1
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
2
|
Power AS, Asamudo EU, Worthington LP, Alim CC, Parackal RE, Wallace RS, Ebenebe OV, Heller Brown J, Kohr MJ, Bers DM, Erickson JR. Nitric Oxide Modulates Ca 2+ Leak and Arrhythmias via S-Nitrosylation of CaMKII. Circ Res 2023; 133:1040-1055. [PMID: 37961889 PMCID: PMC10699507 DOI: 10.1161/circresaha.123.323571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Nitric oxide (NO) has been identified as a signaling molecule generated during β-adrenergic receptor stimulation in the heart. Furthermore, a role for NO in triggering spontaneous Ca2+ release via S-nitrosylation of CaMKIIδ (Ca2+/calmodulin kinase II delta) is emerging. NO donors are routinely used clinically for their cardioprotective effects on the heart, but it is unknown how NO donors modulate the proarrhythmic CaMKII to alter cardiac arrhythmia incidence. We test the role of S-nitrosylation of CaMKIIδ at the Cysteine-273 inhibitory site and cysteine-290 activating site in cardiac Ca2+ handling and arrhythmogenesis before and during β-adrenergic receptor stimulation. METHODS We measured Ca2+-handling in isolated cardiomyocytes from C57BL/6J wild-type (WT) mice and mice lacking CaMKIIδ expression (CaMKIIδ-KO) or with deletion of the S-nitrosylation site on CaMKIIδ at cysteine-273 or cysteine-290 (CaMKIIδ-C273S and -C290A knock-in mice). Cardiomyocytes were exposed to NO donors, S-nitrosoglutathione (GSNO; 150 μM), sodium nitroprusside (200 μM), and β-adrenergic agonist isoproterenol (100 nmol/L). RESULTS Both WT and CaMKIIδ-KO cardiomyocytes responded to isoproterenol with a full inotropic and lusitropic Ca2+ transient response as well as increased Ca2+ spark frequency. However, the increase in Ca2+ spark frequency was significantly attenuated in CaMKIIδ-KO cardiomyocytes. The protection from isoproterenol-induced Ca2+ sparks and waves was mimicked by GSNO pretreatment in WT cardiomyocytes but lost in CaMKIIδ-C273S cardiomyocytes. When GSNO was applied after isoproterenol, this protection was not observed in WT or CaMKIIδ-C273S but was apparent in CaMKIIδ-C290A. In Langendorff-perfused isolated hearts, GSNO pretreatment limited isoproterenol-induced arrhythmias in WT but not CaMKIIδ-C273S hearts, while GSNO exposure after isoproterenol sustained or exacerbated arrhythmic events. CONCLUSIONS We conclude that prior S-nitrosylation of CaMKIIδ at cysteine-273 can limit subsequent β-adrenergic receptor-induced arrhythmias, but that S-nitrosylation at cysteine-290 might worsen or sustain β-adrenergic receptor-induced arrhythmias. This has important implications for the administration of NO donors in the clinical setting.
Collapse
Affiliation(s)
- Amelia S. Power
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
- Department of Physiology, University of Auckland, New Zealand (A.S.P.)
| | - Esther U. Asamudo
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
- Department of Pharmacology, University of California, Davis (E.U.A., C.C.A., D.M.B.)
| | - Luke P.I. Worthington
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
| | - Chidera C. Alim
- Department of Pharmacology, University of California, Davis (E.U.A., C.C.A., D.M.B.)
| | - Raquel E. Parackal
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
| | - Rachel S. Wallace
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
| | - Obialunanma V. Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (O.V.E., M.J.K.)
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, La Jolla (J.H.B.)
| | - Mark J. Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (O.V.E., M.J.K.)
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis (E.U.A., C.C.A., D.M.B.)
