1
|
Zhang F, Fan J, Lei F, Liu T, Lin D, Qin M, Cheng W. Activation of PKC affects the ventricular restitution properties and arrhythmogenesis through L-type Ca + current. Pacing Clin Electrophysiol 2024. [PMID: 38922937 DOI: 10.1111/pace.14998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To investigate the role of protein kinase C (PKC) in action potential duration (APD) restitution and ventricular tachyarrhythmias (VAs). METHODS AND RESULTS Rabbits hearts were isolated and prepared for Langendorff perfusion technique. The stimuli-extra-stimulus (S1-S2) method and dynamic S1 pacing protocol were performed to construct APD restitution and to induce APD alternans or VA, respectively, at 10 sites throughout the ventricular chamber. Administration of phorbol-12-myristate-13-acetate (PMA) (100 nM) (n = 15) greatly steepened the restitution curves (Smax > 1) (p < .01) at each site compared to the control group (n = 15). Furthermore, treatment with PMA also induced larger spatial dispersions of Smax (p < .05) and decreased the thresholds of the VA and APD alternans (p < .01). However, perfused with the PKC inhibitor, bisindolylmaleimide (BIM) (500 nM) (n = 10), reversibly flattened the APD restitution curves at each site (Smax < 1), decreased the spatial dispersions of Smax, and increased the thresholds of APD alternans and VA. According to the results of patch-clamp, peak amplitude of L-type Ca2+ current was significantly increased by addition of PMA compared with control (CTL) group (p < .05). Antagonize this current with verapamil (n = 10) can fully inhibited the PMA induced increasing of Smax and inducibility of VA and alternans. CONCLUSION PKC activation increased the dispersion of APD restitution and thus led to occurrence of VA, which possibly related to the increased Ca2+ influx.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jianing Fan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fuhua Lei
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Dawei Lin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wenbo Cheng
- Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
2
|
Zaniboni M. The electrical restitution of the non-propagated cardiac ventricular action potential. Pflugers Arch 2024; 476:9-37. [PMID: 37783868 PMCID: PMC10758374 DOI: 10.1007/s00424-023-02866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Sudden changes in pacing cycle length are frequently associated with repolarization abnormalities initiating cardiac arrhythmias, and physiologists have long been interested in measuring the likelihood of these events before their manifestation. A marker of repolarization stability has been found in the electrical restitution (ER), the response of the ventricular action potential duration to a pre- or post-mature stimulation, graphically represented by the so-called ER curve. According to the restitution hypothesis (ERH), the slope of this curve provides a quantitative discrimination between stable repolarization and proneness to arrhythmias. ER has been studied at the body surface, whole organ, and tissue level, and ERH has soon become a key reference point in theoretical, clinical, and pharmacological studies concerning arrhythmia development, and, despite criticisms, it is still widely adopted. The ionic mechanism of ER and cellular applications of ERH are covered in the present review. The main criticism on ERH concerns its dependence from the way ER is measured. Over the years, in fact, several different experimental protocols have been established to measure ER, which are also described in this article. In reviewing the state-of-the art on cardiac cellular ER, I have introduced a notation specifying protocols and graphical representations, with the aim of unifying a sometime confusing nomenclature, and providing a physiological tool, better defined in its scope and limitations, to meet the growing expectations of clinical and pharmacological research.
Collapse
Affiliation(s)
- Massimiliano Zaniboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma (Italy), Parco Area Delle Scienze, 11/A, 43124, Parma, Italy.
| |
Collapse
|
3
|
Alvarez JAE, Jafri MS, Ullah A. Local Control Model of a Human Ventricular Myocyte: An Exploration of Frequency-Dependent Changes and Calcium Sparks. Biomolecules 2023; 13:1259. [PMID: 37627324 PMCID: PMC10452762 DOI: 10.3390/biom13081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Calcium (Ca2+) sparks are the elementary events of excitation-contraction coupling, yet they are not explicitly represented in human ventricular myocyte models. A stochastic ventricular cardiomyocyte human model that adapts to intracellular Ca2+ ([Ca2+]i) dynamics, spark regulation, and frequency-dependent changes in the form of locally controlled Ca2+ release was developed. The 20,000 CRUs in this model are composed of 9 individual LCCs and 49 RyRs that function as couplons. The simulated action potential duration at 1 Hz steady-state pacing is ~0.280 s similar to human ventricular cell recordings. Rate-dependence experiments reveal that APD shortening mechanisms are largely contributed by the L-type calcium channel inactivation, RyR open fraction, and [Ca2+]myo concentrations. The dynamic slow-rapid-slow pacing protocol shows that RyR open probability during high pacing frequency (2.5 Hz) switches to an adapted "nonconducting" form of Ca2+-dependent transition state. The predicted force was also observed to be increased in high pacing, but the SR Ca2+ fractional release was lower due to the smaller difference between diastolic and systolic [Ca2+]SR. Restitution analysis through the S1S2 protocol and increased LCC Ca2+-dependent activation rate show that the duration of LCC opening helps modulate its effects on the APD restitution at different diastolic intervals. Ultimately, a longer duration of calcium sparks was observed in relation to the SR Ca2+ loading at high pacing rates. Overall, this study demonstrates the spontaneous Ca2+ release events and ion channel responses throughout various stimuli.
Collapse
Affiliation(s)
| | - M. Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
4
|
Piccirillo G, Moscucci F, Di Diego I, Mezzadri M, Caltabiano C, Carnovale M, Corrao A, Lospinuso I, Stefano S, Scinicariello C, Giuffrè M, De Santis V, Sciomer S, Rossi P, Fiori E, Magrì D. Effect of Head-Up/-Down Tilt on ECG Segments and Myocardial Temporal Dispersion in Healthy Subjects. BIOLOGY 2023; 12:960. [PMID: 37508390 PMCID: PMC10376208 DOI: 10.3390/biology12070960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
The head-up/-down tilt test acutely modifies the autonomic nervous system balance throughout a deactivation of the cardiopulmonary reflexes. The present study examines the influence of head-up/-down tilt on a number of ECG segments. A total of 20 healthy subjects underwent a 5 min ECG and noninvasive hemodynamic bio-impedance recording, during free and controlled breathing, lying at (a) 0°; (b) -45°, tilting up at 45°, and tilting up at 90°. Heart rate variability power spectral analysis was obtained throughout some ECG intervals: P-P (P), P-Q (PQ), PeQ (from the end of P to Q wave), Q-R peak (QR intervals), Q-R-S (QRS), Q-T peak (QTp), Q-T end (QTe), STp, STe, T peak-T end (Te), and, eventually, the TeP segments (from the end of T to the next P waves). Results: In all study conditions, the Low Frequency/High FrequencyPP and LFPP normalized units (nu) were significantly lower than the LF/HFRR and LFRRnu, respectively. Conversely, the HFPP and HFPPnu were significantly higher in all study conditions. STe, QTp, and QTe were significantly related to the PP and RR intervals, whereas the T wave amplitude was inversely related to the standard deviations of all the myocardial repolarization variables and to the left ventricular end-systolic volume (LVEDV). The T wave amplitude diminished during head-up tilt and significantly correlated with the LVEDV.
