT was proven to promote endothelization and inhibit vascular SMCs migration thus hampering IH development. However, none of these studies described the effect of HT collectively in both vascular endothelial cells (EC) and SMCs in IH ex vivo model. Conclusions: Evidence from this concise review provides an insight on HT regulation of molecular pathways in reendothelization and inhibition of VSMCs migration. Henceforth, we propose effect of HT on IH prevention could be further elucidated through in vivo and ex vivo model.
Collapse
Affiliation(s)
- Ubashini Vijakumaran
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.,Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohd Ramzisham Abdul Rahman
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Seguret M, Vermersch E, Jouve C, Hulot JS. Cardiac Organoids to Model and Heal Heart Failure and Cardiomyopathies. Biomedicines 2021; 9:563. [PMID: 34069816 PMCID: PMC8157277 DOI: 10.3390/biomedicines9050563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiac tissue engineering aims at creating contractile structures that can optimally reproduce the features of human cardiac tissue. These constructs are becoming valuable tools to model some of the cardiac functions, to set preclinical platforms for drug testing, or to alternatively be used as therapies for cardiac repair approaches. Most of the recent developments in cardiac tissue engineering have been made possible by important advances regarding the efficient generation of cardiac cells from pluripotent stem cells and the use of novel biomaterials and microfabrication methods. Different combinations of cells, biomaterials, scaffolds, and geometries are however possible, which results in different types of structures with gradual complexities and abilities to mimic the native cardiac tissue. Here, we intend to cover key aspects of tissue engineering applied to cardiology and the consequent development of cardiac organoids. This review presents various facets of the construction of human cardiac 3D constructs, from the choice of the components to their patterning, the final geometry of generated tissues, and the subsequent readouts and applications to model and treat cardiac diseases.
Collapse
Affiliation(s)
- Magali Seguret
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Eva Vermersch
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Charlène Jouve
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Jean-Sébastien Hulot
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
- CIC1418 and DMU CARTE, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, F-75015 Paris, France
| |
Collapse
|
13
|
Whitehead AK, Erwin AP, Yue X. Nicotine and vascular dysfunction. Acta Physiol (Oxf) 2021; 231:e13631. [PMID: 33595878 DOI: 10.1111/apha.13631] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/25/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
Cigarette smoking is the single most important risk factor for the development of cardiovascular diseases (CVDs). However, the role of nicotine, the addictive component of all tobacco products, in the development of CVD is incompletely understood. Although increased public awareness of the harms of cigarette smoking has successfully led to a decline in its prevalence, the use of electronic cigarettes (e-cig) or electronic nicotine delivery system has increased dramatically in recent years because of the perception that these products are safe. This review summarizes our current knowledge of the expression and function of the nicotinic acetylcholine receptors in the cardiovascular system and the impact of nicotine exposure on cardiovascular health, with a focus on nicotine-induced vascular dysfunction. Nicotine alters vasoreactivity through endothelium-dependent and/or endothelium-independent mechanisms, leading to clinical manifestations in both cigarette smokers and e-cig users. In addition, nicotine induces vascular remodelling through its effects on proliferation, migration and matrix production of both vascular endothelial and vascular smooth muscle cells. The purpose of this review is to identify critical knowledge gaps regarding the effects of nicotine on the vasculature and to stimulate continued nicotine research.
Collapse
Affiliation(s)
- Anna K. Whitehead
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| | - Abigail P. Erwin
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| | - Xinping Yue
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| |
Collapse
|
14
|
Zhao W, Li C, Zhang H, Zhou Q, Chen X, Han Y, Chen X. Dihydrotanshinone I Attenuates Plaque Vulnerability in Apolipoprotein E-Deficient Mice: Role of Receptor-Interacting Protein 3. Antioxid Redox Signal 2021; 34:351-363. [PMID: 32323566 DOI: 10.1089/ars.2019.7796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Vulnerable plaque disruption in advanced atherosclerosis leads to acute thrombus and subsequent myocardial infarction and severely threatens human health. Necroptosis of macrophage involved in the necrotic core is one key factor for plaque vulnerability. Dihydrotanshinone I (DHT) is a natural diterpenoid isolated from Danshen demonstrating effective anti-inflammatory property. It is accepted that inflammation plays a crucial role in the process of atherogenesis. However, whether DHT prevents atherosclerosis is poorly understood. Here, we investigated the effect of DHT on vulnerable plaque in an apolipoprotein E-deficient (ApoE-/-) mice model of atherosclerosis and the underlying protective mechanisms. Results: In the in vitro experiment, first LPS/ZVAD (LPS, lipopolysaccharide; ZVAD, ZVAD-FMK, a cell-permeable pan-caspase inhibitor) stimulated necroptosis of macrophage in a receptor-interacting protein 3 (RIP3)-dependent pathway, which was regulated by Toll-like receptor 4 (TLR4) dimerization. Further study illustrated that activated RIP3 evoked endoplasmic reticulum stress as well as reactive oxygen species generation. Both DHT and RIP3 silence reversed the above phenomena. In the in vivo experiment, aorta and serum samples were collected to determine features of plaque stability, including plaque size, necrotic core area, as well as collagen content in fibrous cap and the expression of related protein molecules. Both DHT and RIP3 inhibitor GSK872 significantly enhanced plaque stability in ApoE-/- mice by reducing oxidative stress, shrinking necrotic core area, increasing collagen content, and decreasing RIP3 expression. Innovation and Conclusion: Our study showed that DHT may stabilize vulnerable plaque by suppressing RIP3-mediated necroptosis of macrophage, which indicates its potential application as a lead compound for cardiovascular treatments, especially for advanced atherosclerosis. Antioxid. Redox Signal. 34, 351-363.
Collapse
Affiliation(s)
- Wenwen Zhao
- Qingdao University Medical College, Qingdao, China
| | - Chunxia Li
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi, China
| | - Hao Zhang
- Qingdao University Medical College, Qingdao, China
| | - Qihui Zhou
- Institute for Translational Medicine, Qingdao University, Qingdao, China.,Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xuehong Chen
- Qingdao University Medical College, Qingdao, China
| | - Yantao Han
- Qingdao University Medical College, Qingdao, China
| | - Xiuping Chen
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
15
|
Ren J, Braileanu G, Gorgojo P, Valles C, Dickinson A, Vijayaraghavan A, Wang T. On the biocompatibility of graphene oxide towards vascular smooth muscle cells. NANOTECHNOLOGY 2021; 32:055101. [PMID: 33059341 DOI: 10.1088/1361-6528/abc1a3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene and its derivatives have shown fascinating potential in biomedical applications. However, the biocompatibility of graphene with vascular smooth muscle cells (VSMCs) and applications to vascular engineering have not been explored extensively. Using a rat aortic smooth muscle cell line, A7r5, as a VSMC model, we have explored the effects of graphene oxide (GO) on the growth and behaviours of VSMCs. Results demonstrated that GO had no obvious toxicity to VSMCs. Cells cultured on GO retained the expression of smooth muscle cell-specific markers CNN1, ACTA2 and SMTN, on both mRNA and protein levels. A wound healing assay demonstrated no effect of GO on cell migration. We also found that small-flaked GO favoured the proliferation of VSMCs, suggesting a potential of using surface chemistry or physical properties of GO to influence cell growth behaviour. These results provide insight into the suitability of GO as a scaffold for vascular tissue engineering.
