1
|
Glinton K, Thakkar AV, Jones R, Inui H, Ge ZD, Thorp EB. Leukocyte-lymphatic intersections during cardiac inflammation. J Mol Cell Cardiol 2025; 198:13-20. [PMID: 39592090 DOI: 10.1016/j.yjmcc.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Advances in genetic, pharmacologic, and sequencing technology have led to new insight into the role of lymphatics in health and disease. This includes fundamental aspects of the crosstalk between immune cells with cardiac lymphatics. At the interface between leukocytes and lymphatic endothelial cells, myeloid populations are sources of lymphatic growth factors during inflammation. Lymphatic endothelial cells also secrete signals that activate leukocytes, including to antigen presenting cells. Taken together, a view of the lymphatic vasculature as a supplemental cardiac immune hub is emerging. Herein, we discuss reciprocal cell and molecular crosstalk between leukocytes and lymphatics in the myocardium, with implications for health and cardiac inflammation.
Collapse
Affiliation(s)
- Kristofor Glinton
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Abhishek V Thakkar
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Rebecca Jones
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Hiroyasu Inui
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Zhi-Dong Ge
- The Heart Center and Cardiovascular-Thoracic Surgery, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Ill, United States of America
| | - Edward B Thorp
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America.
| |
Collapse
|
2
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
3
|
Shin YS, Han K, Lee J, Han HH, Jang WS, Kim GM, Heo JE. Lymphatic embolization for early post-operative lymphatic leakage after radical cystectomy for bladder cancer. PLoS One 2024; 19:e0305240. [PMID: 39316604 PMCID: PMC11421775 DOI: 10.1371/journal.pone.0305240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Although radical cystectomy (RC) with pelvic lymph node dissection (PLND) is the standard treatment of muscle invasive bladder cancer, it may cause lymphatic leakage. Recent studies describe lymphatic embolization (LE) as an option to manage post-operative lymphatic leakage. Hence, this study evaluated the outcome of LE in patients receiving RC and analyzed factors associated with outcomes. METHODS This was a retrospective analysis of patients who underwent LE after RC for bladder cancer between August 2017 and June 2023. The data was assessed for analysis at January 2024. The patients were divided into a clinical success group and a clinical failure group. Clinical failure was defined as the following: 1) those who required drainage catheter placement >7 days after LE, 2) those who needed re-intervention before catheter removal, and 3) those who experienced adverse events associated with LE. Logistic regression analysis was performed to identify the factors associated with outcomes of LE. KEY FINDINGS AND LIMITATIONS We analyzed 45 patients who underwent LE after RC. Twenty-eight (62.2%) patients were identified as clinically successful. Four patients required re-embolization, but none required more than two sessions of intervention. Three patients experienced lymphatic complications after LE. In multivariable analysis, maximal daily drainage volume of >1,000 mL/day (odds ratio [OR] = 4.729, 95% confidence interval [CI]: 1.018-21.974, p = 0.047) and diabetes mellitus (DM) (OR = 4.571, 95% CI: 1.128-18.510, p = 0.033) were factors associated with LE outcome. CONCLUSIONS AND CLINICAL IMPLICATIONS Our results suggest LE as a potentially effective procedure for controlling post-operative lymphatic leaks after RC, with few minor side effects. Patients exceeding a daily drainage of 1,000mL/day or with a medical history of DM have a higher risk for re-intervention and clinical failure after LE.
Collapse
Affiliation(s)
- Yoo Sub Shin
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kichang Han
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jongsoo Lee
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Han
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Sik Jang
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gyoung Min Kim
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Heo
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Kim HJ, Norton CE, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Acute Metabolic Stress Induces Lymphatic Dysfunction Through KATP Channel Activation. FUNCTION 2024; 5:zqae033. [PMID: 39075985 PMCID: PMC11384908 DOI: 10.1093/function/zqae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
Lymphatic dysfunction is an underlying component of multiple metabolic diseases, including diabetes, obesity, and metabolic syndrome. We investigated the roles of KATP channels in lymphatic contractile dysfunction in response to acute metabolic stress induced by inhibition of the mitochondrial electron transport chain. Ex vivo popliteal lymphatic vessels from mice were exposed to the electron transport chain inhibitors antimycin A and rotenone, or the oxidative phosphorylation inhibitor/protonophore, CCCP. Each inhibitor led to a significant reduction in the frequency of spontaneous lymphatic contractions and calculated pump flow, without a significant change in contraction amplitude. Contraction frequency was restored by the KATP channel inhibitor, glibenclamide. Lymphatic vessels from mice with global Kir6.1 deficiency or expressing a smooth muscle-specific dominant negative Kir6.1 channel were resistant to inhibition. Antimycin A inhibited the spontaneous action potentials generated in lymphatic muscle and this effect was reversed by glibenclamide, confirming the role of KATP channels. Antimycin A, but not rotenone or CCCP, increased dihydrorhodamine fluorescence in lymphatic muscle, indicating ROS production. Pretreatment with tiron or catalase prevented the effect of antimycin A on wild-type lymphatic vessels, consistent with its action being mediated by ROS. Our results support the conclusion that KATP channels in lymphatic muscle can be directly activated by reduced mitochondrial ATP production or ROS generation, consequent to acute metabolic stress, leading to contractile dysfunction through inhibition of the ionic pacemaker controlling spontaneous lymphatic contractions. We propose that a similar activation of KATP channels contributes to lymphatic dysfunction in metabolic disease.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Charles E Norton
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| | | | - Michael J Davis
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
5
|
Davis MJ, Castorena-Gonzalez JA, Li M, Zawieja SD, Simon AM, Geng X, Srinivasan RS. Connexin-45 is expressed in mouse lymphatic endothelium and required for lymphatic valve function. JCI Insight 2024; 9:e169931. [PMID: 39074069 PMCID: PMC11343601 DOI: 10.1172/jci.insight.169931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
The expression and functional relevance of the gap junction molecule connexin-45 (Cx45; GJC1) in lymphatic endothelium were not previously known. We found that Cx45 was expressed widely in the endothelium of murine lymphatics, in both valve and nonvalve regions. Cell-specific deletion of Cx45, driven by a constitutive Cre line (Lyve1-Cre) or an inducible Cre line (Prox1-CreERT2), compromised the function of lymphatic valves, as assessed by physiological tests (back leak and closure) of isolated, single-valve vessel segments. The defects were comparable to those previously reported for loss of Cx43, and as with Cx43, deletion of Cx45 resulted in shortening or increased asymmetry of lymphatic valve leaflets, providing an explanation for the compromised valve function. In contrast with Cx43, lymphatic endothelial cell-specific (LEC-specific) deletion of Cx45 did not alter the number of valves in mesenteric or dermal lymphatic networks or the expression patterns of the canonical valve-associated proteins PROX1, ITGA9, or CLAUDIN5. Constitutive deletion of Cx45 from LECs resulted in increased backflow of injected tracer in popliteal networks in vivo and compromised the integrity of the LEC permeability barrier in a subset of collecting vessels. These findings provide evidence for an unexpected role of Cx45 in the development and maintenance of lymphatic valves.
Collapse
Affiliation(s)
- Michael J. Davis
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri, USA
| | | | - Min Li
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri, USA
| | - Scott D. Zawieja
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri, USA
| | - Alex M. Simon
- Department of Physiology, University of Arizona School of Medicine, Tucson, Arizona, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - R. Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| |
Collapse
|
6
|
Choi D, Park E, Choi J, Lu R, Yu JS, Kim C, Zhao L, Yu J, Nakashima B, Lee S, Singhal D, Scallan JP, Zhou B, Koh CJ, Lee E, Hong YK. Piezo1 regulates meningeal lymphatic vessel drainage and alleviates excessive CSF accumulation. Nat Neurosci 2024; 27:913-926. [PMID: 38528202 PMCID: PMC11088999 DOI: 10.1038/s41593-024-01604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024]
Abstract
Piezo1 regulates multiple aspects of the vascular system by converting mechanical signals generated by fluid flow into biological processes. Here, we find that Piezo1 is necessary for the proper development and function of meningeal lymphatic vessels and that activating Piezo1 through transgenic overexpression or treatment with the chemical agonist Yoda1 is sufficient to increase cerebrospinal fluid (CSF) outflow by improving lymphatic absorption and transport. The abnormal accumulation of CSF, which often leads to hydrocephalus and ventriculomegaly, currently lacks effective treatments. We discovered that meningeal lymphatics in mouse models of Down syndrome were incompletely developed and abnormally formed. Selective overexpression of Piezo1 in lymphatics or systemic administration of Yoda1 in mice with hydrocephalus or Down syndrome resulted in a notable decrease in pathological CSF accumulation, ventricular enlargement and other associated disease symptoms. Together, our study highlights the importance of Piezo1-mediated lymphatic mechanotransduction in maintaining brain fluid drainage and identifies Piezo1 as a promising therapeutic target for treating excessive CSF accumulation and ventricular enlargement.
Collapse
Affiliation(s)
- Dongwon Choi
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eunkyung Park
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua Choi
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Renhao Lu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jin Suh Yu
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chiyoon Kim
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Luping Zhao
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - James Yu
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brandon Nakashima
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sunju Lee
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dhruv Singhal
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Bin Zhou
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chester J Koh
- Division of Pediatric Urology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Young-Kwon Hong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Bai L, Wang Y, Du S, Si Y, Chen L, Li L, Li Y. Lymphangiogenesis: A new strategy for heart disease treatment (Review). Int J Mol Med 2024; 53:35. [PMID: 38391009 PMCID: PMC10903933 DOI: 10.3892/ijmm.2024.5359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Heart disease remains a global health challenge, contributing notably to morbidity and mortality. The lymphatic vasculature, an integral component of the cardiovascular system, plays a crucial role in regulating essential physiological processes, including fluid balance, transportation of extravasated proteins and immune cell trafficking, all of which are important for heart function. Through thorough scientometric analysis and extensive research, the present review identified lymphangiogenesis as a hotspot in cardiovascular disease research, and the mechanisms underlying impaired cardiac lymphangiogenesis and inadequate lymph drainage in various cardiovascular diseases are discussed. Furthermore, the way used to improve lymphangiogenesis to effectively regulate a variety of heart diseases and associated signaling pathways was investigated. Notably, the current review also highlights the impact of Traditional Chinese Medicine (TCM) on lymphangiogenesis, aiming to establish a clinical basis for the potential of TCM to improve cardiovascular diseases by promoting lymphangiogenesis.
