1
|
Le DCP, Bui HT, Vu YTH, Vo QD. Induced pluripotent stem cell therapies in heart failure treatment: a meta-analysis and systematic review. Regen Med 2024; 19:1-13. [PMID: 39263954 PMCID: PMC11487948 DOI: 10.1080/17460751.2024.2393558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Background: Heart failure (HF) causes over 266,400 deaths annually. Despite treatment advancements, HF mortality remains high. Induced pluripotent stem cells (iPSCs) offer promising new options. This review assesses iPSC-based treatments for HF.Method: the review included studies from PubMed, ScienceDirect and Web of Science.Results: Analysis of 25 studies with 553 animals showed a baseline ejection fraction (EF) of 39.2 ± 8.9%. iPSC treatment significantly improved EF (MD = 8.6, p < 0.001) and fractional shortening (MD = 6.38, p < 0.001), and reduced ventricular remodeling without increasing arrhythmia risk.Conclusion: iPSC-based therapy improves heart function and reduces ventricular volumes in HF animal models, aligning with promising early clinical trial outcomes.
Collapse
Affiliation(s)
- Duy Cao Phuong Le
- Departmentof Cardiovascular Intervention, Nguyen Tri Phuong Hospital, Ho Chi Minh city, 700000, Vietnam
- Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Hoa The Bui
- Departmentof Cardiovascular Intervention, Nguyen Tri Phuong Hospital, Ho Chi Minh city, 700000, Vietnam
| | - Yen Thi Hai Vu
- Faculty of Medicine, Thai Binh University of Medicine, Thai Binh, 61000, Vietnam
| | - Quan Duy Vo
- Departmentof Cardiovascular Intervention, Nguyen Tri Phuong Hospital, Ho Chi Minh city, 700000, Vietnam
- Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
- Cardiovascular Medicine Department, Okayama University, Okayama city, 7000000, Japan
| |
Collapse
|
2
|
Qiao A, Wei Y, Liu Y, Kahn-Krell A, Ye L, Nguyen T, Zhang J. Doxycycline-Mediated Control of Cyclin D2 Overexpression in Human-Induced Pluripotent Stem Cells. Int J Mol Sci 2024; 25:8714. [PMID: 39201401 PMCID: PMC11354523 DOI: 10.3390/ijms25168714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Previous studies have demonstrated that when the cyclin D2 (CCND2), a cell-cycle regulatory protein, is overexpressed in human-induced pluripotent stem cells (hiPSCs), cardiomyocytes (CMs) differentiated from these CCND2-overexpressing hiPSCs can proliferate after transplantation into infarcted hearts, which significantly improves the cells' potency for myocardial regeneration. However, persistent CM proliferation could lead to tumor growth or the development of arrhythmogenic complications; thus, the goal of the current study was to generate a line of hiPSCs in which CCND2 overexpression could be tightly controlled. First, we transfected hiPSCs with vectors coding for a doxycycline-inducible Tet-On transactivator and S. pyogenes dCas9 fused to the VPR activation domain; then, the same hiPSCs were engineered to express guide RNAs targeting the CCND2 promotor. Thus, treatment with doxycycline (dox) activated dCas9-VPR expression, and the guide RNAs directed dCas9-VPR to the CCND2 promoter, which activated CCND2 expression. Subsequent experiments confirmed that CCND2 expression was dox-dependent in this newly engineered line of hiPSCs (doxCCND2-hiPSCs): CCND2 protein was abundantly expressed after 48 h of treatment with dox and declined to near baseline level ~96 h after dox treatment was discontinued.
Collapse
Affiliation(s)
- Aijun Qiao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.Q.); (Y.W.); (Y.L.); (A.K.-K.); (L.Y.); (T.N.)
| | - Yuhua Wei
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.Q.); (Y.W.); (Y.L.); (A.K.-K.); (L.Y.); (T.N.)
| | - Yanwen Liu
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.Q.); (Y.W.); (Y.L.); (A.K.-K.); (L.Y.); (T.N.)
| | - Asher Kahn-Krell
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.Q.); (Y.W.); (Y.L.); (A.K.-K.); (L.Y.); (T.N.)
| | - Lei Ye
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.Q.); (Y.W.); (Y.L.); (A.K.-K.); (L.Y.); (T.N.)
| | - Thanh Nguyen
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.Q.); (Y.W.); (Y.L.); (A.K.-K.); (L.Y.); (T.N.)
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.Q.); (Y.W.); (Y.L.); (A.K.-K.); (L.Y.); (T.N.)
- Department of Medicine/Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Sugiura T, Shahannaz DC, Ferrell BE. Current Status of Cardiac Regenerative Therapy Using Induced Pluripotent Stem Cells. Int J Mol Sci 2024; 25:5772. [PMID: 38891960 PMCID: PMC11171475 DOI: 10.3390/ijms25115772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Heart failure (HF) is a life-threatening disorder and is treated by drug therapies and surgical interventions such as heart transplantation and left ventricular assist device (LVAD). However, these treatments can lack effectiveness in the long term and are associated with issues such as donor shortage in heart transplantation, and infection, stroke, or gastrointestinal bleeding in LVADs. Therefore, alternative therapeutic strategies are still needed. In this respect, stem cell therapy has been introduced for the treatment of HF and numerous preclinical and clinical studies are employing a range of stem cell varieties. These stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have been shown to improve cardiac function and attenuate left ventricular remodeling. IPSCs, which have a capacity for unlimited proliferation and differentiation into cardiomyocytes, are a promising cell source for myocardial regeneration therapy. In this review, we discuss the following topics: (1) what are iPSCs; (2) the limitations and solutions for the translation of iPSC-CMs practically; and (3) the current therapeutic clinical trials.
