1
|
He X, Wu M, Chen L, Liu M, Hu X, Meng Y, Yue H, Yang X, Zheng P, Dai Y. APMCG-1 attenuates ischemic stroke injury by reducing oxidative stress and apoptosis and promoting angiogenesis via activating PI3K/AKT pathway. Biomed Pharmacother 2024; 180:117506. [PMID: 39368213 DOI: 10.1016/j.biopha.2024.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Ischemic stroke (IS) is a major cause of mortality and morbidity worldwide. Beyond thrombolysis, strategies targeting anti-oxidative apoptosis and angiogenesis are considered prospective therapeutic strategies. Nevertheless, existing natural and clinical remedies have limited efficacy in the management of IS. Moreover, despite their millennial legacy of IS remediation, natural remedies such as ginseng incur high production costs. The novel glycopeptide APMCG-1, extracted from mountain-cultivated ginseng dregs in our previous study, is a potent therapeutic candidate for IS. This study investigated APMCG-1's remedial mechanisms against IS injury using an H2O2-induced oxidative stress paradigm in human umbilical vein endothelial cells (HUVECs) emulating ischemic endothelial cells, in a ponatinib-induced zebrafish IS model, and in rat middle cerebral artery occlusion (MCAO) prototypes. Cellular assays confirmed the proficiency of APMCG-1 in preventing oxidative stress and cell death, fostering regeneration, and facilitating neovascularization within the H2O2-stressed HUVECs framework. Moreover, APMCG-1 augmented hemodynamic velocity, oxidative stress mitigation, apoptosis reduction, and motor enhancement in a zebrafish model of IS. In MCAO rats, APMCG-1 ameliorated neurological deficits and cerebral injury, as evidenced by increased neurological scores and diminished infarct dimensions. In cells and animal models, APMCG-1 activated the PI3K/AKT signaling pathway, modulating factors such as Nrf2, Bcl-2, Caspase 3, eNOS, and VEGFA, thereby ameliorating cellular oxidative distress and catalyzing angiogenesis. Collectively, these results demonstrate the potential protective effects of APMCG-1 in IS pharmacotherapy and its prospective utility as an herbal-derived IS treatment modality.
Collapse
Affiliation(s)
- Xingyue He
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mingdian Wu
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Likun Chen
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meijun Liu
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130118, China
| | - Xuan Hu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ying Meng
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hao Yue
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoshan Yang
- Guangzhou Baiyun Meiwan Testing Co., Ltd, Guangzhou 510403, China
| | - Peng Zheng
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130118, China.
| | - Yulin Dai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
2
|
Wei YR, Hou YL, Yin YJ, Li Z, Liu Y, Han NX, Wang ZX, Liu L, Wang XQ, Hao YJ, Ma K, Gu JJ, Jia ZH. Tongxinluo Activates PI3K/AKT Signaling Pathway to Inhibit Endothelial Mesenchymal Transition and Attenuate Myocardial Fibrosis after Ischemia-Reperfusion in Mice. Chin J Integr Med 2024; 30:608-615. [PMID: 38386252 DOI: 10.1007/s11655-024-3652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 02/23/2024]
Abstract
OBJECTIVE To investigate the potential role of Tongxinluo (TXL) in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury (MIRI) in mice. METHODS A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min. According to a random number table, 66 mice were randomly divided into 6 groups (n=11 per group): the sham group, the model group, the LY-294002 group, the TXL group, the TXL+LY-294002 group and the benazepril (BNPL) group. The day after modeling, TXL and BNPL were administered by gavage. Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks. Echocardiography was used to measure cardiac function in mice. Masson staining was used to evaluate the degree of myocardial fibrosis in mice. Qualitative and quantitative analysis of endothelial mesenchymal transition (EndMT) after MIRI was performed by immunohistochemistry, immunofluorescence staining and flow cytometry, respectively. The protein expressions of platelet endothelial cell adhesion molecule-1 (CD31), α-smoth muscle actin (α-SMA), phosphatidylinositol-3-kinase (PI3K) and phospho protein kinase B (p-AKT) were assessed using Western blot. RESULTS TXL improved cardiac function in MIRI mice, reduced the degree of myocardial fibrosis, increased the expression of CD31 and inhibited the expression of α-SMA, thus inhibited the occurrence of EndMT (P<0.05 or P<0.01). TXL significantly increased the protein expressions of PI3K and p-AKT (P<0.05 or P<0.01). There was no significant difference between TXL and BNPL group (P>0.05). In addition, the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention, eliminated the protective effect of TXL, further supporting the protective effect of TXL. CONCLUSION TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.
