1
|
Hu Z, Xiao D, Wang L, You J, Long T, Wang J, Shang Y, Yi D, Ding L, Wang X, Peng X, Zeng J. Exosomes derived from cardiac fibroblasts with Ang-II stimulation provoke myocardial hypertrophy via miR-15b-5p/PTEN-L axis. Exp Cell Res 2025; 444:114380. [PMID: 39674360 DOI: 10.1016/j.yexcr.2024.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
This study aimed to examine the impact of exosomes derived from Ang II-stimulated cardiac fibroblasts (CFs) on myocardial hypertrophy. Neonatal rat CFs were isolated and identified using Vimentin immunofluorescence. Following Ang II stimulation, exosomes were collected, characterized, and subjected to miRNA sequencing. Myocardial hypertrophy models were induced both in vitro and in vivo using Ang II. CFs were transfected with miR-15b-5p mimics or inhibitors, and their exosomes were co-cultured with rat cardiomyocytes (H9C2). Changes in cell viability, myocardial hypertrophy, and the expression levels of PTEN-L, PINK1, and Parkin proteins were assessed using the CCK-8 assay, cell surface area evaluation, and Western blot analysis. Cardiac tissue pathology and myocardial hypertrophy were evaluated through HE and WAG staining, respectively, while PTEN-L expression was detected by immunohistochemistry. The results demonstrated successful isolation of CFs and their exosomes, with miR-15b-5p significantly enriched in the exosomes derived from Ang II-stimulated CFs (Ang II-CFs-Exos). Ang II-CFs-Exos inhibited cell viability, exacerbated myocardial hypertrophy, and activated mitophagy via miR-15b-5p in the in vitro myocardial hypertrophy model. PTEN-L was identified as a downstream target of miR-15b-5p, with its overexpression reversed the effects of miR-15b-5p mimic on myocardial hypertrophy and mitophagy. Additionally, mitochondrial inhibitors also countered the effects of the miR-15b-5p mimic on myocardial hypertrophy. Furthermore, Ang II-CFs-Exos exacerbated myocardial hypertrophy in rats, while knockout of miR-15b-5p in Ang II-CFs-Exos mitigated this effect. To sum up, Ang II-CFs-Exos promote myocardial hypertrophy by modulating PINK1/Parkin signaling -mediated mitophagy through the miR-15b-5p/PTEN-L axis.
Collapse
Affiliation(s)
- Zhiwen Hu
- Department of Cardiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China; Jiangxi Hypertension Research Institute, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Dijiu Xiao
- Department of Cardiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China; Jiangxi Hypertension Research Institute, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Liang Wang
- Department of Cardiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Jiaxiang You
- Department of Cardiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Tao Long
- Department of Cardiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Jinping Wang
- Department of Cardiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China; Jiangxi Hypertension Research Institute, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Yibiao Shang
- Department of Cardiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China; Jiangxi Hypertension Research Institute, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Dasong Yi
- Department of Cardiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Lu Ding
- Jiangxi Hypertension Research Institute, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Xiang Wang
- Jiangxi Hypertension Research Institute, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Xiaoping Peng
- Department of Cardiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China; Jiangxi Hypertension Research Institute, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Junyi Zeng
- Department of Cardiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China; Jiangxi Hypertension Research Institute, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Guo D, Yan J, Yang Z, Chen M, Zhong W, Yuan X, Yu S. The immune regulatory role of exosomal miRNAs and their clinical application potential in heart failure. Front Immunol 2024; 15:1476865. [PMID: 39687609 PMCID: PMC11647038 DOI: 10.3389/fimmu.2024.1476865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Heart failure (HF) is a complex and debilitating condition characterized by the heart's inability to pump blood effectively, leading to significant morbidity and mortality. The abnormality of immune response is a key factor in the progression of HF, contributing to adverse cardiac remodeling and dysfunction. Exosomal microRNAs (miRNAs) play a pivotal role in regulating gene expression and cellular function, which are integral to the crosstalk between cardiac and immune cells, influencing immune cell functions, such as macrophage polarization, T cell activity, and cytokine production, thereby modulating various pathological processes of HF, such as inflammation, fibrosis, and cardiac dysfunction. This review emphasizes the immune-regulatory role of exosomal miRNAs in HF and highlights their clinical potential as diagnostic biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junchen Yan
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhenyu Yang
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mengzhu Chen
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weibo Zhong
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Siming Yu
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Nephrology II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Zhang Z, Zou Y, Song C, Cao K, Cai K, Chen S, Wu Y, Geng D, Sun G, Zhang N, Zhang X, Zhang Y, Sun Y, Zhang Y. Advances in the study of exosomes in cardiovascular diseases. J Adv Res 2024; 66:133-153. [PMID: 38123019 PMCID: PMC11674797 DOI: 10.1016/j.jare.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.
Collapse
Affiliation(s)
- Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xingang Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
4
|
Feng Y, Wang Y, Li L, Yang Y, Tan X, Chen T. Exosomes Induce Crosstalk Between Multiple Types of Cells and Cardiac Fibroblasts: Therapeutic Potential for Remodeling After Myocardial Infarction. Int J Nanomedicine 2024; 19:10605-10621. [PMID: 39445157 PMCID: PMC11498042 DOI: 10.2147/ijn.s476995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Recanalization therapy can significantly improve the prognosis of patients with acute myocardial infarction (AMI). However, infarction or reperfusion-induced cardiomyocyte death, immune cell infiltration, fibroblast proliferation, and scarring formation lead to cardiac remodeling and gradually progress to heart failure or arrhythmia, resulting in a high mortality rate. Due to the inability of cardiomyocytes to regenerate, the healing of infarcted myocardium mainly relies on the formation of scars. Cardiac fibroblasts, as the main effector cells involved in repair and scar formation, play a crucial role in maintaining the structural integrity of the heart after MI. Recent studies have revealed that exosome-mediated intercellular communication plays a huge role in myocardial repair and signaling transduction after myocardial infarction (MI). Exosomes can regulate the biological behavior of fibroblasts by activating or inhibiting the intracellular signaling pathways through their contents, which are derived from cardiomyocytes, immune cells, endothelial cells, mesenchymal cells, and others. Understanding the interactions between fibroblasts and other cell types during cardiac remodeling will be the key to breakthrough therapies. This review examines the role of exosomes from different sources in the repair process after MI injury, especially the impacts on fibroblasts during myocardial remodeling, and explores the use of exosomes in the treatment of myocardial remodeling after MI.
Collapse
Affiliation(s)
- Yijuan Feng
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yan Wang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Li Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
5
|
Zhang Y, Li X, Dai Y, Han Y, Wei X, Wei G, Chen W, Kong S, He Y, Liu H, Ma N, Bin J, Tan N, He P, Liu Y. Neutrophil N1 polarization induced by cardiomyocyte-derived extracellular vesicle miR-9-5p aggravates myocardial ischemia/reperfusion injury. J Nanobiotechnology 2024; 22:632. [PMID: 39415256 PMCID: PMC11484374 DOI: 10.1186/s12951-024-02902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Neutrophil polarization contributes to inflammation and its resolution, but the role of neutrophil polarization in myocardial ischemia/reperfusion (I/R) injury remains unknown. Cardiomyocytes (CMs) participate in cardiac inflammation by secreting extracellular vesicles (EVs). Therefore, we investigated the role of neutrophil polarization in myocardial I/R injury and the mechanism by which CM-derived EVs regulated neutrophil polarization. In the present study, our data showed that N1 neutrophil polarization enlarged cardiac infarct size and exacerbated cardiac dysfunction at the early stage of myocardial I/R. Further, CM-EV-derived miR-9-5p was identified as a mediator inducing neutrophils to the N1 phenotype. Mechanistically, miR-9-5p directly suppressed SOCS5 and SIRT1 expression, resulting in activating JAK2/STAT3 and NF-κB signaling pathways in neutrophils. Importantly, we confirmed that serum EV-derived miR-9-5p levels were independently associated with cardiovascular mortality in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention. These findings suggest neutrophil polarization is a promising therapeutic target against myocardial I/R-induced inflammation and injury, and serum EV-derived miR-9-5p is a promising prognostic biomarker for cardiovascular mortality in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention.
Collapse
Affiliation(s)
- Yeshen Zhang
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510510, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510510, China
| | - Yining Dai
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuan Han
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510510, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510510, China
| | - Xiaomin Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510510, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510510, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510510, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510510, China
| | - Weikun Chen
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Siyu Kong
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yu He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Haobin Liu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ning Ma
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510510, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510510, China
| | - Ning Tan
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Pengcheng He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Department of Cardiology, Heyuan People's Hospital, Heyuan, 517000, China.
| | - Yuanhui Liu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Long M, Cheng M. Small extracellular vesicles associated miRNA in myocardial fibrosis. Biochem Biophys Res Commun 2024; 727:150336. [PMID: 38959731 DOI: 10.1016/j.bbrc.2024.150336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Myocardial fibrosis involves the loss of cardiomyocytes, myocardial fibroblast proliferation, and a reduction in angiogenesis, ultimately leading to heart failure, Given its significant implications, it is crucial to explore novel therapies for myocardial fibrosis. Recently one emerging avenue has been the use of small extracellular vesicles (sEV)-carried miRNA. In this review, we summarize the regulatory role of sEV-carried miRNA in myocardial fibrosis. We explored not only the potential diagnostic value of circulating miRNA as biomarkers for heart disease but also the therapeutic implications of sEV-carried miRNA derived from various cellular sources and applications of modified sEV. This exploration is paramount for researchers striving to develop innovative, cell-free therapies as potential drug candidates for the management of myocardial fibrosis.
Collapse
Affiliation(s)
- Minwen Long
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Louro AF, Meliciano A, Alves PM, Costa MHG, Serra M. A roadmap towards manufacturing extracellular vesicles for cardiac repair. Trends Biotechnol 2024; 42:1305-1322. [PMID: 38653588 DOI: 10.1016/j.tibtech.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
For the past two decades researchers have linked extracellular vesicle (EV)-mediated mechanisms to various physiological and pathological processes in the heart, such as immune response regulation, fibrosis, angiogenesis, and the survival and growth of cardiomyocytes. Although use of EVs has gathered momentum in the cardiac field, several obstacles in both upstream and downstream processes during EV manufacture need to be addressed before clinical success can be achieved. Low EV yields obtained in small-scale cultures deter clinical translation, as mass production is a prerequisite to meet therapeutic doses. Moreover, standardizing EV manufacture is critical given the inherent heterogeneity of EVs and the constraints of current isolation techniques. In this review, we discuss the critical steps for the large-scale manufacturing of high-potency EVs for cardiac therapies.