Collapse
Affiliation(s)
- Tadahisa Sugiura
- Department of Cardiothoracic and Vascular Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, New York, NY 10467, USA; (D.C.S.); (B.E.F.)
| | | | | |
Collapse
|
4
|
Eschenhagen T, Weinberger F. Challenges and perspectives of heart repair with pluripotent stem cell-derived cardiomyocytes. NATURE CARDIOVASCULAR RESEARCH 2024; 3:515-524. [PMID: 39195938 DOI: 10.1038/s44161-024-00472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/04/2024] [Indexed: 08/29/2024]
Abstract
Here we aim at providing a concise but comprehensive overview of the perspectives and challenges of heart repair with pluripotent stem cell-derived cardiomyocytes. This Review comes at a time when consensus has been reached about the lack of relevant proliferative capacity of adult mammalian cardiomyocytes and the lack of new heart muscle formation with autologous cell sources. While alternatives to cell-based approaches will be shortly summarized, the focus lies on pluripotent stem cell-derived cardiomyocyte repair, which entered first clinical trials just 2 years ago. In the view of the authors, these early trials are important but have to be viewed as early proof-of-concept trials in humans that will hopefully provide first answers on feasibility, safety and the survival of allogeneic pluripotent stem cell-derived cardiomyocyte in the human heart. Better approaches have to be developed to make this approach clinically applicable.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
5
|
Zou A, Xiao T, Chi B, Wang Y, Mao L, Cai D, Gu Q, Chen Q, Wang Q, Ji Y, Sun L. Engineered Exosomes with Growth Differentiation Factor-15 Overexpression Enhance Cardiac Repair After Myocardial Injury. Int J Nanomedicine 2024; 19:3295-3314. [PMID: 38606373 PMCID: PMC11007405 DOI: 10.2147/ijn.s454277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Background Cardiac repair remains a thorny issue for survivors of acute myocardial infarction (AMI), due to the regenerative inertia of myocardial cells. Cell-free therapies, such as exosome transplantation, have become a potential strategy for myocardial injury. The aim of this study was to investigate the role of engineered exosomes in overexpressing Growth Differentiation Factor-15 (GDF-15) (GDF15-EVs) after myocardial injury, and their molecular mechanisms in cardiac repair. Methods H9C2 cells were transfected with GDF-15 lentivirus or negative control. The exosomes secreted from H9C2 cells were collected and identified. The cellular apoptosis and autophagy of H2O2-injured H9C2 cells were assessed by Western blotting, TUNEL assay, electron microscopy, CCK-8 and caspase 3/7 assay. A rat model of AMI was constructed by ligating the left anterior descending artery. The anti-apoptotic, pro-angiogenic effects of GDF15-EVs treatment, as well as ensuing functional and histological recovery were evaluated. Then, mRNA sequencing was performed to identify the differentially expressed mRNAs after GDF15-EVs treatment. Results GDF15-EVs inhibited apoptosis and promoted autophagy in H2O2 injured H9C2 cells. GDF15-EVs effectively decreased the infarct area and enhanced the cardiac function in rats with AMI. Moreover, GDF15-EVs hindered inflammatory cell infiltration, inhibited cell apoptosis, and promoted cardiac angiogenesis in rats with AMI. RNA sequence showed that telomerase reverse transcriptase (TERT) mRNA was upregulated in GDF15-EVs-treated H9C2 cells. AMPK signaling was activated after GDF15-EVs. Silencing TERT impaired the protective effects of GDF15-EVs on H2O2-injured H9C2 cells. Conclusion GDF15-EVs could fulfil their protective effects against myocardial injury by upregulating the expression of TERT and activating the AMPK signaling pathway. GDF15-EVs might be exploited to design new therapies for AMI.
Collapse
Affiliation(s)
- Ailin Zou
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Tingting Xiao
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Boyu Chi
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
- Changzhou Clinical Medical College, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Yu Wang
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Lipeng Mao
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
- Changzhou Clinical Medical College, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Dabei Cai
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
- Changzhou Clinical Medical College, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Qingqing Gu
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Qianwen Chen
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Qingjie Wang
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Yuan Ji
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Ling Sun
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
- Changzhou Clinical Medical College, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| |
Collapse
|
6
|
Yan W, Xia Y, Zhao H, Xu X, Ma X, Tao L. Stem cell-based therapy in cardiac repair after myocardial infarction: Promise, challenges, and future directions. J Mol Cell Cardiol 2024; 188:1-14. [PMID: 38246086 DOI: 10.1016/j.yjmcc.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Stem cells represent an attractive resource for cardiac regeneration. However, the survival and function of transplanted stem cells is poor and remains a major challenge for the development of effective therapies. As two main cell types currently under investigation in heart repair, mesenchymal stromal cells (MSCs) indirectly support endogenous regenerative capacities after transplantation, while induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) functionally integrate into the damaged myocardium and directly contribute to the restoration of its pump function. These two cell types are exposed to a common microenvironment with many stressors in ischemic heart tissue. This review summarizes the research progress on the mechanisms and challenges of MSCs and iPSC-CMs in post-MI heart repair, introduces several randomized clinical trials with 3D-mapping-guided cell therapy, and outlines recent findings related to the factors that affect the survival and function of stem cells. We also discuss the future directions for optimization such as biomaterial utilization, cell combinations, and intravenous injection of engineered nucleus-free MSCs.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Xu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
7
|
Vo QD, Saito Y, Nakamura K, Iida T, Yuasa S. Induced Pluripotent Stem Cell-Derived Cardiomyocytes Therapy for Ischemic Heart Disease in Animal Model: A Meta-Analysis. Int J Mol Sci 2024; 25:987. [PMID: 38256060 PMCID: PMC10815661 DOI: 10.3390/ijms25020987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Ischemic heart disease (IHD) poses a significant challenge in cardiovascular health, with current treatments showing limited success. Induced pluripotent derived-cardiomyocyte (iPSC-CM) therapy within regenerative medicine offers potential for IHD patients, although its clinical impacts remain uncertain. This study utilizes meta-analysis to assess iPSC-CM outcomes in terms of efficacy and safety in IHD animal model studies. A meta-analysis encompassing PUBMED, ScienceDirect, Web of Science, and the Cochrane Library databases, from inception until October 2023, investigated iPSC therapy effects on cardiac function and safety outcomes. Among 51 eligible studies involving 1012 animals, despite substantial heterogeneity, the iPSC-CM transplantation improved left ventricular ejection fraction (LVEF) by 8.23% (95% CI, 7.15 to 9.32%; p < 0.001) compared to control groups. Additionally, cell-based treatment reduced the left ventricle fibrosis area and showed a tendency to reduce left ventricular end-systolic volume (LVESV) and end-diastolic volume (LVEDV). No significant differences emerged in mortality and arrhythmia risk between iPSC-CM treatment and control groups. In conclusion, this meta-analysis indicates iPSC-CM therapy's promise as a safe and beneficial intervention for enhancing heart function in IHD. However, due to observed heterogeneity, the efficacy of this treatment must be further explored through large randomized controlled trials based on rigorous research design.