Collapse
Affiliation(s)
- Liding Bai
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yanyan Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Siqi Du
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yumeng Si
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lu Chen
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Li
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yuhong Li
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
8
|
Carlantoni C, Liekfeld LMH, Hemkemeyer SA, Schreier D, Saygi C, Kurelic R, Cardarelli S, Kalucka J, Schulte C, Beerens M, Mailer RK, Schäffer TE, Naro F, Pellegrini M, Nikolaev VO, Renné T, Frye M. The phosphodiesterase 2A controls lymphatic junctional maturation via cGMP-dependent notch signaling. Dev Cell 2024; 59:308-325.e11. [PMID: 38159569 DOI: 10.1016/j.devcel.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
The molecular mechanisms by which lymphatic vessels induce cell contact inhibition are not understood. Here, we identify the cGMP-dependent phosphodiesterase 2A (PDE2A) as a selective regulator of lymphatic but not of blood endothelial contact inhibition. Conditional deletion of Pde2a in mouse embryos reveals severe lymphatic dysplasia, whereas blood vessel architecture remains unaltered. In the absence of PDE2A, human lymphatic endothelial cells fail to induce mature junctions and cell cycle arrest, whereas cGMP levels, but not cAMP levels, are increased. Loss of PDE2A-mediated cGMP hydrolysis leads to the activation of p38 signaling and downregulation of NOTCH signaling. However, DLL4-induced NOTCH activation restores junctional maturation and contact inhibition in PDE2A-deficient human lymphatic endothelial cells. In postnatal mouse mesenteries, PDE2A is specifically enriched in collecting lymphatic valves, and loss of Pde2a results in the formation of abnormal valves. Our data demonstrate that PDE2A selectively finetunes a crosstalk of cGMP, p38, and NOTCH signaling during lymphatic vessel maturation.
Collapse
Affiliation(s)
- Claudia Carlantoni
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Leon M H Liekfeld
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sandra A Hemkemeyer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Danny Schreier
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ceren Saygi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Roberta Kurelic
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Silvia Cardarelli
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Schulte
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany; Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manu Beerens
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tuebingen, 72076 Tuebingen, Germany
| | - Fabio Naro
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Manuela Pellegrini
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; Institute of Biochemistry and Cell Biology, IBBC-CNR, Campus A. Buzzati Traverso, Monterotondo Scalo, Rome 00015, Italy
| | - Viacheslav O Nikolaev
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany.
| |
Collapse
|
9
|
Aron A, Zavaleta C. Current and Developing Lymphatic Imaging Approaches for Elucidation of Functional Mechanisms and Disease Progression. Mol Imaging Biol 2024; 26:1-16. [PMID: 37195396 PMCID: PMC10827820 DOI: 10.1007/s11307-023-01827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
Study of the lymphatic system, compared to that of the other body systems, has been historically neglected. While scientists and clinicians have, in recent decades, gained a better appreciation of the functionality of the lymphatics as well as their role in associated diseases (and consequently investigated these topics further in their experimental work), there is still much left to be understood of the lymphatic system. In this review article, we discuss the role lymphatic imaging techniques have played in this recent series of advancements and how new imaging techniques can help bolster this wave of discovery. We specifically highlight the use of lymphatic imaging techniques in understanding the fundamental anatomy and physiology of the lymphatic system; investigating the development of lymphatic vasculature (using techniques such as intravital microscopy); diagnosing, staging, and treating lymphedema and cancer; and its role in other disease states.
Collapse
Affiliation(s)
- Arjun Aron
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA, 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA, 90089, USA.
| |
Collapse
|
10
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
11
|
Jannaway M, Scallan JP. Lymphatic Vascular Permeability Determined from Direct Measurements of Solute Flux. Methods Mol Biol 2024; 2711:21-37. [PMID: 37776446 DOI: 10.1007/978-1-0716-3429-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The permeability of the lymphatic vasculature is tightly regulated to prevent the excessive leakage of lymph into the tissues, which has profound consequences for edema, immune responses, and lipid absorption. Dysregulated lymphatic permeability is associated with several diseases, including life-threatening chylothorax and pleural effusion that occur in patients with congenital lymphedema and lymphatic malformations. Due to a growing interest in uncovering new mechanisms regulating lymphatic vascular permeability, we recently pioneered methods to quantify this aspect of lymphatic function. Here, we detail our ex vivo method to determine the permeability of mouse collecting lymphatic vessels from direct measurements of solute flux. This method is modified from a similar ex vivo assay that we described for studying the contractile function of murine collecting lymphatic vessels. Since this method also uses the mouse as a model, it enables powerful genetic tools to be combined with this physiological assay to investigate signaling pathways regulating lymphatic vascular permeability.
Collapse
Affiliation(s)
- Melanie Jannaway
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
12
|
Montenegro-Navarro N, García-Báez C, García-Caballero M. Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology. Nat Commun 2023; 14:8389. [PMID: 38104163 PMCID: PMC10725466 DOI: 10.1038/s41467-023-44133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Lymphangiogenesis refers to the generation of new lymphatic vessels from pre-existing ones. During development and particular adult states, lymphatic endothelial cells (LEC) undergo reprogramming of their transcriptomic and signaling networks to support the high demands imposed by cell proliferation and migration. Although there has been substantial progress in identifying growth factors and signaling pathways controlling lymphangiogenesis in the last decades, insights into the role of metabolism in lymphatic cell functions are just emerging. Despite numerous similarities between the main metabolic pathways existing in LECs, blood ECs (BEC) and other cell types, accumulating evidence has revealed that LECs acquire a unique metabolic signature during lymphangiogenesis, and their metabolic engine is intertwined with molecular regulatory networks, resulting in a tightly regulated and interconnected process. Considering the implication of lymphatic dysfunction in cancer and lymphedema, alongside other pathologies, recent findings hold promising opportunities to develop novel therapeutic approaches. In this review, we provide an overview of the status of knowledge in the molecular and metabolic network regulating the lymphatic vasculature in health and disease.
Collapse
Affiliation(s)
- Nieves Montenegro-Navarro
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Claudia García-Báez
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain.
| |
Collapse
|
13
|
Grzesiak L, Amaya-Garrido A, Feuillet G, Malet N, Swiader A, Sarthou MK, Wahart A, Ramel D, Gayral S, Schanstra JP, Klein J, Laffargue M. Leucine-Rich Alpha-2 Glycoprotein 1 Accumulates in Complicated Atherosclerosis and Promotes Calcification. Int J Mol Sci 2023; 24:16537. [PMID: 38003727 PMCID: PMC10671851 DOI: 10.3390/ijms242216537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Atherosclerosis is the primary cause of cardiovascular disease. The development of plaque complications, such as calcification and neo-angiogenesis, strongly impacts plaque stability and is a good predictor of mortality in patients with atherosclerosis. Despite well-known risk factors of plaque complications, such as diabetes mellitus and chronic kidney disease, the mechanisms involved are not fully understood. We and others have identified that the concentration of circulating leucine-rich α-2 glycoprotein 1 (LRG1) was increased in diabetic and chronic kidney disease patients. Using apolipoprotein E knockout mice (ApoE-/-) (fed with Western diet) that developed advanced atherosclerosis and using human carotid endarterectomy, we showed that LRG1 accumulated into an atherosclerotic plaque, preferentially in calcified areas. We then investigated the possible origin of LRG1 and its functions on vascular cells and found that LRG1 expression was specifically enhanced in endothelial cells via inflammatory mediators and not in vascular smooth muscle cells (VSMC). Moreover, we identified that LRG1 was able to induce calcification and SMAD1/5-signaling pathways in VSMC. In conclusion, our results identified for the first time that LRG1 is a direct contributor to vascular calcification and suggest a role of this molecule in the development of plaque complications in patients with atherosclerosis.
Collapse
Affiliation(s)
- Lucile Grzesiak
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Ana Amaya-Garrido
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Guylène Feuillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Nicole Malet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Audrey Swiader
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Marie-Kerguelen Sarthou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Amandine Wahart
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Damien Ramel
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Stéphanie Gayral
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Joost Peter Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Muriel Laffargue
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| |
Collapse
|
14
|
Aithabathula RV, Pervaiz N, Kathuria I, Swanson M, Singh UP, Kumar S, Park F, Singla B. Hydrogen sulfide donor activates AKT-eNOS signaling and promotes lymphatic vessel formation. PLoS One 2023; 18:e0292663. [PMID: 37883422 PMCID: PMC10602273 DOI: 10.1371/journal.pone.0292663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The lymphatic network is pivotal for various physiological functions in the human body. Accumulated evidence supports the role of therapeutic lymphangiogenesis in the treatment of several pathologies. Endogenous gasotransmitter, hydrogen sulfide (H2S) has been extensively studied for its potential as a pro-angiogenic factor and vascular function modulator. However, the role of H2S in governing lymphatic vessel formation, and underlying molecular mechanisms are understudied. The present study was designed to investigate the effects of H2S donor sodium hydrogen sulfide (NaHS) on lymphatic vascularization and pro-angiogenic signaling pathways using both in vitro and in vivo approaches. In vitro dose-response experiments showed increased proliferation and tube formation by NaHS-treated human lymphatic endothelial cells (LECs) compared with control cells. Immunoblotting performed with LEC lysates prepared after time-course NaHS treatment demonstrated increased activation of ERK1/2, AKT and eNOS after 20 min of NaHS stimulation. Further, NaHS treatment induced nitric oxide production, reduced reactive oxygen species generation, and promoted cell cycle in LECs. Additional cell cycle analysis showed that NaHS treatment abrogates oxidized LDL-induced cell cycle arrest in LECs. The results of in vivo Matrigel plug assay revealed increased lymphatic vessel density in Matrigel plugs containing NaHS compared with control plugs, however, no significant differences in angiogenesis and immune cell infiltration were observed. Collectively, these findings suggest that H2S donor NaHS promotes lymphatic vessel formation both in vitro and in vivo and may be utilized to promote reparative lymphangiogenesis to alleviate lymphatic dysfunction-related disorders.
Collapse
Affiliation(s)
- Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Naveed Pervaiz
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Ishita Kathuria
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Mallory Swanson
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| |
Collapse
|
15
|
Bertoldi G, Caputo I, Calò L, Rossitto G. Lymphatic vessels and the renin-angiotensin-system. Am J Physiol Heart Circ Physiol 2023; 325:H837-H855. [PMID: 37565265 DOI: 10.1152/ajpheart.00023.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The lymphatic system is an integral part of the circulatory system and plays an important role in the fluid homeostasis of the human body. Accumulating evidence has recently suggested the involvement of lymphatic dysfunction in the pathogenesis of cardio-reno-vascular (CRV) disease. However, how the sophisticated contractile machinery of lymphatic vessels is modulated and, possibly impaired in CRV disease, remains largely unknown. In particular, little attention has been paid to the effect of the renin-angiotensin-system (RAS) on lymphatics, despite the high concentration of RAS mediators that these tissue-draining vessels are exposed to and the established role of the RAS in the development of classic microvascular dysfunction and overt CRV disease. We herein review recent studies linking RAS to lymphatic function and/or plasticity and further highlight RAS-specific signaling pathways, previously shown to drive adverse arterial remodeling and CRV organ damage that have potential for direct modulation of the lymphatic system.