Collapse
Affiliation(s)
- Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Meliciano
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marta H G Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
8
|
Yan H, Ding H, Xie RX, Liu ZQ, Yang XQ, Xie LL, Liu CX, Liu XD, Chen LY, Huang XP. Research progress of exosomes from different sources in myocardial ischemia. Front Cardiovasc Med 2024; 11:1436764. [PMID: 39350967 PMCID: PMC11440518 DOI: 10.3389/fcvm.2024.1436764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024] Open
Abstract
Ischemic heart disease refers to the imbalance between the supply and demand of myocardial blood; it has various causes and results in a class of clinical diseases characterized by myocardial ischemia (MI). In recent years, the incidence of cardiovascular disease has become higher and higher, and the number of patients with ischemic heart disease has also increased year by year. Traditional treatment methods include drug therapy and surgical treatment, both of which have limitations. The former maybe develop risks of drug resistance and has more significant side effects, while the latter may damage blood vessels and risk infection. At this stage, a new cell-free treatment method needs to be explored. Many research results have shown that exosomes from different cell sources can protect the ischemic myocardium via intercellular action methods, such as promoting angiogenesis, inhibiting myocardial fibrosis, apoptosis and pyroptosis, and providing a new basis for the treatment of MI. In this review, we briefly introduce the formation and consequences of myocardial ischemia and the biology of exosomes, and then focus on the role and mechanism of exosomes from different sources in MI. We also discuss the role and mechanism of exosomes pretreated with Chinese and Western medicines on myocardial ischemia. We also discuss the potential of exosomes as diagnostic markers and therapeutic drug for MI.
Collapse
Affiliation(s)
- Huan Yan
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Huang Ding
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ruo-Xi Xie
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhi-Qing Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Qian Yang
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ling-Li Xie
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Cai-Xia Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Dan Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Li-Yuan Chen
- Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Xiao-Ping Huang
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
9
|
Liao Y, Zhu L. At the heart of inflammation: Unravelling cardiac resident macrophage biology. J Cell Mol Med 2024; 28:e70050. [PMID: 39223947 PMCID: PMC11369210 DOI: 10.1111/jcmm.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease remains one of the leading causes of death globally. Recent advancements in sequencing technologies have led to the identification of a unique population of macrophages within the heart, termed cardiac resident macrophages (CRMs), which exhibit self-renewal capabilities and play crucial roles in regulating cardiac homeostasis, inflammation, as well as injury and repair processes. This literature review aims to elucidate the origin and phenotypic characteristics of CRMs, comprehensively outline their contributions to cardiac homeostasis and further summarize their functional roles and molecular mechanisms implicated in the onset and progression of cardiovascular diseases. These insights are poised to pave the way for novel therapeutic strategies centred on targeted interventions based on the distinctive properties of resident macrophages.
Collapse
Affiliation(s)
- Yingnan Liao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduSichuanChina
| | - Liyuan Zhu
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
10
|
Lin S, Yang Y, Zhou Z, Li W, Wang X, Liu Y, Bi Y, Mao J. Regulation mechanism of microRNAs in cardiac cells-derived exosomes in cell crosstalk. Front Pharmacol 2024; 15:1399850. [PMID: 39228519 PMCID: PMC11368792 DOI: 10.3389/fphar.2024.1399850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
The heart is a multicellular system, and the intercellular crosstalk mechanism is very important for the growth and development of the heart and even the organs, tissues, and cells at a distance. As a kind of extracellular vesicle, exosomes are released by different types of cells and can carry specific genetic material, endosomal proteins, cytokines, etc., which are the main material basis for mediating cell crosstalk mechanism. Among them, microRNA carried by cardiac cells-derived exosomes have highly conserved sequences and play a key role in regulating the function of organs, tissues, and cells related to cardiovascular diseases and their complications and comorbidities, which have attracted extensive attention in the medical community in recent years. Following up on the latest research progress at home and abroad, this review systematically summarized the regulatory role of microRNA from cardiac cells-derived exosomes in various cell crosstalk, including not only cardiac cells (including cardiomyocytes, fibroblasts, myofibroblast, cardiac progenitor cells, cardiac microvascular endothelial cells, cardiosphere-derived cells, etc.) but also tumor cells, bone marrow progenitor cells, and other tissue cells, in order to provide a reference for the prevention and treatment of cardiovascular diseases and their complications and comorbidities.
Collapse
Affiliation(s)
- Shanshan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanjian Yang
- Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhou Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingfei Bi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
11
|
Bhat OM, Mir RA, Nehvi IB, Wani NA, Dar AH, Zargar MA. Emerging role of sphingolipids and extracellular vesicles in development and therapeutics of cardiovascular diseases. IJC HEART & VASCULATURE 2024; 53:101469. [PMID: 39139609 PMCID: PMC11320467 DOI: 10.1016/j.ijcha.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Sphingolipids are eighteen carbon alcohol lipids synthesized from non-sphingolipid precursors in the endoplasmic reticulum (ER). The sphingolipids serve as precursors for a vast range of moieties found in our cells that play a critical role in various cellular processes, including cell division, senescence, migration, differentiation, apoptosis, pyroptosis, autophagy, nutrition intake, metabolism, and protein synthesis. In CVDs, different subclasses of sphingolipids and other derived molecules such as sphingomyelin (SM), ceramides (CERs), and sphingosine-1-phosphate (S1P) are directly related to diabetic cardiomyopathy, dilated cardiomyopathy, myocarditis, ischemic heart disease (IHD), hypertension, and atherogenesis. Several genome-wide association studies showed an association between genetic variations in sphingolipid pathway genes and the risk of CVDs. The sphingolipid pathway plays an important role in the biogenesis and secretion of exosomes. Small extracellular vesicles (sEVs)/ exosomes have recently been found as possible indicators for the onset of CVDs, linking various cellular signaling pathways that contribute to the disease progression. Important features of EVs like biocompatibility, and crossing of biological barriers can improve the pharmacokinetics of drugs and will be exploited to develop next-generation drug delivery systems. In this review, we have comprehensively discussed the role of sphingolipids, and sphingolipid metabolites in the development of CVDs. In addition, concise deliberations were laid to discuss the role of sEVs/exosomes in regulating the pathophysiological processes of CVDs and the exosomes as therapeutic targets.
Collapse
Affiliation(s)
- Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - M Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
12
|
Li H, Zhang J, Tan M, Yin Y, Song Y, Zhao Y, Yan L, Li N, Zhang X, Bai J, Jiang T, Li H. Exosomes based strategies for cardiovascular diseases: Opportunities and challenges. Biomaterials 2024; 308:122544. [PMID: 38579591 DOI: 10.1016/j.biomaterials.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Exosomes, as nanoscale extracellular vesicles (EVs), are secreted by all types of cells to facilitate intercellular communication in living organisms. After being taken up by neighboring or distant cells, exosomes can alter the expression levels of target genes in recipient cells and thereby affect their pathophysiological outcomes depending on payloads encapsulated therein. The functions and mechanisms of exosomes in cardiovascular diseases have attracted much attention in recent years and are thought to have cardioprotective and regenerative potential. This review summarizes the biogenesis and molecular contents of exosomes and details the roles played by exosomes released from various cells in the progression and recovery of cardiovascular disease. The review also discusses the current status of traditional exosomes in cardiovascular tissue engineering and regenerative medicine, pointing out several limitations in their application. It emphasizes that some of the existing emerging industrial or bioengineering technologies are promising to compensate for these shortcomings, and the combined application of exosomes and biomaterials provides an opportunity for mutual enhancement of their performance. The integration of exosome-based cell-free diagnostic and therapeutic options will contribute to the further development of cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China; Department of Geriatrics, Cardiovascular Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, PR China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, PR China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
13
|
Zhang Z, Gu Q, Chen L, Yuan D, Gu X, Qian H, Xie P, Liu Q, Hu Z. Selective microRNA expression of exosomes from retinal pigment epithelial cells by oxidative stress. Vision Res 2024; 220:108388. [PMID: 38593635 DOI: 10.1016/j.visres.2024.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
The function of exosomal miRNAs (miRs) in retinal degeneration is largely unclear. We were aimed to investigate the functions of exosomes as well as their miRs derived from retinal pigment epithelial (RPE) cells following exposure to oxidative stress (OS). After the OS by lipopolysaccharide and rotenone on RPE cells, interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Tumor Necrosis Factor-alpha (TNF-α) were upregulated, along with the decreased mitochondrial membrane potential and upregulated oxidative damage marker 8-OH-dG in RPE cells. RPE-derived exosomes were then isolated, identified, injected into the subretinal space in mice. After subretinal injection, RPE-exosomes after OS not only induced higher ROS level and apoptotic retinal cells, but also elevated IL-1β, IL-6 alongside TNF-α expressions among retina/RPE/choroidal complex. Next, miRs inside the exosomes were sequenced by the next generation sequencing (NGS) technology. NGS revealed that certain miRs were abundant in exosomes, while others were selectively kept by RPE cells. Further, downregulated miRs, like miR-125b-5p, miR-125a-5p, alongside miR-128-3p, and upregulated miR, such as miR-7-5p were validated byRT-qPCR. Finally, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to find the possible target genes of those selective exosomal miRs. Our results proved that the RPE-derived exosomes after OS selectively express certain miRs, providing novel insights into the pathogenesis of age-related macular degeneration (AMD) in future.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Department of Ophthalmology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University. Xuzhou, Jiangsu 221116, China
| | - Qinyuan Gu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Lu Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China; Department of Ophthalmology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University. Xuzhou, Jiangsu 221116, China
| | - Dongqing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Xunyi Gu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Huiming Qian
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China; Department of Ophthalmology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China.
| | - Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China.
| |
Collapse
|
14
|
Huang Q, Chen T, Li J, Wang Y, Shi H, Yu Y, Ji Q, Shen X, Sun T, Shi H, Luo X, Jin B, You Y, Wu B. IL-37 ameliorates myocardial fibrosis by regulating mtDNA-enriched vesicle release in diabetic cardiomyopathy mice. J Transl Med 2024; 22:494. [PMID: 38790051 PMCID: PMC11127460 DOI: 10.1186/s12967-024-05250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM), a serious complication of diabetes, leads to structural and functional abnormalities of the heart and ultimately evolves to heart failure. IL-37 exerts a substantial influence on the regulation of inflammation and metabolism. Whether IL-37 is involved in DCM is unknown. METHODS The plasma samples were collected from healthy controls, diabetic patients and DCM patients, and the level of IL-37 and its relationship with heart function were observed. The changes in cardiac function, myocardial fibrosis and mitochondrial injury in DCM mice with or without IL-37 intervention were investigated in vivo. By an in vitro co-culture approach involving HG challenge of cardiomyocytes and fibroblasts, the interaction carried out by cardiomyocytes on fibroblast profibrotic activation was studied. Finally, the possible interactive mediator between cardiomyocytes and fibroblasts was explored, and the intervention role of IL-37 and its relevant molecular mechanisms. RESULTS We showed that the level of plasma IL-37 in DCM patients was upregulated compared to that in healthy controls and diabetic patients. Both recombinant IL-37 administration or inducing IL-37 expression alleviated cardiac dysfunction and myocardial fibrosis in DCM mice. Mechanically, hyperglycemia impaired mitochondria through SIRT1/AMPK/PGC1α signaling, resulting in significant cardiomyocyte apoptosis and the release of extracellular vesicles containing mtDNA. Fibroblasts then engulfed these mtDNA-enriched vesicles, thereby activating TLR9 signaling and the cGAS-STING pathway to initiate pro-fibrotic process and adverse remodeling. However, the presence of IL-37 ameliorated mitochondrial injury by preserving the activity of SIRT1-AMPK-PGC1α axis, resulting in a reduction in release of mtDNA-enriched vesicle and ultimately attenuating the progression of DCM. CONCLUSIONS Collectively, our study demonstrates a protective role of IL-37 in DCM, offering a promising therapeutic agent for this disease.