Collapse
Affiliation(s)
- Jianzhen Ren
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
| | - George Braileanu
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
| | - Patricia Gorgojo
- Department of Chemical Engineering and Analytical Science, Faculty of Science and Engineering, The University of Manchester, United Kingdom
| | - Cristina Valles
- Department of Materials, Faculty of Science and Engineering, The University of Manchester, United Kingdom
| | - Adam Dickinson
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
| | - Aravind Vijayaraghavan
- Department of Materials, Faculty of Science and Engineering, The University of Manchester, United Kingdom
| | - Tao Wang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
| |
Collapse
|
16
|
Angiotensin-converting enzyme 2 augments the effects of endothelial progenitor cells-exosomes on vascular smooth muscle cell phenotype transition. Cell Tissue Res 2020; 382:509-518. [PMID: 32852610 DOI: 10.1007/s00441-020-03259-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022]
Abstract
Phenotype transition of vascular smooth muscle cells (VSMCs) is implicated in vascular diseases. Angiotensin-converting enzyme 2 (ACE2) is a perspective cardiovascular target due to its ability of converting angiotensin (Ang II) to Ang (1-7). Our group recently showed that ACE2 can regulate the function of endothelial progenitor cell-derived exosomes (EPC-EXs). Here, we investigate whether ACE2 could affect the role of EPC-EXs on phenotype transition of VSMCs. After co-incubation with EXs released from EPC overexpressed ACE2 (EPC-EXsACE2), the ACE2 level and Ang II/Ang (1-7), proliferation/migration, phenotype gene, cytokine and NF-κB level on VSMCs were assessed. To determine the EX uptake route, VSMCs were pretreated with inhibitors. We found that (1) EPC-EXs and EPC-EXsACE2 were uptaken by VSMCs dominantly through caveolin-dependent endocytosis. (2) EPC-EXsACE2 remarkably increased the ACE2 level and decreased Ang II/Ang (1-7) in VSMCs activated by Ang II, whereas EPC-EXsACE2 pretreated by proteinase A blocked this effect. (3) EPC-EXsACE2 had better effects than EPC-EXs on reducing proliferation/migration activities and cytokine (MCP-1, TNF-α) secretion of Ang II-activated VSMCs. (4) EPC-EXs attenuated Ang II-induced VSMC synthetic phenotype change as evidenced by upregulated expressions of calponin and a-SMA and downregulated expressions of CRBP-1 and MYH10, associated with a decreased NF-κB level. EPC-EXsACE2 augmented these effects, which were attenuated by ACE2 inhibitor (DX600). In conclusion, EPC-EXsACE2 reduced Ang II-induced VSMC phenotype change by conveying functional ACE2 to downregulate the activated NF-κB pathway.
Collapse
|
17
|
Matsushita H, Inoue T, Abdollahi S, Yeung E, Ong CS, Lui C, Pitaktong I, Nelson K, Johnson J, Hibino N. Corrugated nanofiber tissue-engineered vascular graft to prevent kinking for arteriovenous shunts in an ovine model. JVS Vasc Sci 2020; 1:100-108. [PMID: 34617042 PMCID: PMC8489245 DOI: 10.1016/j.jvssci.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/25/2020] [Indexed: 01/14/2023] Open
Abstract
Objective Prosthetic grafts are often needed in open vascular procedures. However, the smaller diameter prosthetic grafts (<6 mm) have low patency and often result in complications from infection. Tissue-engineered vascular grafts (TEVGs) are a promising replacement for small diameter prosthetic grafts. TEVGs start as a biodegradable scaffold to promote autologous cell proliferation and functional neotissue regeneration. Owing to the limitations of graft materials; however, most TEVGs are rigid and easily kinked when implanted in limited spaces, which precludes clinical application. We have developed a novel corrugated nanofiber graft to prevent kinking. Methods TEVGs with corrugated walls (5-mm internal diameter by 10 cm length) were created by electrospinning a blend of poly-ε-caprolactone and poly(L-lactide-co-caprolactone). The biodegradable grafts were then implanted between the carotid artery and the external jugular vein in a U-shape using an ovine model. TEVGs were implanted on both the left and right side of a sheep (n = 4, grafts = 8). The grafts were explanted 1 month after implantation and inspected with mechanical and histologic analyses. Graft patency was confirmed by measuring graft diameter and blood flow velocity using ultrasound, which was performed on day 4 and every following week after implantation. Results All sheep survived postoperatively except for one sheep that died of acute heart failure 2 weeks after implantation. The graft patency rate was 87.5% (seven grafts out of eight) with one graft becoming occluded in the early phase after implantation. There was no significant kinking of the grafts. Overall, endothelial cells were observed in the grafts 1 month after the surgeries without graft rupture, calcification, or aneurysmal change. Conclusions Our novel corrugated nanofiber vascular graft displayed neotissue formation without kinking in large animal model. This basic science research article reported tissue-engineered vascular grafts for arteriovenous shunt procedures. Nanofibrous grafts were electrospun with polyglycolic acid and poly-ε-caprolactone with a corrugated wall design to prevent graft kinking. The tissue-engineered vascular grafts were then implanted in U-shape between the carotid artery and the external jugular vein of an ovine model. This graft had 87.5% patency rate and did not display significant kinking. Overall, re-endothelialization was observed in the grafts one month after the surgeries without graft rupture, calcification or aneurysmal change. This graft is a promising alternative to small diameter prosthetic grafts.
Collapse
Affiliation(s)
| | - Takahiro Inoue
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | - Sara Abdollahi
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | - Enoch Yeung
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | - Chin Siang Ong
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | - Cecillia Lui
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | - Isaree Pitaktong
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | | | | | - Narutoshi Hibino
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| |
Collapse
|
18
|
Woo CC, Liu W, Lin XY, Dorajoo R, Lee KW, Richards AM, Lee CN, Wongsurawat T, Nookaew I, Sorokin V. The interaction between 30b-5p miRNA and MBNL1 mRNA is involved in vascular smooth muscle cell differentiation in patients with coronary atherosclerosis. Int J Mol Sci 2019; 21:ijms21010011. [PMID: 31861407 PMCID: PMC6982107 DOI: 10.3390/ijms21010011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/20/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) in the arterial wall have diverse functions. In pathological states, the interplay between transcripts and microRNAs (miRNAs) leads to phenotypic changes. Understanding the regulatory role of miRNAs and their target genes may reveal how VSMCs modulate the pathogenesis of coronary artery disease. Laser capture microdissection was performed on aortic wall tissues obtained from coronary artery bypass graft patients with and without recent acute myocardial infarction (MI). The mSMRT-qPCR miRNA assay platform (MiRXES, Singapore) was used to profile miRNA. The miRNA data were co-analyzed with significant mRNA transcripts. TargetScan 7.1 was applied to evaluate miRNA-mRNA interactions. The miRNA profiles of 29 patients (16 MI and 13 non-MI) were evaluated. Thirteen VSMC-related miRNAs were differentially expressed between the MI and non-MI groups. Analysis revealed seven miRNA-targeted mRNAs related to muscular tissue differentiation and proliferation. TargetScan revealed that among the VSMC-related transcripts, MBNL1 had a recognition site that matched the hsa-miR-30b-5p target seed sequence. In addition to predicted analysis, our experiment in vitro with human VSMC culture confirmed that hsa-miR-30b-5p negatively correlated with MBNL1. Our data showed that overexpression of hsa-miR-30b-5p led to downregulation of MBNL1 in VSMCs. This process influences VSMC proliferation and might be involved in VSMC differentiation.
Collapse
Affiliation(s)
- Chin Cheng Woo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (C.C.W.); (C.N.L.)
| | - Wenting Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (W.L.); (R.D.)
| | - Xiao Yun Lin
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore 119228, Singapore;
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (W.L.); (R.D.)
| | - Kee Wah Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - A Mark Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Christchurch Heart Institute, University of Otago, Christchurch 8140, New Zealand
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (C.C.W.); (C.N.L.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore 119228, Singapore;
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (T.W.); (I.N.)