Collapse
Affiliation(s)
- Giovanni Bertoldi
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Ilaria Caputo
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Lorenzo Calò
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
16
|
Breslin JW. Edema and lymphatic clearance: molecular mechanisms and ongoing challenges. Clin Sci (Lond) 2023; 137:1451-1476. [PMID: 37732545 PMCID: PMC11025659 DOI: 10.1042/cs20220314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Resolution of edema remains a significant clinical challenge. Conditions such as traumatic shock, sepsis, or diabetes often involve microvascular hyperpermeability, which leads to tissue and organ dysfunction. Lymphatic insufficiency due to genetic causes, surgical removal of lymph nodes, or infections, leads to varying degrees of tissue swelling that impair mobility and immune defenses. Treatment options are limited to management of edema as there are no specific therapeutics that have demonstrated significant success for ameliorating microvascular leakage or impaired lymphatic function. This review examines current knowledge about the physiological, cellular, and molecular mechanisms that control microvascular permeability and lymphatic clearance, the respective processes for interstitial fluid formation and removal. Clinical conditions featuring edema, along with potential future directions are discussed.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, FL, U.S.A
| |
Collapse
|
17
|
Pervaiz N, Kathuria I, Aithabathula RV, Singla B. Matricellular proteins in atherosclerosis development. Matrix Biol 2023; 120:1-23. [PMID: 37086928 PMCID: PMC10225360 DOI: 10.1016/j.matbio.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
The extracellular matrix (ECM) is an intricate network composed of various multi-domain macromolecules like collagen, proteoglycans, and fibronectin, etc., that form a structurally stable composite, contributing to the mechanical properties of tissue. However, matricellular proteins are non-structural, secretory extracellular matrix proteins, which modulate various cellular functions via interacting with cell surface receptors, proteases, hormones, and cell-matrix. They play essential roles in maintaining tissue homeostasis by regulating cell differentiation, proliferation, adhesion, migration, and several signal transduction pathways. Matricellular proteins display a broad functionality regulated by their multiple structural domains and their ability to interact with different extracellular substrates and/or cell surface receptors. The expression of these proteins is low in adults, however, gets upregulated following injuries, inflammation, and during tumor growth. The marked elevation in the expression of these proteins during atherosclerosis suggests a positive association between their expression and atherosclerotic lesion formation. The role of matricellular proteins in atherosclerosis development has remained an area of research interest in the last two decades and studies revealed these proteins as important players in governing vascular function, remodeling, and plaque formation. Despite extensive research, many aspects of the matrix protein biology in atherosclerosis are still unknown and future studies are required to investigate whether targeting pathways stimulated by these proteins represent viable therapeutic approaches for patients with atherosclerotic vascular diseases. This review summarizes the characteristics of distinct matricellular proteins, discusses the available literature on the involvement of matrix proteins in the pathogenesis of atherosclerosis and suggests new avenues for future research.
Collapse
Affiliation(s)
- Naveed Pervaiz
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA
| | - Ishita Kathuria
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA
| | - Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA.
| |
Collapse
|
18
|
Peluzzo AM, Bkhache M, Do LNH, Autieri MV, Liu X. Differential regulation of lymphatic junctional morphology and the potential effects on cardiovascular diseases. Front Physiol 2023; 14:1198052. [PMID: 37187962 PMCID: PMC10175597 DOI: 10.3389/fphys.2023.1198052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The lymphatic vasculature provides an essential route to drain fluid, macromolecules, and immune cells from the interstitium as lymph, returning it to the bloodstream where the thoracic duct meets the subclavian vein. To ensure functional lymphatic drainage, the lymphatic system contains a complex network of vessels which has differential regulation of unique cell-cell junctions. The lymphatic endothelial cells lining initial lymphatic vessels form permeable "button-like" junctions which allow substances to enter the vessel. Collecting lymphatic vessels form less permeable "zipper-like" junctions which retain lymph within the vessel and prevent leakage. Therefore, sections of the lymphatic bed are differentially permeable, regulated in part by its junctional morphology. In this review, we will discuss our current understanding of regulating lymphatic junctional morphology, highlighting how it relates to lymphatic permeability during development and disease. We will also discuss the effect of alterations in lymphatic permeability on efficient lymphatic flux in health and how it may affect cardiovascular diseases, with a focus on atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | - Xiaolei Liu
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
19
|
Abstract
Kidney disease is associated with adverse consequences in many organs beyond the kidney, including the heart, lungs, brain, and intestines. The kidney-intestinal cross talk involves intestinal epithelial damage, dysbiosis, and generation of uremic toxins. Recent studies reveal that kidney injury expands the intestinal lymphatics, increases lymphatic flow, and alters the composition of mesenteric lymph. The intestinal lymphatics, like blood vessels, are a route for transporting potentially harmful substances generated by the intestines. The lymphatic architecture and actions are uniquely suited to take up and transport large macromolecules, functions that differentiate them from blood vessels, allowing them to play a distinct role in a variety of physiological and pathological processes. Here, we focus on the mechanisms by which kidney diseases result in deleterious changes in intestinal lymphatics and consider a novel paradigm of a vicious cycle of detrimental organ cross talk. This concept involves kidney injury-induced modulation of intestinal lymphatics that promotes production and distribution of harmful factors, which in turn contributes to disease progression in distant organ systems.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics (A.K.), Vanderbilt University Medical Center, Nashville, TN
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (A.K.)
| | - Hai-Chun Yang
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Agnes B Fogo
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine (A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Elaine L Shelton
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Valentina Kon
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
20
|
Sestito LF, To KH, Cribb MT, Archer PA, Thomas SN, Dixon JB. Lymphatic-draining nanoparticles deliver Bay K8644 payload to lymphatic vessels and enhance their pumping function. SCIENCE ADVANCES 2023; 9:eabq0435. [PMID: 36827374 PMCID: PMC9956116 DOI: 10.1126/sciadv.abq0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Dysfunction of collecting lymphatic vessel pumping is associated with an array of pathologies. S-(-)-Bay K8644 (BayK), a small-molecule agonist of L-type calcium channels, improves vessel contractility ex vivo but has been left unexplored in vivo because of poor lymphatic access and risk of deleterious off-target effects. When formulated within lymph-draining nanoparticles (NPs), BayK acutely improved lymphatic vessel function, effects not seen from treatment with BayK in its free form. By preventing rapid drug access to the circulation, NP formulation also reduced BayK's dose-limiting side effects. When applied to a mouse model of lymphedema, treatment with BayK formulated in lymph-draining NPs, but not free BayK, improved pumping pressure generated by intact lymphatic vessels and tissue remodeling associated with the pathology. This work reveals the utility of a lymph-targeting NP platform to pharmacologically enhance lymphatic pumping in vivo and highlights a promising approach to treating lymphatic dysfunction.
Collapse
Affiliation(s)
- Lauren F. Sestito
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Mechanical Engineering and Bioengineering, Valparaiso University, 1900 Chapel Dr, Valparaiso, IN 46383, USA
| | - Kim H. T. To
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthew T. Cribb
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Paul A. Archer
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Susan N. Thomas
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - J. Brandon Dixon
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
21
|
Gianesini S, Rimondi E, Raffetto JD, Melloni E, Pellati A, Menegatti E, Avruscio GP, Bassetto F, Costa AL, Rockson S. Human collecting lymphatic glycocalyx identification by electron microscopy and immunohistochemistry. Sci Rep 2023; 13:3022. [PMID: 36810649 PMCID: PMC9945466 DOI: 10.1038/s41598-023-30043-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Blood flow is translated into biochemical inflammatory or anti-inflammatory signals based onshear stress type, by means of sensitive endothelial receptors. Recognition of the phenomenon is of paramount importance for enhanced insights into the pathophysiological processes of vascular remodeling. The endothelial glycocalyx is a pericellular matrix, identified in both arteries and veins, acting collectively as a sensor responsive to blood flow changes. Venous and lymphatic physiology is interconnected; however, to our knowledge, a lymphatic glycocalyx structure has never been identified in humans. The objective of this investigation is to identify glycocalyx structures from ex vivo lymphatic human samples. Lower limb vein and lymphatic vessels were harvested. The samples were analyzed by transmission electron microscopy. The specimens were also examined by immunohistochemistry. Transmission electron microscopy identified a glycocalyx structure in human venous and lymphatic samples. Immunohistochemistry for podoplanin, glypican-1, mucin-2, agrin and brevican characterized lymphatic and venous glycocalyx-like structures. To our knowledge, the present work reports the first identification of a glycocalyx-like structure in human lymphatic tissue. The vasculoprotective action of the glycocalyx could become an investigational target in the lymphatic system as well, with clinical implications for the many patients affected by lymphatic disorders.
Collapse
Affiliation(s)
- S. Gianesini
- grid.8484.00000 0004 1757 2064Department of Translational Medicine, LTTA Centre, University of Ferrara, Ferrara, Italy ,grid.265436.00000 0001 0421 5525Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, USA
| | - E. Rimondi
- grid.8484.00000 0004 1757 2064Department of Translational Medicine, LTTA Centre, University of Ferrara, Ferrara, Italy
| | - J. D. Raffetto
- grid.265436.00000 0001 0421 5525Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, USA ,grid.38142.3c000000041936754XSurgery Department, VA Boston Healthcare System, Harvard University, Boston, USA
| | - E. Melloni
- grid.8484.00000 0004 1757 2064Department of Translational Medicine, LTTA Centre, University of Ferrara, Ferrara, Italy
| | - A. Pellati
- grid.8484.00000 0004 1757 2064Department of Translational Medicine, LTTA Centre, University of Ferrara, Ferrara, Italy
| | - E. Menegatti
- grid.8484.00000 0004 1757 2064Environmental Sciences and Prevention Department, University of Ferrara, Ferrara, Italy
| | - G. P. Avruscio
- grid.5608.b0000 0004 1757 3470Department of Cardiac, Thoracic and Vascular Sciences, Hospital-University of Padua, Padua, Italy
| | - F. Bassetto
- grid.5608.b0000 0004 1757 3470Department of Neuroscience, Clinic of Plastic Surgery, University of Padova, Padua, Italy
| | - A. L. Costa
- grid.5608.b0000 0004 1757 3470Department of Neuroscience, Clinic of Plastic Surgery, University of Padova, Padua, Italy
| | - S. Rockson
- grid.168010.e0000000419368956Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
22
|
Promotion of Lymphangiogenesis by Targeted Delivery of VEGF-C Improves Diabetic Wound Healing. Cells 2023; 12:cells12030472. [PMID: 36766814 PMCID: PMC9913977 DOI: 10.3390/cells12030472] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Chronic wounds represent a major therapeutic challenge. Lymphatic vessel function is impaired in chronic ulcers but the role of lymphangiogenesis in wound healing has remained unclear. We found that lymphatic vessels are largely absent from chronic human wounds as evaluated in patient biopsies. Excisional wound healing studies were conducted using transgenic mice with or without an increased number of cutaneous lymphatic vessels, as well as antibody-mediated inhibition of lymphangiogenesis. We found that a lack of lymphatic vessels mediated a proinflammatory wound microenvironment and delayed wound closure, and that the VEGF-C/VEGFR3 signaling axis is required for wound lymphangiogenesis. Treatment of diabetic mice (db/db mice) with the F8-VEGF-C fusion protein that targets the alternatively spliced extra domain A (EDA) of fibronectin, expressed in remodeling tissue, promoted wound healing, and potently induced wound lymphangiogenesis. The treatment also reduced tissue inflammation and exerted beneficial effects on the wound microenvironment, including myofibroblast density and collagen deposition. These findings indicate that activating the lymphatic vasculature might represent a new therapeutic strategy for treating chronic non-healing wounds.