| | - Jeffrey R. Erickson
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
| |
Collapse
|
3
|
Power AS, Asamudo E, Worthington LPI, Alim CC, Parackal R, Wallace RS, Ebenebe OV, Brown JH, Kohr MJ, Bers DM, Erickson JR. Nitric Oxide modulates spontaneous Ca 2+ release and ventricular arrhythmias during β-adrenergic signalling through S-nitrosylation of Calcium/Calmodulin dependent kinase II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554546. [PMID: 37662205 PMCID: PMC10473710 DOI: 10.1101/2023.08.23.554546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Rationale Nitric oxide (NO) has been identified as a signalling molecule generated during β-adrenergic receptor (AR) stimulation in the heart. Furthermore, a role for NO in triggering spontaneous Ca2+ release via S-nitrosylation of Ca2+/calmodulin kinase II delta (CaMKIIδ) is emerging. NO donors are routinely used clinically for their cardioprotective effects in the heart, but it is unknown how NO donors modulate the pro-arrhythmic CaMKII to alter cardiac arrhythmia incidence. Objective We test the role of S-nitrosylation of CaMKIIδ at the Cys-273 inhibitory site and Cys-290 activating site in cardiac Ca2+ handling and arrhythmogenesis before and during β-AR stimulation. Methods and Results We measured Ca2+-handling in isolated cardiomyocytes from C57BL/6J wild-type (WT) mice and mice lacking CaMKIIδ expression (CaMKIIδ-KO) or with deletion of the S-nitrosylation site on CaMKIIδ at Cys-273 or Cys-290 (CaMKIIδ-C273S and -C290A knock-in mice). Cardiomyocytes were exposed to NO donors, S-nitrosoglutathione (GSNO; 150 μM), sodium nitroprusside (SNP; 200 μM) and/or β-adrenergic agonist isoproterenol (ISO; 100 nM). WT and CaMKIIδ-KO cardiomyocytes treated with GSNO showed no change in Ca2+ transient or spark properties under baseline conditions (0.5 Hz stimulation frequency). Both WT and CaMKIIδ-KO cardiomyocytes responded to ISO with a full inotropic and lusitropic Ca2+ transient response as well as increased Ca2+ spark frequency. However, the increase in Ca2+ spark frequency was significantly attenuated in CaMKIIδ-KO cardiomyocytes. The protection from ISO-induced Ca2+ sparks and waves was mimicked by GSNO pre-treatment in WT cardiomyocytes, but lost in CaMKIIδ-C273S cardiomyocytes that displayed a robust increase in Ca2+ waves. This observation is consistent with CaMKIIδ-C273 S-nitrosylation being critical in limiting ISO-induced arrhythmogenic sarcoplasmic reticulum Ca2+ leak. When GSNO was applied after ISO this protection was not observed in WT or CaMKIIδ-C273S but was apparent in CaMKIIδ-C290A. In Langendorff-perfused isolated hearts, GSNO pre-treatment limited ISO-induced arrhythmias in WT but not CaMKIIδ-C273S hearts, while GSNO exposure after ISO sustained or exacerbated arrhythmic events. Conclusions We conclude that prior S-nitrosylation of CaMKIIδ at Cys-273 can limit subsequent β-AR induced arrhythmias, but that S-nitrosylation at Cys-290 might worsen or sustain β-AR-induced arrhythmias. This has important implications for the administration of NO donors in the clinical setting.
Collapse
Affiliation(s)
- Amelia S. Power
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Esther Asamudo
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
- Department of Pharmacology, University of California, Davis
| | | | | | - Raquel Parackal
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Rachel S. Wallace
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Obialunanma V. Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, La Jolla
| | - Mark J. Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis
| | - Jeffrey R. Erickson
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Effects of Recombinant Human Brain Natriuretic Peptide on Atrial Fibrillation After Coronary Artery Bypass Grafting. J Cardiovasc Pharmacol 2023; 81:63-69. [PMID: 36084021 DOI: 10.1097/fjc.0000000000001370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/28/2022] [Indexed: 01/11/2023]
Abstract
ABSTRACT Previous studies reported that the use of natriuretic peptides (NPs) can effectively decrease arrhythmias. However, there is a lack of clinical evidence that recombinant human brain natriuretic peptide (rh-BNP) inhibits postoperative atrial fibrillation (POAF). This cohort aims to assess the effect of rh-BNP on POAF. This study retrospectively reviewed patients who underwent isolated coronary artery bypass grafting from January 2018 to January 2021. Patients were divided into 2 groups according to whether they received rh-BNP therapy within 5 days after surgery. A total of 1153 patients met the inclusion and exclusion criteria, of which 54 received rh-BNP therapy within 5 days. After propensity score matching, 53 patients were treated with rh-BNP, and 148 patients were not treated with rh-BNP. The incidence of POAF was lower in rh-BNP group than non-rh-BNP group (18.9% vs. 37.2%, odds ratio = 0.393, 95% confidence interval, 0.183-0.845, P = 0.017). There was no significant difference in the occurrence of ventricular arrhythmia ( P = 0.4), hypotension ( P = 0.763), and the risk of death ( P = 0.14). rh-BNP could significantly reduce the occurrence of POAF after coronary artery bypass grafting, and rh-BNP did not increase the risk of ventricular arrhythmia, hypotension, and death. Accordingly, rh-BNP could be a potential safe medicine for preventing POAF.
Collapse
|
5
|
Rafaqat S, Rafaqat S, Khurshid H, Rafaqat S. Electrolyte’s imbalance role in atrial fibrillation: Pharmacological management. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2022. [DOI: 10.1186/s42444-022-00065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe contribution of the perpetuation of atrial fibrillation is caused by electrical remodeling in which calcium, sodium and potassium channels could refer to changes in the ion channel protein expression, development of fibrosis, gene transcription and ion channel redistribution. Calcium and magnesium could influence the risk of atrial fibrillation which is the leading cause of cardiac death, heart failure and ischemic stroke. The elevated serum concentration of calcium had a higher range of in-patient’s mortality, increased total cost of hospitalization and increased length of hospital stay as compared to those without hypercalcemia in atrial fibrillation patients. Moreover, chloride channels could affect homeostasis, atrial myocardial metabolism which may participate in the development of atrial fibrillation. Up to a 50% risk of incidence of AF are higher in which left ventricular hypertrophy, sudden cardiovascular death and overall mortality relate to a low serum magnesium level. Additionally, magnesium prevents the occurrence of AF after cardiac surgery, whereas greater levels of serum phosphorus in the large population-based study and the related calcium–phosphorus products were linked with a greater incidence of AF. Numerous clinical studies had shown the high preoperative risk of AF that is linked with lower serum potassium levels. The conventional risk factor of increased risk of new onset of AF events could independently link with high dietary sodium intake which enhances the fibrosis and inflammation in the atrium but the mechanism remains unknown. Many drugs were used to maintain the electrolyte imbalance in AF patients.