Collapse
Affiliation(s)
- Quan Duy Vo
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| | - Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| | - Toshihiro Iida
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| | - Shinsuke Yuasa
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| |
Collapse
|
8
|
Tanaka Y, Kadota S, Zhao J, Kobayashi H, Okano S, Izumi M, Honda Y, Ichimura H, Shiba N, Uemura T, Wada Y, Chuma S, Nakada T, Tohyama S, Fukuda K, Yamada M, Seto T, Kuwahara K, Shiba Y. Mature human induced pluripotent stem cell-derived cardiomyocytes promote angiogenesis through alpha-B crystallin. Stem Cell Res Ther 2023; 14:240. [PMID: 37679796 PMCID: PMC10486094 DOI: 10.1186/s13287-023-03468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can be used to treat heart diseases; however, the optimal maturity of hiPSC-CMs for effective regenerative medicine remains unclear. We aimed to investigate the benefits of long-term cultured mature hiPSC-CMs in injured rat hearts. METHODS Cardiomyocytes were differentiated from hiPSCs via monolayer culturing, and the cells were harvested on day 28 or 56 (D28-CMs or D56-CMs, respectively) after differentiation. We transplanted D28-CMs or D56-CMs into the hearts of rat myocardial infarction models and examined cell retention and engraftment via in vivo bioluminescence imaging and histological analysis. We performed transcriptomic sequencing analysis to elucidate the genetic profiles before and after hiPSC-CM transplantation. RESULTS Upregulated expression of mature sarcomere genes in vitro was observed in D56-CMs compared with D28-CMs. In vivo bioluminescence imaging studies revealed increased bioluminescence intensity of D56-CMs at 8 and 12 weeks post-transplantation. Histological and immunohistochemical analyses showed that D56-CMs promoted engraftment and maturation in the graft area at 12 weeks post-transplantation. Notably, D56-CMs consistently promoted microvessel formation in the graft area from 1 to 12 weeks post-transplantation. Transcriptomic sequencing analysis revealed that compared with the engrafted D28-CMs, the engrafted D56-CMs enriched genes related to blood vessel regulation at 12 weeks post-transplantation. As shown by transcriptomic and western blot analyses, the expression of a small heat shock protein, alpha-B crystallin (CRYAB), was significantly upregulated in D56-CMs compared with D28-CMs. Endothelial cell migration was inhibited by small interfering RNA-mediated knockdown of CRYAB when co-cultured with D56-CMs in vitro. Furthermore, CRYAB overexpression enhanced angiogenesis in the D28-CM grafts at 4 weeks post-transplantation. CONCLUSIONS Long-term cultured mature hiPSC-CMs promoted engraftment, maturation and angiogenesis post-transplantation in infarcted rat hearts. CRYAB, which was highly expressed in D56-CMs, was identified as an angiogenic factor from mature hiPSC-CMs. This study revealed the benefits of long-term culture, which may enhance the therapeutic potential of hiPSC-CMs.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Shin Kadota
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan.
| | - Jian Zhao
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hideki Kobayashi
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Satomi Okano
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Iryo Sosei University, Iwaki, 970-8551, Japan
| | - Masaki Izumi
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Yusuke Honda
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hajime Ichimura
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Naoko Shiba
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Takeshi Uemura
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto, 390-8621, Japan
| | - Yuko Wada
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Shinichiro Chuma
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Tsutomu Nakada
- Division of Instrumental Analysis, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto, 390-8621, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Tatsuichiro Seto
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Koichiro Kuwahara
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Yuji Shiba
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan.
| |
Collapse
|
9
|
Lou X, Tang Y, Ye L, Pretorius D, Fast VG, Kahn-Krell AM, Zhang J, Zhang J, Qiao A, Qin G, Kamp T, Thomson JA, Zhang J. Cardiac muscle patches containing four types of cardiac cells derived from human pluripotent stem cells improve recovery from cardiac injury in mice. Cardiovasc Res 2023; 119:1062-1076. [PMID: 36647784 PMCID: PMC10153642 DOI: 10.1093/cvr/cvad004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 01/18/2023] Open
Abstract
AIMS We have shown that human cardiac muscle patches (hCMPs) containing three different types of cardiac cells-cardiomyocytes (CMs), smooth muscle cells (SMCs), and endothelial cells (ECs), all of which were differentiated from human pluripotent stem cells (hPSCs)-significantly improved cardiac function, infarct size, and hypertrophy in a pig model of myocardial infarction (MI). However, hPSC-derived CMs (hPSC-CMs) are phenotypically immature, which may lead to arrhythmogenic concerns; thus, since hPSC-derived cardiac fibroblasts (hPSC-CFs) appear to enhance the maturity of hPSC-CMs, we compared hCMPs containing hPSC-CMs, -SMCs, -ECs, and -CFs (4TCC-hCMPs) with a second hCMP construct that lacked hPSC-CFs but was otherwise identical [hCMP containing hPSC-CMs, -AECs, and -SMCs (3TCC-hCMPs)]. METHODS AND RESULTS hCMPs were generated in a fibrin scaffold. MI was induced in severe combined immunodeficiency (SCID) mice through permanent coronary artery (left anterior descending) ligation, followed by treatment with cardiac muscle patches. Animal groups included: MI heart treated with 3TCC-hCMP; with 4TCC-hCMP; MI heart treated with no patch (MI group) and sham group. Cardiac function was evaluated using echocardiography, and cell engraftment rate and infarct size were evaluated histologically at 4 weeks after patch transplantation. The results from experiments in cultured hCMPs demonstrate that the inclusion of cardiac fibroblast in 4TCC-hCMPs had (i) better organized sarcomeres; (ii) abundant structural, metabolic, and ion-channel markers of CM maturation; and (iii) greater conduction velocities (31 ± 3.23 cm/s, P < 0.005) and action-potential durations (APD50 = 365 ms ± 2.649, P < 0.0001; APD = 408 ms ± 2.757, P < 0.0001) than those (velocity and APD time) in 3TCC-hCMPs. Furthermore, 4TCC-hCMPs transplantation resulted in better cardiac function [ejection fraction (EF) = 49.18% ± 0.86, P < 0.05], reduced infarct size (22.72% ± 0.98, P < 0.05), and better engraftment (15.99% ± 1.56, P < 0.05) when compared with 3TCC-hCMPs (EF = 41.55 ± 0.92%, infarct size = 39.23 ± 4.28%, and engraftment = 8.56 ± 1.79%, respectively). CONCLUSION Collectively, these observations suggest that the inclusion of hPSC-CFs during hCMP manufacture promotes hPSC-CM maturation and increases the potency of implanted hCMPs for improving cardiac recovery in mice model of MI.
