1
|
Song Y, Yang J, Li T, Sun X, Lin R, He Y, Sun K, Han J, Yang G, Li X, Liu B, Yang D, Dang G, Ma X, Du X, Zhang B, Hu Y, Kong W, Wang X, Zhang H, Xu Q, Feng J. CD34 + cell-derived fibroblast-macrophage cross-talk drives limb ischemia recovery through the OSM-ANGPTL signaling axis. SCIENCE ADVANCES 2023; 9:eadd2632. [PMID: 37043578 DOI: 10.1126/sciadv.add2632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
CD34+ cells improve the perfusion and function of ischemic limbs in humans and mice. However, there is no direct evidence of the differentiation potential and functional role of these cells in the ischemic muscle microenvironment. Here, we combined the single-cell RNA sequencing and genetic lineage tracing technology, then provided exact single-cell atlases of normal and ischemic limb tissues in human and mouse, and consequently found that bone marrow (BM)-derived macrophages with antigen-presenting function migrated to the ischemic site, while resident macrophages underwent apoptosis. The macrophage oncostatin M (OSM) regulatory pathway was specifically turned on by ischemia. Simultaneously, BM CD34+-derived proregenerative fibroblasts were recruited to the ischemia niche, where they received macrophage-released OSM and promoted angiopoietin-like protein-associated angiogenesis. These findings provided mechanisms on the cellular events and cell-cell communications during tissue ischemia and regeneration and provided evidence that CD34+ cells serve as fibroblast progenitors promoting tissue regeneration.
Collapse
Affiliation(s)
- Yuwei Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Junyao Yang
- Department of Clinical Laboratory, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tianrun Li
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Xiaotong Sun
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruoran Lin
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyan He
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Sun
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jingyan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guangxin Yang
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Xuan Li
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Bo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Dongmin Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guohui Dang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaolong Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xing Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bohuan Zhang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhua Hu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hongkun Zhang
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Kinj R, Casutt A, Nguyen-Ngoc T, Mampuya A, Schiappacasse L, Bourhis J, Huck C, Patin D, Marguet M, Zeverino M, Moeckli R, Gonzalez M, Lovis A, Ozsahin M. Salvage LATTICE radiotherapy for a growing tumour despite conventional radio chemotherapy treatment of lung cancer. Clin Transl Radiat Oncol 2022; 39:100557. [PMID: 36561729 PMCID: PMC9763677 DOI: 10.1016/j.ctro.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
A 40-year-old patient with cT4cN1M0 squamous cell lung cancer of the upper right lobe received preoperative induction chemotherapy. Systemic induction treatment failed to reverse tumour growth with the addition of conventional radiotherapy (RT). A salvage lattice RT boost of 12 Gy was administered immediately to increase the dose to the tumour. Conventional RT was resumed at the planned dose of 60 Gy. The tumour shrank rapidly, and the patient was surged. The postoperative pathology remained ypT0ypN0 status.
Collapse
Affiliation(s)
- Rémy Kinj
- Department of Radiation Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland,Corresponding author at: Department of Radiation Oncology, CHUV, Rue du Bugnon 46, Lausanne CH-1011, Switzerland.
| | - Alessio Casutt
- Department of Pulmonology, Lausanne University Hospital (CHUV) and Lausanne University (UNIL), Lausanne, Switzerland
| | - Tu Nguyen-Ngoc
- Department of Medical Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ange Mampuya
- Department of Radiation Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Luis Schiappacasse
- Department of Radiation Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Constance Huck
- Department of Radiation Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - David Patin
- Institute of Radiation Physics, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Maud Marguet
- Institute of Radiation Physics, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Michele Zeverino
- Institute of Radiation Physics, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Michel Gonzalez
- Department of Thoracic Surgery, University Hospital Center of Lausanne (CHUV), and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Alban Lovis
- Department of Pulmonology, Lausanne University Hospital (CHUV) and Lausanne University (UNIL), Lausanne, Switzerland
| | - Mahmut Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
3
|
Zhou X, Wang X. Radioimmunotherapy in HPV-Associated Head and Neck Squamous Cell Carcinoma. Biomedicines 2022; 10:1990. [PMID: 36009537 PMCID: PMC9405566 DOI: 10.3390/biomedicines10081990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022] Open
Abstract