Collapse
Affiliation(s)
- Qingyu Huang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tongqing Chen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Li
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiming Wang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huairui Shi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifei Yu
- Endocrinology department, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Tao Sun
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haiming Shi
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Jin
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China.
| | - Bangwei Wu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Paim LR, da Silva LM, Antunes-Correa LM, Ribeiro VC, Schreiber R, Minin EO, Bueno LC, Lopes EC, Yamaguti R, Coy-Canguçu A, Dertkigil SSJ, Sposito A, Matos-Souza JR, Quinaglia T, Neilan TG, Velloso LA, Nadruz W, Jerosch-Herold M, Coelho-Filho OR. Profile of serum microRNAs in heart failure with reduced and preserved ejection fraction: Correlation with myocardial remodeling. Heliyon 2024; 10:e27206. [PMID: 38515724 PMCID: PMC10955197 DOI: 10.1016/j.heliyon.2024.e27206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Background and aims Cardiomyocyte hypertrophy and interstitial fibrosis are key components of myocardial remodeling in Heart Failure (HF) with preserved (HFpEF) or reduced ejection fraction (HFrEF). MicroRNAs (miRNAs) are non-coding, evolutionarily conserved RNA molecules that may offer novel insights into myocardial remodeling. This study aimed to characterize miRNA expression in HFpEF (LVEF ≥ 45%) and HFrEF (LVEF < 45%) and its association with myocardial remodeling. Methods Prospectively enrolled symptomatic HF patients (HFpEF:n = 36; HFrEF:n = 31) and controls (n = 23) underwent cardiac magnetic resonance imaging with T1-mapping and circulating miRNA expression (OpenArray system). Results 13 of 188 miRNAs were differentially expressed between HF groups (11 downregulated in HFpEF). Myocardial extracellular volume (ECV) was increased in both HF groups (HFpEF 30 ± 5%; HFrEF 30 ± 3%; controls 26 ± 2%, p < 0.001). miR-128a-3p, linked to cardiac hypertrophy, fibrosis, and dysfunction, correlated positively with ECV in HFpEF (r = 0.60, p = 0.01) and negatively in HFrEF (r = - 0.51, p = 0.04). miR-423-5p overexpression, previously associated HF mortality, was inversely associated with LVEF (r = - 0.29, p = 0.04) and intracellular water lifetime (τ ic) (r = - 0.45, p < 0.05) in both HF groups, and with NT-proBNP in HFpEF (r = - 0.63, p < 0.01). Conclusions miRNA expression profiles differed between HF phenotypes. The differential expression and association of miR-128a-3p with ECV may reflect the distinct vascular, interstitial, and cellular etiologies of HF phenotypes.
Collapse
Affiliation(s)
- Layde Rosane Paim
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | - Luis Miguel da Silva
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | | | | | - Roberto Schreiber
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | - Eduarda O.Z. Minin
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | - Larissa C.M. Bueno
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | - Elisangela C.P. Lopes
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | - Renan Yamaguti
- Faculdade de Engenharia Elétrica e de Computação – Universidade Estadual de Campinas, São Paulo, Brazil
| | - Andréa Coy-Canguçu
- Faculdade de Medicina – Pontifícia Universidade Católica de Campinas, São Paulo, Brazil
| | | | - Andrei Sposito
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | | | - Thiago Quinaglia
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
- Cardiovascular Imaging Research Center, Division of Cardiology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomas G. Neilan
- Cardiovascular Imaging Research Center, Division of Cardiology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Licio A. Velloso
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | - Wilson Nadruz
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas, São Paulo, Brazil
| | - Michael Jerosch-Herold
- Non-Invasive Cardiovascular Imaging Program, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
16
|
Butler D, Reyes DR. Heart-on-a-chip systems: disease modeling and drug screening applications. LAB ON A CHIP 2024; 24:1494-1528. [PMID: 38318723 DOI: 10.1039/d3lc00829k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, casting a substantial economic footprint and burdening the global healthcare system. Historically, pre-clinical CVD modeling and therapeutic screening have been performed using animal models. Unfortunately, animal models oftentimes fail to adequately mimic human physiology, leading to a poor translation of therapeutics from pre-clinical trials to consumers. Even those that make it to market can be removed due to unforeseen side effects. As such, there exists a clinical, technological, and economical need for systems that faithfully capture human (patho)physiology for modeling CVD, assessing cardiotoxicity, and evaluating drug efficacy. Heart-on-a-chip (HoC) systems are a part of the broader organ-on-a-chip paradigm that leverages microfluidics, tissue engineering, microfabrication, electronics, and gene editing to create human-relevant models for studying disease, drug-induced side effects, and therapeutic efficacy. These compact systems can be capable of real-time measurements and on-demand characterization of tissue behavior and could revolutionize the drug development process. In this review, we highlight the key components that comprise a HoC system followed by a review of contemporary reports of their use in disease modeling, drug toxicity and efficacy assessment, and as part of multi-organ-on-a-chip platforms. We also discuss future perspectives and challenges facing the field, including a discussion on the role that standardization is expected to play in accelerating the widespread adoption of these platforms.
Collapse
Affiliation(s)
- Derrick Butler
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Darwin R Reyes
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
17
|
Hashemi A, Ezati M, Nasr MP, Zumberg I, Provaznik V. Extracellular Vesicles and Hydrogels: An Innovative Approach to Tissue Regeneration. ACS OMEGA 2024; 9:6184-6218. [PMID: 38371801 PMCID: PMC10870307 DOI: 10.1021/acsomega.3c08280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
Extracellular vesicles have emerged as promising tools in regenerative medicine due to their inherent ability to facilitate intercellular communication and modulate cellular functions. These nanosized vesicles transport bioactive molecules, such as proteins, lipids, and nucleic acids, which can affect the behavior of recipient cells and promote tissue regeneration. However, the therapeutic application of these vesicles is frequently constrained by their rapid clearance from the body and inability to maintain a sustained presence at the injury site. In order to overcome these obstacles, hydrogels have been used as extracellular vesicle delivery vehicles, providing a localized and controlled release system that improves their therapeutic efficacy. This Review will examine the role of extracellular vesicle-loaded hydrogels in tissue regeneration, discussing potential applications, current challenges, and future directions. We will investigate the origins, composition, and characterization techniques of extracellular vesicles, focusing on recent advances in exosome profiling and the role of machine learning in this field. In addition, we will investigate the properties of hydrogels that make them ideal extracellular vesicle carriers. Recent studies utilizing this combination for tissue regeneration will be highlighted, providing a comprehensive overview of the current research landscape and potential future directions.
Collapse
Affiliation(s)
- Amir Hashemi
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Masoumeh Ezati
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Minoo Partovi Nasr
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Inna Zumberg
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Valentine Provaznik
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| |
Collapse
|
18
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
19
|
Jiang J, Zhang X, Wang H, Spanos M, Jiang F, Ni L, Li J, Li G, Lin Y, Xiao J. Closer to The Heart: Harnessing the Power of Targeted Extracellular Vesicle Therapies. Adv Biol (Weinh) 2024; 8:e2300141. [PMID: 37953665 DOI: 10.1002/adbi.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/08/2023] [Indexed: 11/14/2023]
Abstract
Extracellular vesicles (EVs) have emerged as novel diagnostic and therapeutic approaches for cardiovascular diseases. EVs derived from various origins exhibit distinct effects on the cardiovascular system. However, the application of native EVs is constrained due to their poor stabilities and limited targeting capabilities. Currently, targeted modification of EVs primarily involves genetic engineering, chemical modification (covalent, non-covalent), cell membrane modification, and biomaterial encapsulation. These techniques enhance the stability, biological activity, target-binding capacity, and controlled release of EVs at specific cells and tissues. The diverse origins of cardioprotective EVs are covered, and the applications of cardiac-targeting EV delivery systems in protecting against cardiovascular diseases are discussed. This review summarizes the current stage of research on the potential of EV-based targeted therapies for addressing cardiovascular disorders.
Collapse
Affiliation(s)
- Jizong Jiang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xinxin Zhang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Hongyun Wang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Fei Jiang
- Department of Nursing, Union Hospital, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Lingyan Ni
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jin Li
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yanjuan Lin
- Department of Nursing, Union Hospital, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Junjie Xiao
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
20
|
Chang H, Chen E, Zhu T, Liu J, Chen C. Communication Regarding the Myocardial Ischemia/Reperfusion and Cognitive Impairment: A Narrative Literature Review. J Alzheimers Dis 2024; 97:1545-1570. [PMID: 38277294 PMCID: PMC10894588 DOI: 10.3233/jad-230886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/28/2024]
Abstract
Coronary artery disease is a prevalent ischemic disease that results in insufficient blood supply to the heart muscle due to narrowing or occlusion of the coronary arteries. Various reperfusion strategies, including pharmacological thrombolysis and percutaneous coronary intervention, have been developed to enhance blood flow restoration. However, these interventions can lead to myocardial ischemia/reperfusion injury (MI/RI), which can cause unpredictable complications. Recent research has highlighted a compelling association between MI/RI and cognitive function, revealing pathophysiological mechanisms that may explain altered brain cognition. Manifestations in the brain following MI/RI exhibit pathological features resembling those observed in Alzheimer's disease (AD), implying a potential link between MI/RI and the development of AD. The pro-inflammatory state following MI/RI may induce neuroinflammation via systemic inflammation, while impaired cardiac function can result in cerebral under-perfusion. This review delves into the role of extracellular vesicles in transporting deleterious substances from the heart to the brain during conditions of MI/RI, potentially contributing to impaired cognition. Addressing the cognitive consequence of MI/RI, the review also emphasizes potential neuroprotective interventions and pharmacological treatments within the MI/RI model. In conclusion, the review underscores the significant impact of MI/RI on cognitive function, summarizes potential mechanisms of cardio-cerebral communication in the context of MI/RI, and offers ideas and insights for the prevention and treatment of cognitive dysfunction following MI/RI.