Collapse
Affiliation(s)
- Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Yawen Tang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Lei Ye
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Vladimir G Fast
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Asher M Kahn-Krell
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jianhua Zhang
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Aijun Qiao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Timothy Kamp
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
10
|
Beleño Acosta B, Advincula RC, Grande-Tovar CD. Chitosan-Based Scaffolds for the Treatment of Myocardial Infarction: A Systematic Review. Molecules 2023; 28:1920. [PMID: 36838907 PMCID: PMC9962426 DOI: 10.3390/molecules28041920] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiovascular diseases (CVD), such as myocardial infarction (MI), constitute one of the world's leading causes of annual deaths. This cardiomyopathy generates a tissue scar with poor anatomical properties and cell necrosis that can lead to heart failure. Necrotic tissue repair is required through pharmaceutical or surgical treatments to avoid such loss, which has associated adverse collateral effects. However, to recover the infarcted myocardial tissue, biopolymer-based scaffolds are used as safer alternative treatments with fewer side effects due to their biocompatibility, chemical adaptability and biodegradability. For this reason, a systematic review of the literature from the last five years on the production and application of chitosan scaffolds for the reconstructive engineering of myocardial tissue was carried out. Seventy-five records were included for review using the "preferred reporting items for systematic reviews and meta-analyses" data collection strategy. It was observed that the chitosan scaffolds have a remarkable capacity for restoring the essential functions of the heart through the mimicry of its physiological environment and with a controlled porosity that allows for the exchange of nutrients, the improvement of the electrical conductivity and the stimulation of cell differentiation of the stem cells. In addition, the chitosan scaffolds can significantly improve angiogenesis in the infarcted tissue by stimulating the production of the glycoprotein receptors of the vascular endothelial growth factor (VEGF) family. Therefore, the possible mechanisms of action of the chitosan scaffolds on cardiomyocytes and stem cells were analyzed. For all the advantages observed, it is considered that the treatment of MI with the chitosan scaffolds is promising, showing multiple advantages within the regenerative therapies of CVD.
Collapse
Affiliation(s)
- Bryan Beleño Acosta
- Grupo de Investigación de Fotoquímica y Fotobiología, Química, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Rigoberto C. Advincula
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
- Center for Nanophase Materials Sciences (CNMS), Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Química, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
11
|
Wu Y, Guo X, Han T, Feng K, Zhang P, Xu Y, Yang Y, Xia Y, Chen Y, Xi J, Yang H, Wan X, Kang J. Cmarr/miR-540-3p axis promotes cardiomyocyte maturation transition by orchestrating Dtna expression. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:481-497. [PMID: 36035750 PMCID: PMC9382425 DOI: 10.1016/j.omtn.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/20/2022] [Indexed: 10/31/2022]
Abstract
The immature phenotype of embryonic stem cell-derived cardiomyocytes (ESC-CMs) limits their application. However, the molecular mechanisms of cardiomyocyte maturation remain largely unexplored. This study found that overexpression of long noncoding RNA (lncRNA)-Cmarr, which was highly expressed in cardiomyocytes, promoted the maturation change and physiological maturation of mouse ESC-CMs (mESC-CMs). Moreover, transplantation of cardiac patch overexpressing Cmarr exhibited better retention of mESC-CMs, reduced infarct area by enhancing vascular density in the host heart, and improved cardiac function in mice after myocardial infarction. Mechanism studies identified that Cmarr acted as a competitive endogenous RNA to impede the repression of miR-540-3p on Dtna expression and promoted the binding of the dystrophin-glycoprotein complex (DGC) and yes-associated protein (YAP), which in turn reduced the proportion of nuclear YAP and the expression of YAP target genes. Therefore, this study revealed the function and mechanism of Cmarr in promoting cardiomyocyte maturation and provided a lncRNA that can be used as a functional factor in the construction of cardiac patches for the treatment of myocardial infarction.
Collapse
|
12
|
Xiao Y, Chen Y, Shao C, Wang Y, Hu S, Lei W. Strategies to improve the therapeutic effect of pluripotent stem cell-derived cardiomyocytes on myocardial infarction. Front Bioeng Biotechnol 2022; 10:973496. [PMID: 35992358 PMCID: PMC9388750 DOI: 10.3389/fbioe.2022.973496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Myocardial infarction (MI) is a common cardiovascular disease caused by permanent loss of cardiomyocytes and the formation of scar tissue due to myocardial ischemia. Mammalian cardiomyocytes lose their ability to proliferate almost completely in adulthood and are unable to repair the damage caused by MI. Therefore, transplantation of exogenous cells into the injured area for treatment becomes a promising strategy. Pluripotent stem cells (PSCs) have the ability to proliferate and differentiate into various cellular populations indefinitely, and pluripotent stem cell-derived cardiomyocytes (PSC-CMs) transplanted into areas of injury can compensate for part of the injuries and are considered to be one of the most promising sources for cell replacement therapy. However, the low transplantation rate and survival rate of currently transplanted PSC-CMs limit their ability to treat MI. This article focuses on the strategies of current research for improving the therapeutic efficacy of PSC-CMs, aiming to provide some inspiration and ideas for subsequent researchers to further enhance the transplantation rate and survival rate of PSC-CMs and ultimately improve cardiac function.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chunlai Shao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaning Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- *Correspondence: Wei Lei, ; Shijun Hu,
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- *Correspondence: Wei Lei, ; Shijun Hu,
| |
Collapse
|
13
|
Pretorius D, Kahn-Krell AM, LaBarge WC, Lou X, Zhang J. Engineering of thick human functional myocardium via static stretching and electrical stimulation. iScience 2022; 25:103824. [PMID: 35243219 PMCID: PMC8873611 DOI: 10.1016/j.isci.2022.103824] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Human cardiac-muscle patches (hCMPs) constructed from induced pluripotent stem cells derived cardiomyocytes (iCMs) can replicate the genetics of individual patients, and consequently be used for drug testing, disease modeling, and therapeutic applications. However, conventional hCMPs are relatively thin and contain iCMs with fetal cardiomyocyte structure and function. Here, we used our layer-by-layer (lbl) fabrication to construct thicker (>2.1 mm), triple-layered hCMPs, and then evaluated iCM maturity after ten days of standard culture (Control), static stretching (Stretched), or stretching with electrical stimulation at 15 or 22 V (Stretched+15V or Stretched+22V). Assessments of stained hCMPs suggested that expression and alignment of contractile proteins was greater in Stretched+22V, whereas quantification of mRNA abundance and protein expression indicated the Stretched+22V enhanced biomolecular maturation. Transmission electron microscope images indicated that stretching and electrical stimulation were associated with increases in development of Z-lines and gap junctions, and sarcomeres were significantly longer following any of the maturation protocols.