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (T.W.); (I.N.)
| | - Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (C.C.W.); (C.N.L.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore 119228, Singapore;
- Correspondence: ; Tel.: +65-6779-5555
| |
Collapse
|
19
|
Tanshinone ⅡA inhibits homocysteine-induced proliferation of vascular smooth muscle cells via miR-145/CD40 signaling. Biochem Biophys Res Commun 2019; 522:157-163. [PMID: 31757424 DOI: 10.1016/j.bbrc.2019.11.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
Tanshinone IIA (Tan IIA), isolated from the traditional Chinese herb Danshen, exhibits broad cardiovascular protective effects. However, the effect of Tan IIA on Homocysteine (Hcy)-induced proliferation of vascular smooth muscle cells (VSMCs) remains unknown. We herein determined whether Tan IIA exerted anti-proliferative effect in Hcy-treating VSMCs, and further investigated the underlying mechanism (miR-145/CD40 signaling). The results showed that Tan IIA significantly inhibited VSMCs proliferation induced by Hcy in a dose-dependent manner, and reversed the VSMCs injury as indicated by decreased KLF4 and increased Calponin expression. In view of the key role of miR-145 in VSMCs, we further explored the role of miR-145 on the protective effect of Tan IIA against Hcy-induced VSMCs proliferation. The miR-145 expression was down-regulated and its targeted gene CD40 was up-regulated in Hcy-treating VSMCs, while the Tan IIA reversed the effect of Hcy, suggesting the miR-145/CD40 may be involve in the protective effect of Tan IIA. To determine the speculation, miR-145 inhibitor was used to inhibit miR-145 expression. The results indicated that miR-145 inhibitor can suppress the protective effects of Tan IIA against Hcy-induced VSMCs proliferation. Collectively, present study demonstrates that Tan IIA inhibits Hcy-induced proliferation of VSMCs via miR-145/CD40 signaling.
Collapse
|
20
|
Abstract
GPCRs (G-protein [guanine nucleotide-binding protein]-coupled receptors) play a central physiological role in the regulation of cardiac function in both health and disease and thus represent one of the largest class of surface receptors targeted by drugs. Several antagonists of GPCRs, such as βARs (β-adrenergic receptors) and Ang II (angiotensin II) receptors, are now considered standard of therapy for a wide range of cardiovascular disease, such as hypertension, coronary artery disease, and heart failure. Although the mechanism of action for GPCRs was thought to be largely worked out in the 80s and 90s, recent discoveries have brought to the fore new and previously unappreciated mechanisms for GPCR activation and subsequent downstream signaling. In this review, we focus on GPCRs most relevant to the cardiovascular system and discuss traditional components of GPCR signaling and highlight evolving concepts in the field, such as ligand bias, β-arrestin-mediated signaling, and conformational heterogeneity.
Collapse
Affiliation(s)
- Jialu Wang
- From the Department of Medicine (J.W., C.G., H.A.R.)
| | | | - Howard A Rockman
- From the Department of Medicine (J.W., C.G., H.A.R.).,Department of Cell Biology (H.A.R.).,Department of Molecular Genetics and Microbiology (H.A.R.), Duke University Medical Center, Durham, NC
| |
Collapse
|
21
|
Golshiri K, Ataei Ataabadi E, Portilla Fernandez EC, Jan Danser AH, Roks AJM. The importance of the nitric oxide-cGMP pathway in age-related cardiovascular disease: Focus on phosphodiesterase-1 and soluble guanylate cyclase. Basic Clin Pharmacol Toxicol 2019; 127:67-80. [PMID: 31495057 DOI: 10.1111/bcpt.13319] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
Among ageing-related illnesses, cardiovascular disease (CVD) remains the leading cause of morbidity and mortality causing one-third of all deaths worldwide. Ageing evokes a number of functional, pharmacological and morphological changes in the vasculature, accompanied by a progressive failure of protective and homeostatic mechanisms, resulting in target organ damage. Impaired vasomotor, proliferation, migration, antithrombotic and anti-inflammatory function in both the endothelial and vascular smooth muscle cells are parts of the vascular ageing phenotype. The endothelium regulates these functions by the release of a wide variety of active molecules including endothelium-derived relaxing factors such as nitric oxide, prostacyclin (PGI2 ) and endothelium-derived hyperpolarization (EDH). During ageing, a functional decay of the nitric oxide pathway takes place. Nitric oxide signals to VSMC and other important cell types for vascular homeostasis through the second messenger cyclic guanosine monophosphate (cGMP). Maintenance of proper cGMP levels is an important goal in sustainment of proper vascular function during ageing. For this purpose, different components can be targeted in this signalling system, and among them, phosphodiesterase-1 (PDE1) and soluble guanylate cyclase (sGC) are crucial. This review focuses on the role of PDE1 and sGC in conditions that are relevant for vascular ageing.
Collapse
Affiliation(s)
- Keivan Golshiri
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ehsan Ataei Ataabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eliana C Portilla Fernandez
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Kasprzyk-Pawelec A, Wojciechowska A, Kuc M, Zielinski J, Parulski A, Kusmierczyk M, Lutynska A, Kozar-Kaminska K. microRNA expression profile in Smooth Muscle Cells isolated from thoracic aortic aneurysm samples. Adv Med Sci 2019; 64:331-337. [PMID: 31022558 DOI: 10.1016/j.advms.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/31/2019] [Accepted: 04/10/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE Thoracic aortic aneurysm (TAA) is a cardiovascular disease characterized by increased aortic diameter, treated with surgery and endovascular therapy in order to avoid aortic dissection or rupture. The mechanism of TAA formation has not been thoroughly studied and many factors have been proposed to drive its progression; however strong focus is attributed to modification of smooth muscle cells (SMCs). Latest research indicates, that microRNAs (miRNAs) may play a significant role in TAA development - these are multifunctional molecules consisting of 19-24 nucleotides involved in regulation of the gene expression level related to many biological processes, i.e. cardiovascular disease pathophysiology, immunity or inflammation. MATERIALS AND METHODS Primary SMCs were isolated from aortic scraps of TAA patients and age- and sex-matched healthy controls. Purity of isolated SMCs was determined by flow cytometry using specific markers: α-SMA, CALP, MHC and VIM. Real-time polymerase chain reaction (RT-PCR) was conducted for miRNA analysis. RESULTS We established an isolation protocol and investigated the miRNA expression level in SMCs isolated from aneurysmal and non-aneurysmal aortic samples. We identified that let-7 g (0.71-fold, p = 0.01), miR-130a (0.40-fold, p = 0.04), and miR-221 (0.49-fold, p = 0.05) significantly differed between TAA patients and healthy controls. CONCLUSIONS Further studies are required to improve our understanding of the pathophysiology underlying TAA, which may aid the development of novel, targeted therapies. The pivotal role of miRNAs in the cardiovascular system provides a new perspective on the pathophysiology of thoracic aortic aneurysms.