Collapse
Affiliation(s)
- Ya-Ru Wei
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, China
| | - Yun-Long Hou
- Shijiazhuang Yiling Pharmaceutical New Drug Evaluation Center, Shijiazhuang, 050035, China
| | - Yu-Jie Yin
- Hebei Institute of Integrated Traditional and Western Medicine, Shijiazhuang, 050035, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Department of Cardiology, Hebei Yiling Hospital, Shijiazhuang, 050091, China
| | - Zhen Li
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ning-Xin Han
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zi-Xuan Wang
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Lu Liu
- Hebei Institute of Integrated Traditional and Western Medicine, Shijiazhuang, 050035, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Department of Cardiology, Hebei Yiling Hospital, Shijiazhuang, 050091, China
| | - Xiao-Qi Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, China
| | - Yuan-Jie Hao
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Kun Ma
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, China
| | - Jiao-Jiao Gu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, China
| | - Zhen-Hua Jia
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, China.
- Hebei Institute of Integrated Traditional and Western Medicine, Shijiazhuang, 050035, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China.
- Department of Cardiology, Hebei Yiling Hospital, Shijiazhuang, 050091, China.
| |
Collapse
|
3
|
Liu J, Chai XX, Qiu XR, Sun WJ, Tian YL, Guo WH, Yin DC, Zhang CY. Type X collagen knockdown inactivate ITGB1/PI3K/AKT to suppress chronic unpredictable mild stress-stimulated triple-negative breast cancer progression. Int J Biol Macromol 2024; 273:133074. [PMID: 38866293 DOI: 10.1016/j.ijbiomac.2024.133074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/19/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, has a poor prognosis and limited access to efficient targeted treatments. Chronic unpredictable mild stress (CUMS) is highly risk factor for TNBC occurrence and development. Type X collagen (COL10A1), a crucial protein component of the extracellular matrix, ranks second among all aberrantly expressed genes in TNBC, and it is significantly up-regulated under CUMS. Nevertheless, the impact of CUMS and COL10A1 on TNBC, along with the underlying mechanisms are still unclear. In this research, we studied the effect of CUMS-induced norepinephrine (NE) elevation on TNBC, and uncovered that it notably enhanced TNBC cell proliferation, migration, and invasion in vitro, and also fostering tumor growth and lung metastasis in vivo. Additionally, our investigation found that COL10A1 directly interacted with integrin subunit beta 1 (ITGB1), then activates the downstream PI3K/AKT signaling pathway, thereby promoting TNBC growth and metastasis, while it was reversed by knocking down of COL10A1 or ITGB1. Our study demonstrated that the TNBC could respond to CUMS, and advocate for COL10A1 as a pivotal therapeutic target in TNBC treatment.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Xiao-Rong Qiu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Wen-Jun Sun
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Yi-Le Tian
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Wei-Hong Guo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China.
| |
Collapse
|
4
|
Abdelilah-Seyfried S, Ola R. Shear stress and pathophysiological PI3K involvement in vascular malformations. J Clin Invest 2024; 134:e172843. [PMID: 38747293 PMCID: PMC11093608 DOI: 10.1172/jci172843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.