HPV-associated head and neck squamous cell carcinoma (HNSCC) is a cancer entity with unique biological and clinical characteristics that requires more personalized treatment strategies. As the backbone of conventional therapeutics, radiation is now harnessed to synergize with immunotherapy in multiple malignancies. Accumulating preclinical and clinical data have suggested the potential of radioimmunotherapy in eliciting local and systemic anti-tumor response via direct killing of tumor cells and immunogenic cell death. However, this effect remains uncertain in HPV-associated HNSCC. Owing to its intrinsic radiosensitivity and distinct tumor microenvironment, HPV-associated HNSCC may represent a good candidate for radioimmunotherapy. In this review, we provide a detailed illustration of the biology, the genomic features, and immune landscapes of HPV-associated HNSCC that support the synergism between radiation and immune agents. The interaction between radiotherapy and immunotherapy is described. We also highlight the present evidence as well as ongoing trials using different combination strategies in the recurrent/metastatic or definitive settings. In addition, we have summarized the challenges and outlook for future trial design, with special emphasis on radiotherapy optimization and novel therapeutic options to incorporate.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xiaoshen Wang
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Xing Z, Zhao C, Wu S, Yang D, Zhang C, Wei X, Wei X, Su H, Liu H, Fan Y. Hydrogel Loaded with VEGF/TFEB-Engineered Extracellular Vesicles for Rescuing Critical Limb Ischemia by a Dual-Pathway Activation Strategy. Adv Healthc Mater 2022; 11:e2100334. [PMID: 34297471 DOI: 10.1002/adhm.202100334] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/03/2021] [Indexed: 02/05/2023]
Abstract
Critical limb ischemia (CLI) is the most severe clinical manifestation of peripheral arterial disease, which causes many amputations and deaths. Conventional treatment strategies for CLI (e.g., stent implantation and vascular surgery) bring surgical risk, which are not suitable for each patient. Extracellular vesicles (EVs) can be a potential solution for CLI. Herein, vascular endothelial growth factor (VEGF; i.e., a crucial molecule related to angiogenesis) and transcription factor EB (TFEB; i.e., a pivotal regulator of autophagy) are chosen as the target gene to improve the bioactivity of EVs derived from endothelial cells. The VEGF/TFEB-engineered EVs (Engineered-EVs) are fabricated by genetically engineering the parent cells, and their versatile functions are confirmed using three cell models (human umbilical vein endothelial cells, myoblast, and monocytes). Injectable thermal-responsive hydrogel are then combined with Engineered-EVs to combat CLI. These results reveal that the hydrogel can enhance the stability of Engineered-EVs in vivo and release EVs at different temperatures. Moreover, the results of animal studies indicate that Engineered-EV/Hydrogel can significantly improve neovascularization, attenuate muscle injury, and recover limb function after CLI. Finally, mechanistic studies shed light on the therapeutic effect of Engineered-EV/Hydrogel due to the activated VEGF/VEGFR pathway and autophagy-lysosomal pathway.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| | - Chen Zhao
- School of Pharmaceutical Sciences Tsinghua University Beijing 100084 P. R. China
| | - Siwen Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Depeng Yang
- School of Life Sciences and Technology Harbin Institute of Technology Harbin Heilongjiang 150001 P. R. China
| | - Chunchen Zhang
- Key Laboratory of Biomedical Engineering of Ministry of Education Zhejiang University Hangzhou 310027 China
| | - Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| | - Xinran Wei
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| | - Haoran Su
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| |
Collapse
|
5
|
Müller-Seubert W, Ostermaier P, Horch RE, Distel L, Frey B, Cai A, Arkudas A. Intra- and Early Postoperative Evaluation of Malperfused Areas in an Irradiated Random Pattern Skin Flap Model Using Indocyanine Green Angiography and Near-Infrared Reflectance-Based Imaging and Infrared Thermography. J Pers Med 2022; 12:jpm12020237. [PMID: 35207725 PMCID: PMC8880010 DOI: 10.3390/jpm12020237] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Assessment of tissue perfusion after irradiation of random pattern flaps still remains a challenge. Methods: Twenty-five rats received harvesting of bilateral random pattern fasciocutaneous flaps. Group 1 served as nonirradiated control group. The right flaps of the groups 2–5 were irradiated with 20 Gy postoperatively (group 2), 3 × 12 Gy postoperatively (group 3), 20 Gy preoperatively (group 4) and 3 × 12 Gy preoperatively (group 5). Imaging with infrared thermography, indocyanine green angiography and near-infrared reflectance-based imaging were performed to detect necrotic areas of the flaps. Results: Analysis of the percentage of the necrotic area of the irradiated flaps showed a statistically significant increase from day 1 to 14 only in group 5 (p < 0.05). Indocyanine green angiography showed no differences (p > 0.05) of the percentage of the nonperfused area between all days in group 1 and 3, but a decrease in group 2 in both the left and the right flaps. Infrared thermography and near-infrared reflectance-based imaging did not show evaluable differences. Conclusion: Indocyanine green angiography is more precise in prediction of necrotic areas in random pattern skin flaps when compared to hyperspectral imaging, thermography or clinical impression. Preoperative fractional irradiation with a lower individual dose but a higher total dose has a more negative impact on flap perfusion compared to higher single stage irradiation.
Collapse
Affiliation(s)
- Wibke Müller-Seubert
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg FAU, 91054 Erlangen, Germany; (P.O.); (R.E.H.); (A.C.); (A.A.)