Collapse
|
23
|
Liu X, Cui K, Wu H, Li KS, Peng Q, Wang D, Cowan DB, Dixon JB, Srinivasan RS, Bielenberg DR, Chen K, Wang DZ, Chen Y, Chen H. Promoting Lymphangiogenesis and Lymphatic Growth and Remodeling to Treat Cardiovascular and Metabolic Diseases. Arterioscler Thromb Vasc Biol 2023; 43:e1-e10. [PMID: 36453280 PMCID: PMC9780193 DOI: 10.1161/atvbaha.122.318406] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Lymphatic vessels are low-pressure, blind-ended tubular structures that play a crucial role in the maintenance of tissue fluid homeostasis, immune cell trafficking, and dietary lipid uptake and transport. Emerging research has indicated that the promotion of lymphatic vascular growth, remodeling, and function can reduce inflammation and diminish disease severity in several pathophysiologic conditions. In particular, recent groundbreaking studies have shown that lymphangiogenesis, which describes the formation of new lymphatic vessels from the existing lymphatic vasculature, can be beneficial for the alleviation and resolution of metabolic and cardiovascular diseases. Therefore, promoting lymphangiogenesis represents a promising therapeutic approach. This brief review summarizes the most recent findings related to the modulation of lymphatic function to treat metabolic and cardiovascular diseases such as obesity, myocardial infarction, atherosclerosis, and hypertension. We also discuss experimental and therapeutic approaches to enforce lymphatic growth and remodeling as well as efforts to define the molecular and cellular mechanisms underlying these processes.
Collapse
Affiliation(s)
- Xiaolei Liu
- Lemole Center for Integrated Lymphatics Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Kathryn S. Li
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Qianman Peng
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Donghai Wang
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Douglas B. Cowan
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - J. Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - R. Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Diane R. Bielenberg
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Da-Zhi Wang
- USF Heart Institute, Center for Regenerative Medicine, College of Medicine Internal Medicine, University of South Florida, Tampa, FL
| | - Yabing Chen
- Department of Pathology, Birmingham Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
24
|
Zhong J, Yang HC, Shelton EL, Matsusaka T, Clark AJ, Yermalitsky V, Mashhadi Z, May-Zhang LS, Linton MF, Fogo AB, Kirabo A, Davies SS, Kon V. Dicarbonyl-modified lipoproteins contribute to proteinuric kidney injury. JCI Insight 2022; 7:161878. [PMID: 36125905 PMCID: PMC9675465 DOI: 10.1172/jci.insight.161878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
Lipoprotein modification by reactive dicarbonyls, including isolevuglandin (IsoLG), produces dysfunctional particles. Kidneys participate in lipoprotein metabolism, including tubular uptake. However, the process beyond the proximal tubule is unclear, as is the effect of kidney injury on this pathway. We found that patients and animals with proteinuric injury have increased urinary apolipoprotein AI (apoAI), IsoLG, and IsoLG adduct enrichment of the urinary apoAI fraction compared with other proteins. Proteinuric mice, induced by podocyte-specific injury, showed more tubular absorption of IsoLG-apoAI and increased expression of lipoprotein transporters in proximal tubular cells compared with uninjured animals. Renal lymph reflects composition of the interstitial compartment and showed increased apoAI and IsoLG in proteinuric animals, supporting a tubular cell-interstitium-lymph pathway for renal handling of lipoproteins. IsoLG-modified apoAI was not only a marker of renal injury but also directly damaged renal cells. IsoLG-apoAI increased inflammatory cytokines in cultured tubular epithelial cells (TECs), activated lymphatic endothelial cells (LECs), and caused greater contractility of renal lymphatic vessels than unmodified apoAI. In vivo, inhibition of IsoLG by a dicarbonyl scavenger reduced both albuminuria and urinary apoAI and decreased TEC and LEC injury, lymphangiogenesis, and interstitial fibrosis. Our results indicate that IsoLG-modified apoAI is, to our knowledge, a novel pathogenic mediator and therapeutic target in kidney disease.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics and,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hai-Chun Yang
- Department of Pediatrics and,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Taiji Matsusaka
- Institute of Medical Sciences and Department of Molecular Life Sciences, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | - Zahra Mashhadi
- Department of Pharmacology, Division of Clinical Pharmacology
| | | | | | - Agnes B. Fogo
- Department of Pediatrics and,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, and
| | - Annet Kirabo
- Department of Pharmacology, Division of Clinical Pharmacology,,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean S. Davies
- Department of Pharmacology, Division of Clinical Pharmacology
| | | |
Collapse
|
25
|
Obesity-associated mesenteric lymph leakage impairs the trafficking of lipids, lipophilic drugs and antigens from the intestine to mesenteric lymph nodes. Eur J Pharm Biopharm 2022; 180:319-331. [DOI: 10.1016/j.ejpb.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022]
|
26
|
Davis MJ, Kim HJ, Nichols CG. K ATP channels in lymphatic function. Am J Physiol Cell Physiol 2022; 323:C1018-C1035. [PMID: 35785984 PMCID: PMC9550566 DOI: 10.1152/ajpcell.00137.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
Abstract
KATP channels function as negative regulators of active lymphatic pumping and lymph transport. This review summarizes and critiques the evidence for the expression of specific KATP channel subunits in lymphatic smooth muscle and endothelium, the roles that they play in normal lymphatic function, and their possible involvement in multiple diseases, including metabolic syndrome, lymphedema, and Cantú syndrome. For each of these topics, suggestions are made for directions for future research.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
27
|
Evaluation of Circulating MicroRNAs and Adipokines in Breast Cancer Survivors with Arm Lymphedema. Int J Mol Sci 2022; 23:ijms231911359. [PMID: 36232660 PMCID: PMC9570352 DOI: 10.3390/ijms231911359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer-related lymphedema (BCRL) is a form of secondary lymphedema that is characterized by abnormal swelling of one or both arms due to the accumulation of lymph fluid in the interstitial tissue spaces, resulting from obstruction of the lymphatic vessels due to surgery insults, radiotherapy, or chemotherapy. Due to the multifactorial nature of this condition, the pathogenesis of secondary lymphedema remains unclear and the search for molecular factors associated with the condition is ongoing. This study aimed to identify serum microRNAs and adipokines associated with BCRL. Blood was collected from 113 breast cancer survivors and processed to obtain serum for small RNA-sequencing (BCRL vs. non-BCRL, n = 7 per group). MicroRNAs that were differentially expressed (fold change >1.5, p < 0.05) between lymphedema cases and those without lymphedema were further quantified in a validation cohort through quantitative reverse transcription PCR (BCRL n = 16, non-BCRL, n = 83). Leptin and adiponectin levels were measured in a combined cohort (BCRL n = 23, non-BCRL n = 90) using enzyme-linked immunosorbent assays. Two of the most significantly upregulated microRNAs, miR-199a-3p and miR-151a-3p, were strongly correlated with the onset of lymphedema and diabetes mellitus in the BCRL group. Leptin levels were higher in the BCRL cohort compared to the non-BCRL cohort (p < 0.05). A metabolic syndrome biomarker, the adiponectin/leptin ratio, was found to be lower in the BCRL group than in the non-BCRL group (median: 0.28 vs. 0.41, p < 0.05). Extensive studies on the mechanisms of the identified microRNAs and association of leptin with arm lymphedema may provide new insights on the potential biomarkers for lymphedema that should be followed up in a prospective cohort study.
Collapse
|
28
|
Halvorson BD, Menon NJ, Goldman D, Frisbee SJ, Goodwill AG, Butcher JT, Stapleton PA, Brooks SD, d'Audiffret AC, Wiseman RW, Lombard JH, Brock RW, Olfert IM, Chantler PD, Frisbee JC. The development of peripheral microvasculopathy with chronic metabolic disease in obese Zucker rats: a retrograde emergence? Am J Physiol Heart Circ Physiol 2022; 323:H475-H489. [PMID: 35904886 PMCID: PMC9448278 DOI: 10.1152/ajpheart.00264.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
The study of peripheral vasculopathy with chronic metabolic disease is challenged by divergent contributions from spatial (the level of resolution or specific tissue being studied) and temporal origins (evolution of the developing impairments in time). Over many years of studying the development of skeletal muscle vasculopathy and its functional implications, we may be at the point of presenting an integrated conceptual model that addresses these challenges within the obese Zucker rat (OZR) model. At the early stages of metabolic disease, where systemic markers of elevated cardiovascular disease risk are present, the only evidence of vascular dysfunction is at postcapillary and collecting venules, where leukocyte adhesion/rolling is elevated with impaired venular endothelial function. As metabolic disease severity and duration increases, reduced microvessel density becomes evident as well as increased variability in microvascular hematocrit. Subsequently, hemodynamic impairments to distal arteriolar networks emerge, manifesting as increasing perfusion heterogeneity and impaired arteriolar reactivity. This retrograde "wave of dysfunction" continues, creating a condition wherein deficiencies to the distal arteriolar, capillary, and venular microcirculation stabilize and impairments to proximal arteriolar reactivity, wall mechanics, and perfusion distribution evolve. This proximal arteriolar dysfunction parallels increasing failure in fatigue resistance, hyperemic responses, and O2 uptake within self-perfused skeletal muscle. Taken together, these results present a conceptual model for the retrograde development of peripheral vasculopathy with chronic metabolic disease and provide insight into the timing and targeting of interventional strategies to improve health outcomes.NEW & NOTEWORTHY Working from an established database spanning multiple scales and times, we studied progression of peripheral microvascular dysfunction in chronic metabolic disease. The data implicate the postcapillary venular endothelium as the initiating site for vasculopathy. Indicators of dysfunction, spanning network structures, hemodynamics, vascular reactivity, and perfusion progress in an insidious retrograde manner to present as functional impairments to muscle blood flow and performance much later. The silent vasculopathy progression may provide insight into clinical treatment challenges.