Collapse
Affiliation(s)
- Gianfranco Piccirillo
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico, 00161 Rome, Italy
| | - Federica Moscucci
- Department of Internal Medicine and Medical Specialties, Policlinico Umberto I, Viale del Policlinico, 00161 Rome, Italy
| | - Ilaria Di Diego
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico, 00161 Rome, Italy
| | - Martina Mezzadri
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico, 00161 Rome, Italy
| | - Cristina Caltabiano
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico, 00161 Rome, Italy
| | - Myriam Carnovale
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico, 00161 Rome, Italy
| | - Andrea Corrao
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico, 00161 Rome, Italy
| | - Ilaria Lospinuso
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico, 00161 Rome, Italy
| | - Sara Stefano
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico, 00161 Rome, Italy
| | - Claudia Scinicariello
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico, 00161 Rome, Italy
| | - Marco Giuffrè
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico, 00161 Rome, Italy
| | - Valerio De Santis
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico, 00161 Rome, Italy
| | - Susanna Sciomer
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico, 00161 Rome, Italy
| | - Pietro Rossi
- Arrhythmology Unit, Fatebenefratelli Hospital Isola Tiberina-Gemelli Isola, 00186 Rome, Italy
| | - Emiliano Fiori
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, "Sapienza" University of Rome, 00198 Rome, Italy
| | - Damiano Magrì
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, "Sapienza" University of Rome, 00198 Rome, Italy
| |
Collapse
|
5
|
Nanbu T, Yotsukura A, Suzuki G, Takekawa H, Tanaka Y, Yamanashi K, Tsuda M, Yoshida I, Sakurai M, Ashihara T. Organization of atrial fibrillation using a pure sodium channel blocker: Implications of rotor ablation therapy. J Arrhythm 2023; 39:327-340. [PMID: 37324754 PMCID: PMC10264751 DOI: 10.1002/joa3.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/29/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023] Open
Abstract
Background Rotors are the source of atrial fibrillation (AF). However, the ablation of rotors for persistent AF is challenging. The purpose of this study was to identify the dominant rotor by accelerating the organization of AF using a sodium channel blocker and detecting the rotor's preferential area that governs AF. Methods Overall, 30 consecutive patients with persistent AF who underwent pulmonary vein isolation and still sustained AF were enrolled. Pilsicainide 50 mg was administered. An online real-time phase mapping system (ExTRa Mapping™) was used to identify the meandering rotors and multiple wavelets in 11 left atrial segments. The time ratio of non-passive activation (%NP) was evaluated as the frequency of rotor activity in each segment. Results Conduction velocity became slower-from 0.46 ± 0.14 to 0.35 ± 0.14 mm/ms (p = .004)-and the rotational period of the rotor was significantly prolonged-156 ± 21 to 193 ± 28 ms/cycle (p < .001). AF cycle length was prolonged from 169 ± 19 to 223 ± 29 ms (p < .001). A decrease in %NP was observed in seven segments. Additionally, 14 patients had at least one complete passive activation area. Of them, the use of high %NP area ablation resulted in atrial tachycardia and sinus rhythm in two patients each. Conclusions A sodium channel blocker organized persistent AF. In selective patients with a wide organized area, high %NP area ablation could convert AF into atrial tachycardia or terminate AF.
Collapse
Affiliation(s)
- Tadafumi Nanbu
- Department of Cardiovascular MedicineHokko Memorial HospitalSapporo‐shiJapan
| | - Akihiko Yotsukura
- Department of Cardiovascular MedicineHokko Memorial HospitalSapporo‐shiJapan
| | - George Suzuki
- Department of Cardiovascular MedicineHokko Memorial HospitalSapporo‐shiJapan
| | - Hiroyuki Takekawa
- Department of Cardiovascular MedicineHokko Memorial HospitalSapporo‐shiJapan
| | - Yuki Tanaka
- Department of Cardiovascular MedicineHokko Memorial HospitalSapporo‐shiJapan
| | - Katsuma Yamanashi
- Department of Cardiovascular MedicineHokko Memorial HospitalSapporo‐shiJapan
| | - Masaya Tsuda
- Department of Cardiovascular MedicineHokko Memorial HospitalSapporo‐shiJapan
| | - Izumi Yoshida
- Department of Cardiovascular MedicineHokko Memorial HospitalSapporo‐shiJapan
| | - Masayuki Sakurai
- Department of Cardiovascular MedicineHokko Memorial HospitalSapporo‐shiJapan
| | - Takashi Ashihara
- Department of Medical Informatics and Biomedical EngineeringShiga University of Medical ScienceSeta Tsukinowa‐cho, OtsuJapan
| |
Collapse
|
6
|
You T, Xie Y, Luo C, Zhang K, Zhang H. Mechanistic insights into spontaneous transition from cellular alternans to ventricular fibrillation. Physiol Rep 2023; 11:e15619. [PMID: 36863774 PMCID: PMC9981424 DOI: 10.14814/phy2.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 03/04/2023] Open
Abstract
T-wave alternans (TWA) has been used for predicting the risk of malignant cardiac arrhythmias and sudden cardiac death (SCD) in multiple clinical settings; however, possible mechanism(s) underlying the spontaneous transition from cellular alternans reflected by TWA to arrhythmias in impaired repolarization remains unclear. The healthy guinea pig ventricular myocytes under E-4031 blocking IKr (0.1 μM, N = 12; 0.3 μM, N = 10; 1 μM, N = 10) were evaluated using whole-cell patch-clamp. The electrophysiological properties of isolated perfused guinea pig hearts under E-4031 (0.1 μM, N = 5; 0.3 μM, N = 5; 1 μM, N = 5) were evaluated using dual- optical mapping. The amplitude/threshold/restitution curves of action potential duration (APD) alternans and potential mechanism(s) underlying the spontaneous transition of cellular alternans to ventricular fibrillation (VF) were examined. There were longer APD80 and increased amplitude and threshold of APD alternans in E-4031 group compared with baseline group, which was reflected by more pronounced arrhythmogenesis at the tissue level, and were associated with steep restitution curves of the APD and the conduction velocity (CV). Conduction of AP alternans augmented tissue's functional spatiotemporal heterogeneity of regional AP/Ca alternans, as well as the AP/Ca dispersion, leading to localized uni-directional conduction block that spontaneous facilitated the formation of reentrant excitation waves without the need for additional premature stimulus. Our results provide a possible mechanism for the spontaneous transition from cardiac electrical alternans in cellular action potentials and intercellular conduction without the involvement of premature excitations, and explain the increased susceptibility to ventricular arrhythmias in impaired repolarization. In this study, we implemented voltage-clamp and dual-optical mapping approaches to investigate the underlying mechanism(s) for the arrhythmogenesis of cardiac alternans in the guinea pig heart at cellular and tissue levels. Our results demonstrated a spontaneous development of reentry from cellular alternans, arising from a combined actions of restitution properties of action potential duration, conduction velocity of excitation wave and interplay between alternants of action potential and the intracellular Ca handling. We believe this study provides new insights into underlying the mechanism, by which cellular cardiac alternans spontaneously evolves into cardiac arrhythmias.
Collapse
Affiliation(s)
- Tingting You
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases)Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
- Department of NeurosurgeryXinqiao Hospital, Army Medical UniversityChongqingChina
| | - Yulong Xie
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases)Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
| | - Cunjin Luo
- School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK
| | - Kevin Zhang
- School of MedicineImperial College of LondonLondonUK
| | - Henggui Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases)Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
- Department of Physics and AstronomyUniversity of ManchesterManchesterUK
| |
Collapse
|
7
|
Ripplinger CM, Glukhov AV, Kay MW, Boukens BJ, Chiamvimonvat N, Delisle BP, Fabritz L, Hund TJ, Knollmann BC, Li N, Murray KT, Poelzing S, Quinn TA, Remme CA, Rentschler SL, Rose RA, Posnack NG. Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals. Am J Physiol Heart Circ Physiol 2022; 323:H1137-H1166. [PMID: 36269644 PMCID: PMC9678409 DOI: 10.1152/ajpheart.00439.2022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/09/2023]
Abstract
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.
Collapse
Affiliation(s)
- Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Bastiaan J Boukens
- Department Physiology, University Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
- Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
- Veterans Affairs Northern California Healthcare System, Mather, California
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Larissa Fabritz
- University Center of Cardiovascular Science, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf with DZHK Hamburg/Kiel/Luebeck, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas J Hund
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Na Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Katherine T Murray
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Steven Poelzing
- Virginia Tech Carilon School of Medicine, Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech, Roanoke, Virginia
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Stacey L Rentschler
- Cardiovascular Division, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
- Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia
| |
Collapse
|
8
|
O'Shea C, Winter J, Kabir SN, O'Reilly M, Wells SP, Baines O, Sommerfeld LC, Correia J, Lei M, Kirchhof P, Holmes AP, Fabritz L, Rajpoot K, Pavlovic D. High resolution optical mapping of cardiac electrophysiology in pre-clinical models. Sci Data 2022; 9:135. [PMID: 35361792 PMCID: PMC8971487 DOI: 10.1038/s41597-022-01253-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/08/2022] Open
Abstract
Optical mapping of animal models is a widely used technique in pre-clinical cardiac research. It has several advantages over other methods, including higher spatial resolution, contactless recording and direct visualisation of action potentials and calcium transients. Optical mapping enables simultaneous study of action potential and calcium transient morphology, conduction dynamics, regional heterogeneity, restitution and arrhythmogenesis. In this dataset, we have optically mapped Langendorff perfused isolated whole hearts (mouse and guinea pig) and superfused isolated atria (mouse). Raw datasets (consisting of over 400 files) can be combined with open-source software for processing and analysis. We have generated a comprehensive post-processed dataset characterising the baseline cardiac electrophysiology in these widely used pre-clinical models. This dataset also provides reference information detailing the effect of heart rate, clinically used anti-arrhythmic drugs, ischaemia-reperfusion and sympathetic nervous stimulation on cardiac electrophysiology. The effects of these interventions can be studied in a global or regional manner, enabling new insights into the prevention and initiation of arrhythmia.