- Correspondence: ; Tel.: +49-9131-85-33296; Fax: +49-9131-85-39327
| | - Patrick Ostermaier
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg FAU, 91054 Erlangen, Germany; (P.O.); (R.E.H.); (A.C.); (A.A.)
| | - Raymund E. Horch
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg FAU, 91054 Erlangen, Germany; (P.O.); (R.E.H.); (A.C.); (A.A.)
| | - Luitpold Distel
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg FAU, 91054 Erlangen, Germany;
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg FAU, 91054 Erlangen, Germany;
| | - Aijia Cai
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg FAU, 91054 Erlangen, Germany; (P.O.); (R.E.H.); (A.C.); (A.A.)
| | - Andreas Arkudas
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg FAU, 91054 Erlangen, Germany; (P.O.); (R.E.H.); (A.C.); (A.A.)
| |
Collapse
|
6
|
Dunlap NE, van Berkel V, Cai L. COVID-19 and low-dose radiation therapy. RADIATION MEDICINE AND PROTECTION 2021; 2:139-145. [PMID: 34522905 PMCID: PMC8429076 DOI: 10.1016/j.radmp.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of the coronavirus disease 2019 (COVID-19), has caused more than 179 million infections and 3.8 million deaths worldwide. Global health authorities working on the COVID-19 outbreak continue to explore methods to reduce the rate of its transmission to healthy individuals. Treatment protocols thus far have focused on social distancing and masking, treatment with antivirals early in infection, and steroids to reduce the inflammatory response. An alternative approach is therapy with low dose radiation (LDR), which has several advantages compared to the current drugs and medicines. To date more than 10 case reports and pilot clinical trial preliminary outcome are available from different countries. These reports cover a wide range of patient conditions and LDR treatment strategies. Although one report showed the failure to observe the improvement of COVID-19 patients after LDR therapy, the majority showed some clinical improvement, and demonstrated the safety of LDR for COVID-19 patients, particularly with 0.5 Gy. This review aims to summarize the potential rationales and mechanisms of LDR therapy for COVID-19 patients, and its current clinical status and potential use.
Collapse
Affiliation(s)
- Neal E Dunlap
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Victor van Berkel
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, 40204, USA
| | - Lu Cai
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.,Pediatric Research Institute, Departments of Pediatrics, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| |
Collapse
|
7
|
Zhang L, Chen L, Li C, Shi H, Wang Q, Yang W, Fang L, Leng Y, Sun W, Li M, Xue Y, Gao X, Wang H. Oroxylin a Attenuates Limb Ischemia by Promoting Angiogenesis via Modulation of Endothelial Cell Migration. Front Pharmacol 2021; 12:705617. [PMID: 34413777 PMCID: PMC8370028 DOI: 10.3389/fphar.2021.705617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022] Open
Abstract
Oroxylin A (OA) has been shown to simultaneously increase coronary flow and provide a strong anti-inflammatory effect. In this study, we described the angiogenic properties of OA. OA treatment accelerated perfusion recovery, reduced tissue injury, and promoted angiogenesis after hindlimb ischemia (HLI). In addition, OA regulated the secretion of multiple cytokines, including vascular endothelial growth factor A (VEGFA), angiopoietin-2 (ANG-2), fibroblast growth factor-basic (FGF-2), and platelet derived growth factor BB (PDGF-BB). Specifically, those multiple cytokines were involved in cell migration, cell population proliferation, and angiogenesis. These effects were observed at 3, 7, and 14 days after HLI. In skeletal muscle cells, OA promoted the release of VEGFA and ANG-2. After OA treatment, the conditioned medium derived from skeletal muscle cells was found to significantly induce endothelial cell (EC) proliferation. OA also induced EC migration by activating the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil kinase 2 (ROCK-II) signaling pathway and the T-box20 (TBX20)/prokineticin 2 (PROK2) signaling pathway. In addition, OA was able to downregulate the number of macrophages and neutrophils, along with the secretion of interleukin-1β, at 3 days after HLI. These results expanded current knowledge about the beneficial effects of OA in angiogenesis and blood flow recovery. This research could open new directions for the development of novel therapeutic intervention for patients with peripheral artery disease (PAD).