Collapse
Affiliation(s)
- Haiqing Chang
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Erya Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Li Y, Zhang Z, Wang S, Du X, Li Q. miR-423 sponged by lncRNA NORHA inhibits granulosa cell apoptosis. J Anim Sci Biotechnol 2023; 14:154. [PMID: 38053184 DOI: 10.1186/s40104-023-00960-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Atresia and degeneration, a follicular developmental fate that reduces female fertility and is triggered by granulosa cell (GC) apoptosis, have been induced by dozens of miRNAs. Here, we report a miRNA, miR-423, that inhibits the initiation of follicular atresia (FA), and early apoptosis of GCs. RESULTS We showed that miR-423 was down-regulated during sow FA, and its levels in follicles were negatively correlated with the GC density and the P4/E2 ratio in the follicular fluid in vivo. The in vitro gain-of-function experiments revealed that miR-423 suppresses cell apoptosis, especially early apoptosis in GCs. Mechanically speaking, the miR-423 targets and interacts with the 3'-UTR of the porcine SMAD7 gene, which encodes an apoptosis-inducing factor in GCs, and represses its expression and pro-apoptotic function. Interestingly, FA and the GC apoptosis-related lncRNA NORHA was demonstrated as a ceRNA of miR-423. Additionally, we showed that a single base deletion/insertion in the miR-423 promoter is significantly associated with the number of stillbirths (NSB) trait of sows. CONCLUSION These results demonstrate that miR-423 is a small molecule for inhibiting FA initiation and GC early apoptosis, suggesting that treating with miR-423 may be a novel approach for inhibiting FA initiation and improving female fertility.
Collapse
Affiliation(s)
- Yuqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuofan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siqi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
22
|
Li Q, Feng Q, Zhou H, Lin C, Sun X, Ma C, Sun L, Guo G, Wang D. Mechanisms and therapeutic strategies of extracellular vesicles in cardiovascular diseases. MedComm (Beijing) 2023; 4:e454. [PMID: 38124785 PMCID: PMC10732331 DOI: 10.1002/mco2.454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Cardiovascular disease (CVD) significantly impacts global society since it is the leading cause of death and disability worldwide, and extracellular vesicle (EV)-based therapies have been extensively investigated. EV delivery is involved in mediating the progression of CVDs and has great potential to be biomarker and therapeutic molecular carrier. Besides, EVs from stem cells and cardiac cells can effectively protect the heart from various pathologic conditions, and then serve as an alternative treatment for CVDs. Moreover, the research of using EVs as delivery carriers of therapeutic molecules, membrane engineering modification of EVs, or combining EVs with biomaterials further improves the application potential of EVs in clinical treatment. However, currently there are only a few articles summarizing the application of EVs in CVDs. This review provides an overview of the role of EVs in the pathogenesis and diagnosis of CVDs. It also focuses on how EVs promote the repair of myocardial injury and therapeutic methods of CVDs. In conclusion, it is of great significance to review the research on the application of EVs in the treatment of CVDs, which lays a foundation for further exploration of the role of EVs, and clarifies the prospect of EVs in the treatment of myocardial injury.
Collapse
Affiliation(s)
- Qirong Li
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Xiaoming Sun
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Chaoyang Ma
- Hepatology Hospital of Jilin ProvinceChangchunChina
| | - Liqun Sun
- Department of PathogenobiologyJilin University Mycology Research CenterCollege of Basic Medical SciencesJilin UniversityChangchunChina
| | - Gongliang Guo
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| |
Collapse
|
23
|
Xu ST, Zhang YX, Liu SL, Liu F, Ye JT. Exosomes derived from cardiac fibroblasts with angiotensin II stimulation provoke hypertrophy and autophagy inhibition in cardiomyocytes. Biochem Biophys Res Commun 2023; 682:199-206. [PMID: 37826943 DOI: 10.1016/j.bbrc.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Although accumulating evidence has revealed that autophagy inhibition contributes to the development of pathological cardiac hypertrophy, the mechanisms leading to declined autophagy activity in the hypertrophic heart remain to be elucidated. Exosomes are known to be important mediators of intercellular communication, and the involvement of exosomes in cardiovascular abnormities has attracted increasing attentions. Cardiac fibroblasts (CFs) are the most abundant cell type in the heart. Here, we investigated the potential role of CFs-derived exosomes in regulating cardiomyocyte hypertrophy and autophagy. Exosomes from rat CFs treated with angiotensin II (Ang II-CFs-exosomes) were collected and characterized. Our experiments showed that these exosomes could induce hypertrophic responses and impair autophagy activity in primary neonatal rat cardiomyocytes (NRCMs). Ang II-CFs-exosomes blocked the autophagic flux of NRCMs via inhibiting the formation of autolysosomes. Moreover, the pro-hypertrophic effects and autophagy inhibition induced by Ang II-CFs-exosomes was validated in mice receiving injection of the exosomes. These findings highlight a novel role of Ang II-CFs-exosomes in suppressing cardiomyocyte autophagy, which may help to better understand the pathogenesis of cardiac hypertrophy.
Collapse
Affiliation(s)
- Si-Ting Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China
| | - Yue-Xin Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China
| | - Si-Ling Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China
| | - Fang Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China
| | - Jian-Tao Ye
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China.
| |
Collapse
|
24
|
Zhang X, Sun S, Ren G, Liu W, Chen H. Advances in Intercellular Communication Mediated by Exosomal ncRNAs in Cardiovascular Disease. Int J Mol Sci 2023; 24:16197. [PMID: 38003385 PMCID: PMC10671547 DOI: 10.3390/ijms242216197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases are a leading cause of worldwide mortality, and exosomes have recently gained attention as key mediators of intercellular communication in these diseases. Exosomes are double-layered lipid vesicles that can carry biomolecules such as miRNAs, lncRNAs, and circRNAs, and the content of exosomes is dependent on the cell they originated from. They can be involved in the pathophysiological processes of cardiovascular diseases and hold potential as diagnostic and monitoring tools. Exosomes mediate intercellular communication, stimulate or inhibit the activity of target cells, and affect myocardial hypertrophy, injury and infarction, ventricular remodeling, angiogenesis, and atherosclerosis. Exosomes can be released from various types of cells, including endothelial cells, smooth muscle cells, cardiomyocytes, fibroblasts, platelets, adipocytes, immune cells, and stem cells. In this review, we highlight the communication between different cell-derived exosomes and cardiovascular cells, with a focus on the roles of RNAs. This provides new insights for further exploring targeted therapies in the clinical management of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (S.S.); (G.R.)
| | - Shengjie Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (S.S.); (G.R.)
| | - Gang Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (S.S.); (G.R.)
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
| |
Collapse
|
25
|
Ranjan P, Colin K, Dutta RK, Verma SK. Challenges and future scope of exosomes in the treatment of cardiovascular diseases. J Physiol 2023; 601:4873-4893. [PMID: 36398654 PMCID: PMC10192497 DOI: 10.1113/jp282053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/21/2022] [Indexed: 07/28/2023] Open
Abstract
Exosomes are nanosized vesicles that carry biologically diverse molecules for intercellular communication. Researchers have been trying to engineer exosomes for therapeutic purposes by using different approaches to deliver biologically active molecules to the various target cells efficiently. Recent technological advances may allow the biodistribution and pharmacokinetics of exosomes to be modified to meet scientific needs with respect to specific diseases. However, it is essential to determine an exosome's optimal dosage and potential side effects before its clinical use. Significant breakthroughs have been made in recent decades concerning exosome labelling and imaging techniques. These tools provide in situ monitoring of exosome biodistribution and pharmacokinetics and pinpoint targetability. However, because exosomes are nanometres in size and vary significantly in contents, a deeper understanding is required to ensure accurate monitoring before they can be applied in clinical settings. Different research groups have established different approaches to elucidate the roles of exosomes and visualize their spatial properties. This review covers current and emerging strategies for in vivo and in vitro exosome imaging and tracking for potential studies.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Karen Colin
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- UAB School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL
| | - Roshan Kumar Dutta
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Suresh Kumar Verma
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
26
|
Collado A, Gan L, Tengbom J, Kontidou E, Pernow J, Zhou Z. Extracellular vesicles and their non-coding RNA cargos: Emerging players in cardiovascular disease. J Physiol 2023; 601:4989-5009. [PMID: 36094621 DOI: 10.1113/jp283200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, have recently received attention as essential mechanisms for cell-to-cell communication in cardiovascular disease. EVs can be released from different types of cells, including endothelial cells, smooth muscle cells, cardiac cells, fibroblasts, platelets, adipocytes, immune cells and stem cells. Non-coding (nc)RNAs as EV cargos have recently been investigated in the cardiovascular system. Up- or downregulated ncRNAs in EVs have been shown to play a crucial role in various cardiovascular diseases. Communication via EV-derived ncRNAs can occur between cells of the same type and between different types of cells involved in the pathophysiology of cardiovascular disease. In the present review, we highlight the important aspects of diverse cell-derived EVs and their ncRNA cargos as disease mediators and potential therapeutic targets in atherosclerosis, coronary artery disease, ischaemic heart disease and cardiac fibrosis. In addition, we summarize the potential of EV-derived ncRNAs in the treatment of cardiovascular disease. Finally, we discuss the different methods for EV isolation and characterization. A better understanding of the specific role of EVs and their ncRNA cargos in the regulation of cardiovascular (dys)function will be of importance for the development of diagnostic and therapeutic tools for cardiovascular disease.
Collapse
Affiliation(s)
- Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lu Gan
- Laboratory of Emergency Medicine, Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - John Tengbom
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Eftychia Kontidou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Ghassemi K, Inouye K, Takhmazyan T, Bonavida V, Yang JW, de Barros NR, Thankam FG. Engineered Vesicles and Hydrogel Technologies for Myocardial Regeneration. Gels 2023; 9:824. [PMID: 37888397 PMCID: PMC10606880 DOI: 10.3390/gels9100824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Increased prevalence of cardiovascular disease and potentially life-threatening complications of myocardial infarction (MI) has led to emerging therapeutic approaches focusing on myocardial regeneration and restoration of physiologic function following infarction. Extracellular vesicle (EV) technology has gained attention owing to the biological potential to modulate cellular immune responses and promote the repair of damaged tissue. Also, EVs are involved in local and distant cellular communication following damage and play an important role in initiating the repair process. Vesicles derived from stem cells and cardiomyocytes (CM) are of particular interest due to their ability to promote cell growth, proliferation, and angiogenesis following MI. Although a promising candidate for myocardial repair, EV technology is limited by the short retention time of vesicles and rapid elimination by the body. There have been several successful attempts to address this shortcoming, which includes hydrogel technology for the sustained bioavailability of EVs. This review discusses and summarizes current understanding regarding EV technology in the context of myocardial repair.