Collapse
Affiliation(s)
- Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Asher M. Kahn-Krell
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Wesley C. LaBarge
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Medicine, Division of Cardiovascular Diseases, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
14
|
Cardiac Cell Therapy with Pluripotent Stem Cell-Derived Cardiomyocytes: What Has Been Done and What Remains to Do? Curr Cardiol Rep 2022; 24:445-461. [PMID: 35275365 PMCID: PMC9068652 DOI: 10.1007/s11886-022-01666-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Exciting pre-clinical data presents pluripotent stem cell-derived cardiomyocytes (PSC-CM) as a novel therapeutic prospect following myocardial infarction, and worldwide clinical trials are imminent. However, despite notable advances, several challenges remain. Here, we review PSC-CM pre-clinical studies, identifying key translational hurdles. We further discuss cell production and characterization strategies, identifying markers that may help generate cells which overcome these barriers. RECENT FINDINGS PSC-CMs can robustly repopulate infarcted myocardium with functional, force generating cardiomyocytes. However, current differentiation protocols produce immature and heterogenous cardiomyocytes, creating related issues such as arrhythmogenicity, immunogenicity and poor engraftment. Recent efforts have enhanced our understanding of cardiovascular developmental biology. This knowledge may help implement novel differentiation or gene editing strategies that could overcome these limitations. PSC-CMs are an exciting therapeutic prospect. Despite substantial recent advances, limitations of the technology remain. However, with our continued and increasing biological understanding, these issues are addressable, with several worldwide clinical trials anticipated in the coming years.
Collapse
|
15
|
Wen X, Jiao L, Tan H. MAPK/ERK Pathway as a Central Regulator in Vertebrate Organ Regeneration. Int J Mol Sci 2022; 23:ijms23031464. [PMID: 35163418 PMCID: PMC8835994 DOI: 10.3390/ijms23031464] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Damage to organs by trauma, infection, diseases, congenital defects, aging, and other injuries causes organ malfunction and is life-threatening under serious conditions. Some of the lower order vertebrates such as zebrafish, salamanders, and chicks possess superior organ regenerative capacity over mammals. The extracellular signal-regulated kinases 1 and 2 (ERK1/2), as key members of the mitogen-activated protein kinase (MAPK) family, are serine/threonine protein kinases that are phylogenetically conserved among vertebrate taxa. MAPK/ERK signaling is an irreplaceable player participating in diverse biological activities through phosphorylating a broad variety of substrates in the cytoplasm as well as inside the nucleus. Current evidence supports a central role of the MAPK/ERK pathway during organ regeneration processes. MAPK/ERK signaling is rapidly excited in response to injury stimuli and coordinates essential pro-regenerative cellular events including cell survival, cell fate turnover, migration, proliferation, growth, and transcriptional and translational activities. In this literature review, we recapitulated the multifaceted MAPK/ERK signaling regulations, its dynamic spatio-temporal activities, and the profound roles during multiple organ regeneration, including appendages, heart, liver, eye, and peripheral/central nervous system, illuminating the possibility of MAPK/ERK signaling as a critical mechanism underlying the vastly differential regenerative capacities among vertebrate species, as well as its potential applications in tissue engineering and regenerative medicine.
Collapse
|
16
|
Huang CN, Liu CL, Zeng SQ, Liu CB, Si WJ, Yuan Y, Ren LX, He YM, Zhang WY, Zhang HY, Zeng Y, Han YG, Na RS, Ee GX, Huang YF. Identification of differentially expressed long non-coding RNAs and messenger RNAs involved with muscle development in Dazu black goats through RNA sequencing. Anim Biotechnol 2022:1-9. [PMID: 34985384 DOI: 10.1080/10495398.2021.2020804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study aimed to explore the genetic basis of muscle development in goats. The transcriptome dataset for differentially expressed lncRNAs (DELs) and differentially expressed genes (DEGs) of goat muscle at different developmental stages were obtained using RNA-Seq. A total of 447,806,481 and 587,559,465 clean reads in the longissimus dorsi muscle of Dazu black goats between 75d embryonic stage and 1d after birth were generated through Illumina paired-end sequencing, and their mapping rates were 89.82 and 90.99%, respectively. Moreover, 4517 DEGs and 648 DELs were identified, and 4784 lncRNA-mRNA targeting relationships were predicted. Gene function annotation results showed that 4101 DEGs were significantly enriched to 1098 GO terms, and 2014 DEGs were significantly enriched to 40 KEGG pathways, including many GO terms and pathways related to muscle development, such as cell differentiation and Wnt signaling pathway. Then, 10 DELs and 20 DEGs were randomly selected for RT-qPCR verification, and the agreement rate between the verification and RNA-Seq results was 90%, indicating the high reliability of the RNA-Seq data analysis. In conclusion, this study obtained several mRNAs and lncRNAs related to the muscle development of Dazu black goats and identified several targeted regulatory pairs of lncRNA-mRNA. This study may serve as a reference to understand the genetic basis and molecular mechanism of muscle development in goats.
Collapse
Affiliation(s)
- Chao-Nan Huang
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Cheng-Li Liu
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Shi-Qi Zeng
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chang-Bao Liu
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wei-Jiang Si
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ying Yuan
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Li-Xin Ren
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Meng He
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wei-Yi Zhang
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Hao-Yuan Zhang
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Zeng
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan-Guo Han
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ri-Su Na
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Guang-Xin Ee
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Fu Huang
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Nath AV, Ajit S, Sekar AJ, P R AK, Muthusamy S. MicroRNA-200c/429 mediated regulation of Zeb1 augments N-Cadherin in mouse cardiac mesenchymal cells. Cell Biol Int 2021; 46:222-233. [PMID: 34747544 DOI: 10.1002/cbin.11724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022]
Abstract
Cardiac mesenchymal cells (CMCs) are a promising cell type that showed therapeutic potential in heart failure models. The analysis of the underlying mechanisms by which the CMCs improve cardiac function is on track. This study aimed to investigate the expression of N-Cadherin, a transmembrane protein that enhances cell adhesion, and recently gained attention for differentiation and augmentation of stem cell function. The mouse CMCs were isolated and analyzed for the mesenchymal markers using flow cytometry. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis were used to assess the expression of N-Cadherin along with its counteracting molecule E-Cadherin and their regulator Zeb1 in CMCs and dermal fibroblast. The expression level of miR-200c and miR-429 was analyzed using miRNA assays. Transient transfection of miR-200c followed by qRT-PCR, western blot analysis, and immunostaining was done in CMCs to analyze the expression of Zeb1, N-Cadherin, and E-Cadherin. Flow cytometry analysis showed that CMCs possess mesenchymal markers and absence for hematopoietic and immune cell markers. Increased expression of N-Cadherin and Zeb1 in CMCs was observed in CMCs at both RNA and protein levels compared to fibroblast. We found significant downregulation of miR-200c and miR-429 in CMCs. The ectopic expression of miR-200c in CMCs significantly downregulated Zeb1 and N-Cadherin expression. Our findings suggest that the significant downregulation of miR-200c/429 in CMCs maintains the expression of N-Cadherin, which may be important for its functional integrity.
