1
|
Rakhe N, Bhatt LK. Valosin-containing protein: A potential therapeutic target for cardiovascular diseases. Ageing Res Rev 2024; 101:102511. [PMID: 39313037 DOI: 10.1016/j.arr.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Valosin-containing protein (VCP), also known as p97, plays a crucial role in various cellular processes, including protein degradation, endoplasmic reticulum-associated degradation, and cell cycle regulation. While extensive research has been focused on VCP's involvement in protein homeostasis and its implications in neurodegenerative diseases, emerging evidence suggests a potential link between VCP and cardiovascular health. VCP is a key regulator of mitochondrial function, and its overexpression or mutations lead to pathogenic diseases and cellular stress responses. The present review explores VCP's roles in numerous cardiovascular disorders including myocardial ischemia/reperfusion injury, cardiac hypertrophy, and heart failure. The review dwells on the roles of VCP in modifying mitochondrial activity, promoting S-nitrosylation, regulating mTOR signalling and demonstrating cardioprotective effects. Further research into VCP might lead to novel interventions for cardiovascular disease, particularly those involving ischemia/reperfusion injury and hypertrophy.
Collapse
Affiliation(s)
- Nameerah Rakhe
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
2
|
Cheng W, Wei B, Liu W, Jin L, Guo S, Ding M, Liu Y, Fan H, Li R, Zhang X, He X, Li X, Duan C. p97 inhibits integrated stress response-induced neuronal apoptosis after subarachnoid hemorrhage in mice by enhancing proteasome function. Exp Neurol 2024; 377:114778. [PMID: 38609045 DOI: 10.1016/j.expneurol.2024.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Neuronal apoptosis is a common pathological change in early brain injury after subarachnoid hemorrhage (SAH), and it is closely associated with neurological deficits. According to previous research, p97 exhibits a remarkable anti-cardiomyocyte apoptosis effect. p97 is a critical molecule in the growth and development of the nervous system. However, it remains unknown whether p97 can exert an anti-neuronal apoptosis effect in SAH. In the present study, we examined the role of p97 in neuronal apoptosis induced after SAH and investigated the underlying mechanism. We established an in vivo SAH mice model and overexpressed the p97 protein through transfection of the mouse cerebral cortex. We analyzed the protective effect of p97 on neurons and evaluated short-term and long-term neurobehavior in mice after SAH. p97 was found to be significantly downregulated in the cerebral cortex of the affected side in mice after SAH. The site showing reduced p97 expression also exhibited a high level of neuronal apoptosis. Adeno-associated virus-mediated overexpression of p97 significantly reduced the extent of neuronal apoptosis, improved early and long-term neurological function, and repaired the neuronal damage in the long term. These neuroprotective effects were accompanied by enhanced proteasome function and inhibition of the integrated stress response (ISR) apoptotic pathway involving eIF2α/CHOP. The administration of the p97 inhibitor NMS-873 induced a contradictory effect. Subsequently, we observed that inhibiting the function of the proteasome with the proteasome inhibitor PS-341 blocked the anti-neuronal apoptosis effect of p97 and enhanced the activation of the ISR apoptotic pathway. However, the detrimental effects of NMS-873 and PS-341 in mice with SAH were mitigated by the administration of the ISR inhibitor ISRIB. These results suggest that p97 can promote neuronal survival and improve neurological function in mice after SAH. The anti-neuronal apoptosis effect of p97 is achieved by enhancing proteasome function and inhibiting the overactivation of the ISR apoptotic pathway.
Collapse
Affiliation(s)
- Wenping Cheng
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Boyang Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shenquan Guo
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mingxiang Ding
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Fan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuying He
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Sun X, Tang X, Qiu H. Cardiac-Specific Suppression of Valosin-Containing Protein Induces Progressive Heart Failure and Premature Mortality Correlating with Temporal Dysregulations in mTOR Complex 2 and Protein Phosphatase 1. Int J Mol Sci 2024; 25:6445. [PMID: 38928151 PMCID: PMC11203954 DOI: 10.3390/ijms25126445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Valosin-containing protein (VCP), an ATPase-associated protein, is emerging as a crucial regulator in cardiac pathologies. However, the pivotal role of VCP in the heart under physiological conditions remains undetermined. In this study, we tested a hypothesis that sufficient VCP expression is required for cardiac development and physiological cardiac function. Thus, we generated a cardiac-specific VCP knockout (KO) mouse model and assessed the consequences of VCP suppression on the heart through physiological and molecular studies at baseline. Our results reveal that homozygous KO mice are embryonically lethal, whereas heterozygous KO mice with a reduction in VCP by ~40% in the heart are viable at birth but progressively develop heart failure and succumb to mortality at the age of 10 to 12 months. The suppression of VCP induced a selective activation of the mammalian target of rapamycin complex 1 (mTORC1) but not mTORC2 at the early age of 12 weeks. The prolonged suppression of VCP increased the expression (by ~2 folds) and nuclear translocation (by >4 folds) of protein phosphatase 1 (PP1), a key mediator of protein dephosphorylation, accompanied by a remarked reduction (~80%) in AKTSer473 phosphorylation in VCP KO mouse hearts at a later age but not the early stage. These temporal molecular alterations were highly associated with the progressive decline in cardiac function. Overall, our findings shed light on the essential role of VCP in the heart under physiological conditions, providing new insights into molecular mechanisms in the development of heart failure.
Collapse
Affiliation(s)
- Xiaonan Sun
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (X.T.)
| | - Xicong Tang
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (X.T.)
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (X.T.)
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
- Clinical Translational Sciences (CTS) and Bio5 Institution, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Shi X, O'Connor M, Qiu H. Valosin-containing protein acts as a target and mediator of S-nitrosylation in the heart through distinct mechanisms. Redox Biol 2024; 72:103166. [PMID: 38685170 PMCID: PMC11061752 DOI: 10.1016/j.redox.2024.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024] Open
Abstract
S-nitrosylation (SNO) is an emerging paradigm of redox signaling protecting cells against oxidative stress in the heart. Our previous studies demonstrated that valosin-containing protein (VCP), an ATPase-associated protein, is a vital mediator protecting the heart against cardiac stress and ischemic injury. However, the molecular regulations conferred by VCP in the heart are not fully understood. In this study, we explored the potential role of VCP in cardiac protein SNO using multiple cardiac-specific genetically modified mouse models and various analytical techniques including biotin switch assay, liquid chromatography, mass spectrometry, and western blotting. Our results showed that cardiac-specific overexpression of VCP led to an overall increase in the levels of SNO-modified cardiac proteins in the transgenic (TG) vs. wild-type (WT) mice. Mass spectrometry analysis identified mitochondrial proteins involved in respiration, metabolism, and detoxification as primary targets of SNO modification in VCP-overexpressing mouse hearts. Particularly, we found that VCP itself underwent SNO modification at a specific cysteine residue in its N-domain. Additionally, our study demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis, also experienced increased SNO in response to VCP overexpression. While deletion of inducible nitric oxide synthase (iNOS) in VCP TG mice did not affect VCP SNO, it did abolish SNO modification in mitochondrial complex proteins, suggesting a dual mechanism of regulation involving both iNOS-dependent and independent pathways. Overall, our findings shed light on post-translational modification of VCP in the heart, unveiling a previously unrecognized role for VCP in regulating cardiac protein SNO and offering new insights into its function in cardiac protection.