Collapse
Affiliation(s)
| | - Roxana Ola
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Su X, Xue H, Lou Y, Lv X, Mi X, Lu J, Chen X. Investigation of the Potential Mechanism of Compound Dragon's Blood Capsule against Myocardial Ischemia Based on Network Pharmacology. Comb Chem High Throughput Screen 2024; 27:2940-2950. [PMID: 38231051 DOI: 10.2174/0113862073264485240102064653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Dragon's blood is widely consumed in China, Vietnam and Laos to promote blood circulation. A Compound Dragon's blood capsule (CDC) is a patented medicine composed of dragon's blood, notoginseng, and borneol. This combination is purported to stabilize coronary heart disease and myocardial ischemia. However, the possible mechanisms and the characterization of its drug targets' relevance at the systemic level remain unclear. AIM The present study aims to reveal the potential mechanisms of CDC's anti-myocardial ischemia effect. MATERIALS AND METHODS The potential mechanisms were investigated by network pharmacology and qRT-PCR was used to verify the expression levels of key genes of PI3k-Akt pathway. RESULTS S1PR2 and AGTR1 were the common targets, which involved 6 biological processes annotated by KEGG and GO analysis. The qRT-PCR results showed a remarkable increase in the expression of Pi3k, Pdk1, Akt, Mdm2, Bcl2, and mTOR. Results also showed a decline in the expression of P53 and Casp3 after CDC intervention. CONCLUSION CDC has a significant anti-myocardial ischemia effect through the PI3k/Akt pathway, which demonstrates that CDC is a suitable adjuvant to treat CHD and provides a theoretical basis for its further clinical application.
Collapse
Affiliation(s)
- Xin Su
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China
| | - Hongwei Xue
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, China
| | - Yang Lou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, China
| | - Xinkai Lv
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, China
| | - Xiao Mi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, China
| | - Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, China
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, China
| |
Collapse
|
6
|
Yellon DM, Beikoghli Kalkhoran S, Davidson SM. The RISK pathway leading to mitochondria and cardioprotection: how everything started. Basic Res Cardiol 2023; 118:22. [PMID: 37233787 PMCID: PMC10220132 DOI: 10.1007/s00395-023-00992-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Ischaemic heart disease, which often manifests clinically as myocardial infarction (MI), remains a major cause of mortality worldwide. Despite the development of effective pre-clinical cardioprotective therapies, clinical translation has been disappointing. Nevertheless, the 'reperfusion injury salvage kinase' (RISK) pathway appears to be a promising target for cardioprotection. This pathway is crucial for the induction of cardioprotection by numerous pharmacological and non-pharmacological interventions, such as ischaemic conditioning. An important component of the cardioprotective effects of the RISK pathway involves the prevention of mitochondrial permeability transition pore (MPTP) opening and subsequent cardiac cell death. Here, we will review the historical perspective of the RISK pathway and focus on its interaction with mitochondria in the setting of cardioprotection.
Collapse
Affiliation(s)
- Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| | | | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| |
Collapse
|
7
|
Liu X, Zhang J, Li P, Han P, Kang YJ, Zhang W. Gene expression patterns and related pathways in the hearts of rhesus monkeys subjected to prolonged myocardial ischemia. Exp Biol Med (Maywood) 2023; 248:350-360. [PMID: 36814407 PMCID: PMC10159524 DOI: 10.1177/15353702231151968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
After myocardial infarction (MI) occurs, progressive pathological cardiac remodeling results in heart dysfunction and even heart failure during the following months or years. The present study explored the molecular mechanisms underlying the late phase of MI at the global transcript level. A rhesus monkey model of myocardial ischemia induced by left anterior descending (LAD) artery ligation was established, and the heart tissue was collected eight weeks after ligation for transcriptome analysis by DNA microarray technology. Differentially expressed genes in the core infarcted area and remote infarcted area of the ischemic heart were detected with significance analysis of microarray (SAM), and related pathways were detected by Gene Ontology (GO)/pathway analysis. We found that compared to the sham condition, prolonged ischemia increased the levels of 941 transcripts, decreased the levels of 380 transcripts in the core infarcted area, and decreased the levels of 8 transcripts in the remote area in monkey heart tissue. Loss of coordination between the expression of genes, including natriuretic peptide A (NPPA), NPPB, and corin (Corin, serine peptidase), may aggravate cardiac remodeling. Furthermore, imbalance in the enriched significantly changed pathways, including fibrosis-related pathways, cardioprotective pathways, and the cardiac systolic pathway, likely also plays a key role in regulating the development of heart remodeling.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Jingyao Zhang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China.,Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pengfei Li