Collapse
Affiliation(s)
- Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
| | - James Winter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - S Nashitha Kabir
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Molly O'Reilly
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Simon P Wells
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Olivia Baines
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Laura C Sommerfeld
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- University Center of Cardiovascular Science, UKE, Hamburg, Germany
| | - Joao Correia
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Heart and Vascular Centre, University Medical Center Hamburg-Eppendorf, Germany and German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lubeck, Lubeck, Germany
- University Center of Cardiovascular Science, UKE, Hamburg, Germany
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Heart and Vascular Centre, University Medical Center Hamburg-Eppendorf, Germany and German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lubeck, Lubeck, Germany
- University Center of Cardiovascular Science, UKE, Hamburg, Germany
| | - Kashif Rajpoot
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Kohajda Z, Virág L, Hornyik T, Husti Z, Sztojkov-Ivanov A, Nagy N, Horváth A, Varga R, Prorok J, Szlovák J, Tóth N, Gazdag P, Topal L, Naveed M, Árpádffy-Lovas T, Pászti B, Magyar T, Koncz I, Déri S, Demeter-Haludka V, Aigner Z, Ördög B, Patfalusi M, Tálosi L, Tiszlavicz L, Földesi I, Jost N, Baczkó I, Varró A. In vivo and cellular antiarrhythmic and cardiac electrophysiological effects of desethylamiodarone in dog cardiac preparations. Br J Pharmacol 2022; 179:3382-3402. [PMID: 35106755 DOI: 10.1111/bph.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of the present study was to study the antiarrhythmic effects and cellular mechanisms of desethylamiodarone (DEA), the main metabolite of amiodarone (AMIO), following acute and chronic 4-week oral treatments (25-50 mg·kg-1 ·day-1 ). EXPERIMENTAL APPROACH The antiarrhythmic effects of acute iv. (10 mg·kg-1 ) and chronic oral (4 weeks, 25 mg·kg-1 ·day-1 ) administration of DEA were assessed in carbachol and tachypacing-induced dog atrial fibrillation models. Action potentials were recorded from atrial and right ventricular tissue following acute (10 μM) and chronic (p.o. 4 weeks, 50 mg·kg-1 ·day-1 ) DEA application using the conventional microelectrode technique. Ionic currents were measured by the whole cell configuration of the patch clamp technique in isolated left ventricular myocytes. Pharmacokinetic studies were performed following a single intravenous dose (25 mg·kg-1 ) of AMIO and DEA intravenously and orally. In chronic (91-day) toxicological investigations, DEA and AMIO were administered in the oral dose of 25 mg·kg-1 ·day-1 ). KEY RESULTS DEA exerted marked antiarrhythmic effects in both canine atrial fibrillation models. Both acute and chronic DEA administration prolonged action potential duration in atrial and ventricular muscle without any changes detected in Purkinje fibres. DEA decreased the amplitude of several outward potassium currents such as IKr , IKs , IK1 , Ito , and IKACh , while the ICaL and late INa inward currents were also significantly depressed. Better drug bioavailability and higher volume of distribution for DEA were observed compared to AMIO. No neutropenia and less severe pulmonary fibrosis was found following DEA compared to that of AMIO administration. CONCLUSION AND IMPLICATIONS Chronic DEA treatment in animal experiments has marked antiarrhythmic and electrophysiological effects with better pharmacokinetics and lower toxicity than its parent compound. These results suggest that the active metabolite, DEA, should be considered for clinical trials as a possible new, more favourable option for the treatment of cardiac arrhythmias including atrial fibrillation.
Collapse
Affiliation(s)
- Zsófia Kohajda
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Anita Sztojkov-Ivanov
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Norbert Nagy
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - András Horváth
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Richárd Varga
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - János Prorok
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Jozefina Szlovák
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Noémi Tóth
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Péter Gazdag
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Leila Topal
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tamás Árpádffy-Lovas
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Bence Pászti
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tibor Magyar
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - István Koncz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Szilvia Déri
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | - Zoltán Aigner
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Balázs Ördög
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Márta Patfalusi
- Department of Toxicology, ATRC Aurigon Toxicological Research Center Ltd., Dunakeszi, Hungary
| | - László Tálosi
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - László Tiszlavicz
- Department of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Jost
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - András Varró
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Shibata N, Inada S, Nakazawa K, Ashihara T, Tomii N, Yamazaki M, Honjo H, Seno H, Sakuma I. Mechanism of Ventricular Fibrillation: Current Status and Problems. ADVANCED BIOMEDICAL ENGINEERING 2022. [DOI: 10.14326/abe.11.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Nitaro Shibata
- Department of Cardiology, Shinjuku Mitsui Building Clinic
| | - Shin Inada
- Faculty of Medical Science Technology, Morinomiya University of Medical Sciences
| | - Kazuo Nakazawa
- Faculty of Medical Science Technology, Morinomiya University of Medical Sciences
| | - Takashi Ashihara
- Department of Medical Informatics and Biomedical Engineering, Shiga University of Medical Science
| | - Naoki Tomii
- Department of Precision Engineering, The University of Tokyo
| | | | - Haruo Honjo
- Health Promotion Division, Toyota Autobody Co. Ltd
| | - Hiroshi Seno
- Department of Precision Engineering, The University of Tokyo
| | - Ichiro Sakuma
- Medical Device Development and Regulation Research Center, The University of Tokyo
| |
Collapse
|
11
|
Optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms. Basic Res Cardiol 2022; 117:25. [PMID: 35488105 PMCID: PMC9054908 DOI: 10.1007/s00395-022-00933-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023]
Abstract
Cardiac action potential (AP) shape and propagation are regulated by several key dynamic factors such as ion channel recovery and intracellular Ca2+ cycling. Experimental methods for manipulating AP electrical dynamics commonly use ion channel inhibitors that lack spatial and temporal specificity. In this work, we propose an approach based on optogenetics to manipulate cardiac electrical activity employing a light-modulated depolarizing current with intensities that are too low to elicit APs (sub-threshold illumination), but are sufficient to fine-tune AP electrical dynamics. We investigated the effects of sub-threshold illumination in isolated cardiomyocytes and whole hearts by using transgenic mice constitutively expressing a light-gated ion channel (channelrhodopsin-2, ChR2). We find that ChR2-mediated depolarizing current prolongs APs and reduces conduction velocity (CV) in a space-selective and reversible manner. Sub-threshold manipulation also affects the dynamics of cardiac electrical activity, increasing the magnitude of cardiac alternans. We used an optical system that uses real-time feedback control to generate re-entrant circuits with user-defined cycle lengths to explore the role of cardiac alternans in spontaneous termination of ventricular tachycardias (VTs). We demonstrate that VT stability significantly decreases during sub-threshold illumination primarily due to an increase in the amplitude of electrical oscillations, which implies that cardiac alternans may be beneficial in the context of self-termination of VT.