Collapse
Affiliation(s)
- Anna Kasprzyk-Pawelec
- Department of Medical Biology, Immunology Laboratory, Institute of Cardiology, Warsaw, Poland
| | - Anna Wojciechowska
- Department of Medical Biology, Immunology Laboratory, Institute of Cardiology, Warsaw, Poland
| | - Mateusz Kuc
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Jakub Zielinski
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Adam Parulski
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Mariusz Kusmierczyk
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Anna Lutynska
- Department of Medical Biology, Institute of Cardiology, Warsaw, Poland
| | | |
Collapse
|
23
|
Feng X, Li X, Yang C, Ren Q, Zhang W, Li N, Zhang M, Zhang B, Zhang L, Zhou X, Xu Z. Maternal High-Sucrose Diet Accelerates Vascular Stiffness in Aged Offspring via Suppressing Ca v 1.2 and Contractile Phenotype of Vascular Smooth Muscle Cells. Mol Nutr Food Res 2019; 63:e1900022. [PMID: 31067604 DOI: 10.1002/mnfr.201900022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/26/2019] [Indexed: 12/21/2022]
Abstract
SCOPE The fetal programming in response to over-nutrition during pregnancy is involved in pathogenesis of cardiovascular diseases later in life. The authors' previous work reported that prenatal high-sucrose (HS) diet impaired functions of large-conductance Ca2+ -activated K+ channels (BK) in mesenteric arteries in the adolescent offspring rats. This study determines whether prenatal HS has a long-term impact on resistance vasculature in the aged offspring rats. METHODS AND RESULTS Pregnant rats are fed with a high-sucrose diet until delivery. Aged offspring from prenatal HS exhibit elevated fasting insulin level, insulin resistance index, and diastolic pressure. Both pressure-induced myogenic responses and phenylephrine-stimulated contraction of mesenteric arteries in HS are weakened. Electrophysiological tests and western blot indicate that BK and L-type calcium channels (Cav 1.2) are impaired in HS group. On the other hand, expression of matrix metalloproteinase 2 of mesenteric arteries is reduced in HS group while expression of tissue inhibitors of metalloproteinase is increased, indicating that extra cellular matrix (ECM) is remodeled. Furthermore, expression of α-smooth muscle actin is decreased, and insulin/insulin receptor/phosphoinositide3-kinase (PI3K) signaling pathway is downregulated. CONCLUSION The results suggest that prenatal HS induced stiffness of mesenteric arteries in aged offspring by inhibiting Cav 1.2 function and PI3K-associated contractile phenotype of VSMCs.
Collapse
Affiliation(s)
- Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Xiang Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Chunli Yang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Qinggui Ren
- Department of Gastrointestinal Surgery, Tengzhou Central People's Hospital, Zaozhuang, 277500, China
| | - Wenna Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Na Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Meng Zhang
- Obstetrics and Gynecology, Tengzhou Central People's Hospital, Zaozhuang, 277500, China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, Tengzhou Central People's Hospital, Zaozhuang, 277500, China
| | - Lubo Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China.,Center for Prenatal Biology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
24
|
Heteromerization fingerprints between bradykinin B2 and thromboxane TP receptors in native cells. PLoS One 2019; 14:e0216908. [PMID: 31086419 PMCID: PMC6516669 DOI: 10.1371/journal.pone.0216908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Bradykinin (BK) and thromboxane-A2 (TX-A2) are two vasoactive mediators that modulate vascular tone and inflammation via binding to their cognate "class A" G-protein coupled receptors (GPCRs), BK-B2 receptors (B2R) and TX-prostanoid receptors (TP), respectively. Both BK and TX-A2 lead to ERK1/2-mediated vascular smooth muscle cell (VSMC) proliferation and/or hypertrophy. While each of B2R and TP could form functional dimers with various GPCRs, the likelihood that B2R-TP heteromerization could contribute to their co-regulation has never been investigated. The main objective of this study was to investigate the mode of B2R and TP interaction in VSMC, and its possible impact on downstream signaling. Our findings revealed synergistically activated ERK1/2 following co-stimulation of rat VSMC with a subthreshold dose of BK and effective doses of the TP stable agonist, IBOP, possibly involving biased agonist signaling. Single detection of each of B2R and TP in VSMC, using in-situ proximity ligation assay (PLA), provided evidence of the constitutive expression of nuclear and extranuclear B2R and TP. Moreover, inspection of B2R-TP PLA signals in VSMC revealed agonist-modulated nuclear and extranuclear proximity between B2R and TP, whose quantification varied substantially following single versus dual agonist stimulations. B2R-TP interaction was further verified by the findings of co-immunoprecipitation (co-IP) analysis of VSMC lysates. To our knowledge, this is the first study that provides evidence supporting the existence of B2R-TP heteromerization fingerprints in primary cultured VSMC.
Collapse
|
25
|
Zhang W, Liu D, Han X, Ren J, Zhou P, Ding P. MicroRNA-451 inhibits vascular smooth muscle cell migration and intimal hyperplasia after vascular injury via Ywhaz/p38 MAPK pathway. Exp Cell Res 2019; 379:214-224. [PMID: 30930138 DOI: 10.1016/j.yexcr.2019.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Increasing evidence has indicated that intimal hyperplasia is a common event in the pathophysiology of many vascular diseases including atherosclerosis (AS). Recently, deregulated microRNAs (miRNAs) have been reported to be associated with the pathophysiology of AS. However, the biological function and regulatory mechanisms of miRNAs in intimal hyperplasia in AS remain largely unclear. The aim of this study was to investigate the effects of miRNAs on intimal hyperplasia and reveal the underlying mechanisms of their effects. Firstly, the model of rat vascular injury was successfully constructed in vivo. Then, the miRNAs expression profiles were analyzed by miRNA microarray. It was observed that miR-451 was significantly downregulated in injury carotid arteries. Subsequently, we investigated miR-451 function and found that upregulation of miR-451 by agomir-451 improves intimal thickening in rats following vascular injury. It was also observed that miR-451 was downregulated in the VSMCs following platelet-derived growth factor type BB (PDGF-BB) stimulation. The upregulation of miR-451 attenuated PDGF-BB-induced VSMCs injury, as evidenced by inhibition of proliferation, invasion and migration. Besides, overexpression of miR-451 blocked the activation of p38 MAPK signaling pathway in PDGF-BB treated VSMCs, as demonstrated by the downregulation of phosphorylated (p-) p38. In addition, Ywhaz, a positive regulator of p38 MAPK signaling pathway, was found to be a direct target of miR-451 in the VSMCs and this was validated using a luciferase reporter assay. Overexpression of Ywhaz partially abolished the inhibitory effects of miR-451 overexpression on PDGF-BB induced VSMCs injury. Collectively, these findings indicated that miR-451 protected intimal hyperplasia and PDGF-BB-induced VSMCs injury by Ywhaz/p38 MAPK pathway, and miR-451 may be considered as a potential therapeutic target in the treatment of AS.
Collapse
Affiliation(s)
- Wenguang Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Dongmei Liu
- Department of Radiation Oncology, Henan Province Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Pengli Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Pengxu Ding
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
26
|
Chen N, Chen L, Jiang S, Wang Z, Liu T. Predictive value of P-selectin and endothelin-1 for vascular restenosis after interventional procedures for peripheral artery disease. Exp Ther Med 2019; 17:3907-3912. [PMID: 30988775 PMCID: PMC6447944 DOI: 10.3892/etm.2019.7407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/22/2019] [Indexed: 11/12/2022] Open
Abstract
Peripheral artery disease (PAD) is caused by the building up of plaques in the arteries that carry blood to the lower limbs. The present study aimed to assess the predictive value of the plasma levels of P-selectin (Ps) or endothelin-1 (ET-1) regarding the occurrence of vascular restenosis after endovascular therapy for PAD. Patients with or without vascular restenosis confirmed by computed tomography angiography after endovascular therapy between March and December 2015 (n=20 per group) were enrolled. The serum levels of Ps and ET-1 prior to the operation and at 1 h, as well as 1, 2 and 3 weeks after the operation were compared between the two groups. At 1 h after the operation, the serum levels of Ps and ET-1 were significantly increased as compared with the pre-operative levels (P<0.05). The serum levels of Ps and ET-1 at 1 h, as well as 1, 2 and 3 weeks after the operation in the restenosis group were significantly higher as compared with those in the non-stenosis group (P<0.05). However, for the non-stenosis group, the serum levels of Ps and ET-1 at 1, 2 and 3 weeks after the operation did not significantly differ from the pre-operative levels (P>0.05). The diagnostic sensitivity and specificity of the serum ET-1 levels at 1 h after the operation for predicting post-operative restenosis in PAD patients with a cut-off of 0.1089 pg/ml were 85 and 85%, respectively. In conclusion, the serum levels of Ps and ET-1 have a high predictive value for post-operative vascular restenosis after endovascular therapy for PAD patients.