Collapse
Affiliation(s)
- Asha V Nath
- TIMED, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Shilpa Ajit
- Department of Applied Biology, Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Anupama J Sekar
- Department of Applied Biology, Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Anil Kumar P R
- Department of Applied Biology, Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Senthilkumar Muthusamy
- Department of Applied Biology, Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
18
|
Davidson SM, Padró T, Bollini S, Vilahur G, Duncker DJ, Evans PC, Guzik T, Hoefer IE, Waltenberger J, Wojta J, Weber C. Progress in cardiac research - from rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovasc Res 2021; 117:2161-2174. [PMID: 34114614 PMCID: PMC8344830 DOI: 10.1093/cvr/cvab200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
We review some of the important discoveries and advances made in basic and translational cardiac research in 2020. For example, in the field of myocardial infarction (MI), new aspects of autophagy and the importance of eosinophils were described. Novel approaches such as a glycocalyx mimetic were used to improve cardiac recovery following MI. The strategy of 3D bio-printing was shown to allow the fabrication of a chambered cardiac organoid. The benefit of combining tissue engineering with paracrine therapy to heal injured myocardium is discussed. We highlight the importance of cell-to cell communication, in particular the relevance of extracellular vesicles such as exosomes, which transport proteins, lipids, non-coding RNAs and mRNAs and actively contribute to angiogenesis and myocardial regeneration. In this rapidly growing field, new strategies were developed to stimulate the release of reparative exosomes in ischaemic myocardium. Single-cell sequencing technology is causing a revolution in the study of transcriptional expression at cellular resolution, revealing unanticipated heterogeneity within cardiomyocytes, pericytes and fibroblasts, and revealing a unique subpopulation of cardiac fibroblasts. Several studies demonstrated that exosome- and non-coding RNA-mediated approaches can enhance human induced pluripotent stem cell (iPSC) viability and differentiation into mature cardiomyocytes. Important details of the mitochondrial Ca2+ uniporter and its relevance were elucidated. Novel aspects of cancer therapeutic-induced cardiotoxicity were described, such as the novel circular RNA circITCH, which may lead to novel treatments. Finally, we provide some insights into the effects of SARS-CoV-2 on the heart.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London WC1E 6HX, United Kingdom
| | - Teresa Padró
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute, University of Sheffield, UK
| | - Tomasz Guzik
- British Heart Foundation Centre for Cardiovascular Research, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK and Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Imo E Hoefer
- Central Diagnostic Laboratory, University Medical Center Utrecht, Netherlands
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, Medical Faculty, University of Muenster, Muenster, Germany
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| |
Collapse
|
19
|
Zhao M, Nakada Y, Wei Y, Bian W, Chu Y, Borovjagin AV, Xie M, Zhu W, Nguyen T, Zhou Y, Serpooshan V, Walcott GP, Zhang J. Cyclin D2 Overexpression Enhances the Efficacy of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Myocardial Repair in a Swine Model of Myocardial Infarction. Circulation 2021; 144:210-228. [PMID: 33951921 DOI: 10.1161/circulationaha.120.049497] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Human induced pluripotent stem cells with normal (wild-type) or upregulated (overexpressed) levels of CCND2 (cyclin D2) expression were differentiated into cardiomyocytes (CCND2WTCMs or CCND2OECMs, respectively) and injected into infarcted pig hearts. METHODS Acute myocardial infarction was induced by a 60-minute occlusion of the left anterior descending coronary artery. Immediately after reperfusion, CCND2WTCMs or CCND2OECMs (3×107 cells each) or an equivalent volume of the delivery vehicle was injected around the infarct border zone area. RESULTS The number of the engrafted CCND2OECMs exceeded that of the engrafted CCND2WTCMs from 6- to 8-fold, rising from 1 week to 4 weeks after implantation. In contrast to the treatment with the CCND2WTCMs or the delivery vehicle, the administration of CCND2OECM was associated with significantly improved left ventricular function, as revealed by magnetic resonance imaging. This correlated with reduction of infarct size, fibrosis, ventricular hypertrophy, and cardiomyocyte apoptosis, and increase of vascular density and arterial density, as per histologic analysis of the treated hearts. Expression of cell proliferation markers (eg, Ki67, phosphorylated histone 3, and Aurora B kinase) was also significantly upregulated in the recipient cardiomyocytes from the CCND2OECM-treated than from the CCND2WTCM-treated pigs. The cell proliferation rate and the hypoxia tolerance measured in cultured human induced pluripotent stem cell cardiomyocytes were significantly greater after treatment with exosomes isolated from the CCND2OECMs (CCND2OEExos) than from the CCND2WTCMs (CCND2WTExos). As demonstrated by our study, CCND2OEExos can also promote the proliferation activity of postnatal rat and adult mouse cardiomyocytes. A bulk miRNA sequencing analysis of CCND2OEExos versus CCND2WTExos identified 206 and 91 miRNAs that were significantly upregulated and downregulated, respectively. Gene ontology enrichment analysis identified significant differences in the expression profiles of miRNAs from various functional categories and pathways, including miRNAs implicated in cell-cycle checkpoints (G2/M and G1/S transitions), or the mechanism of cytokinesis. CONCLUSIONS We demonstrated that enhanced potency of CCND2OECMs promoted myocyte proliferation in both grafts and recipient tissue in a large mammal acute myocardial infarction model. These results suggest that CCND2OECMs transplantation may be a potential therapeutic strategy for the repair of infarcted hearts.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Biomedical Engineering (M.Z., Y.N., Y.W., W.B., A.V.B., Y.Z., G.P.W., J.Z.), the University of Alabama at Birmingham
| | - Yuji Nakada
- Department of Biomedical Engineering (M.Z., Y.N., Y.W., W.B., A.V.B., Y.Z., G.P.W., J.Z.), the University of Alabama at Birmingham
| | - Yuhua Wei
- Department of Biomedical Engineering (M.Z., Y.N., Y.W., W.B., A.V.B., Y.Z., G.P.W., J.Z.), the University of Alabama at Birmingham
| | - Weihua Bian
- Department of Biomedical Engineering (M.Z., Y.N., Y.W., W.B., A.V.B., Y.Z., G.P.W., J.Z.), the University of Alabama at Birmingham
| | - Yuxin Chu
- Division of Cardiology, Department of Medicine (Y.C., M.X., G.P.W., J.Z.), the University of Alabama at Birmingham
| | - Anton V Borovjagin
- Department of Biomedical Engineering (M.Z., Y.N., Y.W., W.B., A.V.B., Y.Z., G.P.W., J.Z.), the University of Alabama at Birmingham
| | - Min Xie
- Division of Cardiology, Department of Medicine (Y.C., M.X., G.P.W., J.Z.), the University of Alabama at Birmingham
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale (W.Z.)