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China.,Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Hohhot 010059, China
| | - Pengfei Han
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China
| | - Wenjing Zhang
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
8
|
Zhang H, Jamieson KL, Grenier J, Nikhanj A, Tang Z, Wang F, Wang S, Seidman JG, Seidman CE, Thompson R, Seubert JM, Oudit GY. Myocardial Iron Deficiency and Mitochondrial Dysfunction in Advanced Heart Failure in Humans. J Am Heart Assoc 2022; 11:e022853. [PMID: 35656974 PMCID: PMC9238720 DOI: 10.1161/jaha.121.022853] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Myocardial iron deficiency (MID) in heart failure (HF) remains largely unexplored. We aim to establish defining criterion for MID, evaluate its pathophysiological role, and evaluate the applicability of monitoring it non‐invasively in human explanted hearts. Methods and Results Biventricular tissue iron levels were measured in both failing (n=138) and non‐failing control (NFC, n=46) explanted human hearts. Clinical phenotyping was complemented with comprehensive assessment of myocardial remodeling and mitochondrial functional profiles, including metabolic and oxidative stress. Myocardial iron status was further investigated by cardiac magnetic resonance imaging. Myocardial iron content in the left ventricle was lower in HF versus NFC (121.4 [88.1–150.3] versus 137.4 [109.2–165.9] μg/g dry weight), which was absent in the right ventricle. With a priori cutoff of 86.1 μg/g d.w. in left ventricle, we identified 23% of HF patients with MID (HF‐MID) associated with higher NYHA class and worsened left ventricle function. Respiratory chain and Krebs cycle enzymatic activities were suppressed and strongly correlated with depleted iron stores in HF‐MID hearts. Defenses against oxidative stress were severely impaired in association with worsened adverse remodeling in iron‐deficient hearts. Mechanistically, iron uptake pathways were impeded in HF‐MID including decreased translocation to the sarcolemma, while transmembrane fraction of ferroportin positively correlated with MID. Cardiac magnetic resonance with T2* effectively captured myocardial iron levels in failing hearts. Conclusions MID is highly prevalent in advanced human HF and exacerbates pathological remodeling in HF driven primarily by dysfunctional mitochondria and increased oxidative stress in the left ventricle. Cardiac magnetic resonance demonstrates clinical potential to non‐invasively monitor MID.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Cardiology Department of Medicine Faculty of Medicine and DentistryEdmonton Alberta Canada.,Mazankowski Alberta Heart Institute Edmonton Alberta Canada
| | - K Lockhart Jamieson
- Department of Pharmacology Faculty of Medicine and DentistryEdmonton Alberta Canada
| | - Justin Grenier
- Mazankowski Alberta Heart Institute Edmonton Alberta Canada.,Department of Biomedical Engineering Faculty of Medicine and DentistryEdmonton Alberta Canada
| | - Anish Nikhanj
- Division of Cardiology Department of Medicine Faculty of Medicine and DentistryEdmonton Alberta Canada.,Mazankowski Alberta Heart Institute Edmonton Alberta Canada
| | - Zeyu Tang
- Division of Cardiology Department of Medicine Faculty of Medicine and DentistryEdmonton Alberta Canada.,Mazankowski Alberta Heart Institute Edmonton Alberta Canada
| | - Faqi Wang
- Division of Cardiology Department of Medicine Faculty of Medicine and DentistryEdmonton Alberta Canada.,Mazankowski Alberta Heart Institute Edmonton Alberta Canada
| | - Shaohua Wang
- Mazankowski Alberta Heart Institute Edmonton Alberta Canada.,Division of Cardiac Surgery Department of Surgery Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta Canada
| | | | - Christine E Seidman
- Department of Genetics Harvard Medical School Boston MA.,Cardiovascular Division Brigham and Women's Hospital Boston MA
| | - Richard Thompson
- Mazankowski Alberta Heart Institute Edmonton Alberta Canada.,Department of Biomedical Engineering Faculty of Medicine and DentistryEdmonton Alberta Canada
| | - John M Seubert
- Mazankowski Alberta Heart Institute Edmonton Alberta Canada.,Department of Pharmacology Faculty of Medicine and DentistryEdmonton Alberta Canada
| | - Gavin Y Oudit
- Division of Cardiology Department of Medicine Faculty of Medicine and DentistryEdmonton Alberta Canada.,Mazankowski Alberta Heart Institute Edmonton Alberta Canada
| |
Collapse
|
9
|