Collapse
Affiliation(s)
- Nan Chen
- Department of Science of Epidemic Febrile Disease, School of Basic Medical Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Linwei Chen
- Department of Science of Epidemic Febrile Disease, School of Basic Medical Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Su Jiang
- Department of Science of Epidemic Febrile Disease, School of Basic Medical Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Zichuan Wang
- Department of Science of Epidemic Febrile Disease, School of Basic Medical Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Tao Liu
- Department of Science of Epidemic Febrile Disease, School of Basic Medical Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
27
|
Liang W, Fan Y, Lu H, Chang Z, Hu W, Sun J, Wang H, Zhu T, Wang J, Adili R, Garcia-Barrio MT, Holinstat M, Eitzman D, Zhang J, Eugene Chen Y. KLF11 (Krüppel-Like Factor 11) Inhibits Arterial Thrombosis via Suppression of Tissue Factor in the Vascular Wall. Arterioscler Thromb Vasc Biol 2019; 39:402-412. [PMID: 30602303 PMCID: PMC6393209 DOI: 10.1161/atvbaha.118.311612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023]
Abstract
Objective- Mutations in Krüppel like factor-11 ( KLF11), a gene also known as maturity-onset diabetes mellitus of the young type 7, contribute to the development of diabetes mellitus. KLF11 has anti-inflammatory effects in endothelial cells and beneficial effects on stroke. However, the function of KLF11 in the cardiovascular system is not fully unraveled. In this study, we investigated the role of KLF11 in vascular smooth muscle cell biology and arterial thrombosis. Approach and Results- Using a ferric chloride-induced thrombosis model, we found that the occlusion time was significantly reduced in conventional Klf11 knockout mice, whereas bone marrow transplantation could not rescue this phenotype, suggesting that vascular KLF11 is critical for inhibition of arterial thrombosis. We further demonstrated that vascular smooth muscle cell-specific Klf11 knockout mice also exhibited significantly reduced occlusion time. The expression of tissue factor (encoded by the F3 gene), a main initiator of the coagulation cascade, was increased in the artery of Klf11 knockout mice, as determined by real-time quantitative polymerase chain reaction and immunofluorescence. Furthermore, vascular smooth muscle cells isolated from Klf11 knockout mouse aortas showed increased tissue factor expression, which was rescued by KLF11 overexpression. In human aortic smooth muscle cells, small interfering RNA-mediated knockdown of KLF11 increased tissue factor expression. Consistent results were observed on adenovirus-mediated overexpression of KLF11. Mechanistically, KLF11 downregulates F3 at the transcriptional level as determined by reporter and chromatin immunoprecipitation assays. Conclusions- Our data demonstrate that KLF11 is a novel transcriptional suppressor of F3 in vascular smooth muscle cells, constituting a potential molecular target for inhibition of arterial thrombosis.
Collapse
Affiliation(s)
- Wenying Liang
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Ziyi Chang
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Wenting Hu
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Jinjian Sun
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Huilun Wang
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Tianqing Zhu
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Jintao Wang
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Reheman Adili
- Department of Pharmacology, University of Michigan, Ann
Arbor, MI
| | - Minerva T. Garcia-Barrio
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | | | - Daniel Eitzman
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Y. Eugene Chen
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| |
Collapse
|
28
|
Petri MH, Thul S, Andonova T, Lindquist-Liljeqvist M, Jin H, Skenteris NT, Arnardottir H, Maegdefessel L, Caidahl K, Perretti M, Roy J, Bäck M. Resolution of Inflammation Through the Lipoxin and ALX/FPR2 Receptor Pathway Protects Against Abdominal Aortic Aneurysms. JACC Basic Transl Sci 2018; 3:719-727. [PMID: 30623131 PMCID: PMC6314955 DOI: 10.1016/j.jacbts.2018.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022]
Abstract
Specialized lipid mediators transduce the resolution of inflammation by means of the ALX/FPR2. Human AAA exhibited decreased ALX/FPR2 expression. Genetic disruption of the murine ALX/FPR2 ortholog exacerbated AAA and increased inflammation. The ALX/FPR2 agonist ATL induced pro-resolving signaling in bone marrow-derived murine cells. Pro-resolving signaling by means of the ALX/FPR2 receptor may decrease the progression of AAA.
An abdominal aortic aneurysm (AAA) is a progressive aortic dilation that may lead to rupture, which is usually lethal. This study identifies the state of failure in the resolution of inflammation by means of decreased expression of the pro-resolving receptor A lipoxin/formyl peptide receptor 2 (ALX/FPR2) in the adventitia of human AAA lesions. Mimicking this condition by genetic deletion of the murine ALX/FPR2 ortholog in hyperlipidemic mice exacerbated the aortic dilation induced by angiotensin II infusion, associated with decreased vascular collagen and increased inflammation. The authors also identified key roles of lipoxin formation through 12/15-lipoxygenase and neutrophil p38 mitogen-activated protein kinase. In conclusion, this study established pro-resolving signaling by means of the ALX/FPR2 receptor in aneurysms and vascular inflammation.
Collapse
Affiliation(s)
- Marcelo H Petri
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Silke Thul
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Teodora Andonova
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Hong Jin
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mauro Perretti
- William Harvey Research Institute, Barts and London School of Medicine, Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Joy Roy
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Plant-Derived Products for Treatment of Vascular Intima Hyperplasia Selectively Inhibit Vascular Smooth Muscle Cell Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3549312. [PMID: 30405738 PMCID: PMC6201497 DOI: 10.1155/2018/3549312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/01/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022]
Abstract
Natural products are used widely for preventing intimal hyperplasia (IH), a common cardiovascular disease. Four different cells initiate and progress IH, namely, vascular smooth muscle, adventitial and endothelial cells, and circulation or bone marrow-derived cells. Vascular smooth muscle cells (VSMCs) play a critical role in initiation and development of intimal thickening and formation of neointimal hyperplasia. In this review, we describe the different originating cells involved in vascular IH and emphasize the effect of different natural products on inhibiting abnormal cellular functions, such as VSMC proliferation and migration. We further present a classification for the different natural products like phenols, flavonoids, terpenes, and alkaloids that suppress VSMC growth. Abnormal VSMC physiology involves disturbance in MAPKs, PI3K/AKT, JAK-STAT, FAK, and NF-κB signal pathways. Most of the natural isolate studies have revealed G1/S phase of cell cycle arrest, decreased ROS production, induced cell apoptosis, restrained migration, and downregulated collagen deposition. It is necessary to screen optimal drugs from natural sources that preferentially inhibit VSMC rather than vascular endothelial cell growth to prevent early IH, restenosis following graft implantation, and atherosclerotic diseases.