Collapse
Affiliation(s)
- Xiaomeng Shi
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA
| | - Molly O'Connor
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, 85004, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA; Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, 85004, USA.
| |
Collapse
|
5
|
Wojtasińska A, Kućmierz J, Tokarek J, Dybiec J, Rodzeń A, Młynarska E, Rysz J, Franczyk B. New Insights into Cardiovascular Diseases Treatment Based on Molecular Targets. Int J Mol Sci 2023; 24:16735. [PMID: 38069058 PMCID: PMC10706703 DOI: 10.3390/ijms242316735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Cardiovascular diseases (CVDs) which consist of ischemic heart disease, stroke, heart failure, peripheral arterial disease, and several other cardiac and vascular conditions are one of the most common causes of death worldwide and often co-occur with diabetes mellitus and lipid disorders which worsens the prognosis and becomes a therapeutic challenge. Due to the increasing number of patients with CVDs, we need to search for new risk factors and pathophysiological changes to create new strategies for preventing, diagnosing, and treating not only CVDs but also comorbidities like diabetes mellitus and lipid disorders. As increasing amount of patients suffering from CVDs, there are many therapies which focus on new molecular targets like proprotein convertase subtilisin/kexin type 9 (PCSK9), angiopoietin-like protein 3, ATP-citrate lyase, or new technologies such as siRNA in treatment of dyslipidemia or sodium-glucose co-transporter-2 and glucagon-like peptide-1 in treatment of diabetes mellitus. Both SGLT-2 inhibitors and GLP-1 receptor agonists are used in the treatment of diabetes, however, they proved to have a beneficial effect in CVDs as well. Moreover, a significant amount of evidence has shown that exosomes seem to be associated with myocardial ischaemia and that exosome levels correlate with the severity of myocardial injury. In our work, we would like to focus on the above mechanisms. The knowledge of them allows for the appearance of new strategies of treatment among patients with CVDs.
Collapse
Affiliation(s)
- Armanda Wojtasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Kućmierz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Julita Tokarek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jill Dybiec
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Anna Rodzeń
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
6
|
Sumneang N, Tanajak P, Oo TT. Toll-like Receptor 4 Inflammatory Perspective on Doxorubicin-Induced Cardiotoxicity. Molecules 2023; 28:molecules28114294. [PMID: 37298770 DOI: 10.3390/molecules28114294] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Doxorubicin (Dox) is one of the most frequently used chemotherapeutic drugs in a variety of cancers, but Dox-induced cardiotoxicity diminishes its therapeutic efficacy. The underlying mechanisms of Dox-induced cardiotoxicity are still not fully understood. More significantly, there are no established therapeutic guidelines for Dox-induced cardiotoxicity. To date, Dox-induced cardiac inflammation is widely considered as one of the underlying mechanisms involved in Dox-induced cardiotoxicity. The Toll-like receptor 4 (TLR4) signaling pathway plays a key role in Dox-induced cardiac inflammation, and growing evidence reports that TLR4-induced cardiac inflammation is strongly linked to Dox-induced cardiotoxicity. In this review, we outline and address all the available evidence demonstrating the involvement of the TLR4 signaling pathway in different models of Dox-induced cardiotoxicity. This review also discusses the effect of the TLR4 signaling pathway on Dox-induced cardiotoxicity. Understanding the role of the TLR4 signaling pathway in Dox-induced cardiac inflammation might be beneficial for developing a potential therapeutic strategy for Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Natticha Sumneang
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Pongpan Tanajak
- Department of Physical Therapy, Rehabilitation Center, Apinop Wetchakam Hospital, Kaeng-Khoi District, Saraburi 18110, Thailand
| | - Thura Tun Oo
- Department of Biomedical Sciences, University of Illinois at Chicago, College of Medicine Rockford, Rockford, IL 61107, USA
| |
Collapse
|
7
|
Sun X, Siri S, Hurst A, Qiu H. Heat Shock Protein 22 in Physiological and Pathological Hearts: Small Molecule, Large Potentials. Cells 2021; 11:cells11010114. [PMID: 35011676 PMCID: PMC8750610 DOI: 10.3390/cells11010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022] Open
Abstract
Small heat shock protein 22 (HSP22) belongs to the superfamily of heat shock proteins and is predominantly expressed in the heart, brain, skeletal muscle, and different types of cancers. It has been found that HSP22 is involved in variant cellular functions in cardiomyocytes and plays a vital role in cardiac protection against cardiomyocyte injury under diverse stress. This review summarizes the multiple functions of HSP22 in the heart and the underlying molecular mechanisms through modulating gene transcription, post-translational modification, subcellular translocation of its interacting proteins, and protein degradation, facilitating mitochondrial function, cardiac metabolism, autophagy, and ROS production and antiapoptotic effect. We also discuss the association of HSP22 in cardiac pathologies, including human dilated cardiomyopathy, pressure overload-induced heart failure, ischemic heart diseases, and aging-related cardiac metabolism disorder. The collected information would provide insights into the understanding of the HSP22 in heart diseases and lead to discovering the therapeutic targets.
Collapse
|
8
|
Yu Y, Hu LL, Liu L, Yu LL, Li JP, Rao JA, Zhu LJ, Bao HH, Cheng XS. Hsp22 ameliorates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidative stress, and apoptosis. Bioengineered 2021; 12:12544-12554. [PMID: 34839787 PMCID: PMC8810130 DOI: 10.1080/21655979.2021.2010315] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 01/02/2023] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is ubiquitous in septic shock patients and is associated with high morbidity and mortality rates. Heat shock protein 22 (Hsp22), which belongs to the small HSP family of proteins, is involved in several biological functions. However, the function of Hsp22 in lipopolysaccharide (LPS)-induced myocardial injury is not yet established. This study was aimed at investigating the underlying mechanistic aspects of Hsp22 in myocardial injury induced by LPS. In this study, following the random assignment of male C57BL/6 mice into control, LPS-treated, and LPS + Hsp22 treated groups, relevant echocardiograms and staining were performed to scrutinize the cardiac pathology. Plausible mechanisms were proposed based on the findings of the enzyme-linked immunosorbent assay and Western blotting assay. A protective role of Hsp22 against LPS-induced myocardial injury emerged, as evidenced from decreased levels of creatinine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and enhanced cardiac function. The post-LPS administration-caused spike in inflammatory cytokines (IL-1β, IL-6, TNF-α and NLRP3) was attenuated by the Hsp22 pre-treatment. In addition, superoxide dismutase (SOD) activity and B-cell lymphoma-2 (Bcl2) levels were augmented by Hsp22 treatment resulting in lowering of LPS-induced oxidative stress and cardiomyocyte apoptosis. In summary, the suppression of LPS-induced myocardial injury by Hsp22 overexpression via targeting of inflammation, oxidative stress, and apoptosis in cardiomyocytes paves the way for this protein to be employed in the therapy of SIMD.