Collapse
Affiliation(s)
- Lusha Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunxiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China
| | - Hong Shi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianyi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjie Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leyu Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuze Leng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuejin Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Hong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Ruan T, Jiang L, Xu J, Zhou J. Abiraterone suppresses irradiated lung cancer cells-induced angiogenic capacities of endothelial cells. J Bioenerg Biomembr 2021; 53:343-349. [PMID: 33821396 DOI: 10.1007/s10863-021-09894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/26/2021] [Indexed: 11/29/2022]
Abstract
Non-small cell lung cancer (NSCLC) threatens human life globally with high morbidity and mortality and radiotherapy is one of the most effective methods for the treatment of NSCLC. However, it is currently reported that the angiogenesis of tumors can be induced by a low dosage of irradiation. Abiraterone is an oral anti-tumor agent for the treatment of castration-resistant prostate cancer (CRPC). In the present study, the anti-angiogenesis effect of Abiraterone against HUVECs incubated with irradiated lung cancer cell medium will be investigated. The HUVECs were incubated with a cultural medium of the NSCLC cell line-A549, Abiraterone-treated A549 cells, irradiation-treated A549 cells, and Abiraterone and irradiation co-treated A549 cells. The tolerable concentration of Abiraterone against HUVECs was determined using MTT assay. The migration and angiogenesis abilities of HUVECs were evaluated using transwell and tube formation assays, respectively. The expression levels of VEGF, MMP-2, and MMP-9 in the treated HUVECs were detected using qRT-PCR and ELISA. Western blot was used to determine the expressions of p-PI3K and p-AKT. The tolerable concentration of Abiraterone used in the present study was 50 nM. First, the migration rate and numbers of formed tubes were significantly decreased by the A549 medium treated with Abiraterone and elevated by the A549 medium treated with irradiation but greatly suppressed by the co-treatment with Abiraterone. Subsequently, VEGF, MMP-2, and MMP-9 were significantly downregulated by the A549 medium treated with Abiraterone and upregulated by the A549 medium treated with irradiation but greatly inhibited by the co-treatment with Abiraterone. Lastly, the activated PI3K/AKT signaling pathway induced by the A549 medium treated with irradiation was significantly suppressed by the A549 medium treated with both irradiation and Abiraterone. Abiraterone suppressed irradiated lung cancer cells-induced angiogenic capacities of endothelial cells.
Collapse
Affiliation(s)
- Tingyan Ruan
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, No.899 Pinghai Road, Suzhou, 215006, Jiangsu, China
| | - Liping Jiang
- Department of Gynecology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Nanjing, China
| | - Junying Xu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Juying Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, No.899 Pinghai Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
9
|
Wu X, Perez NC, Zheng Y, Li X, Jiang L, Amendola BE, Xu B, Mayr NA, Lu JJ, Hatoum GF, Zhang H, Chang SX, Griffin RJ, Guha C. The Technical and Clinical Implementation of LATTICE Radiation Therapy (LRT). Radiat Res 2021; 194:737-746. [PMID: 33064814 DOI: 10.1667/rade-20-00066.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/24/2020] [Indexed: 11/03/2022]
Abstract
The concept of spatially fractionated radiation therapy (SFRT) was conceived over 100 years ago, first in the form of GRID, which has been applied to clinical practice since its early inception and continued to the present even with markedly improved instrumentation in radiation therapy. LATTICE radiation therapy (LRT) was introduced in 2010 as a conceptual 3D extension of GRID therapy with several uniquely different features. Since 2014, when the first patient was treated, over 150 patients with bulky tumors worldwide have received LRT. Through a brief review of the basic principles and the analysis of the collective clinical experience, a set of technical recommendations and guidelines are proposed for the clinical implementation of LRT. It is to be recognized that the current clinical practice of SFRT (GRID or LRT) is still largely based on the heuristic principles. With advancements in basic biological research and the anticipated clinical trials to systemically assess the efficacy and risk, progressively robust optimizations of the technical parameters are essential for the broader application of SFRT in clinical practice.
Collapse
Affiliation(s)
- Xiaodong Wu
- Executive Medical Physics Associates, North Miami Beach, Florida.,Innovative Cancer Institute, South Miami, Florida.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | | | - Yi Zheng
- Executive Medical Physics Associates, North Miami Beach, Florida.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiaobo Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Liuqing Jiang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | | | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Nina A Mayr
- Department of Radiation Oncology, University of Washington School of Medline, Seattle, Washington
| | - Jiade J Lu
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | | | - Hualin Zhang
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sha X Chang
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Chandan Guha
- Department of Radiation Oncology Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| |
Collapse
|
10
|
Jiang L, Li X, Zhang J, Li W, Dong F, Chen C, Lin Q, Zhang C, Zheng F, Yan W, Zheng Y, Wu X, Xu B. Combined High-Dose LATTICE Radiation Therapy and Immune Checkpoint Blockade for Advanced Bulky Tumors: The Concept and a Case Report. Front Oncol 2021; 10:548132. [PMID: 33643893 PMCID: PMC7907519 DOI: 10.3389/fonc.2020.548132] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/14/2020] [Indexed: 01/22/2023] Open
Abstract
Although the combination of immune checkpoint blockades with high dose of radiation has indicated the potential of co-stimulatory effects, consistent clinical outcome has been yet to be demonstrated. Bulky tumors present challenges for radiation treatment to achieve high rate of tumor control due to large tumor sizes and normal tissue toxicities. As an alternative, spatially fractionated radiotherapy (SFRT) technique has been applied, in the forms of GRID or LATTICE radiation therapy (LRT), to safely treat bulky tumors. When used alone in a single or a few fractions, GRID or LRT can be best classified as palliative or tumor de-bulking treatments. Since only a small fraction of the tumor volume receive high dose in a SFRT treatment, even with the anticipated bystander effects, total tumor eradications are rare. Backed by the evidence of immune activation of high dose radiation, it is logical to postulate that the combination of High-Dose LATTICE radiation therapy (HDLRT) with immune checkpoint blockade would be effective and could subsequently lead to improved local tumor control without added toxicities, through augmenting the effects of radiation in-situ vaccine and T-cell priming. We herein present a case of non-small cell lung cancer (NSCLC) with multiple metastases. The patient received various types of palliative radiation treatments with combined chemotherapies and immunotherapies to multiple lesions. One of the metastatic lesions measuring 63.2 cc was treated with HDLRT combined with anti-PD1 immunotherapy. The metastatic mass regressed 77.84% over one month after the treatment, and had a complete local response (CR) five months after the treatment. No treatment-related side effects were observed during the follow-up exams. None of the other lesions receiving palliative treatments achieved CR. The dramatic differential outcome of this case lends support to the aforementioned postulate and prompts for further systemic clinical studies.