Collapse
|
30
|
Xu K, Al-Ani MK, Wang C, Qiu X, Chi Q, Zhu P, Dong N. Emodin as a selective proliferative inhibitor of vascular smooth muscle cells versus endothelial cells suppress arterial intima formation. Life Sci 2018; 207:9-14. [PMID: 29803662 DOI: 10.1016/j.lfs.2018.05.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 11/28/2022]
Abstract
A well-known natural anthraquinone "Emodin", has been proven to inhibit the proliferation of vascular smooth muscle cells (VSMCs). But the anti-proliferative effects of emodin on both VSMCs versus vascular endothelial cells (VECs) are still largely unknown. Herein, a comparative study for the evaluation of anti-proliferation effects of emodin on human VSMCs and VECs was designed. Various methodologies including MTS, EdU assay, FACS analysis, qRT-PCR and mitochondrial fluorescent probes were used for detecting cell viabilities, DNA synthesis rate, cell cycle, proliferation genes expression levels and mitochondrial activities, respectively. In addition, carotid arteries balloon injury was performed to evaluate the effects of emodin on intima hyperplasia (IH) and re-endothelialization. The emodin showed a dose-dependent (0.05 to 5 μM) inhibition of hVSMCs proliferation was quiet higher than hVECs in vitro. Conditioned culture media with a range of emodin concentrations (2.5, and 5 μM) reduced CDK1, Ki67, and E2F-1 gene expression, along with inhibition of mitochondrial activities in both hVSMCs and hVECs cells, while former remained highly sensitive. Emodin (10 mg/kg) was injected intraperitoneally for 2 weeks, and had obvious alleviation in an endothelial denudation induced-IH formation and limited interfere-endothelialization in injured arteries in vivo. Emodin preferentially inhibited hVSMCs proliferation but not the hVECs in vitro and had limited influence on the re-endothelialization of later in a rat artery endothelial denudation model. It is concluded that emodin will provide a promising approach for efficient prevention of blood vessel restenosis.
Collapse
Affiliation(s)
- Kang Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mohanad Kh Al-Ani
- Tikrit Universtiy, College of Medicine, department of microbiology, P.O. Box (45), Salahaddin Province, Tikrit, Iraq
| | - Chunli Wang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
31
|
Klein D. iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci 2018; 75:1411-1433. [PMID: 29243171 PMCID: PMC5852192 DOI: 10.1007/s00018-017-2730-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
Recent advances in the field of induced pluripotent stem cells (iPSCs) research have opened a new avenue for stem cell-based generation of vascular cells. Based on their growth and differentiation potential, human iPSCs constitute a well-characterized, generally unlimited cell source for the mass generation of lineage- and patient-specific vascular cells without any ethical concerns. Human iPSCs-derived vascular cells are perfectly suited for vascular disease modeling studies because patient-derived iPSCs possess the disease-causing mutation, which might be decisive for full expression of the disease phenotype. The application of vascular cells for autologous cell replacement therapy or vascular engineering derived from immune-compatible iPSCs possesses huge clinical potential, but the large-scale production of vascular-specific lineages for regenerative cell therapies depends on well-defined, highly reproducible culture and differentiation conditions. This review will focus on the different strategies to derive vascular cells from human iPSCs and their applications in regenerative therapy, disease modeling and drug discovery approaches.
Collapse
Affiliation(s)
- Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstr. 173, 45122, Essen, Germany.
| |
Collapse
|
32
|
Dash BC, Levi K, Schwan J, Luo J, Bartulos O, Wu H, Qiu C, Yi T, Ren Y, Campbell S, Rolle MW, Qyang Y. Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells. Stem Cell Reports 2017; 7:19-28. [PMID: 27411102 PMCID: PMC4945325 DOI: 10.1016/j.stemcr.2016.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/08/2016] [Accepted: 05/08/2016] [Indexed: 12/21/2022] Open
Abstract
There is an urgent need for an efficient approach to obtain a large-scale and renewable source of functional human vascular smooth muscle cells (VSMCs) to establish robust, patient-specific tissue model systems for studying the pathogenesis of vascular disease, and for developing novel therapeutic interventions. Here, we have derived a large quantity of highly enriched functional VSMCs from human induced pluripotent stem cells (hiPSC-VSMCs). Furthermore, we have engineered 3D tissue rings from hiPSC-VSMCs using a facile one-step cellular self-assembly approach. The tissue rings are mechanically robust and can be used for vascular tissue engineering and disease modeling of supravalvular aortic stenosis syndrome. Our method may serve as a model system, extendable to study other vascular proliferative diseases for drug screening. Thus, this report describes an exciting platform technology with broad utility for manufacturing cell-based tissues and materials for various biomedical applications.
Collapse
Affiliation(s)
- Biraja C Dash
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA; Department of Surgery (Plastic), Yale University, New Haven, CT 06520, USA
| | - Karen Levi
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Jiesi Luo
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Oscar Bartulos
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Hongwei Wu
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA; Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Caihong Qiu
- Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Ting Yi
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Yongming Ren
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Stuart Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Yibing Qyang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Pathology, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
33
|
Sun SW, Tong WJ, Guo ZF, Tuo QH, Lei XY, Zhang CP, Liao DF, Chen JX. Curcumin enhances vascular contractility via induction of myocardin in mouse smooth muscle cells. Acta Pharmacol Sin 2017; 38:1329-1339. [PMID: 28504250 DOI: 10.1038/aps.2017.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022] Open
Abstract
A variety of cardiovascular diseases is accompanied by the loss of vascular contractility. This study sought to investigate the effects of curcumin, a natural polyphenolic compound present in turmeric, on mouse vascular contractility and the underlying mechanisms. After mice were administered curcumin (100 mg·kg-1·d-1, ig) for 6 weeks, the contractile responses of the thoracic aorta to KCl and phenylephrine were significantly enhanced compared with the control group. Furthermore, the contractility of vascular smooth muscle (SM) was significantly enhanced after incubation in curcumin (25 μmol/L) for 4 days, which was accompanied by upregulated expression of SM marker contractile proteins SM22α and SM α-actin. In cultured vascular smooth muscle cells (VSMCs), curcumin (10, 25, 50 μmol/L) significantly increased the expression of myocardin, a "master regulator" of SM gene expression. Curcumin treatment also significantly increased the levels of caveolin-1 in VSMCs. We found that as a result of the upregulation of caveolin-1, curcumin blocked the activation of notch1 and thereby abolished Notch1-inhibited myocardin expression. Knockdown of caveolin-1 or activation of Notch1 signaling with Jagged1 (2 μg/mL) diminished these effects of curcumin in VSMCs. These findings suggest that curcumin induces the expression of myocardin in mouse smooth muscle cells via a variety of mechanisms, including caveolin-1-mediated inhibition of notch1 activation and Notch1-mediated repression of myocardin expression. This may represent a novel pathway, through which curcumin protects blood vessels via the beneficial regulation of SM contractility.
Collapse
|
34
|
Micro-anatomical changes in major blood vessel caused by dengue virus (serotype 2) infection. Acta Trop 2017; 171:213-219. [PMID: 28427958 DOI: 10.1016/j.actatropica.2017.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/05/2017] [Accepted: 04/14/2017] [Indexed: 01/11/2023]
Abstract
Dengue virus (DENV) has emerged as a major economic concern in developing countries, with 2.5 billion people believed to be at risk. Vascular endothelial cells (ECs) lining the circulatory system from heart to end vessels perform crucial functions in the human body, by aiding gas exchange in lungs, gaseous, nutritional and its waste exchange in all tissues, including the blood brain barrier, filtration of fluid in the glomeruli, neutrophil recruitment, hormone trafficking, as well as maintenance of blood vessel tone and hemostasis. These functions can be deregulated during DENV infection. In this study, BALB/c mice infected with DENV serotype 2 were analyzed histologically for changes in major blood vessels in response to DENV infection. In the uninfected mouse model, blood vessels showed normal architecture with intact endothelial monolayer, tunica media, and tunica adventitia. In the infected mouse model, DENV distorted the endothelium lining and disturbed the smooth muscle, elastic laminae and their supporting tissues causing vascular structural disarrangement. This may explain the severe pathological illness in DENV-infected individuals. The overall DENV-induced damages on the endothelial and it's supporting tissues and the dysregulated immune reactions initiated by the host were discussed.