Collapse
Affiliation(s)
- Kaitlyn Ghassemi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Keiko Inouye
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Tatevik Takhmazyan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Victor Bonavida
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Jia-Wei Yang
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; (J.-W.Y.); (N.R.d.B.)
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; (J.-W.Y.); (N.R.d.B.)
| | - Finosh G. Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| |
Collapse
|
28
|
Chang C, Cai RP, Su YM, Wu Q, Su Q. Mesenchymal Stem Cell-Derived Exosomal Noncoding RNAs as Alternative Treatments for Myocardial Ischemia-Reperfusion Injury: Current Status and Future Perspectives. J Cardiovasc Transl Res 2023; 16:1085-1098. [PMID: 37286924 PMCID: PMC10246878 DOI: 10.1007/s12265-023-10401-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
Ischemic cardiomyopathy is treated mainly with thrombolytic drugs, percutaneous coronary intervention, and coronary artery bypass grafting to recanalize blocked vessels. Myocardial ischemia-reperfusion injury (MIRI) is an unavoidable complication of obstructive revascularization. Compared with those of myocardial ischemic injury, few effective therapeutic options are available for MIRI treatment. The pathophysiological mechanisms of MIRI involve the inflammatory response, the immune response, oxidative stress, apoptosis, intracellular Ca2+ overload, and cardiomyocyte energy metabolism. These mechanisms exacerbate MIRI. Mesenchymal stem cell-derived exosomes (MSC-EXOs) can alleviate MIRI through these mechanisms and, to some extent, prevent the limitations caused by direct MSC administration. Therefore, using MSC-EXOs instead of MSCs to treat MIRI is a potentially beneficial cell-free treatment strategy. In this review, we describe the mechanism of action of MSC-EXO-derived noncoding RNAs in the treatment of MIRI and discuss the advantages and limitations of this strategy, as well as possible future research directions.
Collapse
Affiliation(s)
- Chen Chang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, China
| | - Ru-Ping Cai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Ying-Man Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, China
| | - Qiang Wu
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China.
- Journal of Geriatric Cardiology Editorial Office, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, China.
| |
Collapse
|
29
|
Chu L, Xie D, Xu D. Epigenetic Regulation of Fibroblasts and Crosstalk between Cardiomyocytes and Non-Myocyte Cells in Cardiac Fibrosis. Biomolecules 2023; 13:1382. [PMID: 37759781 PMCID: PMC10526373 DOI: 10.3390/biom13091382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic mechanisms and cell crosstalk have been shown to play important roles in the initiation and progression of cardiac fibrosis. This review article aims to provide a thorough overview of the epigenetic mechanisms involved in fibroblast regulation. During fibrosis, fibroblast epigenetic regulation encompasses a multitude of mechanisms, including DNA methylation, histone acetylation and methylation, and chromatin remodeling. These mechanisms regulate the phenotype of fibroblasts and the extracellular matrix composition by modulating gene expression, thereby orchestrating the progression of cardiac fibrosis. Moreover, cardiac fibrosis disrupts normal cardiac function by imposing myocardial mechanical stress and compromising cardiac electrical conduction. This review article also delves into the intricate crosstalk between cardiomyocytes and non-cardiomyocytes in the heart. A comprehensive understanding of the mechanisms governing epigenetic regulation and cell crosstalk in cardiac fibrosis is critical for the development of effective therapeutic strategies. Further research is warranted to unravel the precise molecular mechanisms underpinning these processes and to identify potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 315 Yanchang Middle Road, Shanghai 200072, China; (L.C.); (D.X.)
| |
Collapse
|
30
|
Ma Y, Cao Y, Gao H, Tong R, Yi J, Zhang Z, Chen R, Pan Z. Sevoflurane Improves Ventricular Conduction by Exosomes Derived from Rat Cardiac Fibroblasts After Hypothermic Global Ischemia-Reperfusion Injury. Drug Des Devel Ther 2023; 17:1719-1732. [PMID: 37333963 PMCID: PMC10275581 DOI: 10.2147/dddt.s408595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
Purpose This study investigated the effect of exosomes derived from sevoflurane-treated cardiac fibroblasts (Sev-CFs-Exo) on reperfusion arrhythmias (RA), ventricular conduction, and myocardial ischemia-reperfusion injury (MIRI). Methods Primary cardiac fibroblasts (CFs) were isolated from the hearts of neonatal rats and identified by morphology and immunofluorescence. Exosomes were isolated from CFs at passages 2-3 after they had been treated with 2.5% sevoflurane for an hour and cultivated for 24-48 hours. The control group was CFs that did not receive any treatment. The hypothermic global ischemia-reperfusion injury model was established using the Langendorff perfusion technique following injection with exosomes through the caudal vein. Multi-electrode array (MEA) mapping was used to investigate the changes in RA and ventricular conduction in isolated hearts. Western blots and immunofluorescence were used to examine the relative expression and location of connexin 43 (Cx43). In addition, the MIRI was evaluated with triphenyl tetrazolium chloride and Hematoxylin-Eosin staining. Results The primary CFs had a variety of morphologies, no spontaneous pulsation, and were vimentin-positive, which confirmed their successful isolation. Sev-CFs-Exo increased the heart rate (HR) at reperfusion for 15 minutes (T2) and 30 minutes (T3) and lowered the score and duration of RA and the time for restoration of heartbeat in reperfusion. Meanwhile, Sev-CFs-Exo increased conduction velocity (CV), decreased absolute inhomogeneity (P5-95) and inhomogeneity index (P5-95/P50) at T2 and T3, as well as promoted the recovery of HR, CV, P5-95 and P5-95/P50 after hypothermic global ischemia-reperfusion injury. Furthermore, Sev-CFs-Exo raised expression and reduced lateralization of Cx43, and improved myocardial infarct sizes and cellular necrosis. However, while cardiac fibroblast-derived exosomes (CFs-Exo) showed similar cardioprotective effects, the outcomes were not as significant. Conclusion Sevoflurane reduces the risk of RA and improves ventricular conduction and MIRI by CFs-Exo, and this may be driven by the expression and location of Cx43.
Collapse
Affiliation(s)
- Yanyan Ma
- School of Anesthesia, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Ying Cao
- Department of Anesthesiology, The Second People’s Hospital of Guiyang, Guiyang, People’s Republic of China
| | - Hong Gao
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Rui Tong
- School of Anesthesia, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Jing Yi
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Zhongwei Zhang
- School of Anesthesia, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Rui Chen
- School of Anesthesia, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Zhijun Pan
- School of Anesthesia, Guizhou Medical University, Guiyang, People’s Republic of China
| |
Collapse
|
31
|
Papini G, Furini G, Matteucci M, Biemmi V, Casieri V, Di Lascio N, Milano G, Chincoli LR, Faita F, Barile L, Lionetti V. Cardiomyocyte-targeting exosomes from sulforaphane-treated fibroblasts affords cardioprotection in infarcted rats. J Transl Med 2023; 21:313. [PMID: 37161563 PMCID: PMC10169450 DOI: 10.1186/s12967-023-04155-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Exosomes (EXOs), tiny extracellular vesicles that facilitate cell-cell communication, are being explored as a heart failure treatment, although the features of the cell source restrict their efficacy. Fibroblasts the most prevalent non-myocyte heart cells, release poor cardioprotective EXOs. A noninvasive method for manufacturing fibroblast-derived exosomes (F-EXOs) that target cardiomyocytes and slow cardiac remodeling is expected. As a cardioprotective isothiocyanate, sulforaphane (SFN)-induced F-EXOs (SFN-F-EXOs) should recapitulate its anti-remodeling properties. METHODS Exosomes from low-dose SFN (3 μM/7 days)-treated NIH/3T3 murine cells were examined for number, size, and protein composition. Fluorescence microscopy, RT-qPCR, and western blot assessed cell size, oxidative stress, AcH4 levels, hypertrophic gene expression, and caspase-3 activation in angiotensin II (AngII)-stressed HL-1 murine cardiomyocytes 12 h-treated with various EXOs. The uptake of fluorescently-labeled EXOs was also measured in cardiomyocytes. The cardiac function of infarcted male Wistar rats intramyocardially injected with different EXOs (1·1012) was examined by echocardiography. Left ventricular infarct size, hypertrophy, and capillary density were measured. RESULTS Sustained treatment of NIH/3T3 with non-toxic SFN concentration significantly enhances the release of CD81 + EXOs rich in TSG101 (Tumor susceptibility gene 101) and Hsp70 (Heat Shock Protein 70), and containing maspin, an endogenous histone deacetylase 1 inhibitor. SFN-F-EXOs counteract angiotensin II (AngII)-induced hypertrophy and apoptosis in murine HL-1 cardiomyocytes enhancing SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a) levels more effectively than F-EXOs. In stressed cardiomyocytes, SFN-F-EXOs boost AcH4 levels by 30% (p < 0.05) and significantly reduce oxidative stress more than F-EXOs. Fluorescence microscopy showed that mouse cardiomyocytes take in SFN-F-EXOs ~ threefold more than F-EXOs. Compared to vehicle-injected infarcted hearts, SFN-F-EXOs reduce hypertrophy, scar size, and improve contractility. CONCLUSIONS Long-term low-dose SFN treatment of fibroblasts enhances the release of anti-remodeling cardiomyocyte-targeted F-EXOs, which effectively prevent the onset of HF. The proposed method opens a new avenue for large-scale production of cardioprotective exosomes for clinical application using allogeneic fibroblasts.
Collapse
Affiliation(s)
- Gaia Papini
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Giulia Furini
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Anesthesiology and Intensive Care Medicine, UOSVD, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Marco Matteucci
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Vanessa Biemmi
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università Svizzera Italiana, 6900, Lugano, Switzerland
| | - Valentina Casieri
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Nicole Di Lascio
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Giuseppina Milano
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Lucia Rosa Chincoli
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Lucio Barile
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università Svizzera Italiana, 6900, Lugano, Switzerland
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy.
- Anesthesiology and Intensive Care Medicine, UOSVD, Fondazione Toscana G. Monasterio, Pisa, Italy.
| |
Collapse
|
32
|
Miguel AC, Aurora GH, Alejandro SP. Cardiosome-mediated protection in myocardial ischemia. Clin Chim Acta 2023; 545:117374. [PMID: 37150341 DOI: 10.1016/j.cca.2023.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Cardiosomes, exosomes released in cardiospheres by cardiomyocytes and progenitor cells, communicate locally and at a distance from different tissues, promoting beneficial cellular changes. For example, miRNAs have emerged as regulators of intercellular communication via transport by extracellular vesicles in general and cardiosomes specifically. Although cardiosomes are considered biomarkers owing to their immense biomedical application in various clinical fields, their role in cardiovascular diseases remains unclear. This mini-review examines the experimental and clinical evidence for cardiosomes as non-invasive diagnostic, treatment and prognostic tools in acute myocardial infarction, the novelty of which is often lost in medical practice. In addition, we discuss the potential role of cardiosomes in physiologic mechanisms and cell signaling in cardiac conditioning strategies against reperfusion injury.