Collapse
Affiliation(s)
- Yun Yu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Long-Long Hu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Liu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling-Ling Yu
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun-Pei Li
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing-an Rao
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling-Juan Zhu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui-Hui Bao
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Shu Cheng
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Sun X, Zhou N, Ma B, Wu W, Stoll S, Lai L, Qin G, Qiu H. Functional Inhibition of Valosin-Containing Protein Induces Cardiac Dilation and Dysfunction in a New Dominant-Negative Transgenic Mouse Model. Cells 2021; 10:2891. [PMID: 34831118 PMCID: PMC8616236 DOI: 10.3390/cells10112891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Valosin-containing protein (VCP) was found to play a vital protective role against cardiac stresses. Genetic mutations of VCP are associated with human dilated cardiomyopathy. However, the essential role of VCP in the heart during the physiological condition remains unknown since the VCP knockout in mice is embryonically lethal. We generated a cardiac-specific dominant-negative VCP transgenic (DN-VCP TG) mouse to determine the effects of impaired VCP activity on the heart. Using echocardiography, we showed that cardiac-specific overexpression of DN-VCP induced a remarkable cardiac dilation and progressively declined cardiac function during the aging transition. Mechanistically, DN-VCP did not affect the endogenous VCP (EN-VCP) expression but significantly reduced cardiac ATPase activity in the DN-VCP TG mouse hearts, indicating a functional inhibition. DN-VCP significantly impaired the aging-related cytoplasmic/nuclear shuffling of EN-VCP and its co-factors in the heart tissues and interrupted the balance of the VCP-cofactors interaction between the activating co-factors, ubiquitin fusion degradation protein 1 (UFD-1)/nuclear protein localization protein 4 (NPL-4) complex, and its inhibiting co-factor P47, leading to the binding preference with the inhibitory co-factor, resulting in functional repression of VCP. This DN-VCP TG mouse provides a unique functional-inactivation model for investigating VCP in the heart in physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaonan Sun
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (B.M.); (W.W.); (L.L.)
| | - Ning Zhou
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92318, USA; (N.Z.); (S.S.)
| | - Ben Ma
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (B.M.); (W.W.); (L.L.)
| | - Wenqian Wu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (B.M.); (W.W.); (L.L.)
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92318, USA; (N.Z.); (S.S.)
| | - Lo Lai
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (B.M.); (W.W.); (L.L.)
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (B.M.); (W.W.); (L.L.)
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92318, USA; (N.Z.); (S.S.)
| |
Collapse
|
10
|
Pedret A, Catalán Ú, Rubió L, Baiges I, Herrero P, Piñol C, Rodríguez-Calvo R, Canela N, Fernández-Castillejo S, Motilva MJ, Solà R. Phosphoproteomic Analysis and Protein-Protein Interaction of Rat Aorta GJA1 and Rat Heart FKBP1A after Secoiridoid Consumption from Virgin Olive Oil: A Functional Proteomic Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1536-1554. [PMID: 33502189 DOI: 10.1021/acs.jafc.0c07164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein functional interactions could explain the biological response of secoiridoids (SECs), main phenolic compounds in virgin olive oil (VOO). The aim was to assess protein-protein interactions (PPIs) of the aorta gap junction alpha-1 (GJA1) and the heart peptidyl-prolyl cis-trans isomerase (FKBP1A), plus the phosphorylated heart proteome, to describe new molecular pathways in the cardiovascular system in rats using nanoliquid chromatography coupled with mass spectrometry. PPIs modified by SECs and associated with GJA1 in aorta rat tissue were calpain, TUBA1A, and HSPB1. Those associated with FKBP1A in rat heart tissue included SUCLG1, HSPE1, and TNNI3. In the heart, SECs modulated the phosphoproteome through the main canonical pathways PI3K/mTOR signaling (AKT1S1 and GAB2) and gap junction signaling (GAB2 and GJA1). PPIs associated with GJA1 and with FKBP1A, the phosphorylation of GAB2, and the dephosphorylation of GJA1 and AKT1S1 in rat tissues are promising protein targets promoting cardiovascular protection to explain the health benefits of VOO.
Collapse
Affiliation(s)
- Anna Pedret
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
| | - Úrsula Catalán
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus 43204, Spain
| | - Laura Rubió
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Food Technology Department, Universitat de Lleida-AGROTECNIO Center, Lleida 25198, Spain
| | - Isabel Baiges
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Reus 43204, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Reus 43204, Spain
| | - Carme Piñol
- Department of Medicine, Universitat de Lleida, Lleida 25008, Catalonia, Spain
- Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré-IRBLLeida, Lleida 25198, Spain
| | - Ricardo Rodríguez-Calvo
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus 43204, Spain
- Research Unit on Lipids and Atherosclerosis, Vascular Medicine and Metabolism Unit, Universitat Rovira i Virgili, Reus 43204, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, Madrid 28029, Spain
- Hospital Universitari Sant Joan de Reus (HUSJR), Reus 43204, Spain
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Reus 43204, Spain
| | - Sara Fernández-Castillejo
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
| | - Maria-Jose Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV CSIC, Gobierno de La Rioja, Universidad de La Rioja, Logroño 26006, Spain
| | - Rosa Solà
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
- Hospital Universitari Sant Joan de Reus (HUSJR), Reus 43204, Spain
| |
Collapse
|
11
|
Emerging role of VCP/p97 in cardiovascular diseases: novel insights and therapeutic opportunities. Biochem Soc Trans 2021; 49:485-494. [PMID: 33439255 PMCID: PMC7925001 DOI: 10.1042/bst20200981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022]
Abstract
Valosin-containing protein (VCP/p97) is a member of the conserved type II AAA+ (ATPases associated with diverse cellular activities) family of proteins with multiple biological functions, especially in protein homeostasis. Mutations in VCP/p97 are reportedly related to unique autosomal dominant diseases, which may worsen cardiac function. Although the structure of VCP/p97 has been clearly characterized, with reports of high abundance in the heart, research focusing on the molecular mechanisms underpinning the roles of VCP/p97 in the cardiovascular system has been recently undertaken over the past decades. Recent studies have shown that VCP/p97 deficiency affects myocardial fibers and induces heart failure, while overexpression of VCP/p97 eliminates ischemia/reperfusion injury and relieves pathological cardiac hypertrophy caused by cardiac pressure overload, which is related to changes in the mitochondria and calcium overload. However, certain studies have drawn opposing conclusions, including the mitigation of ischemia/reperfusion injury via inhibition of VCP/p97 ATPase activity. Nevertheless, these emerging studies shed light on the role of VCP/p97 and its therapeutic potential in cardiovascular diseases. In other words, VCP/p97 may be involved in the development of cardiovascular disease, and is anticipated to be a new therapeutic target. This review summarizes current findings regarding VCP/p97 in the cardiovascular system for the first time, and discusses the role of VCP/p97 in cardiovascular disease.