Collapse
|
35
|
Obesity Induces Artery-Specific Alterations: Evaluation of Vascular Function and Inflammatory and Smooth Muscle Phenotypic Markers. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5038602. [PMID: 28466012 PMCID: PMC5390568 DOI: 10.1155/2017/5038602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/19/2017] [Indexed: 02/06/2023]
Abstract
Vascular alterations are expected to occur in obese individuals but the impact of obesity could be different depending on the artery type. We aimed to evaluate the obesity effects on the relaxing and contractile responses and inflammatory and smooth muscle (SM) phenotypic markers in two vascular beds. Obesity was induced in C57Bl/6 mice by 16-week high-fat diet and vascular reactivity, mRNA expression of inflammatory and SM phenotypic markers, and collagen deposition were evaluated in small mesenteric arteries (SMA) and thoracic aorta (TA). Endothelium-dependent relaxation in SMA and TA was not modified by obesity. In contrast, contraction induced by depolarization and contractile agonists was reduced in SMA, whereas only contraction induced by adrenergic agonist was reduced in TA of obese mice. Obesity increased the mRNA expression of pro- and anti-inflammatory cytokines in SMA and TA. The expression of genes necessary for maintaining contractile ability was increased by obesity, but the increase was more pronounced in TA. Collagen deposition was increased in SMA, but not in TA, of obese mice. Although the endothelial function was still preserved, the SM of the two artery types was impaired by obesity, but the impairment was higher in SMA, which could be associated with SM phenotypic changes.
Collapse
|
36
|
Vasamsetti SB, Karnewar S, Gopoju R, Gollavilli PN, Narra SR, Kumar JM, Kotamraju S. Resveratrol attenuates monocyte-to-macrophage differentiation and associated inflammation via modulation of intracellular GSH homeostasis: Relevance in atherosclerosis. Free Radic Biol Med 2016; 96:392-405. [PMID: 27156686 DOI: 10.1016/j.freeradbiomed.2016.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 11/30/2022]
Abstract
Monocyte-to-macrophage differentiation promotes an inflammatory environment within the arterial vessel wall that causes a mal-adaptive immune response, which contributes to the progression of atheromatous plaque formation. In the current study, we show that resveratrol, a well-known antioxidant, dose-dependently attenuated phorbol myristate acetate (PMA)-induced monocyte-to-macrophage differentiation, as measured by cell adhesion, increase in cell size, and scavenger receptor expression in THP-1 monocytes. Also, resveratrol significantly inhibited PMA-induced pro-inflammatory cytokine/chemokine and matrix metalloprotease (MMP-9) production. This inhibitory effect of resveratrol on monocyte differentiation results from its ability to restore intracellular glutathione (GSH) status, as resveratrol in the presence of buthionine sulfoximine (BSO) failed to affect monocyte differentiation. Furthermore, PMA-induced monocyte differentiation and inflammation was greatly inhibited when cells were co-treated with N-Acetyl-l-cysteine (NAC), a GSH precursor, while the presence of BSO aggravated these processes. These results also show that resveratrol mediated up-regulation of GSH is due to AMP-activated protein kinase (AMPK)-α activation, as compound C (AMPK inhibitor) treatment drastically depleted intracellular GSH and exacerbated PMA-induced monocyte differentiation and pro-inflammatory cytokine production. More importantly, chronic administration of resveratrol efficiently prevented monocyte infiltration and markedly diminished angiotensin (Ang)-II-induced atheromatous plaque formation in apolipoprotein-E knockout (ApoE(-/-)) mice. We conclude that, intracellular GSH status plays a critical role in regulating monocyte-to-macrophage differentiation and inflammation and resveratrol, by restoring GSH levels, inhibits these processes. Taken together, these results suggest that resveratrol can attenuate atherosclerosis, at least, in part, by inhibiting monocyte differentiation and pro-inflammatory cytokines production.
Collapse
Affiliation(s)
- Sathish Babu Vasamsetti
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai 600113, India
| | - Santosh Karnewar
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai 600113, India
| | - Raja Gopoju
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai 600113, India
| | - Paradesi Naidu Gollavilli
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai 600113, India
| | - Sai Ram Narra
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Jerald Mahesh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Srigiridhar Kotamraju
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai 600113, India.
| |
Collapse
|
37
|
Boukais K, Bayles R, Borges LDF, Louedec L, Boulaftali Y, Ho-Tin-Noé B, Arocas V, Bouton MC, Michel JB. Uptake of Plasmin-PN-1 Complexes in Early Human Atheroma. Front Physiol 2016; 7:273. [PMID: 27445860 PMCID: PMC4927630 DOI: 10.3389/fphys.2016.00273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/16/2016] [Indexed: 12/16/2022] Open
Abstract
Zymogens are delivered to the arterial wall by radial transmural convection. Plasminogen can be activated within the arterial wall to produce plasmin, which is involved in evolution of the atherosclerotic plaque. Vascular smooth muscle cells (vSMCs) protect the vessels from proteolytic injury due to atherosclerosis development by highly expressing endocytic LDL receptor-related protein-1 (LRP-1), and by producing anti-proteases, such as Protease Nexin-1 (PN-1). PN-1 is able to form covalent complexes with plasmin. We hypothesized that plasmin-PN-1 complexes could be internalized via LRP-1 by vSMCs during the early stages of human atheroma. LRP-1 is also responsible for the capture of aggregated LDL in human atheroma. Plasmin activity and immunohistochemical analyses of early human atheroma showed that the plasminergic system is activated within the arterial wall, where intimal foam cells, including vSMCs and platelets, are the major sites of PN-1 accumulation. Both PN-1 and LRP-1 are overexpressed in early atheroma at both messenger and protein levels. Cell biology studies demonstrated an increased expression of PN-1 and tissue plasminogen activator by vSMCs in response to LDL. Plasmin-PN-1 complexes are internalized via LRP-1 in vSMCs, whereas plasmin alone is not. Tissue PN-1 interacts with plasmin in early human atheroma via two complementary mechanisms: plasmin inhibition and tissue uptake of plasmin-PN-1 complexes via LRP-1 in vSMCs. Despite this potential protective effect, plasminogen activation by vSMCs remains abnormally elevated in the intima in early stages of human atheroma.