Collapse
Affiliation(s)
- Brayden D Halvorson
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Nithin J Menon
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Stephanie J Frisbee
- Department Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Adam G Goodwill
- Department of Integrative Medical Sciences, Northeastern Ohio Medical University, Rootstown, Ohio
| | - Joshua T Butcher
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Steven D Brooks
- Laboratory of Malaria and Vector Research, Physiology Unit, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | | | - Robert W Wiseman
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Radiology, Michigan State University, East Lansing, Michigan
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert W Brock
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - I Mark Olfert
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
29
|
Scallan JP, Jannaway M. Lymphatic Vascular Permeability. Cold Spring Harb Perspect Med 2022; 12:a041274. [PMID: 35879102 PMCID: PMC9380735 DOI: 10.1101/cshperspect.a041274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Blood vessels have a regulated permeability to fluid and solutes, which allows for the delivery of nutrients and signaling molecules to all cells in the body, a process essential to life. The lymphatic vasculature is the second network of vessels in the body, making up part of the immune system, yet is not typically thought of as having a permeability to fluid and solute. However, the major function of the lymphatic vasculature is to regulate tissue fluid balance to prevent edema, so lymphatic vessels must be permeable to absorb and transport fluid efficiently. Only recently were lymphatic vessels discovered to be permeable, which has had many functional implications. In this review, we will provide an overview of what is known about lymphatic vascular permeability, discuss the biophysical and signaling mechanisms regulating lymphatic permeability, and examine the disease relevance of this new property of lymphatic vessels.
Collapse
Affiliation(s)
- Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - Melanie Jannaway
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| |
Collapse
|
30
|
Zhou LF, Lu R. Successful treatment of Morbihan disease with total glucosides of paeony: A case report. World J Clin Cases 2022; 10:6688-6694. [PMID: 35979289 PMCID: PMC9294874 DOI: 10.12998/wjcc.v10.i19.6688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/15/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Morbihan disease is a rare cutaneous disorder characterized by non-pitting edema and erythema of the upper two-thirds of the face. In severe cases, orbital and facial contour changes may affect the visual field, and there is no guideline for the standard treatment of this disease. Existing treatment methods have been reported to be associated with long medication cycle, easy recurrence after drug withdrawal, and multiple adverse reactions.
CASE SUMMARY A 55-year-old Chinese woman presented to our hospital with non-pitting edema and erythema of the upper two thirds of her face for 5 mo. Physical examination showed obvious edema and erythema on the upper face. The boundary was unclear, the lesions were hard and non-pitting, and infiltration was obvious by touch. Pathological examination revealed mild hyperkeratosis of the epidermis, nodular inflammatory lesions in the dermis, epithelioid granuloma, and inflammatory cell infiltration with lymphocytes and histiocytes around skin appendages and blood vessels. Alcian blue staining, acid fast staining, silver staining and periodic acid-Schiff staining were negative. The patient was diagnosed with Morbihan disease. She was treated with prednisone acetate and tripterygium wilfordii polyglycoside tablets for 4 mo, and the edema was slightly reduced, but transaminase levels were significantly increased. Compound glycyrrhizin capsules were administered for liver protection for 1 mo; however, facial edema did not significantly improve and transaminase levels continued to increase. Total glucosides of paeony capsules were then administered for 4 mo, and transaminase level returned to normal and the patient’s facial edema disappeared completely.
CONCLUSION Total glucosides of paeony has a remarkable effect in Morbihan disease, without adverse reactions.
Collapse
Affiliation(s)
- Li-Feng Zhou
- Department of Dermatology, The 942nd Hospital of the PLA Joint Logistic Support Force, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Rong Lu
- Department of Pathology, The 942nd Hospital of the PLA Joint Logistic Support Force, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
31
|
Michalaki E, Nepiyushchikh Z, Rudd JM, Bernard FC, Mukherjee A, McKinney JM, Doan TN, Willett NJ, Dixon JB. Effect of Human Synovial Fluid From Osteoarthritis Patients and Healthy Individuals on Lymphatic Contractile Activity. J Biomech Eng 2022; 144:071012. [PMID: 35118490 PMCID: PMC8883121 DOI: 10.1115/1.4053749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/10/2021] [Indexed: 11/08/2022]
Abstract
The lymphatic system has been proposed to play a crucial role in preventing the development and progression of osteoarthritis (OA). As OA develops and progresses, inflammatory cytokines and degradation by-products of joint tissues build up in the synovial fluid (SF) providing a feedback system to exacerbate disease. The lymphatic system plays a critical role in resolving inflammation and maintaining overall joint homeostasis; however, there is some evidence that the lymphatics can become dysfunctional during OA. We hypothesized that the functional mechanics of lymphatic vessels (LVs) draining the joint could be directly compromised due to factors within SF derived from osteoarthritis patients (OASF). Here, we utilized OASF and SF derived from healthy (non-OA) individuals (healthy SF (HSF)) to investigate potential effects of SF entering the draining lymph on migration of lymphatic endothelial cells (LECs) in vitro, and lymphatic contractile activity of rat femoral LVs (RFLVs) ex vivo. Dilutions of both OASF and HSF containing serum resulted in a similar LEC migratory response to the physiologically endothelial basal medium-treated LECs (endothelial basal medium containing serum) in vitro. Ex vivo, OASF and HSF treatments were administered within the lumen of isolated LVs under controlled pressures. OASF treatment transiently enhanced the RFLVs tonic contractions while phasic contractions were significantly reduced after 1 h of treatment and complete ceased after overnight treatment. HSF treatment on the other hand displayed a gradual decrease in lymphatic contractile activity (both tonic and phasic contractions). The observed variations after SF treatments suggest that the pump function of lymphatic vessel draining the joint could be directly compromised in OA and thus might present a new therapeutic target.
Collapse
Affiliation(s)
- Eleftheria Michalaki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332
| | - Zhanna Nepiyushchikh
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332
| | - Josephine M. Rudd
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332
| | - Fabrice C. Bernard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332
| | - Anish Mukherjee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Dr NW, Atlanta, GA 30332
| | - Jay M. McKinney
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332
| | - Thanh N. Doan
- Department of Orthopaedics, Emory University, 59 Executive Park South, Atlanta, GA 30329
| | - Nick J. Willett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332; Department of Orthopaedics, Emory University, 59 Executive Park South, Atlanta, GA 30329
| | - J. Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332
| |
Collapse
|
32
|
Liu J, Yu C. Lymphangiogenesis and Lymphatic Barrier Dysfunction in Renal Fibrosis. Int J Mol Sci 2022; 23:ijms23136970. [PMID: 35805972 PMCID: PMC9267103 DOI: 10.3390/ijms23136970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
As an integral part of the vascular system, the lymphatic vasculature is essential for tissue fluid homeostasis, nutritional lipid assimilation and immune regulation. The composition of the lymphatic vasculature includes fluid-absorbing initial lymphatic vessels (LVs), transporting collecting vessels and anti-regurgitation valves. Although, in recent decades, research has drastically enlightened our view of LVs, investigations of initial LVs, also known as lymphatic capillaries, have been stagnant due to technical limitations. In the kidney, the lymphatic vasculature mainly presents in the cortex, keeping the local balance of fluid, solutes and immune cells. The contribution of renal LVs to various forms of pathology, especially chronic kidney diseases, has been addressed in previous studies, however with diverging and inconclusive results. In this review, we discuss the most recent advances in the proliferation and permeability of lymphatic capillaries as well as their influencing factors. Novel technologies to visualize and measure LVs function are described. Then, we highlight the role of the lymphatic network in renal fibrosis and the crosstalk between kidney and other organs, such as gut and heart.
Collapse
|
33
|
Singla B, Aithabathula RV, Kiran S, Kapil S, Kumar S, Singh UP. Reactive Oxygen Species in Regulating Lymphangiogenesis and Lymphatic Function. Cells 2022; 11:1750. [PMID: 35681445 PMCID: PMC9179518 DOI: 10.3390/cells11111750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
The lymphatic system is pivotal for immunosurveillance and the maintenance of tissue homeostasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing vessels, has both physiological and pathological roles. Recent advances in the molecular mechanisms regulating lymphangiogenesis have opened a new area of research on reparative lymphangiogenesis for the treatment of various pathological disorders comprising neurological disorders, cardiac repair, autoimmune disease, obesity, atherosclerosis, etc. Reactive oxygen species (ROS) produced by the various cell types serve as signaling molecules in several cellular mechanisms and regulate various aspects of growth-factor-mediated responses, including lymphangiogenesis. The ROS, including superoxide anion, hydrogen peroxide, and nitric oxide, play both beneficial and detrimental roles depending upon their levels and cellular microenvironment. Low ROS levels are essential for lymphangiogenesis. On the contrary, oxidative stress due to enhanced ROS generation and/or reduced levels of antioxidants suppresses lymphangiogenesis via promoting lymphatic endothelial cell apoptosis and death. In this review article, we provide an overview of types and sources of ROS, discuss the role of ROS in governing lymphangiogenesis and lymphatic function, and summarize the role of lymphatics in various diseases.
Collapse
Affiliation(s)
- Bhupesh Singla
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Shweta Kapil
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children′s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| |
Collapse
|
34
|
Lee Y, Zawieja SD, Muthuchamy M. Lymphatic Collecting Vessel: New Perspectives on Mechanisms of Contractile Regulation and Potential Lymphatic Contractile Pathways to Target in Obesity and Metabolic Diseases. Front Pharmacol 2022; 13:848088. [PMID: 35355722 PMCID: PMC8959455 DOI: 10.3389/fphar.2022.848088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 01/19/2023] Open
Abstract
Obesity and metabolic syndrome pose a significant risk for developing cardiovascular disease and remain a critical healthcare challenge. Given the lymphatic system's role as a nexus for lipid absorption, immune cell trafficking, interstitial fluid and macromolecule homeostasis maintenance, the impact of obesity and metabolic disease on lymphatic function is a burgeoning field in lymphatic research. Work over the past decade has progressed from the association of an obese phenotype with Prox1 haploinsufficiency and the identification of obesity as a risk factor for lymphedema to consistent findings of lymphatic collecting vessel dysfunction across multiple metabolic disease models and organisms and characterization of obesity-induced lymphedema in the morbidly obese. Critically, recent findings have suggested that restoration of lymphatic function can also ameliorate obesity and insulin resistance, positing lymphatic targeted therapies as relevant pharmacological interventions. There remain, however, significant gaps in our understanding of lymphatic collecting vessel function, particularly the mechanisms that regulate the spontaneous contractile activity required for active lymph propulsion and lymph return in humans. In this article, we will review the current findings on lymphatic architecture and collecting vessel function, including recent advances in the ionic basis of lymphatic muscle contractile activity. We will then discuss lymphatic dysfunction observed with metabolic disruption and potential pathways to target with pharmacological approaches to improve lymphatic collecting vessel function.