Azad AK, Farhan MA, Murray CR, Suzuki K, Eitzen G, Touret N, Moore RB, Murray AG. FGD5 regulates endothelial cell PI3 kinase-β to promote neo-angiogenesis. FASEB J 2021; 36:e22080. [PMID: 34882832 DOI: 10.1096/fj.202100554r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/11/2022]
Abstract
Angiogenesis is required in embryonic development and tissue repair in the adult. Vascular endothelial growth factor (VEGF) initiates angiogenesis, and VEGF or its receptor is targeted therapeutically to block pathological angiogenesis. Additional pro-angiogenic cues, such as CXCL12 acting via the CXCR4 receptor, co-operate with VEGF/VEGFR2 to cue vascular patterning. We studied the role of FGD5, an endothelial Rho GTP/GDP exchange factor (RhoGEF), to regulate CXCR4-dependent signals in the endothelial cell (EC). Patient-derived renal cell carcinomas produce a complex milieu of growth factors that stimulated sprouting angiogenesis and endothelial tip cell differentiation ex vivo that was blocked by EC FGD5 loss. In a simplified model, CXCL12 augmented sprouting and tip gene expression under conditions where VEGF was limiting. CXCL12-stimulated tip cell differentiation was dependent on PI3 kinase (PI3K)-β activity. Knockdown of EC FGD5 abolished CXCR4 signaling to PI3K-β and Akt. Further, inhibition of Rac1, a Rho GTPase required for PI3K-β activity, recapitulated the signaling defects of FGD5 deficiency, suggesting that FGD5 may regulate PI3K-β activity through Rac1. Overexpression of a RhoGEF deficient, Dbl domain-deleted FGD5 mutant reduced CXCL12-stimulated Akt phosphorylation and failed to rescue PI3K signaling in native FGD5-deficient EC, indicating that FGD5 RhoGEF activity is required for FDG5 function. Endothelial expression of mutant PI3K-β with an inactivated Rho binding domain confirmed that CXCL12-stimulated PI3K activity in EC requires Rac1-GTP co-regulation. Together, this data identify the role of FGD5 to generate Rac1-GTP to regulate pro-angiogenic CXCR4-dependent PI3K-β signaling in EC. Inhibition of FGD5 activity may complement current angiogenesis inhibitor drugs.
Collapse
Affiliation(s)
- Abul K Azad
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Maikel A Farhan
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron R Murray
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kunimasa Suzuki
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ronald B Moore
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Allan G Murray
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Chen X, Zhabyeyev P, Azad AK, Vanhaesebroeck B, Grueter CE, Murray AG, Kassiri Z, Oudit GY. Pharmacological and cell-specific genetic PI3Kα inhibition worsens cardiac remodeling after myocardial infarction. J Mol Cell Cardiol 2021; 157:17-30. [PMID: 33887328 DOI: 10.1016/j.yjmcc.2021.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND PI3Kα (Phosphoinositide 3-kinase α) regulates multiple downstream signaling pathways controlling cell survival, growth, and proliferation and is an attractive therapeutic target in cancer and obesity. The clinically-approved PI3Kα inhibitor, BYL719, is in further clinical trials for cancer and overgrowth syndrome. However, the potential impact of PI3Kα inhibition on the heart and following myocardial infarction (MI) is unclear. We aim to determine whether PI3Kα inhibition affects cardiac physiology and post-MI remodeling and to elucidate the underlying molecular mechanisms. METHODS AND RESULTS Wildtype (WT) 12-wk old male mice receiving BYL719 (daily, p.o.) for 10 days showed reduction in left ventricular longitudinal strain with normal ejection fraction, weight loss, mild cardiac atrophy, body composition alteration, and prolonged QTC interval. RNASeq analysis showed gene expression changes in multiple pathways including extracellular matrix remodeling and signaling complexes. After MI, both p110α and phospho-Akt protein levels were increased in human and mouse hearts. Pharmacological PI3Kα inhibition aggravated cardiac dysfunction and resulted in adverse post-MI remodeling, with increased apoptosis, elevated inflammation, suppressed hypertrophy, decreased coronary blood vessel density, and inhibited Akt/GSK3β/eNOS signaling. Selective genetic ablation of PI3Kα in endothelial cells was associated with worsened post-MI cardiac function and reduced coronary blood vessel density. In vitro, BYL719 suppressed Akt/eNOS activation, cell viability, proliferation, and angiogenic sprouting in coronary and human umbilical vein endothelial cells. Cardiomyocyte-specific genetic PI3Kα ablation resulted in mild cardiac systolic dysfunction at baseline. After MI, cardiac function markedly deteriorated with increased mortality concordant with greater apoptosis and reduced hypertrophy. In isolated adult mouse cardiomyocytes, BYL719 decreased hypoxia-associated activation of Akt/GSK3β signaling and cell survival. CONCLUSIONS PI3Kα is required for cell survival (endothelial cells and cardiomyocytes) hypertrophic response, and angiogenesis to maintain cardiac function after MI. Therefore, PI3Kα inhibition that is used as anti-cancer treatment, can be cardiotoxic, especially after MI.