Collapse
Affiliation(s)
- Kamel Boukais
- UMR 1148, Laboratory for Vascular Translational Science, Institut National de la Santé et de la Recherche MédicaleParis, France; Paris7 Denis Diderot UniversityParis, France
| | - Richard Bayles
- UMR 1148, Laboratory for Vascular Translational Science, Institut National de la Santé et de la Recherche MédicaleParis, France; Department of Physiology and Pharmacology, Oregon Health and Science UniversityPortland, OR, USA
| | - Luciano de Figueiredo Borges
- Departement of Biological Science, Federal University of São PauloSão Paulo, Brazil; Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão Paulo, Brazil
| | - Liliane Louedec
- UMR 1148, Laboratory for Vascular Translational Science, Institut National de la Santé et de la Recherche MédicaleParis, France; Paris7 Denis Diderot UniversityParis, France
| | - Yacine Boulaftali
- UMR 1148, Laboratory for Vascular Translational Science, Institut National de la Santé et de la Recherche MédicaleParis, France; Paris7 Denis Diderot UniversityParis, France
| | - Benoit Ho-Tin-Noé
- UMR 1148, Laboratory for Vascular Translational Science, Institut National de la Santé et de la Recherche MédicaleParis, France; Paris7 Denis Diderot UniversityParis, France
| | - Véronique Arocas
- UMR 1148, Laboratory for Vascular Translational Science, Institut National de la Santé et de la Recherche MédicaleParis, France; Paris7 Denis Diderot UniversityParis, France
| | - Marie-Christine Bouton
- UMR 1148, Laboratory for Vascular Translational Science, Institut National de la Santé et de la Recherche MédicaleParis, France; Paris7 Denis Diderot UniversityParis, France
| | - Jean-Baptiste Michel
- UMR 1148, Laboratory for Vascular Translational Science, Institut National de la Santé et de la Recherche MédicaleParis, France; Paris7 Denis Diderot UniversityParis, France
| |
Collapse
|
38
|
Koskelainen S, Pihlamaa T, Suominen S, Zhao F, Salo T, Risteli J, Baumann M, Kalimo H, Kiuru-Enari S. Gelsolin amyloid angiopathy causes severe disruption of the arterial wall. APMIS 2016; 124:639-48. [PMID: 27198069 DOI: 10.1111/apm.12554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/18/2016] [Indexed: 11/26/2022]
Abstract
Hereditary gelsolin amyloidosis (HGA) is a dominantly inherited systemic disease reported worldwide. HGA is characterized by ophthalmological, neurological, and dermatological manifestations. AGel amyloid accumulates at basal lamina of epithelial and muscle cells, thus amyloid angiopathy is encountered in nearly every organ. HGA patients have cardiovascular, hemorrhagic, and potentially vascularly induced neurological problems. To clarify pathomechanisms of AGel angiopathy, we performed histological, immunohistochemical, and electron microscopic analyses on facial temporal artery branches from 8 HGA patients and 13 control subjects. We demonstrate major pathological changes in arteries: disruption of the tunica media, disorganization of vascular smooth muscle cells, and accumulation of AGel fibrils in arterial walls, where they associate with the lamina elastica interna, which becomes fragmented and diminished. We also provide evidence of abnormal accumulation and localization of collagen types I and III and an increase of collagen type I degradation product in the tunica media. Vascular smooth muscle cells appear to be morphologically and semi-quantitatively normal, only their basal lamina is often thickened. In conclusion, angiopathy in HGA results in severe disruption of arterial walls, characterized by prominent AGel deposition, collagen derangement and severe elastolysis, and it may be responsible for several, particularly hemorrhagic, disease manifestations in HGA.
Collapse
Affiliation(s)
- Susanna Koskelainen
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiia Pihlamaa
- Department of Plastic Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Sinikka Suominen
- Department of Plastic Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Fang Zhao
- Advanced Microscopy Unit, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula Salo
- Research Group of Cancer and Translational Medicine, Medical Faculty, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Juha Risteli
- Research Group of Cancer and Translational Medicine, Medical Faculty, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Marc Baumann
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Kalimo
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Forensic Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sari Kiuru-Enari
- Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Wang X, Astrof S. Neural crest cell-autonomous roles of fibronectin in cardiovascular development. Development 2015; 143:88-100. [PMID: 26552887 DOI: 10.1242/dev.125286] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/03/2015] [Indexed: 12/13/2022]
Abstract
The chemical and mechanical properties of extracellular matrices (ECMs) modulate diverse aspects of cellular fates; however, how regional heterogeneity in ECM composition regulates developmental programs is not well understood. We discovered that fibronectin 1 (Fn1) is expressed in strikingly non-uniform patterns during mouse development, suggesting that regionalized synthesis of the ECM plays cell-specific regulatory roles during embryogenesis. To test this hypothesis, we ablated Fn1 in the neural crest (NC), a population of multi-potent progenitors expressing high levels of Fn1. We found that Fn1 synthesized by the NC mediated morphogenesis of the aortic arch artery and differentiation of NC cells into vascular smooth muscle cells (VSMCs) by regulating Notch signaling. We show that NC Fn1 signals in an NC cell-autonomous manner through integrin α5β1 expressed by the NC, leading to activation of Notch and differentiation of VSMCs. Our data demonstrate an essential role of the localized synthesis of Fn1 in cardiovascular development and spatial regulation of Notch signaling.
Collapse
Affiliation(s)
- Xia Wang
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Sophie Astrof
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
40
|
Lee S, Choi E, Cha MJ, Hwang KC. Looking into a conceptual framework of ROS-miRNA-atrial fibrillation. Int J Mol Sci 2014; 15:21754-76. [PMID: 25431922 PMCID: PMC4284676 DOI: 10.3390/ijms151221754] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) has been recognized as a major cause of cardiovascular-related morbidity and mortality. MicroRNAs (miRNAs) represent recent additions to the collection of biomolecules involved in arrhythmogenesis. Reactive oxygen species (ROS) have been independently linked to both AF and miRNA regulation. However, no attempts have been made to investigate the possibility of a framework composed of ROS–miRNA–AF that is related to arrhythmia development. Therefore, this review was designed as an attempt to offer a new approach to understanding AF pathogenesis. The aim of this review was to find and to summarize possible connections that exist among AF, miRNAs and ROS to understand the interactions among the molecular entities underlying arrhythmia development in the hopes of finding unappreciated mechanisms of AF. These findings may lead us to innovative therapies for AF, which can be a life-threatening heart condition. A systemic literature review indicated that miRNAs associated with AF might be regulated by ROS, suggesting the possibility that miRNAs translate cellular stressors, such as ROS, into AF pathogenesis. Further studies with a more appropriate experimental design to either prove or disprove the existence of an ROS–miRNA–AF framework are strongly encouraged.
Collapse
Affiliation(s)
- Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| | - Eunhyun Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| | - Min-Ji Cha
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| |
Collapse
|
41
|
Comelli L, Rocchiccioli S, Smirni S, Salvetti A, Signore G, Citti L, Trivella MG, Cecchettini A. Characterization of secreted vesicles from vascular smooth muscle cells. MOLECULAR BIOSYSTEMS 2014; 10:1146-52. [DOI: 10.1039/c3mb70544g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Gomez D, Kessler K, Borges LF, Richard B, Touat Z, Ollivier V, Mansilla S, Bouton MC, Alkoder S, Nataf P, Jandrot-Perrus M, Jondeau G, Vranckx R, Michel JB. Smad2-dependent protease nexin-1 overexpression differentiates chronic aneurysms from acute dissections of human ascending aorta. Arterioscler Thromb Vasc Biol 2013; 33:2222-32. [PMID: 23814118 DOI: 10.1161/atvbaha.113.301327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Tissue activation of proteolysis is involved in acute intramural rupture (dissections, acute ascending aortic dissection) and in progressive dilation (aneurysms, thoracic aneurysm of the ascending aorta) of human ascending aorta. The translational aim of this study was to characterize the regulation of antiproteolytic serpin expression in normal, aneurysmal, and dissecting aorta. APPROACH AND RESULTS We explored expression of protease nexin-1 (PN-1) and plasminogen activator inhibitor-1 and their regulation by the Smad2 signaling pathway in human tissue and cultured vascular smooth muscle cells (VSMCs) of aneurysms (thoracic aneurysm of the ascending aorta; n=46) and acute dissections (acute ascending aortic dissection; n=10) of the ascending aorta compared with healthy aortas (n=10). Both PN-1 and plasminogen activator inhibitor-1 mRNA and proteins were overexpressed in medial tissue extracts and primary VSMC cultures from thoracic aneurysm of the ascending aorta compared with acute ascending aortic dissection and controls. Transforming growth factor-β induced increased PN-1 expression in control but not in aneurysmal VSMCs. PN-1 and plasminogen activator inhibitor-1 overexpression by aneurysmal VSMCs was associated with increased Smad2 binding on their promoters and, functionally, resulted in VSMC self-protection from plasmin-induced detachment and death. This phenomenon was restricted to aneurysms and not observed in acute dissections. CONCLUSIONS These results demonstrate that epigenetically regulated PN-1 overexpression promotes development of an antiproteolytic VSMC phenotype and might favor progressive aneurysmal dilation, whereas absence of this counter-regulation in dissections would lead to acute wall rupture.
Collapse
Affiliation(s)
- Delphine Gomez
- Inserm, UMR 698, Paris 7-Denis Diderot University, CHU X. Bichat, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|