Collapse
Affiliation(s)
- Liuqing Jiang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaobo Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Department of Medical Imaging, School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Jianping Zhang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wenyao Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fangfen Dong
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Cheng Chen
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Qingliang Lin
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Department of Medical Imaging, School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Chonglin Zhang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fen Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Weisi Yan
- Department of Radiation Oncology, Thomas Jefferson Medical College, Philadelphia, PA, United States
| | - Yi Zheng
- Department of Medical Physics, Executive Medical Physics Associates, Miami, FL, United States
| | - Xiaodong Wu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Physics, Executive Medical Physics Associates, Miami, FL, United States
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Department of Medical Imaging, School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Gil Marques F, Poli E, Malaquias J, Carvalho T, Portêlo A, Ramires A, Aldeia F, Ribeiro RM, Vitorino E, Diegues I, Costa L, Coutinho J, Pina F, Mareel M, Constantino Rosa Santos S. Low doses of ionizing radiation activate endothelial cells and induce angiogenesis in peritumoral tissues. Radiother Oncol 2020; 151:322-327. [PMID: 33004178 DOI: 10.1016/j.radonc.2020.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 10/23/2022]
Abstract
PURPOSE During radiotherapy the peritumoral tissues are daily exposed to subtherapeutic doses of ionizing radiation. Herein, the biological and molecular effects of doses lower than 0.8 Gy per fraction (LDIR), previously described as angiogenesis inducers, were assessed in human peritumoral tissues. MATERIAL AND METHODS Paired biopsies of preperitoneal adipose tissue were surgically collected from 16 patients diagnosed with locally advanced rectal cancer who underwent neo-adjuvant radiotherapy. One of the biopsies is located in the vicinity of the region where the tumor received the prescribed dose of radiation, and thus exposed to LDIR; the other specimen, outside all beam apertures, was used as an internal calibrator (IC). Microvessel density (MDV) was quantified by immunohistochemistry and the expression of angiogenic, pro-inflammatory, adhesion and oxidative stress genes was assessed by quantitative RT-PCR using exclusively endothelial cells (ECs) isolated by laser capture microdissection microscopy. RESULTS LDIR activated peritumoral ECs by significantly up-regulating the expression of several pro-angiogenic genes such as VEGFR1, VEGFR2, ANGPT2, TGFB2, VWF, FGF2, HGF and PDGFC and down-regulating the pro-inflammatory IL8 marker. Accordingly, the MVD was significantly increased in peritumoral tissues exposed to LDIR, compared to the IC. The patients that yielded a larger pro-angiogenic response, also showed the highest MVD. CONCLUSIONS LDIR activate ECs in peritumoral tissues that are associated with increased MVD. Although the technological advances in radiotherapy have contributed to reduce the damage to healthy tissues over the past years, the anatomical regions receiving LDIR should be taken into account in the treatment plan report for patient follow-up and in future studies to correlate these doses with tumor dissemination.