Collapse
|
12
|
Hwang I, Jin Z, Park JW, Kwon OS, Lim B, Lee J, Yu HT, Kim TH, Joung B, Pak HN. Spatial Changes in the Atrial Fibrillation Wave-Dynamics After Using Antiarrhythmic Drugs: A Computational Modeling Study. Front Physiol 2021; 12:733543. [PMID: 34630153 PMCID: PMC8497701 DOI: 10.3389/fphys.2021.733543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 01/05/2023] Open
Abstract
Background: We previously reported that a computational modeling-guided antiarrhythmic drug (AAD) test was feasible for evaluating multiple AADs in patients with atrial fibrillation (AF). We explored the anti-AF mechanisms of AADs and spatial change in the AF wave-dynamics by a realistic computational model. Methods: We used realistic computational modeling of 25 AF patients (68% male, 59.8 ± 9.8 years old, 32.0% paroxysmal AF) reflecting the anatomy, histology, and electrophysiology of the left atrium (LA) to characterize the effects of five AADs (amiodarone, sotalol, dronedarone, flecainide, and propafenone). We evaluated the spatial change in the AF wave-dynamics by measuring the mean dominant frequency (DF) and its coefficient of variation [dominant frequency-coefficient of variation (DF-COV)] in 10 segments of the LA. The mean DF and DF-COV were compared according to the pulmonary vein (PV) vs. extra-PV, maximal slope of the restitution curves (Smax), and defragmentation of AF. Results: The mean DF decreased after the administration of AADs in the dose dependent manner (p < 0.001). Under AADs, the DF was significantly lower (p < 0.001) and COV-DF higher (p = 0.003) in the PV than extra-PV region. The mean DF was significantly lower at a high Smax (≥1.4) than a lower Smax condition under AADs. During the episodes of AF defragmentation, the mean DF was lower (p < 0.001), but the COV-DF was higher (p < 0.001) than that in those without defragmentation. Conclusions: The DF reduction with AADs is predominant in the PVs and during a high Smax condition and causes AF termination or defragmentation during a lower DF and spatially unstable (higher DF-COV) condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hui-Nam Pak
- Yonsei University Health System, Seoul, South Korea
| |
Collapse
|
13
|
Tóth N, Szlovák J, Kohajda Z, Bitay G, Veress R, Horváth B, Papp JG, Varró A, Nagy N. The development of L-type Ca 2+ current mediated alternans does not depend on the restitution slope in canine ventricular myocardium. Sci Rep 2021; 11:16652. [PMID: 34404848 PMCID: PMC8371021 DOI: 10.1038/s41598-021-95299-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022] Open
Abstract
Cardiac alternans have crucial importance in the onset of ventricular fibrillation. The early explanation for alternans development was the voltage-driven mechanism, where the action potential (AP) restitution steepness was considered as crucial determining factor. Recent results suggest that restitution slope is an inadequate predictor for alternans development, but several studies still claim the role of membrane potential as underlying mechanism of alternans. These controversial data indicate that the relationship of restitution and alternans development is not completely understood. APs were measured by conventional microelectrode technique from canine right ventricular papillary muscles. Ionic currents combined with fluorescent measurements were recorded by patch-clamp technique. APs combined with fluorescent measurements were monitored by sharp microelectrodes. Rapid pacing evoked restitution-independent AP duration (APD) alternans. When non-alternating AP voltage command was used, Ca2+i-transient (CaT) alternans were not observed. When alternating rectangular voltage pulses were applied, CaT alternans were proportional to ICaL amplitude alternans. Selective ICaL inhibition did not influence the fast phase of APD restitution. In this study we found that ICaL has minor contribution in shaping the fast phase of restitution curve suggesting that ICaL—if it plays important role in the alternans mechanism—could be an additional factor that attenuates the reliability of APD restitution slope to predict alternans.
Collapse
Affiliation(s)
- Noémi Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dóm tér 12, P.O. Box 427, 6720, Szeged, Hungary
| | - Jozefina Szlovák
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dóm tér 12, P.O. Box 427, 6720, Szeged, Hungary
| | - Zsófia Kohajda
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Gergő Bitay
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dóm tér 12, P.O. Box 427, 6720, Szeged, Hungary
| | - Roland Veress
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Julius Gy Papp
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dóm tér 12, P.O. Box 427, 6720, Szeged, Hungary.,ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dóm tér 12, P.O. Box 427, 6720, Szeged, Hungary.,ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dóm tér 12, P.O. Box 427, 6720, Szeged, Hungary. .,ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary.
| |
Collapse
|
14
|
Hwang I, Jin Z, Park JW, Kwon OS, Lim B, Hong M, Kim M, Yu HT, Kim TH, Uhm JS, Joung B, Lee MH, Pak HN. Computational Modeling for Antiarrhythmic Drugs for Atrial Fibrillation According to Genotype. Front Physiol 2021; 12:650449. [PMID: 34054570 PMCID: PMC8155488 DOI: 10.3389/fphys.2021.650449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/22/2021] [Indexed: 01/11/2023] Open
Abstract
Background: The efficacy of antiarrhythmic drugs (AAD) can vary in patients with atrial fibrillation (AF), and the PITX2 gene affects the responsiveness of AADs. We explored the virtual AAD (V-AAD) responses between wild-type and PITX2 +/--deficient AF conditions by realistic in silico AF modeling. Methods: We tested the V-AADs in AF modeling integrated with patients' 3D-computed tomography and 3D-electroanatomical mapping, acquired in 25 patients (68% male, 59.8 ± 9.8 years old, 32.0% paroxysmal type). The ion currents for the PITX2 +/- deficiency and each AAD (amiodarone, sotalol, dronedarone, flecainide, and propafenone) were defined based on previous publications. Results: We compared the wild-type and PITX2 +/- deficiency in terms of the action potential duration (APD90), conduction velocity (CV), maximal slope of restitution (Smax), and wave-dynamic parameters, such as the dominant frequency (DF), phase singularities (PS), and AF termination rates according to the V-AADs. The PITX2 +/--deficient model exhibited a shorter APD90 (p < 0.001), a lower Smax (p < 0.001), mean DF (p = 0.012), PS number (p < 0.001), and a longer AF cycle length (AFCL, p = 0.011). Five V-AADs changed the electrophysiology in a dose-dependent manner. AAD-induced AFCL lengthening (p < 0.001) and reductions in the CV (p = 0.033), peak DF (p < 0.001), and PS number (p < 0.001) were more significant in PITX2 +/--deficient than wild-type AF. PITX2 +/--deficient AF was easier to terminate with class IC AADs than the wild-type AF (p = 0.018). Conclusions: The computational modeling-guided AAD test was feasible for evaluating the efficacy of multiple AADs in patients with AF. AF wave-dynamic and electrophysiological characteristics are different among the PITX2-deficient and the wild-type genotype models.
Collapse
|
15
|
Song ZL, Liu Y, Liu X, Qin M. Absence of Rgs5 Influences the Spatial and Temporal Fluctuation of Cardiac Repolarization in Mice. Front Physiol 2021; 12:622084. [PMID: 33815137 PMCID: PMC8012757 DOI: 10.3389/fphys.2021.622084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/22/2021] [Indexed: 11/25/2022] Open
Abstract
Aims This study investigated the contribution of the regulator of G-protein signaling 5 (Rgs5) knockout to the alteration of the action potential duration (APD) restitution and repolarizing dispersion in ventricle. Methods and Results The effects of Rgs5–/– were investigated by QT variance (QTv) and heart rate variability analysis of Rgs5–/– mice. Monophasic action potential analysis was investigated in isolated Rgs5–/– heart. Rgs5–/– did not promote ventricular remodeling. The 24-h QTv and QT variability index (QTVI) of the Rgs5–/– mice were higher than those of wild-type (WT) mice (P < 0.01). In WT mice, a positive correlation was found between QTv and the standard deviation of all NN intervals (r = 0.62; P < 0.01), but not in Rgs5–/– mice (R = 0.01; P > 0.05). The absence of Rgs5 resulted in a significant prolongation of effective refractory period and APD in isolated ventricle. In addition, compared with WT mice, the knockout of Rgs5 significantly deepened the slope of the APD recovery curve at all 10 sites of the heart (P < 0.01) and increased the spatial dispersions of Smax (COV-Smax) (WT: 0.28 ± 0.03, Rgs5–/–: 0.53 ± 0.08, P < 0.01). Compared with WT heart, Rgs5–/– increased the induced S1–S2 interval at all sites of heart and widened the window of vulnerability of ventricular tachyarrhythmia (P < 0.05). Conclusion Our findings indicate that Rgs5–/– is an important regulator of ventricular tachyarrhythmia in mice by prolonging ventricular repolarization and increasing spatial dispersion in ventricle.
Collapse
Affiliation(s)
- Zi-Liang Song
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
O'Shea C, Winter J, Holmes AP, Johnson DM, Correia JN, Kirchhof P, Fabritz L, Rajpoot K, Pavlovic D. Temporal irregularity quantification and mapping of optical action potentials using wave morphology similarity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 157:84-93. [PMID: 31899215 PMCID: PMC7607254 DOI: 10.1016/j.pbiomolbio.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/08/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Cardiac optical mapping enables direct and high spatio-temporal resolution recording of action potential (AP) morphology. Temporal alterations in AP morphology are both predictive and consequent of arrhythmia. Here we sought to test if methods that quantify regularity of recorded waveforms could be applied to detect and quantify periods of temporal instability in optical mapping datasets in a semi-automated, user-unbiased manner. METHODS AND RESULTS We developed, tested and applied algorithms to quantify optical wave similarity (OWS) to study morphological temporal similarity of optically recorded APs. Unlike other measures (e.g. alternans ratio, beat-to-beat variability, arrhythmia scoring), the quantification of OWS is achieved without a restrictive definition of specific signal points/features and is instead derived by analysing the complete morphology from the entire AP waveform. Using model datasets, we validated the ability of OWS to measure changes in AP morphology, and tested OWS mapping in guinea pig hearts and mouse atria. OWS successfully detected and measured alterations in temporal regularity in response to several proarrhythmic stimuli, including alterations in pacing frequency, premature contractions, alternans and ventricular fibrillation. CONCLUSION OWS mapping provides an effective measure of temporal regularity that can be applied to optical datasets to detect and quantify temporal alterations in action potential morphology. This methodology provides a new metric for arrhythmia inducibility and scoring in optical mapping datasets.