Collapse
|
6
|
Yoon S, Eom GH, Kang G. Nitrosative Stress and Human Disease: Therapeutic Potential of Denitrosylation. Int J Mol Sci 2021; 22:ijms22189794. [PMID: 34575960 PMCID: PMC8464666 DOI: 10.3390/ijms22189794] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
Proteins dynamically contribute towards maintaining cellular homeostasis. Posttranslational modification regulates the function of target proteins through their immediate activation, sudden inhibition, or permanent degradation. Among numerous protein modifications, protein nitrosation and its functional relevance have emerged. Nitrosation generally initiates nitric oxide (NO) production in association with NO synthase. NO is conjugated to free thiol in the cysteine side chain (S-nitrosylation) and is propagated via the transnitrosylation mechanism. S-nitrosylation is a signaling pathway frequently involved in physiologic regulation. NO forms peroxynitrite in excessive oxidation conditions and induces tyrosine nitration, which is quite stable and is considered irreversible. Two main reducing systems are attributed to denitrosylation: glutathione and thioredoxin (TRX). Glutathione captures NO from S-nitrosylated protein and forms S-nitrosoglutathione (GSNO). The intracellular reducing system catalyzes GSNO into GSH again. TRX can remove NO-like glutathione and break down the disulfide bridge. Although NO is usually beneficial in the basal context, cumulative stress from chronic inflammation or oxidative insult produces a large amount of NO, which induces atypical protein nitrosation. Herein, we (1) provide a brief introduction to the nitrosation and denitrosylation processes, (2) discuss nitrosation-associated human diseases, and (3) discuss a possible denitrosylation strategy and its therapeutic applications.
Collapse
Affiliation(s)
- Somy Yoon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea;
- Correspondence: (G.-H.E.); (G.K.); Tel.: +82-61-379-2837 (G.-H.E.); +82-62-220-5262 (G.K.)
| | - Gaeun Kang
- Division of Clinical Pharmacology, Chonnam National University Hospital, Gwangju 61469, Korea
- Correspondence: (G.-H.E.); (G.K.); Tel.: +82-61-379-2837 (G.-H.E.); +82-62-220-5262 (G.K.)
| |
Collapse
|
7
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, largely associated to morbidity and mortality. Over the past decades, research in appearance and progression of this arrhythmia have turned into significant advances in its management. However, the incidence of AF continues to increase with the aging of the population and many important fundamental and translational underlaying mechanisms remain elusive. Here, we review recent advances in molecular and cellular basis for AF initiation, maintenance and progression. We first provide an overview of the basic molecular and electrophysiological mechanisms that lead and characterize AF. Next, we discuss the upstream regulatory factors conducting the underlying mechanisms which drive electrical and structural AF-associated remodeling, including genetic factors (risk variants associated to AF as transcriptional regulators and genetic changes associated to AF), neurohormonal regulation (i.e., cAMP) and oxidative stress imbalance (cGMP and mitochondrial dysfunction). Finally, we discuss the potential therapeutic implications of those findings, the knowledge gaps and consider future approaches to improve clinical management.
Collapse
|
8
|
Iqbal Z, Ismaili D, Dolce B, Petersen J, Reichenspurner H, Hansen A, Kirchhof P, Eschenhagen T, Nikolaev VO, Molina CE, Christ T. Regulation of basal and norepinephrine-induced cAMP and I Ca in hiPSC-cardiomyocytes: Effects of culture conditions and comparison to adult human atrial cardiomyocytes. Cell Signal 2021; 82:109970. [PMID: 33677066 DOI: 10.1016/j.cellsig.2021.109970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND There is ongoing interest in generating cardiomyocytes derived from human induced pluripotent stem cells (hiPSC) to study human cardiac physiology and pathophysiology. Recently we found that norepinephrine-stimulated calcium currents (ICa) in hiPSC-cardiomyocytes were smaller in conventional monolayers (ML) than in engineered heart tissue (EHT). In order to elucidate culture specific regulation of β1-adrenoceptor (β1-AR) responses we investigated whether action of phosphodiesterases (PDEs) may limit norepinephrine effects on ICa and on cytosolic cAMP in hiPSC-cardiomyocytes. Results were compared to adult human atrial cardiomyocytes. METHODS Adult human atrial cardiomyocytes were isolated from tissue samples obtained during open heart surgery. All patients were in sinus rhythm. HiPSC-cardiomyocytes were dissociated from ML and EHT. Förster-resonance energy transfer (FRET) was used to monitor cytosolic cAMP (Epac1-camps sensor, transfected by adenovirus). ICa was recorded by whole-cell patch clamp technique. Cilostamide (300 nM) and rolipram (10 μM) were used to inhibit PDE3 and PDE4, respectively. β1-AR were stimulated with the physiological agonist norepinephrine (100 μM). RESULTS In adult human atrial cardiomyocytes, norepinephrine increased cytosolic cAMP FRET ratio by +13.7 ± 1.5% (n = 10/9, mean ± SEM, number of cells/number patients) and ICa by +10.4 ± 1.5 pA/pF (n = 15/10). This effect was not further increased in the concomitant presence of rolipram, cilostamide and norepinephrine, indicating saturation by