Collapse
Affiliation(s)
- Filipa Gil Marques
- Angiogenesis Laboratory, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Esmeralda Poli
- Radiotherapy Service, Centro Hospitalar Universitário Lisboa Norte, Portugal
| | - João Malaquias
- Department of Surgery, Centro Hospitalar Universitário Lisboa Norte, Portugal
| | - Tânia Carvalho
- Histology and Comparative Pathology Laboratory, Instituto de Medicina Molecular; Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Ana Portêlo
- Instituto de Medicina Molecular; Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Afonso Ramires
- Department of Surgery, Centro Hospitalar Universitário Lisboa Norte, Portugal
| | - Fernando Aldeia
- Department of Surgery, Centro Hospitalar Universitário Lisboa Norte, Portugal
| | - Ruy Miguel Ribeiro
- Biomathematics Laboratory, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Emília Vitorino
- Department of Pathology, Centro Hospitalar Universitário Lisboa Norte, Portugal
| | - Isabel Diegues
- Radiotherapy Service, Centro Hospitalar Universitário Lisboa Norte, Portugal
| | - Luís Costa
- Oncology Department, Centro Hospitalar Universitário Lisboa Norte; Instituto de Medicina Molecular; Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - João Coutinho
- Department of Surgery, Centro Hospitalar Universitário Lisboa Norte, Portugal
| | - Filomena Pina
- Radiotherapy Service, Centro Hospitalar Universitário Lisboa Norte, Portugal
| | - Marc Mareel
- Department of Radiotherapy and Laboratory of Experimental Cancer Research, Ghent University Hospital, Belgium
| | - Susana Constantino Rosa Santos
- Angiogenesis Laboratory, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
12
|
Low doses of ionizing radiation enhance angiogenesis and consequently accelerate post-embryonic development but not regeneration in zebrafish. Sci Rep 2020; 10:3137. [PMID: 32081879 PMCID: PMC7035379 DOI: 10.1038/s41598-020-60129-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/31/2020] [Indexed: 11/28/2022] Open
Abstract
Low doses of ionizing radiation (LDIR) activate endothelial cells inducing angiogenesis. In zebrafish, LDIR induce vessel formation in the sub-intestinal vessels during post-embryonic development and enhance the inter-ray vessel density in adult fin regeneration. Since angiogenesis is a crucial process involved in both post-embryonic development and regeneration, herein we aimed to understand whether LDIR accelerate these physiological conditions. Our data show that LDIR upregulate the gene expression of several pro-angiogenic molecules, such as flt1, kdr, angpt2a, tgfb2, fgf2 and cyr61in sorted endothelial cells from zebrafish larvae and this effect was abrogated by using a vascular endothelial growth factor receptor (VEGFR)-2 tyrosine kinase inhibitor. Irradiated zebrafish present normal indicators of developmental progress but, importantly LDIR accelerate post-embryonic development in a VEGFR-2 dependent signaling. Furthermore, our data show that LDIR do not accelerate regeneration after caudal fin amputation and the gene expression of the early stages markers of regeneration are not modulated by LDIR. Even though regeneration is considered as a recapitulation of embryonic development and LDIR induce angiogenesis in both conditions, our findings show that LDIR accelerate post-embryonic development but not regeneration. This highlights the importance of the physiological context for a specific phenotype promoted by LDIR.
Collapse
|
13
|
Low doses of ionizing radiation activate endothelial cells and induce angiogenesis in peritumoral tissues. Radiother Oncol 2019; 141:256-261. [DOI: 10.1016/j.radonc.2019.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022]
|
14
|
Marques FG, Poli E, Rino J, Pinto MT, Diegues I, Pina F, Rosa Santos SC. Low Doses of Ionizing Radiation Enhance the Angiogenic Potential of Adipocyte Conditioned Medium. Radiat Res 2019; 192:517-526. [PMID: 31442107 DOI: 10.1667/rr15438.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
At low doses, ionizing radiation activates endothelial cells and promotes angiogenesis. However, it is still unknown if other cells may contribute to this process. In this study, the effect of low-dose ionizing radiation (LDIR) in modulating the pro-angiogenic potential of adipocytes was investigated. Adipocytes are known to secrete multiple angiogenic factors and adipokines that induce angiogenesis. In this work, a confluent monolayer of 3T3-L1 pre-adipocytes was exposed to low doses (0.1 and 0.3 Gy) and to higher doses (0.5, 0.8 and 1.0 Gy), as control. Our data show that the adipocyte-conditioned media (A-CM) from mature adipocytes differentiated from low-dose irradiated pre-adipocytes presented a higher angiogenic potential, compared to mature adipocytes differentiated from sham-irradiated control preadipocytes. The vascular endothelial growth factor (VEGF)-A levels were significantly increased in A-CM from the 0.1 Gy (P < 0.05) and 0.3 Gy (P < 0.01) experimental conditions and a significant increase was found in response to 0.3 Gy dose of radiation for VEGF-C, angiopoietin-2 (ANG-2) and hepatocyte growth factor (HGF). Moreover, 0.3 Gy dose of radiation significantly increased the expression of matrix metalloproteinase (MMP)-2 active forms. In vitro, the A-CM from the 0.1 and 0.3 Gy doses experimental conditions significantly accelerated endothelial cell migration after an in vitro wound healing assay. Importantly, in vivo, the A-CM corresponding to the 0.3 Gy experimental condition significantly induced the growth of more blood vessels towards the inoculation area in the chick embryo chorioallantoic membrane (CAM). In conclusion, this work reveals a new mechanism by which low-dose radiation might promote angiogenesis, enhancing the angiogenic potential of A-CM.