Collapse
|
12
|
Zhou N, Chen X, Xi J, Ma B, Leimena C, Stoll S, Qin G, Wang C, Qiu H. Novel genomic targets of valosin-containing protein in protecting pathological cardiac hypertrophy. Sci Rep 2020; 10:18098. [PMID: 33093614 PMCID: PMC7582185 DOI: 10.1038/s41598-020-75128-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
Pressure overload-induced cardiac hypertrophy, such as that caused by hypertension, is a key risk factor for heart failure. However, the underlying molecular mechanisms remain largely unknown. We previously reported that the valosin-containing protein (VCP), an ATPase-associated protein newly identified in the heart, acts as a significant mediator of cardiac protection against pressure overload-induced pathological cardiac hypertrophy. Still, the underlying molecular basis for the protection is unclear. This study used a cardiac-specific VCP transgenic mouse model to understand the transcriptomic alterations induced by VCP under the cardiac stress caused by pressure overload. Using RNA sequencing and comprehensive bioinformatic analysis, we found that overexpression of the VCP in the heart was able to normalize the pressure overload-stimulated hypertrophic signals by activating G protein-coupled receptors, particularly, the olfactory receptor family, and inhibiting the transcription factor controlling cell proliferation and differentiation. Moreover, VCP overexpression restored pro-survival signaling through regulating alternative splicing alterations of mitochondrial genes. Together, our study revealed a novel molecular regulation mediated by VCP under pressure overload that may bring new insight into the mechanisms involved in protecting against hypertensive heart failure.
Collapse
Affiliation(s)
- Ning Zhou
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xin Chen
- Center for Genomics and Department of Basic Sciences, School of Medicine, Loma Linda University, 11021 Campus Street, AH 120/104, Loma Linda, CA, 92350, USA
| | - Jing Xi
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Ben Ma
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Petit Research Center, Room 588, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Christiana Leimena
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | - Charles Wang
- Center for Genomics and Department of Basic Sciences, School of Medicine, Loma Linda University, 11021 Campus Street, AH 120/104, Loma Linda, CA, 92350, USA.
| | - Hongyu Qiu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA. .,Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Petit Research Center, Room 588, 100 Piedmont Ave, Atlanta, GA, 30303, USA.
| |
Collapse
|
13
|
The Physiological and Pathological Roles of Mitochondrial Calcium Uptake in Heart. Int J Mol Sci 2020; 21:ijms21207689. [PMID: 33080805 PMCID: PMC7589179 DOI: 10.3390/ijms21207689] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Calcium ion (Ca2+) plays a critical role in the cardiac mitochondria function. Ca2+ entering the mitochondria is necessary for ATP production and the contractile activity of cardiomyocytes. However, excessive Ca2+ in the mitochondria results in mitochondrial dysfunction and cell death. Mitochondria maintain Ca2+ homeostasis in normal cardiomyocytes through a comprehensive regulatory mechanism by controlling the uptake and release of Ca2+ in response to the cellular demand. Understanding the mechanism of modulating mitochondrial Ca2+ homeostasis in the cardiomyocyte could bring new insights into the pathogenesis of cardiac disease and help developing the strategy to prevent the heart from damage at an early stage. In this review, we summarized the latest findings in the studies on the cardiac mitochondrial Ca2+ homeostasis, focusing on the regulation of mitochondrial calcium uptake, which acts as a double-edged sword in the cardiac function. Specifically, we discussed the dual roles of mitochondrial Ca2+ in mitochondrial activity and the impact on cardiac function, the molecular basis and regulatory mechanisms, and the potential future research interest.
Collapse
|
14
|
Hou Y, Hu Z, Gong X, Yang B. HSPB8 overexpression prevents disruption of blood-brain barrier after intracerebral hemorrhage in rats through Akt/GSK3β/β-catenin signaling pathway. Aging (Albany NY) 2020; 12:17568-17581. [PMID: 32889520 PMCID: PMC7521513 DOI: 10.18632/aging.103773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Blood brain barrier (BBB) disruption is a crucial factor contributing to secondary brain injury after intracerebral hemorrhage (ICH). Heat shock protein B8 (HSPB8) has been recently reported to confer neuroprotection against against ischaemic stroke through maintaining BBB integrity. However, the role of HSPB8 in ICH is still elusive. In this study, we found that HSPB8 was upregulated by ICH and extensively expressed in neurovascular structure including endothelial cells and astrocytes. lentivirus intracerebroventricular (i.c.v) injection achieved a widespread and persistent HSPB8 overexpression in brain tissues. HSPB8 overexpression significantly ameliorated neurobehavioral deficits and brain edema at 24 and 72h following ICH. Moreover, HSPB8 overexpression remarkedly inhibited BBB disruption and significantly increase the level of p-Akt, p-GSKβ and intranuclear β-catenin 24h post-ICH. This effect was obviously reversed by Akt specific inhibitor, MK2206. Based on these findings, HSPB8 exerted its protective effect on BBB, at least partly, via Akt/ p-GSKβ/β-catenin pathways.