Collapse
Affiliation(s)
- Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, UK; EPSRC Centre for Doctoral Training in Physical Sciences for Health, School of Chemistry, University of Birmingham, UK; School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - James Winter
- Institute of Cardiovascular Sciences, University of Birmingham, UK
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, UK; Institute of Clinical Sciences, University of Birmingham, UK
| | - Daniel M Johnson
- Institute of Cardiovascular Sciences, University of Birmingham, UK
| | - Joao N Correia
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, UK
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, UK; Department of Cardiology, UHB NHS Foundation Trust, Birmingham, UK; Cardiology Specialty, SWBH NHS Trust, Birmingham, UK
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, UK; Department of Cardiology, UHB NHS Foundation Trust, Birmingham, UK
| | - Kashif Rajpoot
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, UK.
| |
Collapse
|
17
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
18
|
Zasadny FM, Dyavanapalli J, Dowling NM, Mendelowitz D, Kay MW. Cholinergic stimulation improves electrophysiological rate adaptation during pressure overload-induced heart failure in rats. Am J Physiol Heart Circ Physiol 2020; 319:H1358-H1368. [PMID: 33006920 PMCID: PMC7792708 DOI: 10.1152/ajpheart.00293.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Left ventricular (LV) electrical maladaptation to increased heart rate in failing myocardium contributes to morbidity and mortality. Recently, cardiac cholinergic neuron activation reduced loss of contractile function resulting from chronic trans-aortic constriction (TAC) in rats. We hypothesized that chronic activation of cardiac cholinergic neurons would also reduce TAC-induced derangement of cardiac electrical activity. METHODS We investigated electrophysiological rate adaptation in TAC rat hearts with and without daily chemogenetic activation of hypothalamic oxytocin neurons for downstream cardiac cholinergic neuron stimulation. Sprague Dawley rat hearts were excised, perfused, and optically mapped under dynamic pacing after 16 weeks of TAC with or without 12 weeks of daily chemogenetic treatment. Action potential duration (APD60) and conduction velocity (CV) maps were analyzed for regional rate adaptation to dynamic pacing. RESULTS At lower pacing rates, untreated TAC induced elevated LV epicardial APD60. Fitted APD60 steady state (APDss) was reduced in treated TAC hearts. At higher pacing rates, treatment heterogeneously reduced APD60 compared to untreated TAC hearts. Variance of conduction loss was reduced in treated hearts compared to untreated hearts during fast pacing. However, CV was markedly reduced in both treated and untreated TAC hearts throughout dynamic pacing. At 150msec pacing cycle length, APD60 v. diastolic interval (DI) dispersion was reduced in treated hearts compared to untreated hearts. CONCLUSIONS Chronic activation of cardiac cholinergic neurons improved electrophysiological adaptation to increases in pacing rate during development of TAC-induced heart failure. This provides insight into the electrophysiological benefits of cholinergic stimulation as a treatment for heart failure patients.
Collapse
Affiliation(s)
| | | | | | - David Mendelowitz
- Pharmacology and Physiology, George Washington University, United States
| | - Matthew W Kay
- Biomedical Engineering, George Washington University, United States
| |
Collapse
|
19
|
Gunawan MG, Sangha SS, Shafaattalab S, Lin E, Heims-Waldron DA, Bezzerides VJ, Laksman Z, Tibbits GF. Drug screening platform using human induced pluripotent stem cell-derived atrial cardiomyocytes and optical mapping. Stem Cells Transl Med 2020; 10:68-82. [PMID: 32927497 PMCID: PMC7780813 DOI: 10.1002/sctm.19-0440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
Current drug development efforts for the treatment of atrial fibrillation are hampered by the fact that many preclinical models have been unsuccessful in reproducing human cardiac physiology and its response to medications. In this study, we demonstrated an approach using human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes (hiPSC-aCMs and hiPSC-vCMs, respectively) coupled with a sophisticated optical mapping system for drug screening of atrial-selective compounds in vitro. We optimized differentiation of hiPSC-aCMs by modulating the WNT and retinoid signaling pathways. Characterization of the transcriptome and proteome revealed that retinoic acid pushes the differentiation process into the atrial lineage and generated hiPSC-aCMs. Functional characterization using optical mapping showed that hiPSC-aCMs have shorter action potential durations and faster Ca2+ handling dynamics compared with hiPSC-vCMs. Furthermore, pharmacological investigation of hiPSC-aCMs captured atrial-selective effects by displaying greater sensitivity to atrial-selective compounds 4-aminopyridine, AVE0118, UCL1684, and vernakalant when compared with hiPSC-vCMs. These results established that a model system incorporating hiPSC-aCMs combined with optical mapping is well-suited for preclinical drug screening of novel and targeted atrial selective compounds.
Collapse
Affiliation(s)
- Marvin G Gunawan
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.,Tibbits Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Sarabjit S Sangha
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.,Tibbits Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Sanam Shafaattalab
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.,Tibbits Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Eric Lin
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | - Zachary Laksman
- Division of Cardiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.,Tibbits Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Árpádffy-Lovas T, Baczkó I, Baláti B, Bitay M, Jost N, Lengyel C, Nagy N, Takács J, Varró A, Virág L. Electrical Restitution and Its Modifications by Antiarrhythmic Drugs in Undiseased Human Ventricular Muscle. Front Pharmacol 2020; 11:479. [PMID: 32425771 PMCID: PMC7203420 DOI: 10.3389/fphar.2020.00479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/26/2020] [Indexed: 01/02/2023] Open
Abstract
Introduction Re-entry is a basic mechanism of ventricular fibrillation, which can be elicited by extrasystolic activity, but the timing of an extrasystole can be critical. The action potential duration (APD) of an extrasystole depends on the proximity of the preceding beat, and the relation between its timing and its APD is called electrical restitution. The aim of the present work was to study and compare the effect of several antiarrhythmic drugs on restitution in preparations from undiseased human ventricular muscle, and other mammalian species. Methods Action potentials were recorded in preparations obtained from rat, guinea pig, rabbit, and dog hearts; and from undiseased human donor hearts using the conventional microelectrode technique. Preparations were stimulated with different basic cycle lengths (BCLs) ranging from 300 to 5,000 ms. To study restitution, single test pulses were applied at every 20th beat while the preparation was driven at 1,000 ms BCL. Results Marked differences were found between the animal and human preparations regarding restitution and steady-state frequency dependent curves. In human ventricular muscle, restitution kinetics were slower in preparations with large phase 1 repolarization with shorter APDs at 1000 ms BCL compared to preparations with small phase 1. Preparations having APD longer than 300 ms at 1000 ms BCL had slower restitution kinetics than those having APD shorter than 250 ms. The selective IKr inhibitors E-4031 and sotalol increased overall APD and slowed the restitution kinetics, while IKs inhibition did not influence APD and electrical restitution. Mexiletine and nisoldipine shortened APD, but only mexiletine slowed restitution kinetics. Discussion Frequency dependent APD changes, including electrical restitution, were partly determined by the APD at the BCL. Small phase 1 associated with slower restitution suggests a role of Ito in restitution. APD prolonging drugs slowed restitution, while mexiletine, a known inhibitor of INa, shortened basic APD but also slowed restitution. These results indicate that although basic APD has an important role in restitution, other transmembrane currents, such as INa or Ito, can also affect restitution kinetics. This raises the possibility that ion channel modifier drugs slowing restitution kinetics may have antiarrhythmic properties by altering restitution.