Collapse
Affiliation(s)
| | - Esmeralda Poli
- Radiotherapy Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - José Rino
- Bioimaging Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Teixeira Pinto
- i3S - Instituto de Inovação e Investigação em Saúde, Porto, Portugal.,IPATIMUP - Instituto Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Isabel Diegues
- Radiotherapy Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Filomena Pina
- Radiotherapy Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | | |
Collapse
|
15
|
Kotanidis CP, Antoniades C. Targeting interleukin-1: implications for long-term cardiovascular management following radiotherapy. Eur Heart J 2019; 40:2504-2506. [PMID: 31114848 DOI: 10.1093/eurheartj/ehz313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Christos P Kotanidis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 6 West Wing, John Radcliffe Hospital, Headley Way, Headington, Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 6 West Wing, John Radcliffe Hospital, Headley Way, Headington, Oxford, UK
| |
Collapse
|
16
|
Kojima S, Cuttler JM, Inoguchi K, Yorozu K, Horii T, Shimura N, Koga H, Murata A. Radon Therapy Is Very Promising as a Primary or an Adjuvant Treatment for Different Types of Cancers: 4 Case Reports. Dose Response 2019; 17:1559325819853163. [PMID: 31210758 PMCID: PMC6552369 DOI: 10.1177/1559325819853163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
We report on the application of radon inhalation therapy to patients with 4 types of cancer: colon, uterine, lung, and liver cell. The radon treatments were given to improve the efficacy of chemotherapy and were potent in all 4 cases. Marker values decreased and disease symptoms were alleviated. We include a lengthy discussion on the mechanism that may be responsible for the observed results. While employing the radon generator to treat the patient with hepatocellular carcinoma, we discovered that a concentration of 6 MBq/m3 was very effective, while 1 MBq/m3 was marginal. This implies different, and rather high, radon concentration thresholds for the treatment of different types of cancer. The evidence from these 4 cases suggests that radon inhalation may be beneficial against various cancer types as an important adjuvant therapy to conventional chemotherapy and for local high-dose radiotherapy, which would address the problem of distant metastasis. A previous case report on 2 patients with advanced breast cancer, who refused chemotherapy or radiotherapy, indicates that radon may be effective as a primary therapy for cancer. Clinical trials should be carried out to determine the best radon concentrations for treatment of other types of cancer, at different stages of progression.
Collapse
Affiliation(s)
- Shuji Kojima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Noda-city, Chiba, Japan
| | | | | | | | | | - Noriko Shimura
- Faculty of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| | - Hironobu Koga
- Lead and Company Co., Ltd., Minami-ku, Yokohama, Japan
| | | |
Collapse
|
17
|
Haghighat L, Ionescu CN, Regan CJ, Altin SE, Attaran RR, Mena-Hurtado CI. Review of the Current Basic Science Strategies to Treat Critical Limb Ischemia. Vasc Endovascular Surg 2019; 53:316-324. [DOI: 10.1177/1538574419831489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Critical limb ischemia (CLI) is a highly morbid disease with many patients considered poor surgical candidates. The lack of treatment options for CLI has driven interest in developing molecular therapies within recent years. Through these translational medicine studies in CLI, much has been learned about the pathophysiology of the disease. Here, we present an overview of the macrovascular and microvascular changes that lead to the development of CLI, including impairment of angiogenesis, vasculogenesis, and arteriogenesis. We summarize the randomized clinical controlled trials that have used molecular therapies in CLI, and discuss the novel imaging modalities being developed to assess the efficacy of these therapies.
Collapse
Affiliation(s)
- Leila Haghighat
- Department of Internal Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Costin N. Ionescu
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher J. Regan
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Sophia Elissa Altin
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Robert R. Attaran
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos I. Mena-Hurtado
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
18
|
Paunesku T, Woloschak G. Reflections on Basic Science Studies Involving Low Doses of Ionizing Radiation. HEALTH PHYSICS 2018; 115:623-627. [PMID: 30260853 PMCID: PMC6226262 DOI: 10.1097/hp.0000000000000937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Investigation of health effects of low doses of radiation as a field of study has been riddled with difficulties since its inception. In this document we will use 100 mGy as the cutoff upper limit for low-dose radiation, borrowing this definition from the U.S. Department of Energy, although other agencies and researchers sometimes include up to five-fold higher doses under the same title. Difficulties in this area of research are most often ascribed to the fact that effects of low doses of radiation are subtle and difficult to distinguish from the plethora of other low-grade stresses. Thus, for example, most epidemiological studies include hundreds of thousands of samples and generate risk estimates that are statistically meaningful only when they are considered on a scale of hundreds or thousands of people. A logical approach to remedy the situation for low-dose research was to conduct well-controlled animal studies with hundreds of animals; nevertheless, even after many such studies were completed, our understanding of the biological basis for risk from low-dose radiation exposure is still not conclusive. In this paper we argue that the problem lies in the fact that our approach to animal studies is not comprehensive but conceptually binary. While some researchers apply epidemiological models to animal data, others look into molecular and cellular biology only. Very few studies are conducted to bridge this gap and consider how a realistic model of DNA damage could be integrated into a realistic model of radiation carcinogenesis.