Collapse
Affiliation(s)
- Xueyi Chen
- Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Pavel Zhabyeyev
- Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Abul K Azad
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | - Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - Allan G Murray
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|
11
|
Role of PI3K/Akt signaling pathway in cardiac fibrosis. Mol Cell Biochem 2021; 476:4045-4059. [PMID: 34244974 DOI: 10.1007/s11010-021-04219-w] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022]
Abstract
Heart failure (HF) is considered as a severe health problem worldwide, while cardiac fibrosis is one of the main driving factors for the progress of HF. Cardiac fibrosis was characterized by changes in cardiomyocytes, cardiac fibroblasts, ratio of collagen (COL) I/III, and the excessive production and deposition of extracellular matrix (ECM), thus forming a scar tissue, which leads to pathological process of cardiac structural changes and systolic as well as diastolic dysfunction. Cardiac fibrosis is a common pathological change of many advanced cardiovascular diseases including ischemic heart disease, hypertension, and HF. Accumulated studies have proven that phosphoinositol-3 kinase (PI3K)/Akt signaling pathway is involved in regulating the occurrence, progression and pathological formation of cardiac fibrosis via regulating cell survival, apoptosis, growth, cardiac contractility and even the transcription of related genes through a series of molecules including mammalian target of rapamycin (mTOR), glycogen synthase kinase 3 (GSK-3), forkhead box proteins O1/3 (FoxO1/3), and nitric oxide synthase (NOS). Thus, the review focuses on the role of PI3K/Akt signaling pathway in the cardiac fibrosis. The information reviewed here should be significant in understanding the role of PI3K/Akt in cardiac fibrosis and contribute to the design of further studies related to PI3K/Akt and the cardiac fibrotic response, as well as sought to shed light on a potential treatment for cardiac fibrosis.
Collapse
|
12
|
Cardiovascular toxicity of PI3Kα inhibitors. Clin Sci (Lond) 2021; 134:2595-2622. [PMID: 33063821 DOI: 10.1042/cs20200302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
The phosphoinositide 3-kinases (PI3Ks) are a family of intracellular lipid kinases that phosphorylate the 3'-hydroxyl group of inositol membrane lipids, resulting in the production of phosphatidylinositol 3,4,5-trisphosphate from phosphatidylinositol 4,5-bisphosphate. This results in downstream effects, including cell growth, proliferation, and migration. The heart expresses three PI3K class I enzyme isoforms (α, β, and γ), and these enzymes play a role in cardiac cellular survival, myocardial hypertrophy, myocardial contractility, excitation, and mechanotransduction. The PI3K pathway is associated with various disease processes but is particularly important to human cancers since many gain-of-function mutations in this pathway occur in various cancers. Despite the development, testing, and regulatory approval of PI3K inhibitors in recent years, there are still significant challenges when creating and utilizing these drugs, including concerns of adverse effects on the heart. There is a growing body of evidence from preclinical studies revealing that PI3Ks play a crucial cardioprotective role, and thus inhibition of this pathway could lead to cardiac dysfunction, electrical remodeling, vascular damage, and ultimately, cardiovascular disease. This review will focus on PI3Kα, including the mechanisms underlying the adverse cardiovascular effects resulting from PI3Kα inhibition and the potential clinical implications of treating patients with these drugs, such as increased arrhythmia burden, biventricular cardiac dysfunction, and impaired recovery from cardiotoxicity. Recommendations for future directions for preclinical and clinical work are made, highlighting the possible role of PI3Kα inhibition in the progression of cancer-related cachexia and female sex and pre-existing comorbidities as independent risk factors for cardiac abnormalities after cancer treatment.