norepinephrine alone. In ML hiPSC-cardiomyocytes, norepinephrine exerted smaller increases in cytosolic cAMP and ICa (FRET +9.6 ± 0.5% n = 52/21, number of cells/number of ML or EHT, and ICa + 1.4 ± 0.2 pA/pF n = 34/7, p < 0.05 each) and both were augmented in the presence of the PDE4 inhibitor rolipram (FRET +16.7 ± 0.8% n = 94/26 and ICa + 5.6 ± 1.4 pA/pF n = 11/5, p < 0.05 each). Cilostamide increased the response to norepinephrine on FRET (+12.7 ± 0.5% n = 91/19, p < 0.05), but not on ICa. In EHT hiPSC-cardiomyocytes, norepinephrine responses on both, FRET and ICa, were larger than in ML (FRET +12.1 ± 0.3% n = 87/32 and ICa + 3.3 ± 0.2 pA/pF n = 13/5, p < 0.05 each). Rolipram augmented the norepinephrine effect on ICa (+6.2 ± 1.6 pA/pF; p < 0.05 vs. norepinephrine alone, n = 10/4), but not on FRET. CONCLUSION Our results show culture-dependent differences in hiPSC-cardiomyocytes. In conventional ML but not in EHT, maximum norepinephrine effects on cytosolic cAMP depend on PDE3 and PDE4, suggesting immaturity when compared to the situation in adult human atrial cardiomyocytes. The smaller ICa responses to norepinephrine in ML and EHT vs. adult human atrial cardiomyocytes depend at least partially on a non-physiological large impact of PDE4 in hiPSC-cardiomyocytes.
Collapse
Affiliation(s)
- Zafar Iqbal
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Djemail Ismaili
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Bernardo Dolce
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Johannes Petersen
- Department of Cardiovascular Surgery, University Heart and Vascular Center, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart and Vascular Center, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany; Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Cristina E Molina
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
9
|
Abstract
Cyclic nucleotide phosphodiesterases comprise an 11-member superfamily yielding near 100 isoform variants that hydrolyze cAMP or cGMP to their respective 5'-monophosphate form. Each plays a role in compartmentalized cyclic nucleotide signaling, with varying selectivity for each substrate, and conveying cell and intracellular-specific localized control. This review focuses on the 5 phosphodiesterases (PDEs) expressed in the cardiac myocyte capable of hydrolyzing cGMP and that have been shown to play a role in cardiac physiological and pathological processes. PDE1, PDE2, and PDE3 catabolize cAMP as well, whereas PDE5 and PDE9 are cGMP selective. PDE3 and PDE5 are already in clinical use, the former for heart failure, and PDE1, PDE9, and PDE5 are all being actively studied for this indication in patients. Research in just the past few years has revealed many novel cardiac influences of each isoform, expanding the therapeutic potential from their selective pharmacological blockade or in some instances, activation. PDE1C inhibition was found to confer cell survival protection and enhance cardiac contractility, whereas PDE2 inhibition or activation induces beneficial effects in hypertrophied or failing hearts, respectively. PDE3 inhibition is already clinically used to treat acute decompensated heart failure, although toxicity has precluded its long-term use. However, newer approaches including isoform-specific allosteric modulation may change this. Finally, inhibition of PDE5A and PDE9A counter pathological remodeling of the heart and are both being pursued in clinical trials. Here, we discuss recent research advances in each of these PDEs, their impact on the myocardium, and cardiac therapeutic potential.
Collapse
|
10
|
Sadek MS, Cachorro E, El-Armouche A, Kämmerer S. Therapeutic Implications for PDE2 and cGMP/cAMP Mediated Crosstalk in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E7462. [PMID: 33050419 PMCID: PMC7590001 DOI: 10.3390/ijms21207462] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphodiesterases (PDEs) are the principal superfamily of enzymes responsible for degrading the secondary messengers 3',5'-cyclic nucleotides cAMP and cGMP. Their refined subcellular localization and substrate specificity contribute to finely regulate cAMP/cGMP gradients in various cellular microdomains. Redistribution of multiple signal compartmentalization components is often perceived under pathological conditions. Thereby PDEs have long been pursued as therapeutic targets in diverse disease conditions including neurological, metabolic, cancer and autoimmune disorders in addition to numerous cardiovascular diseases (CVDs). PDE2 is a unique member of the broad family of PDEs. In addition to its capability to hydrolyze both cAMP and cGMP, PDE2 is the sole isoform that may be allosterically activated by cGMP increasing its cAMP hydrolyzing activity. Within the cardiovascular system, PDE2 serves as an integral regulator for the crosstalk between cAMP/cGMP pathways and thereby may couple chronically adverse augmented cAMP signaling with cardioprotective cGMP signaling. This review provides a comprehensive overview of PDE2 regulatory functions in multiple cellular components within the cardiovascular system and also within various subcellular microdomains. Implications for PDE2- mediated crosstalk mechanisms in diverse cardiovascular pathologies are discussed highlighting the prospective use of PDE2 as a potential therapeutic target in cardiovascular disorders.