| | - Thanh Nguyen
- School of Medicine and School of Engineering, and Informatics Institute (T.N.), the University of Alabama at Birmingham
| | - Yang Zhou
- Department of Biomedical Engineering (M.Z., Y.N., Y.W., W.B., A.V.B., Y.Z., G.P.W., J.Z.), the University of Alabama at Birmingham
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Department of Pediatrics, Emory University and Georgia Institute of Technology, Atlanta (V.S.)
| | - Gregory P Walcott
- Department of Biomedical Engineering (M.Z., Y.N., Y.W., W.B., A.V.B., Y.Z., G.P.W., J.Z.), the University of Alabama at Birmingham.,Division of Cardiology, Department of Medicine (Y.C., M.X., G.P.W., J.Z.), the University of Alabama at Birmingham
| | - Jianyi Zhang
- Department of Biomedical Engineering (M.Z., Y.N., Y.W., W.B., A.V.B., Y.Z., G.P.W., J.Z.), the University of Alabama at Birmingham.,Division of Cardiology, Department of Medicine (Y.C., M.X., G.P.W., J.Z.), the University of Alabama at Birmingham
| |
Collapse
|
20
|
Stępniewski J, Tomczyk M, Andrysiak K, Kraszewska I, Martyniak A, Langrzyk A, Kulik K, Wiśniewska E, Jeż M, Florczyk-Soluch U, Polak K, Podkalicka P, Kachamakova-Trojanowska N, Józkowicz A, Jaźwa-Kusior A, Dulak J. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes, in Contrast to Adipose Tissue-Derived Stromal Cells, Efficiently Improve Heart Function in Murine Model of Myocardial Infarction. Biomedicines 2020; 8:biomedicines8120578. [PMID: 33297443 PMCID: PMC7762393 DOI: 10.3390/biomedicines8120578] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/23/2022] Open
Abstract
Cell therapies are extensively tested to restore heart function after myocardial infarction (MI). Survival of any cell type after intracardiac administration, however, may be limited due to unfavorable conditions of damaged tissue. Therefore, the aim of this study was to evaluate the therapeutic effect of adipose-derived stromal cells (ADSCs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) overexpressing either the proangiogenic SDF-1α or anti-inflammatory heme oxygenase-1 (HO-1) in a murine model of MI. ADSCs and hiPSCs were transduced with lentiviral vectors encoding luciferase (Luc), GFP and either HO-1 or SDF-1α. hiPSCs were then differentiated to hiPSC-CMs using small molecules modulating the WNT pathway. Genetically modified ADSCs were firstly administered via intracardiac injection after MI induction in Nude mice. Next, ADSCs-Luc-GFP and genetically modified hiPSC-CMs were injected into the hearts of the more receptive NOD/SCID strain to compare the therapeutic effect of both cell types. Ultrasonography, performed on days 7, 14, 28 and 42, revealed a significant decrease of left ventricular ejection fraction (LVEF) in all MI-induced groups. No improvement of LVEF was observed in ADSC-treated Nude and NOD/SCID mice. In contrast, administration of hiPSC-CMs resulted in a substantial increase of LVEF, occurring between 28 and 42 days after MI, and decreased fibrosis, regardless of genetic modification. Importantly, bioluminescence analysis, as well as immunofluorescent staining, confirmed the presence of hiPSC-CMs in murine tissue. Interestingly, the luminescence signal was strongest in hearts treated with hiPSC-CMs overexpressing HO-1. Performed experiments demonstrate that hiPSC-CMs, unlike ADSCs, are effective in improving heart function after MI. Additionally, long-term evaluation of heart function seems to be crucial for proper assessment of the effect of cell administration.
Collapse
Affiliation(s)
- Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (K.A.); (I.K.); (A.M.); (A.L.); (K.K.); (E.W.); (M.J.); (U.F.-S.); (K.P.); (P.P.); (A.J.); (A.J.-K.)
- Correspondence: (J.S.); (J.D.); Tel.: +48-12-664-6375 (J.D.)
| | - Mateusz Tomczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (K.A.); (I.K.); (A.M.); (A.L.); (K.K.); (E.W.); (M.J.); (U.F.-S.); (K.P.); (P.P.); (A.J.); (A.J.-K.)
| | - Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (K.A.); (I.K.); (A.M.); (A.L.); (K.K.); (E.W.); (M.J.); (U.F.-S.); (K.P.); (P.P.); (A.J.); (A.J.-K.)
| | - Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (K.A.); (I.K.); (A.M.); (A.L.); (K.K.); (E.W.); (M.J.); (U.F.-S.); (K.P.); (P.P.); (A.J.); (A.J.-K.)
| | - Alicja Martyniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (K.A.); (I.K.); (A.M.); (A.L.); (K.K.); (E.W.); (M.J.); (U.F.-S.); (K.P.); (P.P.); (A.J.); (A.J.-K.)
| | - Agnieszka Langrzyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (K.A.); (I.K.); (A.M.); (A.L.); (K.K.); (E.W.); (M.J.); (U.F.-S.); (K.P.); (P.P.); (A.J.); (A.J.-K.)
- Kardio-Med Silesia, Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Klaudia Kulik
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (K.A.); (I.K.); (A.M.); (A.L.); (K.K.); (E.W.); (M.J.); (U.F.-S.); (K.P.); (P.P.); (A.J.); (A.J.-K.)
- Kardio-Med Silesia, Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Ewa Wiśniewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (K.A.); (I.K.); (A.M.); (A.L.); (K.K.); (E.W.); (M.J.); (U.F.-S.); (K.P.); (P.P.); (A.J.); (A.J.-K.)
- Kardio-Med Silesia, Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Mateusz Jeż
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (K.A.); (I.K.); (A.M.); (A.L.); (K.K.); (E.W.); (M.J.); (U.F.-S.); (K.P.); (P.P.); (A.J.); (A.J.-K.)
| | - Urszula Florczyk-Soluch
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (K.A.); (I.K.); (A.M.); (A.L.); (K.K.); (E.W.); (M.J.); (U.F.-S.); (K.P.); (P.P.); (A.J.); (A.J.-K.)
| | - Katarzyna Polak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (K.A.); (I.K.); (A.M.); (A.L.); (K.K.); (E.W.); (M.J.); (U.F.-S.); (K.P.); (P.P.); (A.J.); (A.J.-K.)