Collapse
|
13
|
Organismal roles for the PI3Kα and β isoforms: their specificity, redundancy or cooperation is context-dependent. Biochem J 2021; 478:1199-1225. [DOI: 10.1042/bcj20210004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
PI3Ks are important lipid kinases that produce phosphoinositides phosphorylated in position 3 of the inositol ring. There are three classes of PI3Ks: class I PI3Ks produce PIP3 at plasma membrane level. Although D. melanogaster and C. elegans have only one form of class I PI3K, vertebrates have four class I PI3Ks called isoforms despite being encoded by four different genes. Hence, duplication of these genes coincides with the acquisition of coordinated multi-organ development. Of the class I PI3Ks, PI3Kα and PI3Kβ, encoded by PIK3CA and PIK3CB, are ubiquitously expressed. They present similar putative protein domains and share PI(4,5)P2 lipid substrate specificity. Fifteen years after publication of their first isoform-selective pharmacological inhibitors and genetically engineered mouse models (GEMMs) that mimic their complete and specific pharmacological inhibition, we review the knowledge gathered in relation to the redundant and selective roles of PI3Kα and PI3Kβ. Recent data suggest that, further to their redundancy, they cooperate for the integration of organ-specific and context-specific signal cues, to orchestrate organ development, physiology, and disease. This knowledge reinforces the importance of isoform-selective inhibitors in clinical settings.
Collapse
|
14
|
Zhang H, Viveiros A, Nikhanj A, Nguyen Q, Wang K, Wang W, Freed DH, Mullen JC, MacArthur R, Kim DH, Tymchak W, Sergi CM, Kassiri Z, Wang S, Oudit GY. The Human Explanted Heart Program: A translational bridge for cardiovascular medicine. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165995. [PMID: 33141063 PMCID: PMC7581399 DOI: 10.1016/j.bbadis.2020.165995] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022]
Abstract
The progression of cardiovascular research is often impeded by the lack of reliable disease models that fully recapitulate the pathogenesis in humans. These limitations apply to both in vitro models such as cell-based cultures and in vivo animal models which invariably are limited to simulate the complexity of cardiovascular disease in humans. Implementing human heart tissue in cardiovascular research complements our research strategy using preclinical models. We established the Human Explanted Heart Program (HELP) which integrates clinical, tissue and molecular phenotyping thereby providing a comprehensive evaluation into human heart disease. Our collection and storage of biospecimens allow them to retain key pathogenic findings while providing novel insights into human heart failure. The use of human non-failing control explanted hearts provides a valuable comparison group for the diseased explanted hearts. Using HELP we have been able to create a tissue repository which have been used for genetic, molecular, cellular, and histological studies. This review describes the process of collection and use of explanted human heart specimens encompassing a spectrum of pediatric and adult heart diseases, while highlighting the role of these invaluable specimens in translational research. Furthermore, we highlight the efficient procurement and bio-preservation approaches ensuring analytical quality of heart specimens acquired in the context of heart donation and transplantation.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anissa Viveiros
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Anish Nikhanj
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Quynh Nguyen
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Wei Wang
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Darren H Freed
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - John C Mullen
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Roderick MacArthur
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel H Kim
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Wayne Tymchak
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Consolato M Sergi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Anatomical Pathology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shaohua Wang
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
15
|
Zhabyeyev P, Chen X, Vanhaesebroeck B, Oudit GY. PI3Kα in cardioprotection: Cytoskeleton, late Na + current, and mechanism of arrhythmias. Channels (Austin) 2020; 13:520-532. [PMID: 31790629 PMCID: PMC6930018 DOI: 10.1080/19336950.2019.1697127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PI 3-kinase α (PI3Kα) is a lipid kinase that converts phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3). PI3Kα regulates a variety of cellular processes such as nutrient sensing, cell cycle, migration, and others. Heightened activity of PI3Kα in many types of cancer made it a prime oncology drug target, but also raises concerns of possible adverse effects on the heart. Indeed, recent advances in preclinical models demonstrate an important role of PI3Kα in the control of cytoskeletal integrity, Na+ channel activity, cardioprotection, and prevention of arrhythmias.