Collapse
Affiliation(s)
- Tamás Árpádffy-Lovas
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Beáta Baláti
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Miklós Bitay
- Department of Cardiac Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Csaba Lengyel
- First Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - János Takács
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
21
|
Osadchii OE. Antiarrhythmic drug effects on premature beats are partly determined by prior cardiac activation frequency in perfused guinea-pig heart. Exp Physiol 2020; 105:819-830. [PMID: 32175633 DOI: 10.1113/ep088165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/13/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can antiarrhythmic drug effects on repolarization, conduction time and excitation wavelength in premature beats be determined by prior cardiac activation frequency? What is the main finding and its importance? In premature beats induced after a series of cardiac activations at a slow rate, antiarrhythmics prolong repolarization but evoke little or no conduction delay, thus increasing the excitation wavelength, which indicates an antiarrhythmic effect. Fast prior activation rate attenuates prolongation of repolarization, while amplifying the conduction delay induced by drugs, which translates into the reduced excitation wavelength, indicating proarrhythmia. These findings suggest that a sudden increase in heart rate can shape adverse pharmacological profiles in patients with ventricular ectopy. ABSTRACT Antiarrhythmic drugs used to treat atrial fibrillation can occasionally induce ventricular tachyarrhythmia, which is typically precipitated by a premature ectopic beat through a mechanism related, in part, to the shortening of the excitation wavelength (EW). The arrhythmia is likely to occur when a drug induces a reduction, rather than an increase, in the EW of ectopic beats. In this study, I examined whether the arrhythmic drug profile is shaped by the increased cardiac activation rate before ectopic excitation. Ventricular monophasic action potential durations, conduction times and EW values were assessed during programmed stimulations applied at long (S1 -S1 [basic drive cycle length] = 550 ms) and short (S1 -S1 = 200 ms) cycle lengths in perfused guinea-pig hearts. The premature activations were induced with extrastimulus application immediately upon termination of the refractory period. With dofetilide, a class III antiarrhythmic agent, a prolongation in action potential duration and the resulting increase in the EW obtained at S1 -S1 = 550 ms were significantly attenuated at S1 -S1 = 200 ms, in both the regular (S1 ) and the premature (S2 ) beats. With class I antiarrhythmic agents (quinidine, procainamide and flecainide), fast S1 -S1 pacing was found to attenuate the drug-induced increase in action potential duration, while amplifying drug-induced conduction slowing, in both S1 and S2 beats. As a result, although the EW was increased (quinidine and procainamide) or not changed (flecainide) at the long S1 -S1 intervals, it was invariably reduced by these agents at the short S1 -S1 intervals. These findings indicate that the increased heart rate before ectopic activation shapes the arrhythmic profiles by facilitating drug-induced EW reduction.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark.,Department of Health Science and Technology, University of Aalborg, Aalborg, Denmark
| |
Collapse
|
22
|
Small HY, Guzik TJ. High impact Cardiovascular Research: beyond the heart and vessels. Cardiovasc Res 2019; 115:e166-e171. [PMID: 31697316 DOI: 10.1093/cvr/cvz272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Heather Y Small
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, 126 University Place, University of Glasgow, Glasgow, UK
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, 126 University Place, University of Glasgow, Glasgow, UK.,Department of Internal and Agricultural Medicine, Jagiellonian University Collegium Medicum, 31-008 Anny 12, Krakow, Poland
| |
Collapse
|
23
|
Nánási PP, Szabó Z, Kistamás K, Horváth B, Virág L, Jost N, Bányász T, Almássy J, Varró A. Implication of frequency-dependent protocols in antiarrhythmic and proarrhythmic drug testing. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 157:76-83. [PMID: 31726065 DOI: 10.1016/j.pbiomolbio.2019.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/20/2023]
Abstract
It has long been known that the electrophysiological effects of many cardioactive drugs strongly depend on the rate dependent frequency. This was recognized first for class I antiarrhythmic agents: their Vmax suppressive effect was attenuated at long cycle lengths. Later many Ca2+ channel blockers were also found to follow such kinetics. The explanation was provided by the modulated and the guarded receptor theories. Regarding the duration of cardiac action potentials (APD) an opposite frequency-dependence was observed, i.e. the drug-induced changes in APD were proportional with the cycle length of stimulation, therefore it was referred as "reverse rate-dependency". The beat-to-beat, or short term variability of APD (SV) has been recognized as an important proarrhythmic mechanism, its magnitude can be used as an arrhythmia predictor. SV is modulated by several cardioactive agents, however, these drugs modify also APD itself. In order to clear the drug-specific effects on SV from the concomitant unspecific APD-change related ones, the term of "relative variability" was introduced. Relative variability is increased by ion channel blockers that decrease the negative feedback control of APD (i.e. blockers of ICa, IKr and IKs) and also by elevation of cytosolic Ca2+. Cardiac arrhythmias are also often categorized according to the characteristic heart rate (tachy- and bradyarrhythmias). Tachycardia is proarrhythmic primarily due to the concomitant Ca2+ overload causing delayed afterdepolarizations. Early afterdepolarizations (EADs) are complications of the bradycardic heart. What is common in the reverse rate-dependent nature of drug action on APD, increased SV and EAD incidence associated with bradycardia.
Collapse
Affiliation(s)
- Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szabó
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary; MTA-SZTE Research Group for Cardiovascular Pharmacology, Szeged, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary; MTA-SZTE Research Group for Cardiovascular Pharmacology, Szeged, Hungary.
| |
Collapse
|
24
|
Bai J, Lu Y, Lo A, Zhao J, Zhang H. Proarrhythmia in the p.Met207Val PITX2c-Linked Familial Atrial Fibrillation-Insights From Modeling. Front Physiol 2019; 10:1314. [PMID: 31695623 PMCID: PMC6818469 DOI: 10.3389/fphys.2019.01314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Functional analysis has shown that the p.Met207Val mutation was linked to atrial fibrillation and caused an increase in transactivation activity of PITX2c, which caused changes in mRNA synthesis related to ionic channels and intercellular electrical coupling. We assumed that these changes were quantitatively translated to the functional level. This study aimed to investigate the potential impact of the PITX2c p.Met207Val mutation on atrial electrical activity through multiscale computational models. The well-known Courtemanche-Ramirez-Nattel (CRN) model of human atrial cell action potentials (APs) was modified to incorporate experimental data on the expected p.Met207Val mutation-induced changes in ionic channel currents (INaL, IKs, and IKr) and intercellular electrical coupling. The cell models for wild-type (WT), heterozygous (Mutant/Wild type, MT/WT), and homozygous (Mutant, MT) PITX2c cases were incorporated into homogeneous multicellular 1D and 2D tissue models. Effects of this mutation-induced remodeling were quantified as changes in AP profile, AP duration (APD) restitution, conduction velocity (CV) restitution and wavelength (WL). Temporal and spatial vulnerabilities of atrial tissue to the genesis of reentry were computed. Dynamic behaviors of re-entrant excitation waves (Life span, tip trajectory and dominant frequency) in a homogeneous 2D tissue model were characterized. Our results suggest that the PITX2c p.Met207Val mutation abbreviated atrial APD and flattened APD restitution curves. It reduced atrial CV and WL that facilitated the conduction of high rate atrial excitation waves. It increased the tissue's temporal vulnerability by increasing the vulnerable window for initiating reentry and increased the tissue spatial vulnerability by reducing the substrate size necessary to sustain reentry. In the 2D models, the mutation also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained reentry. In conclusion, electrical and structural remodeling arising from the PITX2c p.Met207Val mutation may increase atrial susceptibility to arrhythmia due to shortened APD, reduced CV and increased tissue vulnerability, which, in combination, facilitate initiation and maintenance of re-entrant excitation waves.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Andy Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, United Kingdom.,Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
25
|
Handa BS, Lawal S, Wright IJ, Li X, Cabello-García J, Mansfield C, Chowdhury RA, Peters NS, Ng FS. Interventricular Differences in Action Potential Duration Restitution Contribute to Dissimilar Ventricular Rhythms in ex vivo Perfused Hearts. Front Cardiovasc Med 2019; 6:34. [PMID: 31001543 PMCID: PMC6456660 DOI: 10.3389/fcvm.2019.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/13/2019] [Indexed: 01/24/2023] Open
Abstract
Background: Dissimilar ventricular rhythms refer to the occurrence of different ventricular tachyarrhythmias in the right and left ventricles or different rates of the same tachyarrhythmia in the two ventricles. Objective: We investigated the inducibility of dissimilar ventricular rhythms, their underlying mechanisms, and the impact of anti-arrhythmic drugs (lidocaine and amiodarone) on their occurrence. Methods: Ventricular tachyarrhythmias were induced with burst pacing in 28 Langendorff-perfused Sprague Dawley rat hearts (14 control, 8 lidocaine, 6 amiodarone) and bipolar electrograms recorded from the right and left ventricles. Fourteen (6 control, 4 lidocaine, 4 amiodarone) further hearts underwent optical mapping of transmembrane voltage to study interventricular electrophysiological differences and mechanisms of dissimilar rhythms. Results: In control hearts, dissimilar ventricular rhythms developed in 8/14 hearts (57%). In lidocaine treated hearts, there was a lower cycle length threshold for developing dissimilar rhythms, with 8/8 (100%) hearts developing dissimilar rhythms in comparison to 0/6 in the amiodarone group. Dissimilar ventricular tachycardia (VT) rates occurred at longer cycle lengths with lidocaine vs. control (57.1 ± 7.9 vs. 36.6 ± 8.4 ms, p < 0.001). The ratio of LV:RV VT rate was greater in the lidocaine group than control (1.91 ± 0.30 vs. 1.76 ± 0.36, p < 0.001). The gradient of the action potential duration (APD) restitution curve was shallower in the RV compared with LV (Control - LV: 0.12 ± 0.03 vs RV: 0.002 ± 0.03, p = 0.015), leading to LV-to-RV conduction block during VT. Conclusion: Interventricular differences in APD restitution properties likely contribute to the occurrence of dissimilar rhythms. Sodium channel blockade with lidocaine increases the likelihood of dissimilar ventricular rhythms.