Collapse
Affiliation(s)
| | - Gayle Woloschak
- Tarry Building Room 4-760, 300 E Superior, Chicago, IL 60611
| |
Collapse
|
19
|
Jiang X, Hong Y, Zhao D, Meng X, Zhao L, Du Y, Wang Z, Zheng Y, Cai L, Jiang H. Low dose radiation prevents doxorubicin-induced cardiotoxicity. Oncotarget 2017; 9:332-345. [PMID: 29416617 PMCID: PMC5787469 DOI: 10.18632/oncotarget.23013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/26/2017] [Indexed: 02/02/2023] Open
Abstract
This study aimed to develop a novel and non-invasive approach, low-dose radiation (LDR, 75 mGy X-rays), to prevent doxorubicin (DOX)-induced cardiotoxicity. BALB/c mice were randomly divided into five groups, Control, LDR (a single exposure), Sham (treated same as LDR group except for irradiation), DOX (a single intraperitoneal injection of DOX at 7.5 mg/kg), and LDR/DOX (received LDR and 72 h later received DOX). Electrocardiogram analysis displayed several kinds of abnormal ECG profiles in DOX-treated mice, but less in LDR/DOX group. Cardiotoxicity indices included histopathological changes, oxidative stress markers, and measurements of mitochondrial membrane permeability. Pretreatment of DOX group with LDR reduced oxidative damages (reactive oxygen species formation, protein nitration, and lipid peroxidation) and increased the activities of antioxidants (superoxide dismutase and glutathione peroxidase) in the heart of LDR/DOX mice compared to DOX mice. Pretreatment of DOX-treated mice with LDR also decreased DOX-induced cardiac cell apoptosis (TUNEL staining and cleaved caspase-3) and mitochondrial apoptotic pathway (increased p53, Bax, and caspase-9 expression and decreased Bcl2 expression and ΔΨm dissipation). These results suggest that LDR could induce adaptation of the heart to DOX-induced toxicity. Cardiac protection by LDR may attribute to attenuate DOX-induced cell death via suppressing mitochondrial-dependent oxidative stress and apoptosis signaling.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yaqiong Hong
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Di Zhao
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xinxin Meng
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lijing Zhao
- The School of Basic Medicine, Jilin University, Changchun, Jilin 130021, China
| | - Yanwei Du
- Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Zan Wang
- Department of Internal Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yan Zheng
- Department of Gerontology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lu Cai
- Pediatric Research Institute, The Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, KY 40202, USA
| | - Hongyu Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
20
|
Parikh PP, Castilla D, Lassance-Soares RM, Shao H, Regueiro M, Li Y, Vazquez-Padron R, Webster KA, Liu ZJ, Velazquez OC. A Reliable Mouse Model of Hind limb Gangrene. Ann Vasc Surg 2017; 48:222-232. [PMID: 29197603 DOI: 10.1016/j.avsg.2017.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Lack of a reliable hind limb gangrene animal model limits preclinical studies of gangrene, a severe form of critical limb ischemia. We develop a novel mouse hind limb gangrene model to facilitate translational studies. METHODS BALB/c, FVB, and C57BL/6 mice underwent femoral artery ligation (FAL) with or without administration of NG-nitro-L-arginine methyl ester (L-NAME), an endothelial nitric oxide synthase inhibitor. Gangrene was assessed using standardized ischemia scores ranging from 0 (no gangrene) to 12 (forefoot gangrene). Laser Doppler imaging (LDI) and DiI perfusion quantified hind limb reperfusion postoperatively. RESULTS BALB/c develops gangrene with FAL-only (n = 11/11, 100% gangrene incidence), showing mean limb ischemia score of 12 on postoperative days (PODs) 7 and 14 with LDI ranging from 0.08 to 0.12 on respective PODs. Most FVB did not develop gangrene with FAL-only (n = 3/9, 33% gangrene incidence) but with FAL and L-NAME (n = 9/9, 100% gangrene incidence). Mean limb ischemia scores for FVB undergoing FAL with L-NAME were significantly higher than for FVB receiving FAL-only. LDI score and capillary density by POD 28 were significantly lower in FVB undergoing FAL with L-NAME. C57BL/6 did not develop gangrene with FAL-only or FAL and L-NAME. CONCLUSIONS Reproducible murine gangrene models may elucidate molecular mechanisms for gangrene development, facilitating therapeutic intervention.
Collapse
Affiliation(s)
- Punam P Parikh
- DeWitt-Daughtry Family Department of Surgery, Division of Vascular Surgery, University of Miami Miller School of Medicine, Miami, FL.
| | - Diego Castilla
- DeWitt-Daughtry Family Department of Surgery, Division of Vascular Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Roberta M Lassance-Soares
- DeWitt-Daughtry Family Department of Surgery, Division of Vascular Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Hongwei Shao
- DeWitt-Daughtry Family Department of Surgery, Division of Vascular Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Manuela Regueiro
- DeWitt-Daughtry Family Department of Surgery, Division of Vascular Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Yan Li
- DeWitt-Daughtry Family Department of Surgery, Division of Vascular Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Roberto Vazquez-Padron
- DeWitt-Daughtry Family Department of Surgery, Division of Vascular Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Keith A Webster
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Zhao-Jun Liu
- DeWitt-Daughtry Family Department of Surgery, Division of Vascular Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Omaida C Velazquez
- DeWitt-Daughtry Family Department of Surgery, Division of Vascular Surgery, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|