Collapse
Affiliation(s)
- Pavel Zhabyeyev
- Department of Medicine, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Xueyi Chen
- Department of Medicine, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | | | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
16
|
Baruah J, Chaudhuri S, Mastej V, Axen C, Hitzman R, Ribeiro IMB, Wary KK. Low-Level Nanog Expression in the Regulation of Quiescent Endothelium. Arterioscler Thromb Vasc Biol 2020; 40:2244-2264. [PMID: 32640900 PMCID: PMC7447188 DOI: 10.1161/atvbaha.120.314875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Supplemental Digital Content is available in the text. Nanog is expressed in adult endothelial cells (ECs) at a low-level, however, its functional significance is not known. The goal of our study was to elucidate the role of Nanog in adult ECs using a genetically engineered mouse model system.
Collapse
Affiliation(s)
- Jugajyoti Baruah
- From the Department of Psychiatry, Harvard Medical School, Boston, MA (J.B.).,Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA (J.B.)
| | - Suhnrita Chaudhuri
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| | - Victoria Mastej
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| | - Cassondra Axen
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| | - Ryan Hitzman
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| | - Isabella M B Ribeiro
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| | - Kishore K Wary
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| |
Collapse
|
17
|
Affiliation(s)
- Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, Italy
| |
Collapse
|
18
|
Durrant TN, Hers I. PI3K inhibitors in thrombosis and cardiovascular disease. Clin Transl Med 2020; 9:8. [PMID: 32002690 PMCID: PMC6992830 DOI: 10.1186/s40169-020-0261-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that regulate important intracellular signalling and vesicle trafficking events via the generation of 3-phosphoinositides. Comprising eight core isoforms across three classes, the PI3K family displays broad expression and function throughout mammalian tissues, and the (patho)physiological roles of these enzymes in the cardiovascular system present the PI3Ks as potential therapeutic targets in settings such as thrombosis, atherosclerosis and heart failure. This review will discuss the PI3K enzymes and their roles in cardiovascular physiology and disease, with a particular focus on platelet function and thrombosis. The current progress and future potential of targeting the PI3K enzymes for therapeutic benefit in cardiovascular disease will be considered, while the challenges of developing drugs against these master cellular regulators will be discussed.
Collapse
Affiliation(s)
- Tom N Durrant
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
19
|
Kobialka P, Graupera M. Revisiting PI3-kinase signalling in angiogenesis. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2019; 1:H125-H134. [PMID: 32923964 PMCID: PMC7439845 DOI: 10.1530/vb-19-0025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
PI3Ks belong to a family of lipid kinases that comprises eight isoforms. They phosphorylate the third position of the inositol ring present in phosphatidylinositol lipids and, in turn, activate a broad range of proteins. The PI3K pathway regulates primal cellular responses, including proliferation, migration, metabolism and vesicular traffic. These processes are fundamental for endothelial cell function during sprouting angiogenesis, the most common type of blood vessel formation. Research in animal models has revealed key functions of PI3K family members and downstream effectors in angiogenesis. In addition, perturbations in PI3K signalling have been associated with aberrant vascular growth including tumour angiogenesis and vascular malformations. Together, this highlights that endothelial cells are uniquely sensitive to fluctuations in PI3K signalling. Here, we aim to update the current view on this important signalling cue in physiological and pathological blood vessel growth.
Collapse
Affiliation(s)
- Piotr Kobialka
- Vascular Biology and Signalling Group, Program Against Cancer Therapeutic Resistance (ProCURE), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat-Barcelona, Spain
- ProCure Research Program, Instituto de Salud Carlos III, Madrid, Spain
- OncoBell Program, Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Graupera
- Vascular Biology and Signalling Group, Program Against Cancer Therapeutic Resistance (ProCURE), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat-Barcelona, Spain
- ProCure Research Program, Instituto de Salud Carlos III, Madrid, Spain
- OncoBell Program, Instituto de Salud Carlos III, Madrid, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|