Collapse
Affiliation(s)
- Ying Hou
- Department of Neurology, 2nd Xiangya Hospital, Central South University Changsha, Hunan Province, China
| | - Zhiping Hu
- Department of Neurology, 2nd Xiangya Hospital, Central South University Changsha, Hunan Province, China
| | - Xiyu Gong
- Department of Neurology, 2nd Xiangya Hospital, Central South University Changsha, Hunan Province, China
| | - Binbin Yang
- Department of Neurology, 2nd Xiangya Hospital, Central South University Changsha, Hunan Province, China
| |
Collapse
|
15
|
Zhou N, Chen X, Xi J, Ma B, Leimena C, Stoll S, Qin G, Wang C, Qiu H. Genomic characterization reveals novel mechanisms underlying the valosin-containing protein-mediated cardiac protection against heart failure. Redox Biol 2020; 36:101662. [PMID: 32795937 PMCID: PMC7426568 DOI: 10.1016/j.redox.2020.101662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic hypertension is a key risk factor for heart failure. However, the underlying molecular mechanisms are not fully understood. Our previous studies found that the valosin-containing protein (VCP), an ATPase-associated protein, was significantly decreased in the hypertensive heart tissues. In this study, we tested the hypothesis that restoration of VCP protected the heart against pressure overload-induced heart failure. With a cardiac-specific transgenic (TG) mouse model, we showed that a moderate increase of VCP was able to attenuate chronic pressure overload-induced maladaptive cardiac hypertrophy and dysfunction. RNA sequencing and a comprehensive bioinformatic analysis further demonstrated that overexpression of VCP in the heart normalized the pressure overload-stimulated hypertrophic signals and repressed the stress-induced inflammatory response. In addition, VCP overexpression promoted cell survival by enhancing the mitochondria resistance to the oxidative stress via activating the Rictor-mediated-gene networks. VCP was also found to be involved in the regulation of the alternative splicing and differential isoform expression for some genes that are related to ATP production and protein synthesis by interacting with long no-coding RNAs and histone deacetylases, indicating a novel epigenetic regulation of VCP in integrating coding and noncoding genomic network in the stressed heart. In summary, our study demonstrated that the rescuing of a deficient VCP in the heart could prevent pressure overload-induced heart failure by rectifying cardiac hypertrophic and inflammatory signaling and enhancing the cardiac resistance to oxidative stress, which brought in novel insights into the understanding of the mechanism of VCP in protecting patients from hypertensive heart failure. Deficiency of VCP contributes to the pathogenesis of hypertensive heart failure. Rescue of VCP prevents stress-induced cardiac remodeling and cell death. VCP attenuates stress-induced inflammatory and hypertrophic signaling. VCP promotes cardiac resistance to oxidative stress. VCP mediates a novel epigenetic integrating regulation in the stressed heart.
Collapse
Affiliation(s)
- Ning Zhou
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xin Chen
- Center for Genomics & Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jing Xi
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Ben Ma
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA; Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA
| | - Christiana Leimena
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Charles Wang
- Center for Genomics & Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.
| | - Hongyu Qiu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA; Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
16
|
Valosin-Containing Protein, a Calcium-Associated ATPase Protein, in Endoplasmic Reticulum and Mitochondrial Function and Its Implications for Diseases. Int J Mol Sci 2020; 21:ijms21113842. [PMID: 32481679 PMCID: PMC7312078 DOI: 10.3390/ijms21113842] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Endoplasmic reticulum (ER) and mitochondrion are the key organelles in mammal cells and play crucial roles in a variety of biological functions in both physiological and pathological conditions. Valosin-containing protein (VCP), a newly identified calcium-associated ATPase protein, has been found to be involved in both ER and mitochondrial function. Impairment of VCP, caused by structural mutations or alterations of expressions, contributes to the development of various diseases, through an integrating effect on ER, mitochondria and the ubiquitin–proteasome system, by interfering with protein degradation, subcellular translocation and calcium homeostasis. Thus, understanding the role and the molecular mechanisms of VCP in these organelles brings new insights to the pathogenesis of the associated diseases, and leads to the discovery of new therapeutic strategies. In this review, we summarized the progress of studies on VCP, in terms of its regulation of ER and mitochondrial function and its implications for the associated diseases, focusing on the cancers, heart disease, and neurodegenerative disorders.
Collapse
|
17
|
Wu W, Lai L, Xie M, Qiu H. Insights of heat shock protein 22 in the cardiac protection against ischemic oxidative stress. Redox Biol 2020; 34:101555. [PMID: 32388268 PMCID: PMC7215242 DOI: 10.1016/j.redox.2020.101555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022] Open
Abstract
the acute and chronic myocardial ischemia results in oxidative stress that impairs myocardial contractility and eventually leads to heart failure. However, the underlying regulatory molecular mechanisms are not fully understood. The heat shock protein 22 (Hsp22), a small-molecular-weight protein preferentially expressed in the heart, was found to be dramatically increased in the cardiac oxidative stress conditions in both human and animal models after the acute and chronic ischemia. Overexpression of Hsp22 largely protects the heart against ischemic damage. Mechanistically, overexpression of Hsp22 attenuates hypoxia-induced oxidative phosphorylation in mitochondrial and the high rate of superoxide production. Short term gene delivery of Hsp22 reduces the infarct size caused by the ischemia/reperfusion, providing a clinical therapeutic potential. This review discusses the new progress of the studies on Hsp22 by focusing on its protective effect against the excessive cardiac oxidative stress, including its adaptive induction in myocardium upon the oxidative stress, its protective role in myocardial ischemia/reperfusion, its regulation in mitochondrial oxidative phosphorylation and the underlying molecular signaling pathways promoting cell survival. This information will increase our understanding of the molecular regulation of cardiac adaption under the oxidative stress and the potential therapeutic relevance.
Collapse
Affiliation(s)
- Wenqian Wu
- Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA; Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lo Lai
- Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyu Qiu
- Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
18
|
Lan Y, Wang Y, Huang K, Zeng Q. Heat Shock Protein 22 Attenuates Doxorubicin-Induced Cardiotoxicity via Regulating Inflammation and Apoptosis. Front Pharmacol 2020; 11:257. [PMID: 32269523 PMCID: PMC7109316 DOI: 10.3389/fphar.2020.00257] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
Background The antitumor effect of doxorubicin (DOX) is limited by its acute and chronic toxicity to the heart, which causes heart injury. Heat shock protein 22 (Hsp22) is a protein proved to exert anti-apoptosis and anti-inflammatory effects in other diseases and physical conditions. In this study, we aim to explore whether Hsp22 could exert a protective role during cardiac injury in response to DOX. Methods The overexpression of Hsp22 was mediated via adenovirus vector to clarify the role of Hsp22 in the cardiac injury caused by DOX. DOX-induced acute heart injury mouse model was established by single intraperitoneal injection of DOX (15 mg/kg). Subsequently, cardiac staining and molecular biological analysis were performed to analyze the morphological and biochemical effects of Hsp22 on cardiac injury. H9c2 cells were used for validation in vitro. Results An increase in the expression level of Hsp22 was observed in DOX-treated heart tissue. Furthermore, cardiac-specific overexpression of Hsp22 showed reduced cardiac dysfunction, decrease in inflammatory response, and reduction in cell apoptosis in injury heart and cardiomyocytes induced by DOX in vivo and in vitro. Moreover, the suppression of Toll-like receptor (TLR)4/NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) was associated with the protective effect of Hsp22. Finally, the protective effect of Hsp22 cardiac function was almost abolished by overexpression of NLRP3 in DOX-treated mice. Conclusion In summary, Hsp22 overexpression in the heart could suppress cardiac injury in response to DOX treatment through blocking TLR4/NLRP3 activation. Hsp22 may become a new therapeutic method for treating cardiac injury induced by DOX in cancer patients.