Collapse
Affiliation(s)
- Arroyo-Campuzano Miguel
- Department of Biomedicine Cardiovascular, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | - Gil-Hernández Aurora
- Department of Biomedicine Cardiovascular, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | - Silva-Palacios Alejandro
- Department of Biomedicine Cardiovascular, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
33
|
Fan M, Zhang J, Zeng L, Wang D, Chen J, Xi X, Long J, Huang J, Li X. Non-coding RNA mediates endoplasmic reticulum stress-induced apoptosis in heart disease. Heliyon 2023; 9:e16246. [PMID: 37251826 PMCID: PMC10209419 DOI: 10.1016/j.heliyon.2023.e16246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Apoptosis is a complex and highly self-regulating form of cell death, which is an important cause of the continuous decline in ventricular function and is widely involved in the occurrence and development of heart failure, myocardial infarction, and myocarditis. Endoplasmic reticulum stress plays a crucial role in apoptosis-inducing. Accumulation of misfolded or unfolded proteins causes cells to undergo a stress response called unfolded protein response (UPR). UPR initially has a cardioprotective effect. Nevertheless, prolonged and severe ER stress will lead up to apoptosis of stressed cells. Non-coding RNA is a type of RNA that does not code proteins. An ever-increasing number of studies have shown that non-coding RNAs are involved in regulating endoplasmic reticulum stress-induced cardiomyocyte injury and apoptosis. In this study, the effects of miRNA and LncRNA on endoplasmic reticulum stress in various heart diseases were mainly discussed to clarify their protective effects and potential therapeutic strategies for apoptosis.
Collapse
Affiliation(s)
- Mingyuan Fan
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Zhang
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lei Zeng
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Danpeng Wang
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jiao Chen
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaorong Xi
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Long
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jinzhu Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xueping Li
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
34
|
Reiss AB, Ahmed S, Johnson M, Saeedullah U, De Leon J. Exosomes in Cardiovascular Disease: From Mechanism to Therapeutic Target. Metabolites 2023; 13:479. [PMID: 37110138 PMCID: PMC10142472 DOI: 10.3390/metabo13040479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. In recent decades, clinical research has made significant advances, resulting in improved survival and recovery rates for patients with CVD. Despite this progress, there is substantial residual CVD risk and an unmet need for better treatment. The complex and multifaceted pathophysiological mechanisms underlying the development of CVD pose a challenge for researchers seeking effective therapeutic interventions. Consequently, exosomes have emerged as a new focus for CVD research because their role as intercellular communicators gives them the potential to act as noninvasive diagnostic biomarkers and therapeutic nanocarriers. In the heart and vasculature, cell types such as cardiomyocytes, endothelial cells, vascular smooth muscle, cardiac fibroblasts, inflammatory cells, and resident stem cells are involved in cardiac homeostasis via the release of exosomes. Exosomes encapsulate cell-type specific miRNAs, and this miRNA content fluctuates in response to the pathophysiological setting of the heart, indicating that the pathways affected by these differentially expressed miRNAs may be targets for new treatments. This review discusses a number of miRNAs and the evidence that supports their clinical relevance in CVD. The latest technologies in applying exosomal vesicles as cargo delivery vehicles for gene therapy, tissue regeneration, and cell repair are described.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | | | | | | | | |
Collapse
|
35
|
Chen JY, Ruan HJ, Chen SY, Wang XQ, Wen JM, Wang ZX. MiR-144-5p/CCL12 Signaling Axis Modulates Ischemic Preconditioning-Mediated Cardio-protection by Reducing Cell Viability, Enhancing Cell Apoptosis, Fibrosis, and Pyroptosis. Appl Biochem Biotechnol 2023; 195:1999-2014. [PMID: 36401720 DOI: 10.1007/s12010-022-04208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
Abstract
Ischemic postconditioning (IPost) represents short periods of nonlethal ischemia-reperfusion performed at the onset of reperfusion. Studies have shown that IPost involves various biological processes such as cell proliferation, apoptosis, and pyroptosis and can activate complex signaling pathways. CCL12 is a critical mediator in the inflammatory process after tissue injury. In the present study, we examined the potential actions of CCL12-mediated signaling pathways in cardioprotection after IPost using a cardiomyocyte model. By applying the bioinformatics analysis, we found that CCL12 was upregulated in the rat heart tissues after I/R injury, and the expression level of CCL12 was restored in rats with IPost. The in vitro studies showed that CCL12 and CCR2 expression levels were upregulated in the hypoxia/reoxygenation (H/R)-induced H9C2 cells, which was attenuated in the H/R + hypoxia post-conditioning (PostC) group. The functional assays showed that H/R treatment reduced cell viability, increased cell apoptosis, and promoted fibrosis and pyroptosis of H9C2 cells, which was attenuated in the H/R + PostC group. Overexpression of CCL12 impaired the protective action of hypoxia post-conditioning in the H9C2 cells. Further mechanistic studies showed that miR-144-5p could directly target the 3' untranslated region of CCL12. Overexpression of miR-144-5p markedly repressed the expression levels of CCL12 and CCR2 in H9C2 cells, while miR-144-5p inhibition had the opposite effects. Furthermore, the inhibition of miR-144-5p reduced the cell viability, increased cell apoptosis, and enhanced fibrosis and pyroptosis of H9C2 cells after H/R or H/R + PostC treatment. In conclusion, CCL12 was downregulated in cardiomyocytes following ischemic postconditioning, and CCL12 overexpression impaired the cardioprotective actions of ischemic postconditioning by reducing cell viability, enhancing cell apoptosis, fibrosis, and pyroptosis. Further mechanistic evidence revealed that CCL12 was a direct target of miR-144-5p, and miR-144-5p/CCL12/CCR2 signaling may represent a critical pathway in mediating the cardioprotective effects of ischemic postconditioning.
Collapse
Affiliation(s)
- Jun-Yu Chen
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, China
| | - Huan-Jun Ruan
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, China
| | - Shi-Yu Chen
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, China
| | - Xiao-Qing Wang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, China
| | - Jun-Min Wen
- Shenzhen Health Administrative Center for Cadre and Talent, Shenzhen, China. .,Department of Intensive Care Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), 5108057, Shenzhen, China.
| | - Zan-Xin Wang
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 5108057, China. .,Department of Cardiac Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
36
|
Dwivedi M, Ghosh D, Saha A, Hasan S, Jindal D, Yadav H, Yadava A, Dwivedi M. Biochemistry of exosomes and their theranostic potential in human diseases. Life Sci 2023; 315:121369. [PMID: 36639052 DOI: 10.1016/j.lfs.2023.121369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Exosomes are classified as special extracellular vesicles in the eukaryotic system having diameters ranging from 30 to 120 nm. These vesicles carry various endogenous molecules including DNA, mRNA, microRNA, circular RNA, and proteins, crucial for numerous metabolic reactions and can be proposed as therapeutic or diagnostic targets for several disorders. The donor exosomes release their content to recipient cells and further establish the significant intercellular communication showing biological effects by triggering environmental alterations. Exosomes derived from mesenchymal and dendritic cells have demonstrated their therapeutic potential against organ injury. Yet, various intricacies are involved in exosomal transport and its inclusion in cancer and other disease pathogenesis needs to be explored. The exosomes represent profound potential as diagnostic biomarkers and therapeutic carriers in various pathophysiological conditions such as neurodegenerative diseases, chronic cancers, infectious diseases, female reproductive diseases and cardiovascular diseases. In the current study, we demonstrate the advancements in the implication of exosomes as one of the irrefutable prognostic biological targets in human health and diseases.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India.
| | - Diya Ghosh
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Anwesha Saha
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Divya Jindal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Hitendra Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Medha Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| |
Collapse
|
37
|
Ferdinandy P, Andreadou I, Baxter GF, Bøtker HE, Davidson SM, Dobrev D, Gersh BJ, Heusch G, Lecour S, Ruiz-Meana M, Zuurbier CJ, Hausenloy DJ, Schulz R. Interaction of Cardiovascular Nonmodifiable Risk Factors, Comorbidities and Comedications With Ischemia/Reperfusion Injury and Cardioprotection by Pharmacological Treatments and Ischemic Conditioning. Pharmacol Rev 2023; 75:159-216. [PMID: 36753049 PMCID: PMC9832381 DOI: 10.1124/pharmrev.121.000348] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Preconditioning, postconditioning, and remote conditioning of the myocardium enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and the potential to provide novel therapeutic paradigms for cardioprotection. While many signaling pathways leading to endogenous cardioprotection have been elucidated in experimental studies over the past 30 years, no cardioprotective drug is on the market yet for that indication. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic preclinical evaluation of promising cardioprotective therapies prior to their clinical evaluation, since ischemic heart disease in humans is a complex disorder caused by or associated with cardiovascular risk factors and comorbidities. These risk factors and comorbidities induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury and responses to cardioprotective interventions. Moreover, some of the medications used to treat these comorbidities may impact on cardioprotection by again modifying cellular signaling pathways. The aim of this article is to review the recent evidence that cardiovascular risk factors as well as comorbidities and their medications may modify the response to cardioprotective interventions. We emphasize the critical need for taking into account the presence of cardiovascular risk factors as well as comorbidities and their concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple comorbidities. SIGNIFICANCE STATEMENT: Ischemic heart disease is a major cause of mortality; however, there are still no cardioprotective drugs on the market. Most studies on cardioprotection have been undertaken in animal models of ischemia/reperfusion in the absence of comorbidities; however, ischemic heart disease develops with other systemic disorders (e.g., hypertension, hyperlipidemia, diabetes, atherosclerosis). Here we focus on the preclinical and clinical evidence showing how these comorbidities and their routine medications affect ischemia/reperfusion injury and interfere with cardioprotective strategies.