Collapse
Affiliation(s)
| | | | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| | - Susanne Kämmerer
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| |
Collapse
|
11
|
Ebner J, Cagalinec M, Kubista H, Todt H, Szabo PL, Kiss A, Podesser BK, Cserne Szappanos H, Hool LC, Hilber K, Koenig X. Neuronal nitric oxide synthase regulation of calcium cycling in ventricular cardiomyocytes is independent of Ca v1.2 channel modulation under basal conditions. Pflugers Arch 2020; 472:61-74. [PMID: 31822999 PMCID: PMC6960210 DOI: 10.1007/s00424-019-02335-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) is considered a regulator of Cav1.2 L-type Ca2+ channels and downstream Ca2+ cycling in the heart. The commonest view is that nitric oxide (NO), generated by nNOS activity in cardiomyocytes, reduces the currents through Cav1.2 channels. This gives rise to a diminished Ca2+ release from the sarcoplasmic reticulum, and finally reduced contractility. Here, we report that nNOS inhibitor substances significantly increase intracellular Ca2+ transients in ventricular cardiomyocytes derived from adult mouse and rat hearts. This is consistent with an inhibitory effect of nNOS/NO activity on Ca2+ cycling and contractility. Whole cell currents through L-type Ca2+ channels in rodent myocytes, on the other hand, were not substantially affected by the application of various NOS inhibitors, or application of a NO donor substance. Moreover, the presence of NO donors had no effect on the single-channel open probability of purified human Cav1.2 channel protein reconstituted in artificial liposomes. These results indicate that nNOS/NO activity does not directly modify Cav1.2 channel function. We conclude that-against the currently prevailing view-basal Cav1.2 channel activity in ventricular cardiomyocytes is not substantially regulated by nNOS activity and NO. Hence, nNOS/NO inhibition of Ca2+ cycling and contractility occurs independently of direct regulation of Cav1.2 channels by NO.
Collapse
Affiliation(s)
- Janine Ebner
- Department of Neurophysiology and-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Michal Cagalinec
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Helmut Kubista
- Department of Neurophysiology and-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Petra L Szabo
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | - Livia C Hool
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Karlheinz Hilber
- Department of Neurophysiology and-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria.
| | - Xaver Koenig
- Department of Neurophysiology and-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| |
Collapse
|
12
|
Chung CC, Lin YK, Chen YC, Kao YH, Yeh YH, Chen YJ. Factor Xa inhibition by rivaroxaban regulates fibrogenesis in human atrial fibroblasts with modulation of nitric oxide synthesis and calcium homeostasis. J Mol Cell Cardiol 2018; 123:128-138. [PMID: 30213724 DOI: 10.1016/j.yjmcc.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/19/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rivaroxaban, a widely used factor Xa inhibitor in reducing stroke in atrial fibrillation (AF) patients has multiple biological effects with activation of protease-activated receptor (PAR) signaling. Atrial fibrosis plays a critical role in the pathophysiology of AF. In this study, we evaluated whether rivaroxaban regulates atrial fibroblast activity and its underlying mechanisms. METHODS AND RESULTS Migration, proliferation analyses, nitric oxide (NO) production assay, calcium fluorescence imaging, and western blots were conducted in human atrial fibroblasts with or without rivaroxaban (100 nmol/L or 300 nmol/L) and co-administration of L-NAME (L-NG-nitro arginine methyl ester, 100 μmol/L), EGTA (Ethylene glycol tetra-acetic acid, 1 mmol/L), thrombin (0.5 U/mL), PAR1 agonist peptide (TFLLR-NH2, 100 μmol/L), PAR1 inhibitor (SCH79797, 0.5 μmol/L) and PAR2 inhibitor (GB83, 10 μmol/L). Atrial fibrosis was examined in isoproterenol (100 mg/kg, subcutaneous injection)-treated rats with or without rivaroxaban (10 mg/kg/day orally for 14 consecutive days). Rivaroxaban reduced the migration, pro-collagen type I production, and proliferation of atrial fibroblasts. Rivaroxaban decreased phosphorylated endothelial NO synthase (eNOS) (Thr 495, an inhibitory phosphorylated site of eNOS), and calcium (Ca2+) entry, and increased NO production. Moreover, L-NAME blocked the effects of rivaroxaban on fibroblast collagen and NO production. In the presence of EGTA, the migratory capability was similarly decreased in atrial fibroblasts with and without treatment with rivaroxaban (100 nmol/L), which suggests that rivaroxaban decreases migratory capability of atrial fibroblasts by inhibiting Ca2+ entry. Additionally, rivaroxaban significantly attenuated the effects of thrombin, and TFLLR-NH2 on migratory, proliferative, and pro-collagen type I production capability in atrial fibroblasts. SCH79797 or GB83 decreased pro-collagen type I production, migration, and proliferation capability in fibroblasts, but combined SCH79797 or GB83 with and without rivaroxaban had similar fibroblast activity. Moreover, rivaroxaban significantly decreased atrial fibrosis in isoproterenol-treated rats. CONCLUSIONS Rivaroxaban (100-300 nmol/L) regulates atrial fibroblast activity and atrial fibrosis by increasing NO production and decreasing Ca2+ entry through inhibition of PAR signaling.