Collapse
Affiliation(s)
- Yin Lan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Ultrasound, Wuhan Asia Heart Hospital, Wuhan, China
| | - Kun Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Stoll S, Xi J, Ma B, Leimena C, Behringer EJ, Qin G, Qiu H. The valosin-containing protein protects the heart against pathological Ca2+ overload by modulating Ca2+ uptake proteins. Toxicol Sci 2019; 171:473-484. [PMID: 31368507 PMCID: PMC6760276 DOI: 10.1093/toxsci/kfz164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 01/11/2023] Open
Abstract
Stress-induced mitochondrial calcium (Ca2+) overload is a key cellular toxic effectors and a trigger of cardiomyocyte death during cardiac ischemic injury through the opening of mitochondrial permeability transition pore (mPTP). We previously found that the valosin-containing protein (VCP), an ATPase-associated protein, protects cardiomyocytes against stress-induced death and also inhibits mPTP opening in vitro. However, the underlying molecular mechanisms are not fully understood. Here, we tested our hypothesis that VCP acts as a novel regulator of mitochondrial Ca2+ uptake proteins and resists cardiac mitochondrial Ca2+ overload by modulating mitochondrial Ca2+ homeostasis. By using a cardiac-specific transgenic (TG) mouse model in which VCP is overexpressed by 3.5 folds in the heart compared to the wild type (WT) mouse, we found that, under the pathological extra-mitochondrial Ca2+ overload, Ca2+ entry into cardiac mitochondria was reduced in VCP TG mice compared to their little-matched WT mice, subsequently preventing mPTP opening and ATP depletion under the Ca2+ challenge. Mechanistically, overexpression of VCP in the heart resulted in post-translational protein degradation of the mitochondrial Ca2+ uptake protein 1 (MICU1), an activator of the mitochondria Ca2+ uniporter (MCU) that is responsible for mitochondrial calcium uptake. Together, our results reveal a new regulatory role of VCP in cardiac mitochondrial Ca2+ homeostasis and unlock the potential mechanism by which VCP confers its cardioprotection.
Collapse
Affiliation(s)
- Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University; 11041 Campus Street, Loma Linda, CA, USA.,Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, USA
| | - Jing Xi
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University; 11041 Campus Street, Loma Linda, CA, USA
| | - Ben Ma
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University; 11041 Campus Street, Loma Linda, CA, USA.,Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA USA
| | - Christiana Leimena
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University; 11041 Campus Street, Loma Linda, CA, USA
| | - Erik J Behringer
- Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham. 1720 2nd Ave S, Volker Hall G094L, Birmingham, AL
| | - Hongyu Qiu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University; 11041 Campus Street, Loma Linda, CA, USA.,Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA USA
| |
Collapse
|
20
|
Ballar Kırmızıbayrak P, Erbaykent Tepedelen B. Endoplazmik retikulum-aracılı protein yıkım yolağında görev yapan p97/VCP ve Ufd1-Npl4 adlı proteinlerin NF-κB yolağına etkisinin prostat kanser hücre hattında incelenmesi. EGE TIP DERGISI 2019. [DOI: 10.19161/etd.418150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Yu L, Liang Q, Zhang W, Liao M, Wen M, Zhan B, Bao H, Cheng X. HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation. Redox Biol 2019; 21:101095. [PMID: 30640127 PMCID: PMC6327915 DOI: 10.1016/j.redox.2018.101095] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/20/2022] Open
Abstract
The induction of mitochondrial reactive oxygen species (mtROS) by hyperglycemia is a key event responsible for endothelial activation and injury. Heat shock protein 22 (HSP22) is a stress-inducible protein associated with cytoprotection and apoptosis inhibition. However, whether HSP22 prevents hyperglycemia-induced vascular endothelial injury remains unclear. Here, we investigated whether HSP22 protects the vascular endothelium from hyperglycemia-induced injury by reducing mtROS production. We used a high-fat diet and streptozotocin injection model to induce type 2 diabetes mellitus (T2DM, metabolic syndrome) and exposed human umbilical vein endothelial cells (HUVECs) to high glucose following overexpression or silencing of HSP22 to explore the role of HSP22. We found that HSP22 markedly inhibited endothelial cell activation and vascular lesions by inhibiting endothelial adhesion and decreasing cytokine secretion. We performed confocal microscopy and flow cytometry assays using HUVECs and showed that HSP22 attenuated mtROS and mitochondrial dysfunction in hyperglycemia-stimulated endothelial cells. Mechanistically, using the mtROS inhibitor MitoTEMPO, we demonstrated that HSP22 suppressed endothelial activation and injury by eliminating hyperglycemia-mediated increases in mtROS. Furthermore, we found that HSP22 maintained the balance of mitochondrial fusion and fission by mitigating mtROS in vitro. HSP22 attenuated the development of vascular lesions by suppressing mtROS-mediated endothelial activation in a T2DM mouse model. This study provides evidence that HSP22 may be a promising therapeutic target for vascular complications in T2DM. HSP22 reduces endothelial inflammation under diabetic conditions. HSP22 restrains hyperglycemia-induced oxidative stress in the vascular endothelium. HSP22 reduces hyperglycemia-induced mtROS and endothelial mitochondrial dysfunction. HSP22 maintains the balance of mitochondrial fusion and fission by mitigating mtROS.
Collapse
Affiliation(s)
- Lingling Yu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China
| | - Qian Liang
- Key Laboratory of Molecular Biology in Jiangxi Province, The Second Affiliated Hospital of Nanchang University, PR China
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, PR China
| | - Minqi Liao
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China
| | - Minghua Wen
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China
| | - Biming Zhan
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China
| | - Huihui Bao
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China.
| | - Xiaoshu Cheng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China.
| |
Collapse
|
22
|
Exploring the multifaceted roles of heat shock protein B8 (HSPB8) in diseases. Eur J Cell Biol 2018; 97:216-229. [PMID: 29555102 DOI: 10.1016/j.ejcb.2018.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023] Open
Abstract
HSPB8 is a member of ubiquitous small heat shock protein (sHSP) family, whose expression is induced in response to a wide variety of unfavorable physiological and environmental conditions. Investigation of HSPB8 structure indicated that HSPB8 belongs to the group of so-called intrinsically disordered proteins and possesses a highly flexible structure. Unlike most other sHSPs, HSPB8 tends to form small-molecular-mass oligomers and exhibits substrate-dependent chaperone activity. In cooperation with BAG3, the chaperone activity of HSPB8 was reported to be involved in the delivery of misfolded proteins to the autophagy machinery. Through this way, HSPB8 interferes with pathological processes leading to neurodegenerative diseases. Accordingly, published studies have identified genetic links between mutations of HSPB8 and some kind of neuromuscular diseases, further supporting its important role in neurodegenerative disorders. In addition to their anti-aggregation properties, HSPB8 is indicated to interact with a wide range of client proteins, modulating their maturations and activities, and therefore, regulates a large repertoire of cellular functions, including apoptosis, proliferation, inflammation and etc. As a result, HSPB8 has key roles in cancer biology, autoimmune diseases, cardiac diseases and cerebral vascular diseases.