Collapse
Affiliation(s)
- Balvinder S. Handa
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Saheed Lawal
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ian J. Wright
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Xinyang Li
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Catherine Mansfield
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rasheda A. Chowdhury
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nicholas S. Peters
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
26
|
Ni H, Zhang H, Grandi E, Narayan SM, Giles WR. Transient outward K + current can strongly modulate action potential duration and initiate alternans in the human atrium. Am J Physiol Heart Circ Physiol 2019; 316:H527-H542. [PMID: 30576220 PMCID: PMC6415821 DOI: 10.1152/ajpheart.00251.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/27/2018] [Accepted: 08/15/2018] [Indexed: 01/14/2023]
Abstract
Efforts to identify the mechanisms for the initiation and maintenance of human atrial fibrillation (AF) often focus on changes in specific elements of the atrial "substrate," i.e., its electrophysiological properties and/or structural components. We used experimentally validated mathematical models of the human atrial myocyte action potential (AP), both at baseline in sinus rhythm (SR) and in the setting of chronic AF, to identify significant contributions of the Ca2+-independent transient outward K+ current ( Ito) to electrophysiological instability and arrhythmia initiation. First, we explored whether changes in the recovery or restitution of the AP duration (APD) and/or its dynamic stability (alternans) can be modulated by Ito. Recent reports have identified disease-dependent spatial differences in expression levels of the specific K+ channel α-subunits that underlie Ito in the left atrium. Therefore, we studied the functional consequences of this by deletion of 50% of native Ito (Kv4.3) and its replacement with Kv1.4. Interestingly, significant changes in the short-term stability of the human atrial AP waveform were revealed. Specifically, this K+ channel isoform switch produced discontinuities in the initial slope of the APD restitution curve and appearance of APD alternans. This pattern of in silico results resembles some of the changes observed in high-resolution clinical electrophysiological recordings. Important insights into mechanisms for these changes emerged from known biophysical properties (reactivation kinetics) of Kv1.4 versus those of Kv4.3. These results suggest new approaches for pharmacological management of AF, based on molecular properties of specific K+ isoforms and their changed expression during progressive disease. NEW & NOTEWORTHY Clinical studies identify oscillations (alternans) in action potential (AP) duration as a predictor for atrial fibrillation (AF). The abbreviated AP in AF also involves changes in K+ currents and early repolarization of the AP. Our simulations illustrate how substitution of Kv1.4 for the native current, Kv4.3, alters the AP waveform and enhances alternans. Knowledge of this "isoform switch" and related dynamics in the AF substrate may guide new approaches for detection and management of AF.
Collapse
Affiliation(s)
- Haibo Ni
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Manchester , United Kingdom
- Department of Pharmacology, University of California , Davis, California
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Manchester , United Kingdom
| | - Eleonora Grandi
- Department of Pharmacology, University of California , Davis, California
| | - Sanjiv M Narayan
- Division of Cardiology, Cardiovascular Institute, Stanford University , Stanford, California
| | - Wayne R Giles
- Faculties of Kinesiology and Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
27
|
Affiliation(s)
- Heather Y Small
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, UK
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, UK.,Department of Internal and Agricultural Medicine, Jagiellonian University Collegium Medicum, 31-008 Anny 12, Krakow, Poland
| |
Collapse
|
28
|
Lawson BA, Burrage K, Burrage P, Drovandi CC, Bueno-Orovio A. Slow Recovery of Excitability Increases Ventricular Fibrillation Risk as Identified by Emulation. Front Physiol 2018; 9:1114. [PMID: 30210355 PMCID: PMC6121112 DOI: 10.3389/fphys.2018.01114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/25/2018] [Indexed: 12/28/2022] Open
Abstract
Purpose: Rotor stability and meandering are key mechanisms determining and sustaining cardiac fibrillation, with important implications for anti-arrhythmic drug development. However, little is yet known on how rotor dynamics are modulated by variability in cellular electrophysiology, particularly on kinetic properties of ion channel recovery. Methods: We propose a novel emulation approach, based on Gaussian process regression augmented with machine learning, for data enrichment, automatic detection, classification, and analysis of re-entrant biomarkers in cardiac tissue. More than 5,000 monodomain simulations of long-lasting arrhythmic episodes with Fenton-Karma ionic dynamics, further enriched by emulation to 80 million electrophysiological scenarios, were conducted to investigate the role of variability in ion channel densities and kinetics in modulating rotor-driven arrhythmic behavior. Results: Our methods predicted the class of excitation behavior with classification accuracy up to 96%, and emulation effectively predicted frequency, stability, and spatial biomarkers of functional re-entry. We demonstrate that the excitation wavelength interpretation of re-entrant behavior hides critical information about rotor persistence and devolution into fibrillation. In particular, whereas action potential duration directly modulates rotor frequency and meandering, critical windows of excitability are identified as the main determinants of breakup. Further novel electrophysiological insights of particular relevance for ventricular arrhythmias arise from our multivariate analysis, including the role of incomplete activation of slow inward currents in mediating tissue rate-dependence and dispersion of repolarization, and the emergence of slow recovery of excitability as a significant promoter of this mechanism of dispersion and increased arrhythmic risk. Conclusions: Our results mechanistically explain pro-arrhythmic effects of class Ic anti-arrhythmics in the ventricles despite their established role in the pharmacological management of atrial fibrillation. This is mediated by their slow recovery of excitability mode of action, promoting incomplete activation of slow inward currents and therefore increased dispersion of repolarization, given the larger influence of these currents in modulating the action potential in the ventricles compared to the atria. These results exemplify the potential of emulation techniques in elucidating novel mechanisms of arrhythmia and further application to cardiac electrophysiology.
Collapse
Affiliation(s)
- Brodie A Lawson
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kevin Burrage
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Pamela Burrage
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Christopher C Drovandi
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | | |
Collapse
|
29
|
Ferrantini C, Pioner JM, Mazzoni L, Gentile F, Tosi B, Rossi A, Belardinelli L, Tesi C, Palandri C, Matucci R, Cerbai E, Olivotto I, Poggesi C, Mugelli A, Coppini R. Late sodium current inhibitors to treat exercise-induced obstruction in hypertrophic cardiomyopathy: an in vitro study in human myocardium. Br J Pharmacol 2018; 175:2635-2652. [PMID: 29579779 PMCID: PMC6003658 DOI: 10.1111/bph.14223] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose In 30–40% of hypertrophic cardiomyopathy (HCM) patients, symptomatic left ventricular (LV) outflow gradients develop only during exercise due to catecholamine‐induced LV hypercontractility (inducible obstruction). Negative inotropic pharmacological options are limited to β‐blockers or disopyramide, with low efficacy and tolerability. We assessed the potential of late sodium current (INaL)‐inhibitors to treat inducible obstruction in HCM. Experimental Approach The electrophysiological and mechanical responses to β‐adrenoceptor stimulation were studied in human myocardium from HCM and control patients. Effects of INaL‐inhibitors (ranolazine and GS‐967) in HCM samples were investigated under conditions simulating rest and exercise. Key Results In cardiomyocytes and trabeculae from 18 surgical septal samples of patients with obstruction, the selective INaL‐inhibitor GS‐967 (0.5 μM) hastened twitch kinetics, decreased diastolic [Ca2+] and shortened action potentials, matching the effects of ranolazine (10μM). Mechanical responses to isoprenaline (inotropic and lusitropic) were comparable in HCM and control myocardium. However, isoprenaline prolonged action potentials in HCM myocardium, while it shortened them in controls. Unlike disopyramide, neither GS‐967 nor ranolazine reduced force at rest. However, in the presence of isoprenaline, they reduced Ca2+‐transient amplitude and twitch tension, while the acceleration of relaxation was maintained. INaL‐inhibitors were more effective than disopyramide in reducing contractility during exercise. Finally, INaL‐inhibitors abolished arrhythmias induced by isoprenaline. Conclusions and Implications Ranolazine and GS‐967 reduced septal myocardium tension during simulated exercise in vitro and therefore have the potential to ameliorate symptoms caused by inducible obstruction in HCM patients, with some advantages over disopyramide and β‐blockers.