Collapse
Affiliation(s)
- Yang Lee
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Scott D Zawieja
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Mariappan Muthuchamy
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
35
|
Castorena-Gonzalez JA. Lymphatic Valve Dysfunction in Western Diet-Fed Mice: New Insights Into Obesity-Induced Lymphedema. Front Pharmacol 2022; 13:823266. [PMID: 35308249 PMCID: PMC8931217 DOI: 10.3389/fphar.2022.823266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
A two-way connection between obesity and lymphatic dysfunction has now been established. Clinical studies have demonstrated that obesity significantly increases the risk for developing secondary lymphedema. Using animal-models, obesity and metabolic syndrome have been linked to different aspects of lymphatic structural abnormalities and lymphatic dysfunction, including impaired contractility, impaired flow-mediated responses, impaired fluid transport, as well as increased permeability, and abnormal dendritic cell migration among others. Dysfunction of lymphatic valves is a main form of lymphatic dysfunction, known to result in severe edematous phenotypes; however, the extent of lymphatic valve deficiency in secondary lymphedema, including obesity-induced lymphedema, remains unknown. Therefore, the aims of the present study were 1) to determine whether western diet-induced obesity results in lymphatic valve dysfunction, and 2) to determine whether lymphatic valve dysfunction in western diet-induced obesity results from the diet itself, or as a consequence of the metabolic alterations induced by the diet. First, we quantitatively assessed and compared valve function in isolated popliteal and mesenteric collecting lymphatic vessels from control and western diet-induced obese C57BL/6J (WT) mice. Feeding a western diet for 14 weeks induced obesity and elevated plasma glucose and cholesterol levels when compared to controls. The function of lymphatic valves in popliteal lymphatics was not affected by diet-induced obesity; however, significant back-leak of pressure was observed in mesenteric lymphatic valves. Dysfunctional, leaky valves from obese animals also required significantly higher adverse pressure to trigger valve closure. Importantly, when subjected to treatment with a western diet, globally deficient PAI-1 mice were significantly protected against metabolic dysfunction and displayed fully functional, competent mesenteric lymphatic valves. In conclusion, our findings show for the first time that, in association with the metabolic alterations induced by the western diet, lymphatic valve dysfunction can be a critical component of obesity-induced lymphedema.
Collapse
|
36
|
Angiotensin II Induces Cardiac Edema and Hypertrophic Remodeling through Lymphatic-Dependent Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5044046. [PMID: 35222798 PMCID: PMC8881141 DOI: 10.1155/2022/5044046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/17/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Cardiac lymphatic vessel growth (lymphangiogenesis) and integrity play an essential role in maintaining tissue fluid balance. Inhibition of lymphatic lymphangiogenesis is involved in cardiac edema and cardiac remodeling after ischemic injury or pressure overload. However, whether lymphatic vessel integrity is disrupted during angiotensin II- (Ang II-) induced cardiac remodeling remains to be investigated. In this study, cardiac remodeling models were established by Ang II (1000 ng/kg/min) in VEGFR-3 knockdown (Lyve-1Cre VEGFR-3f/−) and wild-type (VEGFR-3f/f) littermates. Our results indicated that Ang II infusion not only induced cardiac lymphangiogenesis and upregulation of VEGF-C and VEGFR-3 expression in the time-dependent manner but also enhanced proteasome activity, MKP5 and VE-cadherin degradation, p38 MAPK activation, and lymphatic vessel hyperpermeability. Moreover, VEGFR-3 knockdown significantly inhibited cardiac lymphangiogenesis in mice, resulting in exacerbation of tissue edema, hypertrophy, fibrosis superoxide production, inflammation, and heart failure (HF). Conversely, administration of epoxomicin (a selective proteasome inhibitor) markedly mitigated Ang II-induced cardiac edema, remodeling, and dysfunction; upregulated MKP5 and VE-cadherin expression; inactivated p38 MAPK; and reduced lymphatic vessel hyperpermeability in WT mice, indicating that inhibition of proteasome activity is required to maintain lymphatic endothelial cell (LEC) integrity. Our results show that both cardiac lymphangiogenesis and lymphatic barrier hyperpermeability are implicated in Ang II-induced adaptive hypertrophic remodeling and dysfunction. Proteasome-mediated hyperpermeability of LEC junctions plays a predominant role in the development of cardiac remodeling. Selective stimulation of lymphangiogenesis or inhibition of proteasome activity may be a potential therapeutic option for treating hypertension-induced cardiac remodeling.
Collapse
|
37
|
Wu H, Norton V, Cui K, Zhu B, Bhattacharjee S, Lu YW, Wang B, Shan D, Wong S, Dong Y, Chan SL, Cowan D, Xu J, Bielenberg DR, Zhou C, Chen H. Diabetes and Its Cardiovascular Complications: Comprehensive Network and Systematic Analyses. Front Cardiovasc Med 2022; 9:841928. [PMID: 35252405 PMCID: PMC8891533 DOI: 10.3389/fcvm.2022.841928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a worldwide health problem that usually comes with severe complications. There is no cure for diabetes yet and the threat of these complications is what keeps researchers investigating mechanisms and treatments for diabetes mellitus. Due to advancements in genomics, epigenomics, proteomics, and single-cell multiomics research, considerable progress has been made toward understanding the mechanisms of diabetes mellitus. In addition, investigation of the association between diabetes and other physiological systems revealed potentially novel pathways and targets involved in the initiation and progress of diabetes. This review focuses on current advancements in studying the mechanisms of diabetes by using genomic, epigenomic, proteomic, and single-cell multiomic analysis methods. It will also focus on recent findings pertaining to the relationship between diabetes and other biological processes, and new findings on the contribution of diabetes to several pathological conditions.
Collapse
Affiliation(s)
- Hao Wu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Vikram Norton
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Kui Cui
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Bo Zhu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Sudarshan Bhattacharjee
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yao Wei Lu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Beibei Wang
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Dan Shan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Scott Wong
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yunzhou Dong
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Siu-Lung Chan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Douglas Cowan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Jian Xu
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Diane R. Bielenberg
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Hong Chen
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
38
|
Davis MJ, Scallan JP, Castorena-Gonzalez JA, Kim HJ, Ying LH, Pin YK, Angeli V. Multiple aspects of lymphatic dysfunction in an ApoE -/- mouse model of hypercholesterolemia. Front Physiol 2022; 13:1098408. [PMID: 36685213 PMCID: PMC9852907 DOI: 10.3389/fphys.2022.1098408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction: Rodent models of cardiovascular disease have uncovered various types of lymphatic vessel dysfunction that occur in association with atherosclerosis, type II diabetes and obesity. Previously, we presented in vivo evidence for impaired lymphatic drainage in apolipoprotein E null (ApoE -/- ) mice fed a high fat diet (HFD). Whether this impairment relates to the dysfunction of collecting lymphatics remains an open question. The ApoE -/- mouse is a well-established model of cardiovascular disease, in which a diet rich in fat and cholesterol on an ApoE deficient background accelerates the development of hypercholesteremia, atherosclerotic plaques and inflammation of the skin and other tissues. Here, we investigated various aspects of lymphatic function using ex vivo tests of collecting lymphatic vessels from ApoE +/+ or ApoE -/- mice fed a HFD. Methods: Popliteal collectors were excised from either strain and studied under defined conditions in which we could quantify changes in lymphatic contractile strength, lymph pump output, secondary valve function, and collecting vessel permeability. Results: Our results show that all these aspects of lymphatic vessel function are altered in deleterious ways in this model of hypercholesterolemia. Discussion: These findings extend previous in vivo observations suggesting significant dysfunction of lymphatic endothelial cells and smooth muscle cells from collecting vessels in association with a HFD on an ApoE-deficient background. An implication of our study is that collecting vessel dysfunction in this context may negatively impact the removal of cholesterol by the lymphatic system from the skin and the arterial wall and thereby exacerbate the progression and/or severity of atherosclerosis and associated inflammation.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Joshua P Scallan
- Department of Molecular Pharmacology, University of South Florida, Tampa, FL, United States
| | | | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Lim Hwee Ying
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Yeo Kim Pin
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Veronique Angeli
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Kemp SS, Penn MR, Koller GM, Griffin CT, Davis GE. Proinflammatory mediators, TNFα, IFNγ, and thrombin, directly induce lymphatic capillary tube regression. Front Cell Dev Biol 2022; 10:937982. [PMID: 35927983 PMCID: PMC9343954 DOI: 10.3389/fcell.2022.937982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
In this work, we sought to investigate the direct effects of proinflammatory mediators on lymphatic endothelial cell (LEC) capillaries and whether they might induce regression. Our laboratory has developed novel in-vitro, serum-free, lymphatic tubulogenesis assay models whereby human LEC tube networks readily form in either three-dimensional collagen or fibrin matrices. These systems were initially conceptualized in the hopes of better understanding the influence of proinflammatory mediators on LEC capillaries. In this work, we have screened and identified proinflammatory mediators that cause regression of LEC tube networks, the most potent of which is TNFα (tumor necrosis factor alpha), followed by IFNγ (interferon gamma) and thrombin. When these mediators were combined, even greater and more rapid lymphatic capillary regression occurred. Surprisingly, IL-1β (interleukin-1 beta), one of the most potent and pathologic cytokines known, had no regressive effect on these tube networks. Finally, we identified new pharmacological drug combinations capable of rescuing LEC capillaries from regression in response to the potent combination of TNFα, IFNγ, and thrombin. We speculate that protecting lymphatic capillaries from regression may be an important step toward mitigating a wide variety of acute and chronic disease states, as lymphatics are believed to clear both proinflammatory cells and mediators from inflamed and damaged tissue beds. Overall, these studies identify key proinflammatory mediators, including TNFα, IFNγ, and thrombin, that induce regression of LEC tube networks, as well as identify potential therapeutic agents to diminish LEC capillary regression responses.