Collapse
Affiliation(s)
- Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Jen Chen
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Roselle Polyphenols Exert Potent Negative Inotropic Effects via Modulation of Intracellular Calcium Regulatory Channels in Isolated Rat Heart. Cardiovasc Toxicol 2018; 17:251-259. [PMID: 27402292 DOI: 10.1007/s12012-016-9379-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Roselle (Hibiscus sabdariffa Linn.) calyces have demonstrated propitious cardioprotective effects in animal and clinical studies; however, little is known about its action on cardiac mechanical function. This study was undertaken to investigate direct action of roselle polyphenols (RP) on cardiac function in Langendorff-perfused rat hearts. We utilized RP extract which consists of 12 flavonoids and seven phenolic acids (as shown by HPLC profiling) and has a safe concentration range between 125 and 500 μg/ml in this study. Direct perfusion of RP in concentration-dependent manner lowered systolic function of the heart as shown by lowered LVDP and dP/dt max, suggesting a negative inotropic effect. RP also reduced heart rate (negative chronotropic action) while simultaneously increasing maximal velocity of relaxation (positive lusitropic action). Conversely, RP perfusion increased coronary pressure, an indicator for improvement in coronary blood flow. Inotropic responses elicited by pharmacological agonists for L-type Ca2+ channel [(±)-Bay K 8644], ryanodine receptor (4-chloro-m-cresol), β-adrenergic receptor (isoproterenol) and SERCA blocker (thapsigargin) were all abolished by RP. In conclusion, RP elicits negative inotropic, negative chronotropic and positive lusitropic responses by possibly modulating calcium entry, release and reuptake in the heart. Our findings have shown the potential use of RP as a therapeutic agent to treat conditions like arrhythmia.
Collapse
|
14
|
Crassous PA, Shu P, Huang C, Gordan R, Brouckaert P, Lampe PD, Xie LH, Beuve A. Newly Identified NO-Sensor Guanylyl Cyclase/Connexin 43 Association Is Involved in Cardiac Electrical Function. J Am Heart Assoc 2017; 6:e006397. [PMID: 29269353 PMCID: PMC5778997 DOI: 10.1161/jaha.117.006397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Guanylyl cyclase, a heme-containing α1β1 heterodimer (GC1), produces cGMP in response to Nitric oxide (NO) stimulation. The NO-GC1-cGMP pathway negatively regulates cardiomyocyte contractility and protects against cardiac hypertrophy-related remodeling. We recently reported that the β1 subunit of GC1 is detected at the intercalated disc with connexin 43 (Cx43). Cx43 forms gap junctions (GJs) at the intercalated disc that are responsible for electrical propagation. We sought to determine whether there is a functional association between GC1 and Cx43 and its role in cardiac homeostasis. METHODS AND RESULTS GC1 and Cx43 immunostaining at the intercalated disc and coimmunoprecipitation from membrane fraction indicate that GC1 and Cx43 are associated. Mice lacking the α subunit of GC1 (GCα1 knockout mice) displayed a significant decrease in GJ function (dye-spread assay) and Cx43 membrane lateralization. In a cardiac-hypertrophic model, angiotensin II treatment disrupted the GC1-Cx43 association and induced significant Cx43 membrane lateralization, which was exacerbated in GCα1 knockout mice. Cx43 lateralization correlated with decreased Cx43-containing GJs at the intercalated disc, predictors of electrical dysfunction. Accordingly, an ECG revealed that angiotensin II-treated GCα1 knockout mice had impaired ventricular electrical propagation. The phosphorylation level of Cx43 at serine 365, a protein-kinase A upregulated site involved in trafficking/assembly of GJs, was decreased in these models. CONCLUSIONS GC1 modulates ventricular Cx43 location, hence GJ function, and partially protects from electrical dysfunction in an angiotensin II hypertrophy model. Disruption of the NO-cGMP pathway is associated with cardiac electrical disturbance and abnormal Cx43 phosphorylation. This previously unknown NO/Cx43 signaling could be a protective mechanism against stress-induced arrhythmia.
Collapse
Affiliation(s)
- Pierre-Antoine Crassous
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| | - Ping Shu
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| | - Can Huang
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| | - Richard Gordan
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School-Rutgers, Newark, NJ
| | - Peter Brouckaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paul D Lampe
- Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School-Rutgers, Newark, NJ
| | - Annie Beuve
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| |
Collapse
|
15
|
Jiang YY, Hou HT, Yang Q, Liu XC, He GW. Chloride Channels are Involved in the Development of Atrial Fibrillation - A Transcriptomic and proteomic Study. Sci Rep 2017; 7:10215. [PMID: 28860555 PMCID: PMC5579191 DOI: 10.1038/s41598-017-10590-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/11/2017] [Indexed: 11/23/2022] Open
Abstract
Electrical and structural remodeling processes are contributors to the self-perpetuating nature of atrial fibrillation (AF). However, their correlation has not been clarified. In this study, human atrial tissues from the patients with rheumatic mitral valve disease in either sinus rhythm or persistent AF were analyzed using a combined transcriptomic and proteomic approach. An up-regulation in chloride intracellular channel (CLIC) 1, 4, 5 and a rise in type IV collagen were revealed. Combined with the results from immunohistochemistry and electron microscope analysis, the distribution of type IV collagen and effects of fibrosis on myocyte membrane indicated the possible interaction between CLIC and type IV collagen, confirmed by protein structure prediction and co-immunoprecipitation. These results indicate that CLICs play an important role in the development of atrial fibrillation and that CLICs and structural type IV collagen may interact on each other to promote the development of AF in rheumatic mitral valve disease.