Collapse
|
23
|
Zhou N, Stoll S, Qiu H. VCP represses pathological cardiac hypertrophy. Aging (Albany NY) 2017; 9:2469-2470. [PMID: 29283888 PMCID: PMC5764385 DOI: 10.18632/aging.101357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/23/2017] [Indexed: 05/03/2023]
Affiliation(s)
- Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hongyu Qiu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
24
|
Zhou N, Ma B, Stoll S, Hays TT, Qiu H. The valosin-containing protein is a novel repressor of cardiomyocyte hypertrophy induced by pressure overload. Aging Cell 2017; 16:1168-1179. [PMID: 28799247 PMCID: PMC5595673 DOI: 10.1111/acel.12653] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2017] [Indexed: 12/22/2022] Open
Abstract
Hypertension‐induced left ventricular hypertrophy (LVH) is an independent risk factor for heart failure. Regression of LVH has emerged as a major goal in the treatment of hypertensive patients. Here, we tested our hypothesis that the valosin‐containing protein (VCP), an ATPase associate protein, is a novel repressor of cardiomyocyte hypertrophy under the pressure overload stress. Left ventricular hypertrophy (LVH) was determined by echocardiography in 4‐month male spontaneously hypertensive rats (SHRs) vs. age‐matched normotensive Wistar Kyoto (WKY) rats. VCP expression was found to be significantly downregulated in the left ventricle (LV) tissues from SHRs vs. WKY rats. Pressure overload was induced by transverse aortic constriction (TAC) in wild‐type (WT) mice. At the end of 2 weeks, mice with TAC developed significant LVH whereas the cardiac function remained unchanged. A significant reduction of VCP at both the mRNA and protein levels in hypertrophic LV tissue was found in TAC WT mice compared to sham controls. Valosin‐containing protein VCP expression was also observed to be time‐ and dose‐dependently reduced in vitro in isolated neonatal rat cardiomyocytes upon the treatment of angiotensin II. Conversely, transgenic (TG) mice with cardiac‐specific overexpression of VCP showed a significant repression in TAC‐induced LVH vs. litter‐matched WT controls upon 2‐week TAC. TAC‐induced activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling observed in WT mice LVs was also significantly blunted in VCP TG mice. In conclusion, VCP acts as a novel repressor that is able to prevent cardiomyocyte hypertrophy from pressure overload by modulating the mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Ning Zhou
- Division of Cardiology; Department of Internal Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Division of Physiology; Department of Basic Sciences; School of Medicine; Loma Linda University; Loma Linda CA USA
| | - Ben Ma
- Division of Physiology; Department of Basic Sciences; School of Medicine; Loma Linda University; Loma Linda CA USA
| | - Shaunrick Stoll
- Division of Physiology; Department of Basic Sciences; School of Medicine; Loma Linda University; Loma Linda CA USA
| | - Tristan T. Hays
- Division of Physiology; Department of Basic Sciences; School of Medicine; Loma Linda University; Loma Linda CA USA
| | - Hongyu Qiu
- Division of Physiology; Department of Basic Sciences; School of Medicine; Loma Linda University; Loma Linda CA USA
| |
Collapse
|
25
|
Lizano P, Rashed E, Stoll S, Zhou N, Wen H, Hays TT, Qin G, Xie LH, Depre C, Qiu H. The valosin-containing protein is a novel mediator of mitochondrial respiration and cell survival in the heart in vivo. Sci Rep 2017; 7:46324. [PMID: 28425440 PMCID: PMC5397870 DOI: 10.1038/srep46324] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/16/2017] [Indexed: 12/24/2022] Open
Abstract
The valosin-containing protein (VCP) participates in signaling pathways essential for cell homeostasis in multiple tissues, however, its function in the heart in vivo remains unknown. Here we offer the first description of the expression, function and mechanism of action of VCP in the mammalian heart in vivo in both normal and stress conditions. By using a transgenic (TG) mouse with cardiac-specific overexpression (3.5-fold) of VCP, we demonstrate that VCP is a new and powerful mediator of cardiac protection against cell death in vivo, as evidenced by a 50% reduction of infarct size after ischemia/reperfusion versus wild type. We also identify a novel role of VCP in preserving mitochondrial respiration and in preventing the opening of mitochondrial permeability transition pore in cardiac myocytes under stress. In particular, by genetic deletion of inducible isoform of nitric oxide synthase (iNOS) from VCP TG mouse and by pharmacological inhibition of iNOS in isolated cardiac myocytes, we reveal that an increase of expression and activity of iNOS in cardiomyocytes by VCP is an essential mechanistic link of VCP-mediated preservation of mitochondrial function. These data together demonstrate that VCP may represent a novel therapeutic avenue for the prevention of myocardial ischemia.
Collapse
Affiliation(s)
- Paulo Lizano
- Department of Cell Biology and Molecular Medicine; New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Eman Rashed
- Department of Cell Biology and Molecular Medicine; New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA, 92324, USA
| | - Ning Zhou
- Division of Physiology, Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA, 92324, USA
| | - Hairuo Wen
- Department of Cell Biology and Molecular Medicine; New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Tristan T Hays
- Division of Physiology, Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA, 92324, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB),Birmingham, AL, 35294, USA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine; New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Christophe Depre
- Department of Cell Biology and Molecular Medicine; New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Hongyu Qiu
- Department of Cell Biology and Molecular Medicine; New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.,Division of Physiology, Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA, 92324, USA
| |
Collapse
|
26
|
Viswanathan MC, Blice-Baum AC, Sang TK, Cammarato A. Cardiac-Restricted Expression of VCP/TER94 RNAi or Disease Alleles Perturbs Drosophila Heart Structure and Impairs Function. J Cardiovasc Dev Dis 2016; 3. [PMID: 27500162 PMCID: PMC4973812 DOI: 10.3390/jcdd3020019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Valosin-containing protein (VCP) is a highly conserved mechanoenzyme that helps maintain protein homeostasis in all cells and serves specialized functions in distinct cell types. In skeletal muscle, it is critical for myofibrillogenesis and atrophy. However, little is known about VCP’s role(s) in the heart. Its functional diversity is determined by differential binding of distinct cofactors/adapters, which is likely disrupted during disease. VCP mutations cause multisystem proteinopathy (MSP), a pleiotropic degenerative disorder that involves inclusion body myopathy. MSP patients display progressive muscle weakness. They also exhibit cardiomyopathy and die from cardiac and respiratory failure, which are consistent with critical myocardial roles for the enzyme. Nonetheless, efficient models to interrogate VCP in cardiac muscle remain underdeveloped and poorly studied. Here, we investigated the significance of VCP and mutant VCP in the Drosophila heart. Cardiac-restricted RNAi-mediated knockdown of TER94, the Drosophila VCP homolog, severely perturbed myofibrillar organization and heart function in adult flies. Furthermore, expression of MSP disease-causing alleles engendered cardiomyopathy in adults and structural defects in embryonic hearts. Drosophila may therefore serve as a valuable model for examining role(s) of VCP in cardiogenesis and for identifying novel heart-specific VCP interactions, which when disrupted via mutation, contribute to or elicit cardiac pathology.