Collapse
Affiliation(s)
- Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Marlena R Penn
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Gretchen M Koller
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| |
Collapse
|
40
|
Archer PA, Sestito LF, Manspeaker MP, O'Melia MJ, Rohner NA, Schudel A, Mei Y, Thomas SN. Quantitation of lymphatic transport mechanism and barrier influences on lymph node-resident leukocyte access to lymph-borne macromolecules and drug delivery systems. Drug Deliv Transl Res 2021; 11:2328-2343. [PMID: 34165731 PMCID: PMC8571034 DOI: 10.1007/s13346-021-01015-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 02/04/2023]
Abstract
Lymph nodes (LNs) are tissues of the immune system that house leukocytes, making them targets of interest for a variety of therapeutic immunomodulation applications. However, achieving accumulation of a therapeutic in the LN does not guarantee equal access to all leukocyte subsets. LNs are structured to enable sampling of lymph draining from peripheral tissues in a highly spatiotemporally regulated fashion in order to facilitate optimal adaptive immune responses. This structure results in restricted nanoscale drug delivery carrier access to specific leukocyte targets within the LN parenchyma. Herein, a framework is presented to assess the manner in which lymph-derived macromolecules and particles are sampled in the LN to reveal new insights into how therapeutic strategies or drug delivery systems may be designed to improve access to dLN-resident leukocytes. This summary analysis of previous reports from our group assesses model nanoscale fluorescent tracer association with various leukocyte populations across relevant time periods post administration, studies the effects of bioactive molecule NO on access of lymph-borne solutes to dLN leukocytes, and illustrates the benefits to leukocyte access afforded by lymphatic-targeted multistage drug delivery systems. Results reveal trends consistent with the consensus view of how lymph is sampled by LN leukocytes resulting from tissue structural barriers that regulate inter-LN transport and demonstrate how novel, engineered delivery systems may be designed to overcome these barriers to unlock the therapeutic potential of LN-resident cells as drug delivery targets.
Collapse
Affiliation(s)
- Paul A Archer
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Lauren F Sestito
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Margaret P Manspeaker
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Meghan J O'Melia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Nathan A Rohner
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, GA, 30332, Atlanta, USA
| | - Alex Schudel
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yajun Mei
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, GA, 30332, Atlanta, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
41
|
Jannaway M, Scallan JP. VE-Cadherin and Vesicles Differentially Regulate Lymphatic Vascular Permeability to Solutes of Various Sizes. Front Physiol 2021; 12:687563. [PMID: 34621180 PMCID: PMC8491776 DOI: 10.3389/fphys.2021.687563] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
Lymphatic vascular permeability prevents lymph leakage that is associated with lymphedema, lymphatic malformations, obesity, and inflammation. However, the molecular control of lymphatic permeability remains poorly understood. Recent studies have suggested that adherens junctions and vesicle transport may be involved in regulating lymphatic vessel permeability. To determine the contribution of each transport pathway, we utilized an ex vivo permeability assay to directly measure the solute flux of various molecular weight solutes across a range of pressures in intact murine collecting lymphatic vessels. Pharmacological and biological tools were used to probe the relative contributions of vesicles and junction proteins in the lymphatic vasculature. We show that the permeability of collecting lymphatic vessels is inversely related to the solute molecular weight. Further, our data reveal that vesicles selectively transport BSA, as an inhibitor of vesicle formation significantly decreased the permeability to BSA (∼60% decrease, n = 8, P = 0.02), but not to 3 kDa dextran (n = 7, P = 0.41), α-lactalbumin (n = 5, P = 0.26) or 70 kDa dextran (n = 8, P = 0.13). In contrast, disruption of VE-cadherin binding with a function blocking antibody significantly increased lymphatic vessel permeability to both 3 kDa dextran (5.7-fold increase, n = 5, P < 0.0001) and BSA (5.8-fold increase, n = 5, P < 0.0001). Thus, in the lymphatic vasculature, adherens junctions did not exhibit selectivity for any of the solutes tested here, whereas vesicles specifically transport BSA. Overall, the findings suggest that disease states that disrupt VE-cadherin localization or expression will cause significant leakage of solutes and fluid from the lymphatic vasculature.
Collapse
Affiliation(s)
- Melanie Jannaway
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Joshua P Scallan
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
42
|
Cao E, Watt MJ, Nowell CJ, Quach T, Simpson JS, De Melo Ferreira V, Agarwal S, Chu H, Srivastava A, Anderson D, Gracia G, Lam A, Segal G, Hong J, Hu L, Phang KL, Escott ABJ, Windsor JA, Phillips ARJ, Creek DJ, Harvey NL, Porter CJH, Trevaskis NL. Mesenteric lymphatic dysfunction promotes insulin resistance and represents a potential treatment target in obesity. Nat Metab 2021; 3:1175-1188. [PMID: 34545251 DOI: 10.1038/s42255-021-00457-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Visceral adipose tissue (VAT) encases mesenteric lymphatic vessels and lymph nodes through which lymph is transported from the intestine and mesentery. Whether mesenteric lymphatics contribute to adipose tissue inflammation and metabolism and insulin resistance is unclear. Here we show that obesity is associated with profound and progressive dysfunction of the mesenteric lymphatic system in mice and humans. We find that lymph from mice and humans consuming a high-fat diet (HFD) stimulates lymphatic vessel growth, leading to the formation of highly branched mesenteric lymphatic vessels that 'leak' HFD-lymph into VAT and, thereby, promote insulin resistance. Mesenteric lymphatic dysfunction is regulated by cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF)-C-VEGF receptor (R)3 signalling. Lymph-targeted inhibition of COX-2 using a glyceride prodrug approach reverses mesenteric lymphatic dysfunction, visceral obesity and inflammation and restores glycaemic control in mice. Targeting obesity-associated mesenteric lymphatic dysfunction thus represents a potential therapeutic option to treat metabolic disease.
Collapse
Affiliation(s)
- Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.
| | - Matthew J Watt
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Tim Quach
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Jamie S Simpson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- Puretech Health, Boston, MA, USA
| | - Vilena De Melo Ferreira
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Sonya Agarwal
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Hannah Chu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Anubhav Srivastava
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Alina Lam
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Gabriela Segal
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Biological Optical Microscopy Platform, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jiwon Hong
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Kian Liun Phang
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - Alistair B J Escott
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - John A Windsor
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
- HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Anthony R J Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.
| |
Collapse
|
43
|
Fudim M, Salah HM, Sathananthan J, Bernier M, Pabon-Ramos W, Schwartz RS, Rodés-Cabau J, Côté F, Khalifa A, Virani SA, Patel MR. Lymphatic Dysregulation in Patients With Heart Failure: JACC Review Topic of the Week. J Am Coll Cardiol 2021; 78:66-76. [PMID: 34210416 DOI: 10.1016/j.jacc.2021.04.090] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022]
Abstract
The lymphatic system is an integral part of the circulatory system and plays an important role in the volume homeostasis of the human body. The complex anatomy and physiology paired with a lack of simple diagnostic tools to study the lymphatic system have led to an underappreciation of the contribution of the lymphatic system to acute and chronic heart failure (HF). Herein, we discuss the physiological role of the lymphatic system in volume management and the evidence demonstrating the dysregulation of the lymphatic system in HF. Further, we discuss the opportunity to target the lymphatic system in the management of HF and different potential approaches to accessing the lymphatic system.
Collapse
Affiliation(s)
- Marat Fudim
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA; Duke Clinical Research Institute, Durham, North Carolina, USA.
| | - Husam M Salah
- Department of Medicine, University of Arkansas for Medical Sciences, Arkansas, USA
| | - Janarthanan Sathananthan
- Centre for Cardiovascular Innovation and Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mathieu Bernier
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
| | - Waleska Pabon-Ramos
- Department of Radiology, Division of Interventional Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Josep Rodés-Cabau
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada; Hospital Clinic of Barcelona, Barcelona, Spain
| | - François Côté
- Interventional Radiology Department, CHU de Quebec, Laval University, Quebec City, Quebec, Canada
| | - Abubaker Khalifa
- Department of Medicine, Joseph Brant Hospital, McMaster University, Hamilton, Ontario, Canada
| | - Sean A Virani
- Centre for Cardiovascular Innovation and Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manesh R Patel
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA; Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
44
|
Wiig H. As for blood vessels, the answer regarding lymphatics is often NO. Acta Physiol (Oxf) 2021; 232:e13697. [PMID: 34057826 DOI: 10.1111/apha.13697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Helge Wiig
- Department of Biomedicine University of Bergen Bergen Norway
| |
Collapse
|
45
|
Baranwal G, Creed HA, Cromer WE, Wang W, Upchurch BD, Smithhart MC, Vadlamani SS, Clark MC, Busbuso NC, Blais SN, Reyna AJ, Dongaonkar RM, Zawieja DC, Rutkowski JM. Dichotomous effects on lymphatic transport with loss of caveolae in mice. Acta Physiol (Oxf) 2021; 232:e13656. [PMID: 33793057 DOI: 10.1111/apha.13656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022]
Abstract
AIM Fluid and macromolecule transport from the interstitium into and through lymphatic vessels is necessary for tissue homeostasis. While lymphatic capillary structure suggests that passive, paracellular transport would be the predominant route of macromolecule entry, active caveolae-mediated transcellular transport has been identified in lymphatic endothelial cells (LECs) in vitro. Caveolae also mediate a wide array of endothelial cell processes, including nitric oxide regulation. Thus, how does the lack of caveolae impact "lymphatic function"? METHODS Various aspects of lymphatic transport were measured in mice constitutively lacking caveolin-1 ("CavKO"), the protein required for caveolae formation in endothelial cells, and in mice with a LEC-specific Cav1 gene deletion (Lyve1-Cre x Cav1flox/flox ; "LyCav") and ex vivo in their vessels and cells. RESULTS In each model, lymphatic architecture was largely unchanged. The lymphatic conductance, or initial tissue uptake, was significantly higher in both CavKO mice and LyCav mice by quantitative microlymphangiography and the permeability to 70 kDa dextran was significantly increased in monolayers of LECs isolated from CavKO mice. Conversely, transport within the lymphatic system to the sentinel node was significantly reduced in anaesthetized CavKO and LyCav mice. Isolated, cannulated collecting vessel studies identified significantly reduced phasic contractility when lymphatic endothelium lacks caveolae. Inhibition of nitric oxide synthase was able to partially restore ex vivo vessel contractility. CONCLUSION Macromolecule transport across lymphatics is increased with loss of caveolae, yet phasic contractility reduced, resulting in reduced overall lymphatic transport function. These studies identify lymphatic caveolar biology as a key regulator of active lymphatic transport functions.