Collapse
Affiliation(s)
- Yi-Yao Jiang
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, The Chinese Academy of Medical Sciences & Peking Union Medical College, & Nankai University, Tianjin, China.,The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Hangzhou, China
| | - Hai-Tao Hou
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, The Chinese Academy of Medical Sciences & Peking Union Medical College, & Nankai University, Tianjin, China
| | - Qin Yang
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, The Chinese Academy of Medical Sciences & Peking Union Medical College, & Nankai University, Tianjin, China
| | - Xiao-Cheng Liu
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, The Chinese Academy of Medical Sciences & Peking Union Medical College, & Nankai University, Tianjin, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, The Chinese Academy of Medical Sciences & Peking Union Medical College, & Nankai University, Tianjin, China. .,The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Hangzhou, China. .,Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
16
|
Bond RC, Bryant SM, Watson JJ, Hancox JC, Orchard CH, James AF. Reduced density and altered regulation of rat atrial L-type Ca 2+ current in heart failure. Am J Physiol Heart Circ Physiol 2017; 312:H384-H391. [PMID: 27923791 PMCID: PMC5402008 DOI: 10.1152/ajpheart.00528.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 11/22/2022]
Abstract
Constitutive regulation by PKA has recently been shown to contribute to L-type Ca2+ current (ICaL) at the ventricular t-tubule in heart failure. Conversely, reduction in constitutive regulation by PKA has been proposed to underlie the downregulation of atrial ICaL in heart failure. The hypothesis that downregulation of atrial ICaL in heart failure involves reduced channel phosphorylation was examined. Anesthetized adult male Wistar rats underwent surgical coronary artery ligation (CAL, N=10) or equivalent sham-operation (Sham, N=12). Left atrial myocytes were isolated ~18 wk postsurgery and whole cell currents recorded (holding potential=-80 mV). ICaL activated by depolarizing pulses to voltages from -40 to +50 mV were normalized to cell capacitance and current density-voltage relations plotted. CAL cell capacitances were ~1.67-fold greater than Sham (P ≤ 0.0001). Maximal ICaL conductance (Gmax ) was downregulated more than 2-fold in CAL vs. Sham myocytes (P < 0.0001). Norepinephrine (1 μmol/l) increased Gmax >50% more effectively in CAL than in Sham so that differences in ICaL density were abolished. Differences between CAL and Sham Gmax were not abolished by calyculin A (100 nmol/l), suggesting that increased protein dephosphorylation did not account for ICaL downregulation. Treatment with either H-89 (10 μmol/l) or AIP (5 μmol/l) had no effect on basal currents in Sham or CAL myocytes, indicating that, in contrast to ventricular myocytes, neither PKA nor CaMKII regulated basal ICaL Expression of the L-type α1C-subunit, protein phosphatases 1 and 2A, and inhibitor-1 proteins was unchanged. In conclusion, reduction in PKA-dependent regulation did not contribute to downregulation of atrial ICaL in heart failure.NEW & NOTEWORTHY Whole cell recording of L-type Ca2+ currents in atrial myocytes from rat hearts subjected to coronary artery ligation compared with those from sham-operated controls reveals marked reduction in current density in heart failure without change in channel subunit expression and associated with altered phosphorylation independent of protein kinase A.
Collapse
Affiliation(s)
- Richard C Bond
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Simon M Bryant
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Judy J Watson
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Jules C Hancox
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Clive H Orchard
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Andrew F James
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
17
|
Gasparova I, Kubatka P, Opatrilova R, Caprnda M, Filipova S, Rodrigo L, Malan L, Mozos I, Rabajdova M, Nosal V, Kobyliak N, Valentova V, Petrovic D, Adamek M, Kruzliak P. Perspectives and challenges of antioxidant therapy for atrial fibrillation. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:1-14. [PMID: 27900409 DOI: 10.1007/s00210-016-1320-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia associated with significant morbidity and mortality. The mechanisms underlying the pathogenesis of AF are poorly understood, although electrophysiological remodeling has been described as an important initiating step. There is growing evidence that oxidative stress is involved in the pathogenesis of AF. Many known triggers of oxidative stress, such as age, diabetes, smoking, and inflammation, are linked with an increased risk of arrhythmia. Numerous preclinical studies and clinical trials reported the importance of antioxidant therapy in the prevention of AF, using vitamins C and E, polyunsaturated fatty acids, statins, or nitric oxide donors. The aim of our work is to give a current overview and analysis of opportunities, challenges, and benefits of antioxidant therapy in AF.