Collapse
Affiliation(s)
- Meera C. Viswanathan
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Ross 1050, 720 Rutland Avenue, Baltimore, MD 21205, USA; (M.C.V.); (A.C.B.-B.)
| | - Anna C. Blice-Baum
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Ross 1050, 720 Rutland Avenue, Baltimore, MD 21205, USA; (M.C.V.); (A.C.B.-B.)
| | - Tzu-Kang Sang
- Institute of Biotechnology & Department of Life Science, National Tsing Hua University, Hsinchu City 30013, Taiwan;
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Ross 1050, 720 Rutland Avenue, Baltimore, MD 21205, USA; (M.C.V.); (A.C.B.-B.)
- Department of Physiology, Johns Hopkins University, Ross 1050, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Correspondence: ; Tel.: +1-410-955-1807; Fax: +1-410-502-2558
| |
Collapse
|
27
|
Cayli S, Ocakli S, Senel U, Eyerci N, Delibasi T. Role of p97/Valosin-containing protein (VCP) and Jab1/CSN5 in testicular ischaemia–reperfusion injury. J Mol Histol 2016; 47:91-100. [DOI: 10.1007/s10735-016-9652-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022]
|
28
|
Rashed E, Lizano P, Dai H, Thomas A, Suzuki CK, Depre C, Qiu H. Heat shock protein 22 (Hsp22) regulates oxidative phosphorylation upon its mitochondrial translocation with the inducible nitric oxide synthase in mammalian heart. PLoS One 2015; 10:e0119537. [PMID: 25746286 PMCID: PMC4352051 DOI: 10.1371/journal.pone.0119537] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/18/2015] [Indexed: 11/21/2022] Open
Abstract
Objectives Stress-inducible heat shock protein 22 (Hsp22) confers protection against ischemia through induction of the inducible isoform of nitric oxide synthase (iNOS). Hsp22 overexpression in vivo stimulates cardiac mitochondrial respiration, whereas Hsp22 deletion in vivo significantly reduces respiration. We hypothesized that Hsp22-mediated regulation of mitochondrial function is dependent upon its mitochondrial translocation together with iNOS. Methods and Results Adenoviruses harboring either the full coding sequence of Hsp22 (Ad-WT-Hsp22) or a mutant lacking a N-terminal 20 amino acid putative mitochondrial localization sequence (Ad-N20-Hsp22) were generated, and infected in rat neonatal cardiomyocytes. Compared to β-Gal control, WT-Hsp22 accumulated in mitochondria by 2.5 fold (P<0.05) and increased oxygen consumption rates by 2-fold (P<0.01). This latter effect was abolished upon addition of the selective iNOS inhibitor, 1400W. Ad-WT-Hsp22 significantly increased global iNOS expression by about 2.5-fold (P<0.01), and also increased iNOS mitochondrial localization by 4.5 fold vs β-gal (P<0.05). Upon comparable overexpression, the N20-Hsp22 mutant did not show significant mitochondrial translocation or stimulation of mitochondrial respiration. Moreover, although N20-Hsp22 did increase global iNOS expression by 4.6-fold, it did not promote iNOS mitochondrial translocation. Conclusion Translocation of both Hsp22 and iNOS to the mitochondria is necessary for Hsp22-mediated stimulation of oxidative phosphorylation.
Collapse
Affiliation(s)
- Eman Rashed
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Paulo Lizano
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Huacheng Dai
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Andrew Thomas
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Carolyn K. Suzuki
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Christophe Depre
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Hongyu Qiu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Basic Science, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Aceros H, Farah G, Noiseux N, Mukaddam-Daher S. Moxonidine modulates cytokine signalling and effects on cardiac cell viability. Eur J Pharmacol 2014; 740:168-82. [PMID: 25036265 DOI: 10.1016/j.ejphar.2014.06.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
Abstract
Regression of left ventricular hypertrophy and improved cardiac function in SHR by the centrally acting imidazoline I1-receptor agonist, moxonidine, are associated with differential actions on circulating and cardiac cytokines. Herein, we investigated cell-type specific I1-receptor (also known as nischarin) signalling and the mechanisms through which moxonidine may interfere with cytokines to affect cardiac cell viability. Studies were performed on neonatal rat cardiomyocytes and fibroblasts incubated with interleukin (IL)-1β (5 ng/ml), tumor necrosis factor (TNF)-α (10 ng/ml), and moxonidine (10(-7) and 10(-5) M), separately and in combination, for 15 min, and 24 and 48 h for the measurement of MAPKs (ERK1/2, JNK, and p38) and Akt activation and inducible NOS (iNOS) expression, by Western blotting, and cardiac cell viability/proliferation and apoptosis by flow cytometry, MTT assay, and Live/Dead assay. Participation of imidazoline I1-receptors and the signalling proteins in the detected effects was identified using imidazoline I1-receptor antagonist and signalling protein inhibitors. The results show that IL-1β, and to a lower extent, TNF-α, causes cell death and that moxonidine protects against starvation- as well as IL-1β -induced mortality, mainly by maintaining membrane integrity, and in part, by improving mitochondrial activity. The protection involves activation of Akt, ERK1/2, p38, JNK, and iNOS. In contrast, moxonidine stimulates basal and IL-1β-induced fibroblast mortality by mechanisms that include inhibition of JNK and iNOS. Thus, apart from their actions on the central nervous system, imidazoline I1-receptors are directly involved in cardiac cell growth and death, and may play an important role in cardiovascular diseases associated with inflammation.
Collapse
Affiliation(s)
- Henry Aceros
- Centre Hospitalier de L'Université de Montréal Research Center (CRCHUM), Montreal, Québec, Canada; Department of Pharmacology, Université de Montréal, Montreal, Québec, Canada
| | - Georges Farah
- Centre Hospitalier de L'Université de Montréal Research Center (CRCHUM), Montreal, Québec, Canada; Department of Pharmacology, Université de Montréal, Montreal, Québec, Canada
| | - Nicolas Noiseux
- Centre Hospitalier de L'Université de Montréal Research Center (CRCHUM), Montreal, Québec, Canada; Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Suhayla Mukaddam-Daher
- Centre Hospitalier de L'Université de Montréal Research Center (CRCHUM), Montreal, Québec, Canada; Department of Pharmacology, Université de Montréal, Montreal, Québec, Canada; Department of Medicine, Université de Montréal, Montreal, Québec, Canada.
| |
Collapse
|