Collapse
Affiliation(s)
- Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Ioanna Andreadou
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gary F Baxter
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Hans Erik Bøtker
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sean M Davidson
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Dobromir Dobrev
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Bernard J Gersh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gerd Heusch
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sandrine Lecour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Marisol Ruiz-Meana
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Coert J Zuurbier
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Derek J Hausenloy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| |
Collapse
|
38
|
Tang C, Hou YX, Shi PX, Zhu CH, Lu X, Wang XL, Que LL, Zhu GQ, Liu L, Chen Q, Li CF, Xu Y, Li JT, Li YH. Cardiomyocyte-specific Peli1 contributes to the pressure overload-induced cardiac fibrosis through miR-494-3p-dependent exosomal communication. FASEB J 2023; 37:e22699. [PMID: 36520055 DOI: 10.1096/fj.202200597r] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Cardiac fibrosis is an essential pathological process in pressure overload (PO)-induced heart failure. Recently, myocyte-fibroblast communication is proven to be critical in heart failure, in which, pathological growth of cardiomyocytes (CMs) may promote fibrosis via miRNAs-containing exosomes (Exos). Peli1 regulates the activation of NF-κB and AP-1, which has been demonstrated to engage in miRNA transcription in cardiomyocytes. Therefore, we hypothesized that Peli1 in CMs regulates the activation of cardiac fibroblasts (CFs) through an exosomal miRNA-mediated paracrine mechanism, thereby promoting cardiac fibrosis. We found that CM-conditional deletion of Peli1 improved PO-induced cardiac fibrosis. Moreover, Exos from mechanical stretch (MS)-induced WT CMs (WT MS-Exos) promote activation of CFs, Peli1-/- MS-Exos reversed it. Furthermore, miRNA microarray and qPCR analysis showed that miR-494-3p was increased in WT MS-Exos while being down regulated in Peli1-/- MS-Exos. Mechanistically, Peli1 promoted miR-494-3p expression via NF-κB/AP-1 in CMs, and then miR-494-3p induced CFs activation by inhibiting PTEN and amplifying the phosphorylation of AKT, SMAD2/3, and ERK. Collectively, our study suggests that CMs Peli1 contributes to myocardial fibrosis via CMs-derived miR-494-3p-enriched exosomes under PO, and provides a potential exosomal miRNA-based therapy for cardiac fibrosis.
Collapse
Affiliation(s)
- Chao Tang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Xing Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Peng-Xi Shi
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Cheng-Hao Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xia Lu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.,Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao-Lu Wang
- Center of Clinical Research, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Lin-Li Que
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Chuan-Fu Li
- Department of Surgery, East Tennessee State University, Johnson City, Tennessee, USA
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Jian-Tao Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yue-Hua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Cui J, Li Y, Zhu M, Liu Y, Liu Y. Analysis of the Research Hotspot of Exosomes in Cardiovascular Disease: A Bibliometric-based Literature Review. Curr Vasc Pharmacol 2023; 21:316-345. [PMID: 37779407 DOI: 10.2174/0115701611249727230920042944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE To investigate the current status and development trend of research on exosomes in cardiovascular disease (CVD) using bibliometric analysis and to elucidate trending research topics. METHODS Research articles on exosomes in CVD published up to April 2022 were retrieved from the Web of Science database. Data were organized using Microsoft Office Excel 2019. CiteSpace 6.1 and VOSviewer 1.6.18 were used for bibliometric analysis and result visualization. RESULTS Overall, 256 original research publications containing 190 fundamental research publications and 66 clinical research publications were included. "Extracellular vesicle" was the most frequent research keyword, followed by "microrna," "apoptosis," and "angiogenesis." Most publications were from China (187, 73.05%), followed by the United States (57, 22.27%), the United Kingdom (7, 2.73%), and Japan (7, 2.73%). A systematic review of the publications revealed that myocardial infarction and stroke were the most popular topics and that exosomes and their contents, such as microRNAs (miRNAs), play positive roles in neuroprotection, inhibition of autophagy and apoptosis, promotion of angiogenesis, and protection of cardiomyocytes. CONCLUSION Research on exosomes in CVD has attracted considerable attention, with China having the most published studies. Fundamental research has focused on CVD pathogenesis; exosomes regulate the progression of CVD through biological processes, such as the inflammatory response, autophagy, and apoptosis. Clinical research has focused on biomarkers for CVD; studies on using miRNAs in exosomes as disease markers for diagnosis could become a future trend.
Collapse
Affiliation(s)
- Jing Cui
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiwen Li
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
40
|
Expression Profiles and Functional Analysis of Plasma Exosomal Circular RNAs in Acute Myocardial Infarction. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3458227. [PMID: 36221294 PMCID: PMC9547997 DOI: 10.1155/2022/3458227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Acute myocardial infarction (AMI) is a common cardiovascular disease with high rates of morbidity and mortality globally. The dysregulation of circular RNAs (circRNAs) has been shown to be closely related to various pathological aspects of AMI. However, the function of exosomal circRNAs in AMI has yet to be investigated. The purpose of this study was to investigate the expression profiles of plasma exosomal circRNAs in AMI and explore their potential functionality. The expression profiles of plasma exosomal circRNAs in patients with AMI, stable coronary heart atherosclerotic disease (CAD), and healthy controls were obtained from a GEO expression dataset (GSE159657). We also analyzed bioinformatics functionality, potential pathways, and interaction networks related to the microRNAs associated with the differentially expressed circRNAs. A total of 253 exosomal circRNAs (184 up- and 69 down-regulated) and 182 exosomal circRNAs (94 up- and 88 down-regulated) were identified as being differentially expressed between the control group and the AMI and CAD patients, respectively. Compared with the CAD group, 231 different exosomal circRNAs (177 up- and 54 down-regulated) were identified in the AMI group. Functional analysis suggested that the parental genes of exosomal has_circ_0061776 were significantly enriched in the biological process of lysine degradation. Pathway interaction network analysis further indicated that exosomal has_circ_0061776 was associated with has-miR-133a, has-miR-214, has-miR-423, and has-miR-217 and may play a role in the pathogenesis of AMI through the MAPK signaling pathway. This study identified the differential expression and functionality of exosomal circRNAs in AMI and provided further understanding of the potential pathogenesis of an exosomal circRNA-related competing endogenous RNA (ceRNA) network in AMI.
Collapse
|
41
|
Xiong YH, Fan XG, Chen YY, Huang Y, Quan J, Yi PP, Xiao MF, Huang ZB, Hu XW. Comparison of methods of isolating extracellular vesicle microRNA from HepG2 cells for High-throughput sequencing. Front Mol Biosci 2022; 9:976528. [PMID: 36225253 PMCID: PMC9549333 DOI: 10.3389/fmolb.2022.976528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Extracellular vesicles (EVs) were reported to participate in various cellular processes based on the biomolecules, particularly microRNAs. Numerous commercial EVs isolation reagents are available. However, whether these reagents are suitable for separating EVs from the culture medium supernatant supernatant of model cell lines, such as HepG2, and whether the isolated products are suitable for High-throughput sequencing remains unclear. Methods: We examined three commonly used EVs isolation kits: the ExoQuick-TC exosome precipitation solution (EQ), Total Exosome Isolation from cell culture medium (EI), and exoEasy Maxi Kit (EM), to isolate EVs from HepG2 cell culture medium supernatants. EVs were identified based on marker proteins, particle size measurements, and electron microscopy analysis. The total amounts of microRNA and microRNA High-throughput sequencing data quality from EVs isolated by each kit were compared. Results: The total amount of EVs’ microRNA isolated from the EI and EM groups were higher than that obtained from the EQ group (EQ/EI: p = 0.036, EI/EM: p = 0.024). High-throughput sequencing data quality evaluation showed that the EI group possessed higher quality than those in the EM group. Conclusion: For the cell culture medium from HepG2, EVs’ microRNA isolated by EI reagents might be more suitable for High-throughput sequencing applications.
Collapse
Affiliation(s)
- Ying-Hui Xiong
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Yu Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Quan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Pan-Pan Yi
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Mei-Fang Xiao
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze-Bing Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xing-Wang Hu, ; Ze-Bing Huang,
| | - Xing-Wang Hu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
- *Correspondence: Xing-Wang Hu, ; Ze-Bing Huang,
| |
Collapse
|
42
|
You B, Yang Y, Zhou Z, Yan Y, Zhang L, Jin J, Qian H. Extracellular Vesicles: A New Frontier for Cardiac Repair. Pharmaceutics 2022; 14:pharmaceutics14091848. [PMID: 36145595 PMCID: PMC9503573 DOI: 10.3390/pharmaceutics14091848] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The ability of extracellular vesicles (EVs) to regulate a broad range of cellular processes has recently been used to treat diseases. Growing evidence indicates that EVs play a cardioprotective role in heart disease by activating beneficial signaling pathways. Multiple functional components of EVs and intracellular molecular mechanisms are involved in the process. To overcome the shortcomings of native EVs such as their heterogeneity and limited tropism, a series of engineering approaches has been developed to improve the therapeutic efficiency of EVs. In this review, we present an overview of the research and future directions for EVs-based cardiac therapies with an emphasis on EVs-mediated delivery of therapeutic agents. The advantages and limitations of various modification strategies are discussed, and possible opportunities for improvement are proposed. An in-depth understanding of the endogenous properties of EVs and EVs engineering strategies could lead to a promising cell-free therapy for cardiac repair.
Collapse
Affiliation(s)
- Benshuai You
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yang Yang
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225317, China
| | - Zixuan Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yongmin Yan
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
| | - Leilei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Correspondence: (J.J.); (H.Q.)
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (J.J.); (H.Q.)
| |
Collapse
|
43
|
Toghiani R, Abolmaali SS, Najafi H, Tamaddon AM. Bioengineering exosomes for treatment of organ ischemia-reperfusion injury. Life Sci 2022; 302:120654. [PMID: 35597547 DOI: 10.1016/j.lfs.2022.120654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
Ischemia-reperfusion (I/R) injury is a leading cause of death worldwide. It arises from blood reflowing after tissue hypoxia induced by ischemia that causes severe damages due to the accumulation of reactive oxygen species and the activation of inflammatory responses. Exosomes are the smallest members of the extracellular vesicles' family, which originate from nearly all eukaryotic cells. Exosomes have a great potential in the treatment of I/R injury either in native or modified forms. Native exosomes are secreted by different cell types, such as stem cells, and contain components such as specific miRNA molecules with tissue protective properties. On the other hand, exosome bioengineering has recently received increased attention in context of current advances in the purification, manipulation, biological characterization, and pharmacological applications. There are various pre-isolation and post-isolation manipulation approaches that can be utilized to increase the circulation half-life of exosomes or the availability of their bioactive cargos in the target site. In this review, the various therapeutic actions of native exosomes in different I/R injury will be discussed first. Exosome bioengineering approaches will then be explained, including pre- and post-isolation manipulation methods, applicability for delivery of bioactive agents to injured tissue, clinical translation issues, and future perspectives.