Collapse
Affiliation(s)
- Iveta Gasparova
- Institute of Biology, Genetics and Medical Genetics, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovak Republic, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic, Slovakia
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Martin Caprnda
- 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Slavomira Filipova
- Department of Cardiology, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University of Asturias (HUCA), Oviedo, Spain
| | - Leone Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Ioana Mozos
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Vladimir Nosal
- Clinic of Neurology, Jessenius Faculty of Medicine, Comenius University and University Hospital in Martin, Martin, Slovak Republic
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Vanda Valentova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic, Slovakia
| | - Daniel Petrovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljublana, Ljublana, Slovenia
| | - Mariusz Adamek
- Department of Thoracic Surgery, Medical University of Silesia, Zabrze, Poland
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic. .,2nd Department of Surgery, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
18
|
Simon JN, Ziberna K, Casadei B. Compromised redox homeostasis, altered nitroso-redox balance, and therapeutic possibilities in atrial fibrillation. Cardiovasc Res 2016; 109:510-8. [PMID: 26786158 PMCID: PMC4777914 DOI: 10.1093/cvr/cvw012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/15/2016] [Indexed: 12/31/2022] Open
Abstract
Although the initiation, development, and maintenance of atrial fibrillation (AF) have been linked to alterations in myocyte redox state, the field lacks a complete understanding of the impact these changes may have on cellular signalling, atrial electrophysiology, and disease progression. Recent studies demonstrate spatiotemporal changes in reactive oxygen species production shortly after the induction of AF in animal models with an uncoupling of nitric oxide synthase activity ensuing in the presence of long-standing persistent AF, ultimately leading to a major shift in nitroso–redox balance. However, it remains unclear which radical or non-radical species are primarily involved in the underlying mechanisms of AF or which proteins are targeted for redox modification. In most instances, only free radical oxygen species have been assessed; yet evidence from the redox signalling field suggests that non-radical species are more likely to regulate cellular processes. A wider appreciation for the distinction of these species and how both species may be involved in the development and maintenance of AF could impact treatment strategies. In this review, we summarize how redox second-messenger systems are regulated and discuss the recent evidence for alterations in redox regulation in the atrial myocardium in the presence of AF, while identifying some critical missing links. We also examine studies looking at antioxidants for the prevention and treatment of AF and propose alternative redox targets that may serve as superior therapeutic options for the treatment of AF.
Collapse
Affiliation(s)
- Jillian N Simon
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Klemen Ziberna
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Barbara Casadei
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Moghtadaei M, Polina I, Rose RA. Electrophysiological effects of natriuretic peptides in the heart are mediated by multiple receptor subtypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:37-49. [DOI: 10.1016/j.pbiomolbio.2015.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
|
20
|
Hua R, MacLeod SL, Polina I, Moghtadaei M, Jansen HJ, Bogachev O, O’Blenes SB, Sapp JL, Legare JF, Rose RA. Effects of Wild-Type and Mutant Forms of Atrial Natriuretic Peptide on Atrial Electrophysiology and Arrhythmogenesis. Circ Arrhythm Electrophysiol 2015; 8:1240-54. [DOI: 10.1161/circep.115.002896] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/10/2015] [Indexed: 11/16/2022]
Abstract
Background—
Atrial natriuretic peptide (ANP) is a hormone with numerous beneficial cardiovascular effects. Recently, a mutation in the ANP gene, which results in the generation of a mutant form of ANP (mANP), was identified and shown to cause atrial fibrillation in people. The mechanism(s) through which mANP causes atrial fibrillation is unknown. Our objective was to compare the effects of wild-type ANP and mANP on atrial electrophysiology in mice and humans.
Methods and Results—
Action potentials (APs), L-type Ca
2+
currents (
I
Ca,L
), and Na
+
current were recorded in atrial myocytes from wild-type or natriuretic peptide receptor C knockout (NPR-C
−/−
) mice. In mice, ANP and mANP (10–100 nmol/L) had opposing effects on atrial myocyte AP morphology and
I
Ca,L
. ANP increased AP upstroke velocity (
V
max
), AP duration, and
I
Ca,L
similarly in wild-type and NPR-C
−/−
myocytes. In contrast, mANP decreased
V
max
, AP duration, and
I
Ca,L
, and these effects were completely absent in NPR-C
−/−
myocytes. ANP and mANP also had opposing effects on
I
Ca,L
in human atrial myocytes. In contrast, neither ANP nor mANP had any effect on Na
+
current in mouse atrial myocytes. Optical mapping studies in mice demonstrate that ANP sped electric conduction in the atria, whereas mANP did the opposite and slowed atrial conduction. Atrial pacing in the presence of mANP induced arrhythmias in 62.5% of hearts, whereas treatment with ANP completely prevented the occurrence of arrhythmias.
Conclusions—
These findings provide mechanistic insight into how mANP causes atrial fibrillation and demonstrate that wild-type ANP is antiarrhythmic.
Collapse
Affiliation(s)
- Rui Hua
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarah L. MacLeod
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Iuliia Polina
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Motahareh Moghtadaei
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hailey J. Jansen
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Oleg Bogachev
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stacy B. O’Blenes
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John L. Sapp
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jean-Francois Legare
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert A. Rose
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|