Collapse
Affiliation(s)
- Gaurav Baranwal
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Heidi A. Creed
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Walter E. Cromer
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Wei Wang
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Bradley D. Upchurch
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Matt C. Smithhart
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Suman S. Vadlamani
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Mary‐Catherine C. Clark
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | | | - Stephanie N. Blais
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Andrea J. Reyna
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Ranjeet M. Dongaonkar
- Department of Veterinary Physiology & Pharmacology Texas A&M University College of Veterinary Medicine & Biomedical Sciences College Station TX USA
| | - David C. Zawieja
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Joseph M. Rutkowski
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| |
Collapse
|
46
|
Myocardial Tissue Characterization in Heart Failure with Preserved Ejection Fraction: From Histopathology and Cardiac Magnetic Resonance Findings to Therapeutic Targets. Int J Mol Sci 2021; 22:ijms22147650. [PMID: 34299270 PMCID: PMC8304780 DOI: 10.3390/ijms22147650] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome responsible for high mortality and morbidity rates. It has an ever growing social and economic impact and a deeper knowledge of molecular and pathophysiological basis is essential for the ideal management of HFpEF patients. The association between HFpEF and traditional cardiovascular risk factors is known. However, myocardial alterations, as well as pathophysiological mechanisms involved are not completely defined. Under the definition of HFpEF there is a wide spectrum of different myocardial structural alterations. Myocardial hypertrophy and fibrosis, coronary microvascular dysfunction, oxidative stress and inflammation are only some of the main pathological detectable processes. Furthermore, there is a lack of effective pharmacological targets to improve HFpEF patients' outcomes and risk factors control is the primary and unique approach to treat those patients. Myocardial tissue characterization, through invasive and non-invasive techniques, such as endomyocardial biopsy and cardiac magnetic resonance respectively, may represent the starting point to understand the genetic, molecular and pathophysiological mechanisms underlying this complex syndrome. The correlation between histopathological findings and imaging aspects may be the future challenge for the earlier and large-scale HFpEF diagnosis, in order to plan a specific and effective treatment able to modify the disease's natural course.
Collapse
|
47
|
Donthi D, Nenow J, Samia A, Phillips C, Papalas J, Prenshaw K. Morbihan disease: A diagnostic dilemma: two cases with successful resolution. SAGE Open Med Case Rep 2021; 9:2050313X211023655. [PMID: 34178345 PMCID: PMC8202299 DOI: 10.1177/2050313x211023655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Morbihan syndrome is a rare entity characterized by persistent erythema and solid edema of upper two-thirds of the face. Although its etiology is poorly understood, it is known to have a wide differential diagnosis and is frequently under-recognized.1–3 We report two such cases of Morbihan syndrome in patients that responded well to treatment with a combination of 2.5% hydrocortisone cream, brimonidine 0.33% topical gel, metronidazole gel and 100 mg doxycycline twice daily. This report emphasizes the necessity of biopsy for clinical correlation in cases of chronic facial edema. It also serves to highlight a potential association of Morbihan syndrome to diabetes mellitus through recently discovered pathophysiology of diabetes on the lymphatic system. It underscores the effectiveness of our therapeutic regimen in the context of other treatment regimen effectiveness. Finally, it highlights novel advances into the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Deepak Donthi
- Department of Pathology, Vidant Medical Center, East Carolina University, Greenville, NC, USA
| | - Joseph Nenow
- Vidant Medical Center, East Carolina University, Greenville, NC, USA
| | - Arthur Samia
- Vidant Medical Center, East Carolina University, Greenville, NC, USA
| | - Charles Phillips
- Department of Dermatology, University of New Mexico, Albuquerque, NM, USA
| | - John Papalas
- Eastern Dermatology and Pathology, Greenville, NC, USA
| | - Karyn Prenshaw
- Department of Pathology, Vidant Medical Center, East Carolina University, Greenville, NC, USA
| |
Collapse
|
48
|
Cifarelli V, Appak-Baskoy S, Peche VS, Kluzak A, Shew T, Narendran R, Pietka KM, Cella M, Walls CW, Czepielewski R, Ivanov S, Randolph GJ, Augustin HG, Abumrad NA. Visceral obesity and insulin resistance associate with CD36 deletion in lymphatic endothelial cells. Nat Commun 2021; 12:3350. [PMID: 34099721 PMCID: PMC8184948 DOI: 10.1038/s41467-021-23808-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
Disruption of lymphatic lipid transport is linked to obesity and type 2 diabetes (T2D), but regulation of lymphatic vessel function and its link to disease remain unclear. Here we show that intestinal lymphatic endothelial cells (LECs) have an increasing CD36 expression from lymphatic capillaries (lacteals) to collecting vessels, and that LEC CD36 regulates lymphatic integrity and optimizes lipid transport. Inducible deletion of CD36 in LECs in adult mice (Cd36ΔLEC) increases discontinuity of LEC VE-cadherin junctions in lacteals and collecting vessels. Cd36ΔLEC mice display slower transport of absorbed lipid, more permeable mesenteric lymphatics, accumulation of inflamed visceral fat and impaired glucose disposal. CD36 silencing in cultured LECs suppresses cell respiration, reduces VEGF-C-mediated VEGFR2/AKT phosphorylation and destabilizes VE-cadherin junctions. Thus, LEC CD36 optimizes lymphatic junctions and integrity of lymphatic lipid transport, and its loss in mice causes lymph leakage, visceral adiposity and glucose intolerance, phenotypes that increase risk of T2D. Genetic variants in CD36 have been associated with metabolic syndrome. Here, the authors found that lymphatic vessel integrity and lipid transport are influenced by CD36 expression, and lymphatic endothelial cell CD36 deficiency causes visceral obesity and insulin resistance, which are risk factors for metabolic syndrome and diabetes.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, USA.
| | - Sila Appak-Baskoy
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Vivek S Peche
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, USA
| | - Andrew Kluzak
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, USA
| | - Trevor Shew
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, USA
| | - Ramkumar Narendran
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, USA
| | - Kathryn M Pietka
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, USA
| | - Curtis W Walls
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, USA
| | - Rafael Czepielewski
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, USA
| | - Stoyan Ivanov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, USA
| | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Nada A Abumrad
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, USA. .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, USA.
| |
Collapse
|
49
|
Zhong J, Yang HC, Yermalitsky V, Shelton EL, Otsuka T, Wiese CB, May-Zhang LS, Banan B, Abumrad N, Huang J, Cavnar AB, Kirabo A, Yancey PG, Fogo AB, Vickers KC, Linton MF, Davies SS, Kon V. Kidney injury-mediated disruption of intestinal lymphatics involves dicarbonyl-modified lipoproteins. Kidney Int 2021; 100:585-596. [PMID: 34102217 DOI: 10.1016/j.kint.2021.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
Kidney disease affects intestinal structure and function. Although intestinal lymphatics are central in absorption and remodeling of dietary and synthesized lipids/lipoproteins, little is known about how kidney injury impacts the intestinal lymphatic network, or lipoproteins transported therein. To study this, we used puromycin aminoglycoside-treated rats and NEP25 transgenic mice to show that proteinuric injury expanded the intestinal lymphatic network, activated lymphatic endothelial cells and increased mesenteric lymph flow. The lymph was found to contain increased levels of cytokines, immune cells, and isolevuglandin (a highly reactive dicarbonyl) and to have a greater output of apolipoprotein AI. Plasma levels of cytokines and isolevuglandin were not changed. However, isolevuglandin was also increased in the ileum of proteinuric animals, and intestinal epithelial cells exposed to myeloperoxidase produced more isolevuglandin. Apolipoprotein AI modified by isolevuglandin directly increased lymphatic vessel contractions, activated lymphatic endothelial cells, and enhanced the secretion of the lymphangiogenic promoter vascular endothelial growth factor-C by macrophages. Inhibition of isolevuglandin synthesis by a carbonyl scavenger reduced intestinal isolevuglandin adduct level and lymphangiogenesis. Thus, our data reveal a novel mediator, isolevuglandin modified apolipoprotein AI, and uncover intestinal lymphatic network structure and activity as a new pathway in the crosstalk between kidney and intestine that may contribute to the adverse impact of kidney disease on other organs.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hai-Chun Yang
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Valery Yermalitsky
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Elaine L Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tadashi Otsuka
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carrie B Wiese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Linda S May-Zhang
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Babak Banan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Naji Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jiansheng Huang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ashley B Cavnar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Patricia G Yancey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - MacRae F Linton
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean S Davies
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
50
|
Singla B, Lin HP, Chen A, Ahn W, Ghoshal P, Cherian-Shaw M, White J, Stansfield BK, Csányi G. Role of R-spondin 2 in arterial lymphangiogenesis and atherosclerosis. Cardiovasc Res 2021; 117:1489-1509. [PMID: 32750106 PMCID: PMC8152716 DOI: 10.1093/cvr/cvaa244] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
AIMS Impaired lymphatic drainage of the arterial wall results in intimal lipid accumulation and atherosclerosis. However, the mechanisms regulating lymphangiogenesis in atherosclerotic arteries are not well understood. Our studies identified elevated levels of matrix protein R-spondin 2 (RSPO2) in atherosclerotic arteries. In this study, we investigated the role of RSPO2 in lymphangiogenesis, arterial cholesterol efflux into lesion-draining lymph nodes (LNs) and development of atherosclerosis. METHODS AND RESULTS The effect of RSPO2 on lymphangiogenesis was investigated using human lymphatic endothelial cells (LEC) in vitro and implanted Matrigel plugs in vivo. Cellular and molecular approaches, pharmacological agents, and siRNA silencing of RSPO2 receptor LGR4 were used to investigate RSPO2-mediated signalling in LEC. In vivo low-density lipoprotein (LDL) tracking and perivascular blockade of RSPO2-LGR4 signalling using LGR4-extracellular domain (ECD) pluronic gel in hypercholesterolemic mice were utilized to investigate the role of RSPO2 in arterial reverse cholesterol transport and atherosclerosis. Immunoblotting and imaging experiments demonstrated increased RSPO2 expression in human and mouse atherosclerotic arteries compared to non-atherosclerotic controls. RSPO2 treatment inhibited lymphangiogenesis both in vitro and in vivo. LGR4 silencing and inhibition of RSPO2-LGR4 signalling abrogated RSPO2-induced inhibition of lymphangiogenesis. Mechanistically, we found that RSPO2 suppresses PI3K-AKT-endothelial nitric oxide synthase (eNOS) signalling via LGR4 and inhibits activation of the canonical Wnt-β-catenin pathway. ApoE-/- mice treated with LGR4-ECD developed significantly less atherosclerosis compared with control treatment. Finally, increased arterial lymphatic vessel density and improved lymphatic drainage of fluorescently labelled LDL to deep cervical LNs were observed in LGR4-ECD-treated mice. CONCLUSION These findings demonstrate that RSPO2 inhibits lymphangiogenesis via LGR4 and downstream impairment of AKT-eNOS-nitric oxide signalling. These results may also inform new therapeutic strategies to promote lymphangiogenesis and improve cholesterol efflux from atherosclerotic arteries.
Collapse
Affiliation(s)
- Bhupesh Singla
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Hui-Ping Lin
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Alex Chen
- Medical Scholars Program, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - WonMo Ahn
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Pushpankur Ghoshal
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Joseph White
- Department of Pathology, Medical College of Georgia at Augusta University, 1120 15th Street, BF 104, Augusta, GA 30912, USA
| | - Brian K Stansfield
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
- Department of Pediatrics, Medical College of Georgia at Augusta University, 1120 15th Street, BI6031, Augusta, GA 30912, USA
| | - Gábor Csányi
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| |
Collapse
|