Collapse
Affiliation(s)
- Reyhaneh Toghiani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Haniyeh Najafi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
44
|
Lan Z, Wang T, Zhang L, Jiang Z, Zou X. CircSLC8A1 Exacerbates Hypoxia-Induced Myocardial Injury via Interacting with MiR-214-5p to Upregulate TEAD1 Expression. Int Heart J 2022; 63:591-601. [PMID: 35650159 DOI: 10.1536/ihj.21-547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Circular RNAs (circRNAs) act as important regulators in myocardial infarction (MI). This study aimed to explore the regulatory mechanism of circRNA solute carrier family 8 member A1 antisense RNA 1 (circSLC8A1) in hypoxia-induced myocardial injury.Exosomes were isolated by ultracentrifugation and identified by microscopic observation or protein detection. Protein levels were examined by Western blot. CircSLC8A1, microRNA-214-5p (miR-214-5p), and TEA domain transcription factor 1 (TEAD1) levels were determined via quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were analyzed by 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide (MTT) and flow cytometry, respectively. Inflammatory cytokines were measured using enzyme-linked immunosorbent assay (ELISA). Oxidative stress was assessed by reactive oxygen species (ROS) production, malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity through the corresponding detection kits. Target analysis was performed by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and pull-down assay.Exosomes released circSLC8A1 from hypoxic cardiomyocytes. Exosomal circSLC8A1 exacerbated hypoxia-induced repression of cell viability but promotion of cell apoptosis, inflammation, and oxidative stress. Knockdown of circSLC8A1 ameliorated hypoxia-mediated cell injury. CircSLC8A1 directly targeted miR-214-5p and miR-214-5p downregulation reverted the effects of si-circSLC8A1 on hypoxia-treated cardiomyocytes. TEAD1 was a target of miR-214-5p and circSLC8A1 upregulated TEAD1 level via targeting miR-214-5p. In addition, miR-214-5p inhibited hypoxia-caused cell injury by downregulating the expression of TEAD1.These results suggested that circSLC8A1 aggravated cell damages in hypoxia-treated cardiomyocytes by the regulation of TEAD1 via sponging miR-214-5p.
Collapse
Affiliation(s)
- Zhong Lan
- Department of Internal Medicine-Cardiovascular, The Fifth Affiliated Hospital of Southern Medical University
| | - Tao Wang
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Southern Medical University
| | - Lihong Zhang
- Department of Internal Medicine-Cardiovascular, The Fifth Affiliated Hospital of Southern Medical University
| | - Zhizhong Jiang
- Department of Internal Medicine-Cardiovascular, The Fifth Affiliated Hospital of Southern Medical University
| | - Xiaoming Zou
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Southern Medical University
| |
Collapse
|
45
|
Gao H, Zhang L, Wang Z, Yan K, Zhao L, Xiao W. Research Progress on Transorgan Regulation of the Cardiovascular and Motor System through Cardiogenic Exosomes. Int J Mol Sci 2022; 23:ijms23105765. [PMID: 35628575 PMCID: PMC9146752 DOI: 10.3390/ijms23105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
The heart is the core organ of the circulatory system. Through the blood circulation system, it has close contact with all tissues and cells in the body. An exosome is an extracellular vesicle enclosed by a phospholipid bilayer. A variety of heart tissue cells can secrete and release exosomes, which transfer RNAs, lipids, proteins, and other biomolecules to adjacent or remote cells, mediate intercellular communication, and regulate the physiological and pathological activities of target cells. Cardiogenic exosomes play an important role in regulating almost all pathological and physiological processes of the heart. In addition, they can also reach distant tissues and organs through the peripheral circulation, exerting profound influence on their functional status. In this paper, the composition and function of cardiogenic exosomes, the factors affecting cardiogenic exosomes and their roles in cardiovascular physiology and pathophysiology are discussed, and the close relationship between cardiovascular system and motor system is innovatively explored from the perspective of exosomes. This study provides a reference for the development and application of exosomes in regenerative medicine and sports health, and also provides a new idea for revealing the close relationship between the heart and other organ systems.
Collapse
|
46
|
Plasma-derived extracellular vesicles transfer microRNA-130a-3p to alleviate myocardial ischemia/reperfusion injury by targeting ATG16L1. Cell Tissue Res 2022; 389:99-114. [PMID: 35503135 DOI: 10.1007/s00441-022-03605-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Extracellular vesicles (EVs) are implicated in myocardial ischemia/reperfusion (I/R) injury as modulators by shuttling diverse cargoes, including microRNAs (miRNAs). The current study was initiated to unravel the potential involvement of plasma-derived EVs carrying miR-130a-3p on myocardial I/R injury. Rats were induced with moderate endoplasmic reticulum stress, followed by isolation of plasma-derived EVs. Then, an I/R rat model and hypoxia/reoxygenation (H/R) cardiomyoblast model were established to simulate a myocardial I/R injury environment where miR-130a-3p was found to be abundantly expressed. miR-130a-3p was confirmed to target and negatively regulate autophagy-related 16-like 1 (ATG16L1) in cardiomyoblasts. Based on a co-culture system, miR-130a-3p delivered by EVs derived from plasma protected H/R-exposed cardiomyoblasts against H/R-induced excessive cardiomyoblast autophagy, inflammation, and damage, improving cardiac dysfunction as well as myocardial I/R-induced cardiac dysfunction and tissue injury. The mechanism underlying the functional role of EVs-loaded miR-130a-3p was found to be dependent on its targeting relation with ATG16L1. The protective action of EV-carried miR-130a-3p was further re-produced in a rat model serving as in vivo validation as evidenced by improved cardiac function, tissue injury, myocardial fibrosis, and myocardial infarction. Collectively, miR-130a-3p shuttled by plasma-derived EVs was demonstrated to alleviate excessive cardiomyoblast autophagy and improve myocardial I/R injury.
Collapse
|
47
|
Xuan Y, Chen C, Wen Z, Wang DW. The Roles of Cardiac Fibroblasts and Endothelial Cells in Myocarditis. Front Cardiovasc Med 2022; 9:882027. [PMID: 35463742 PMCID: PMC9022788 DOI: 10.3389/fcvm.2022.882027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
In myocarditis caused by various etiologies, activated immune cells and the immune regulatory factors released by them play important roles. But in this complex microenvironment, non-immune cells and non-cardiomyocytes in the heart, such as cardiomyocytes (CMs), cardiac fibroblasts (CFs) and endothelial cells (ECs), play the role of “sentinel”, amplify inflammation, and interact with the cardiomyocytes. The complex interactions between them are rarely paid attention to. This review will re-examine the functions of CFs and ECs in the pathological conditions of myocarditis and their direct and indirect interactions with CMs, in order to have a more comprehensive understanding of the pathogenesis of myocarditis and better guide the drug development and clinical treatment of myocarditis.
Collapse
Affiliation(s)
- Yunling Xuan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- *Correspondence: Zheng Wen
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Dao Wen Wang
| |
Collapse
|
48
|
Influence of air pollutants on circulating inflammatory cells and microRNA expression in acute myocardial infarction. Sci Rep 2022; 12:5350. [PMID: 35354890 PMCID: PMC8967857 DOI: 10.1038/s41598-022-09383-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
Air pollutants increase the risk and mortality of myocardial infarction (MI). The aim of this study was to assess the inflammatory changes in circulating immune cells and microRNAs in MIs related to short-term exposure to air pollutants. We studied 192 patients with acute coronary syndromes and 57 controls with stable angina. For each patient, air pollution exposure in the 24-h before admission, was collected. All patients underwent systematic circulating inflammatory cell analyses. According to PM2.5 exposure, 31 patients were selected for microRNA analyses. STEMI patients exposed to PM2.5 showed a reduction of CD4+ regulatory T cells. Furthermore, in STEMI patients the exposure to PM2.5 was associated with an increase of miR-146a-5p and miR-423-3p. In STEMI and NSTEMI patients PM2.5 exposure was associated with an increase of miR-let-7f-5p. STEMI related to PM2.5 short-term exposure is associated with changes involving regulatory T cells, miR-146a-5p and miR-423-3p.
Collapse
|
49
|
Laksono S, Setianto B, Prawara AS, Dwiputra B. Highlighting Exosomes' Function in Cardiovascular Diseases. Curr Cardiol Rev 2022; 18:e241121191159. [PMID: 33563169 PMCID: PMC9615217 DOI: 10.2174/1573403x17666210204153526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022] Open
Abstract
Exosomes, as one of the extracellular vesicles' subgroups, played an important role in the cell to cell communication. The cargos and surface protein of exosomes have been known to affect the cardiovascular system both positively and negatively in chronic heart failure, ischemic heart disease, and atherosclerosis. There have been several exosomes that emerged as potential diagnostic and prognostic markers in cardiovascular patients. However, the conditions affecting the patients and the method of isolation should be considered to create a standardized normal value of the exosomes and the components. CPC-derived exosomes, ADSCs-derived exosomes, and telocyte- derived exosomes have been proven to be capable of acting as a therapeutic agent in myocardial infarction models. Exosomes have the potential to become a diagnostic marker, prognostic marker, and therapeutic agent in cardiovascular diseases.
Collapse
Affiliation(s)
- Sidhi Laksono
- Department of Cardiology and Vascular Medicine, RSUD Pasar Rebo, Faculty of Medicine, Universitas Muhammadiyah Prof. Dr. Hamka, Tangerang, Indonesia
| | - Budhi Setianto
- Department of Cardiology and Vascular Medicine, National Cardiac Center Harapan Kita, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Bambang Dwiputra
- Department of Cardiology and Vascular Medicine, National Cardiac Center Harapan Kita, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
50
|
Chen C, Chen Q, Cheng K, Zou T, Pang Y, Ling Y, Xu Y, Zhu W. Exosomes and Exosomal Non-coding RNAs Are Novel Promises for the Mechanism-Based Diagnosis and Treatments of Atrial Fibrillation. Front Cardiovasc Med 2021; 8:782451. [PMID: 34926627 PMCID: PMC8671698 DOI: 10.3389/fcvm.2021.782451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide and has a significant impact on human health and substantial costs. Currently, there is a lack of accurate biomarkers for the diagnosis and prognosis of AF. Moreover, the long-term efficacy of the catheter ablation in the AF is unsatisfactory. Therefore, it is necessary to explore new biomarkers and treatment strategies for the mechanism-based AF. Exosomes are nano-sized biovesicles released by nearly all types of cells. Since the AF would be linked to the changes of the atrial cells and their microenvironment, and the AF would strictly influence the exosomal non-coding RNAs (exo-ncRNAs) expression, which makes them as attractive diagnostic and prognostic biomarkers for the AF. Simultaneously, the exo-ncRNAs have been found to play an important role in the mechanisms of the AF and have potential therapeutic prospects. Although the role of the exo-ncRNAs in the AF is being actively investigated, the evidence is still limited. Furthermore, there is a lack of consensus regarding the most appropriate approach for exosome isolation and characterization. In this article, we reviewed the new methodologies available for exosomes biogenesis, isolation, and characterization, and then discussed the mechanism of the AF and various levels and types of exosomes relevant to the AF, with the special emphasis on the exo-ncRNAs in the diagnosis, prognosis, and treatment of the mechanism-based AF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenqing Zhu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|