Collapse
Affiliation(s)
- Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Josè Manuel Pioner
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luca Mazzoni
- Department NeuroFarBa, University of Florence, Florence, Italy
| | - Francesca Gentile
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Benedetta Tosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Rossi
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | | | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Palandri
- Department NeuroFarBa, University of Florence, Florence, Italy
| | - Rosanna Matucci
- Department NeuroFarBa, University of Florence, Florence, Italy
| | | | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | |
Collapse
|
30
|
Zaniboni M. Short-term action potential memory and electrical restitution: A cellular computational study on the stability of cardiac repolarization under dynamic pacing. PLoS One 2018; 13:e0193416. [PMID: 29494628 PMCID: PMC5832261 DOI: 10.1371/journal.pone.0193416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/09/2018] [Indexed: 01/24/2023] Open
Abstract
Electrical restitution (ER) is a major determinant of repolarization stability and, under fast pacing rate, it reveals memory properties of the cardiac action potential (AP), whose dynamics have never been fully elucidated, nor their ionic mechanisms. Previous studies have looked at ER mainly in terms of changes in AP duration (APD) when the preceding diastolic interval (DI) changes and described dynamic conditions where this relationship shows hysteresis which, in turn, has been proposed as a marker of short-term AP memory and repolarization stability. By means of numerical simulations of a non-propagated human ventricular AP, we show here that measuring ER as APD versus the preceding cycle length (CL) provides additional information on repolarization dynamics which is not contained in the companion formulation. We focus particularly on fast pacing rate conditions with a beat-to-beat variable CL, where memory properties emerge from APD vs CL and not from APD vs DI and should thus be stored in APD and not in DI. We provide an ion-currents characterization of such conditions under periodic and random CL variability, and show that the memory stored in APD plays a stabilizing role on AP repolarization under pacing rate perturbations. The gating kinetics of L-type calcium current seems to be the main determinant of this safety mechanism. We also show that, at fast pacing rate and under otherwise identical pacing conditions, a periodically beat-to-beat changing CL is more effective than a random one in stabilizing repolarization. In summary, we propose a novel view of short-term AP memory, differentially stored between systole and diastole, which opens a number of methodological and theoretical implications for the understanding of arrhythmia development.
Collapse
Affiliation(s)
- Massimiliano Zaniboni
- Department of Chemistry, Life Sciences and Environmental Sustainability - University of Parma Parco Area delle Scienze, Parma, Italy
- Center of Excellence for Toxicological Research (CERT) - University of Parma, Parma, Italy
- * E-mail:
| |
Collapse
|
31
|
Winter J, Bishop MJ, Wilder CDE, O'Shea C, Pavlovic D, Shattock MJ. Sympathetic Nervous Regulation of Calcium and Action Potential Alternans in the Intact Heart. Front Physiol 2018; 9:16. [PMID: 29410631 PMCID: PMC5787134 DOI: 10.3389/fphys.2018.00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022] Open
Abstract
Rationale: Arrhythmogenic cardiac alternans are thought to be an important determinant for the initiation of ventricular fibrillation. There is limited information on the effects of sympathetic nerve stimulation (SNS) on alternans in the intact heart and the conclusions of existing studies, focused on investigating electrical alternans, are conflicted. Meanwhile, several lines of evidence implicate instabilities in Ca handling, not electrical restitution, as the primary mechanism underpinning alternans. Despite this, there have been no studies on Ca alternans and SNS in the intact heart. The present study sought to address this, by application of voltage and Ca optical mapping for the simultaneous study of APD and Ca alternans in the intact guinea pig heart during direct SNS. Objective: To determine the effects of SNS on APD and Ca alternans in the intact guinea pig heart and to examine the mechanism(s) by which the effects of SNS are mediated. Methods and Results: Studies utilized simultaneous voltage and Ca optical mapping in isolated guinea pig hearts with intact innervation. Alternans were induced using a rapid dynamic pacing protocol. SNS was associated with rate-independent shortening of action potential duration (APD) and the suppression of APD and Ca alternans, as indicated by a shift in the alternans threshold to faster pacing rates. Qualitatively similar results were observed with exogenous noradrenaline perfusion. In contrast with previous reports, both SNS and noradrenaline acted to flatten the slope of the electrical restitution curve. Pharmacological block of the slow delayed rectifying potassium current (IKs), sufficient to abolish IKs-mediated APD-adaptation, partially reversed the effects of SNS on pacing-induced alternans. Treatment with cyclopiazonic acid, an inhibitor of the sarco(endo)plasmic reticulum ATPase, had opposite effects to that of SNS, acting to increase susceptibility to alternans, and suggesting that accelerated Ca reuptake into the sarcoplasmic reticulum is a major mechanism by which SNS suppresses alternans in the guinea pig heart. Conclusions: SNS suppresses calcium and action potential alternans in the intact guinea pig heart by an action mediated through accelerated Ca handling and via increased IKs.
Collapse
Affiliation(s)
- James Winter
- School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom.,Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, United Kingdom
| | - Martin J Bishop
- Biomedical Engineering Department, King's College London, United Kingdom
| | - Catherine D E Wilder
- School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, United Kingdom
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, United Kingdom
| | - Michael J Shattock
- School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom
| |
Collapse
|
32
|
Arrhythmogenic drugs can amplify spatial heterogeneities in the electrical restitution in perfused guinea-pig heart: An evidence from assessments of monophasic action potential durations and JT intervals. PLoS One 2018; 13:e0191514. [PMID: 29352276 PMCID: PMC5774816 DOI: 10.1371/journal.pone.0191514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/06/2018] [Indexed: 01/01/2023] Open
Abstract
Non-uniform shortening of the action potential duration (APD90) in different myocardial regions upon heart rate acceleration can set abnormal repolarization gradients and promote arrhythmia. This study examined whether spatial heterogeneities in APD90 restitution can be amplified by drugs with clinically proved proarrhythmic potential (dofetilide, quinidine, procainamide, and flecainide) and, if so, whether these effects can translate to the appropriate changes of the ECG metrics of ventricular repolarization, such as JT intervals. In isolated, perfused guinea-pig heart preparations, monophasic action potentials and volume-conducted ECG were recorded at progressively increased pacing rates. The APD90 measured at distinct ventricular sites, as well as the JTpeak and JTend values were plotted as a function of preceding diastolic interval, and the maximum slopes of the restitution curves were determined at baseline and upon drug administration. Dofetilide, quinidine, and procainamide reverse rate-dependently prolonged APD90 and steepened the restitution curve, with effects being greater at the endocardium than epicardium, and in the right ventricular (RV) vs. the left ventricular (LV) chamber. The restitution slope was increased to a greater extent for the JTend vs. the JTpeak interval. In contrast, flecainide reduced the APD90 restitution slope at LV epicardium without producing effect at LV endocardium and RV epicardium, and reduced the JTpeak restitution slope without changing the JTend restitution. Nevertheless, with all agents, these effects translated to the amplified epicardial-to-endocardial and the LV-to-RV non-uniformities in APD90 restitution, paralleled by the increased JTend vs. JTpeak difference in the restitution slope. In summary, these findings suggest that arrhythmic drug profiles are partly attributable to the accentuated regional heterogeneities in APD90 restitution, which can be indirectly determined through ECG assessments of the JTend vs. JTpeak dynamics at variable pacing rates.
Collapse
|
33
|
Coronel R. Restitution slope is determined by the steady state action potential duration: law and disorder. Cardiovasc Res 2017; 113:705-707. [PMID: 28444140 DOI: 10.1093/cvr/cvx080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ruben Coronel
- Department of Experimental Cardiology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|