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (K.A.); (I.K.); (A.M.); (A.L.); (K.K.); (E.W.); (M.J.); (U.F.-S.); (K.P.); (P.P.); (A.J.); (A.J.-K.)
| | | | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (K.A.); (I.K.); (A.M.); (A.L.); (K.K.); (E.W.); (M.J.); (U.F.-S.); (K.P.); (P.P.); (A.J.); (A.J.-K.)
| | - Agnieszka Jaźwa-Kusior
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (K.A.); (I.K.); (A.M.); (A.L.); (K.K.); (E.W.); (M.J.); (U.F.-S.); (K.P.); (P.P.); (A.J.); (A.J.-K.)
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (K.A.); (I.K.); (A.M.); (A.L.); (K.K.); (E.W.); (M.J.); (U.F.-S.); (K.P.); (P.P.); (A.J.); (A.J.-K.)
- Correspondence: (J.S.); (J.D.); Tel.: +48-12-664-6375 (J.D.)
| |
Collapse
|
21
|
The Future of Direct Cardiac Reprogramming: Any GMT Cocktail Variety? Int J Mol Sci 2020; 21:ijms21217950. [PMID: 33114756 PMCID: PMC7663133 DOI: 10.3390/ijms21217950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Direct cardiac reprogramming has emerged as a novel therapeutic approach to treat and regenerate injured hearts through the direct conversion of fibroblasts into cardiac cells. Most studies have focused on the reprogramming of fibroblasts into induced cardiomyocytes (iCMs). The first study in which this technology was described, showed that at least a combination of three transcription factors, GATA4, MEF2C and TBX5 (GMT cocktail), was required for the reprogramming into iCMs in vitro using mouse cells. However, this was later demonstrated to be insufficient for the reprogramming of human cells and additional factors were required. Thereafter, most studies have focused on implementing reprogramming efficiency and obtaining fully reprogrammed and functional iCMs, by the incorporation of other transcription factors, microRNAs or small molecules to the original GMT cocktail. In this respect, great advances have been made in recent years. However, there is still no consensus on which of these GMT-based varieties is best, and robust and highly reproducible protocols are still urgently required, especially in the case of human cells. On the other hand, apart from CMs, other cells such as endothelial and smooth muscle cells to form new blood vessels will be fundamental for the correct reconstruction of damaged cardiac tissue. With this aim, several studies have centered on the direct reprogramming of fibroblasts into induced cardiac progenitor cells (iCPCs) able to give rise to all myocardial cell lineages. Especially interesting are reports in which multipotent and highly expandable mouse iCPCs have been obtained, suggesting that clinically relevant amounts of these cells could be created. However, as of yet, this has not been achieved with human iCPCs, and exactly what stage of maturity is appropriate for a cell therapy product remains an open question. Nonetheless, the major concern in regenerative medicine is the poor retention, survival, and engraftment of transplanted cells in the cardiac tissue. To circumvent this issue, several cell pre-conditioning approaches are currently being explored. As an alternative to cell injection, in vivo reprogramming may face fewer barriers for its translation to the clinic. This approach has achieved better results in terms of efficiency and iCMs maturity in mouse models, indicating that the heart environment can favor this process. In this context, in recent years some studies have focused on the development of safer delivery systems such as Sendai virus, Adenovirus, chemical cocktails or nanoparticles. This article provides an in-depth review of the in vitro and in vivo cardiac reprograming technology used in mouse and human cells to obtain iCMs and iCPCs, and discusses what challenges still lie ahead and what hurdles are to be overcome before results from this field can be transferred to the clinical settings.
Collapse
|
22
|
A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Rev Rep 2020; 17:748-776. [PMID: 33098306 DOI: 10.1007/s12015-020-10061-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The induced pluripotent stem cells (iPSCs) are derived from somatic cells by using reprogramming factors such as Oct4, Sox2, Klf4, and c-Myc (OSKM) or Oct4, Sox2, Nanog and Lin28 (OSNL). They resemble embryonic stem cells (ESCs) and have the ability to differentiate into cell lineage of all three germ-layer, including cardiomyocytes (CMs). The CMs can be generated from iPSCs by inducing embryoid bodies (EBs) formation and treatment with activin A, bone morphogenic protein 4 (BMP4), and inhibitors of Wnt signaling. However, these iPSC-derived CMs are a heterogeneous population of cells and require purification and maturation to mimic the in vivo CMs. The matured CMs can be used for various therapeutic purposes in regenerative medicine by cardiomyoplasty or through the development of tissue-engineered cardiac patches. In recent years, significant advancements have been made in the isolation of iPSC and their differentiation, purification, and maturation into clinically usable CMs. Newer small molecules have also been identified to substitute the reprogramming factors for iPSC generation as well as for direct differentiation of somatic cells into CMs without an intermediary pluripotent state. This review provides a concise update on the generation of iPSC-derived CMs and their application in personalized cardiac regenerative medicine. It also discusses the current limitations and challenges in the application of iPSC-derived CMs. Graphical abstract.
Collapse
|
23
|
Tu C, Mezynski R, Wu JC. Improving the engraftment and integration of cell transplantation for cardiac regeneration. Cardiovasc Res 2020; 116:473-475. [PMID: 31504255 DOI: 10.1093/cvr/cvz237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Chengyi Tu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Racheal Mezynski
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,North Carolina State University, Raleigh, NC 27605, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Zhu J, Zhou H, Li C, He Y, Pan Y, Shou Q, Fang M, Wan H, Yang J. Guanxinshutong capsule ameliorates cardiac function and architecture following myocardial injury by modulating ventricular remodeling in rats. Biomed Pharmacother 2020; 130:110527. [PMID: 32688142 DOI: 10.1016/j.biopha.2020.110527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/27/2022] Open
Abstract
Guanxinshutong capsule (GXST), which consists of five traditional Chinese medicines, has been used for a long time in China for the treatment of cardiovascular diseases, such as coronary artery disease and myocardial infarction. However, the effects on GXST on myocardial injury (MI) have not been studied in detail. In these experiments, we found that GXST administration decreased MI-associated ventricular remodeling (VR) with a reduction in interventricular septal thickness in diastole (IVSd), left ventricular posterior wall diameter in systole (LVPWs), and left ventricular posterior wall diameter in diastole (LVPWd) to ameliorate cardiac function and architecture, as measured by echocardiography. Furthermore, histological analysis showed that GXST could ameliorate pathological alterations in the myocardium. And Sirius red staining, wheat germ agglutinin staining and inflammation-related immunohistochemistry results showed that GXST ameliorated the fibrosis areas, cardiac hypertrophy and inflammation (IL-6 and TNF-α). In addition, GXST upregulated intercellular junction proteins (N-cad and Cx-43) and downregulated the angiogenesis-related proteins (PDGF and VEGFA), myocardial fibrosis-related proteins (TGF-β1), and matrix metalloproteinase (MMP-2 and MMP-9). We also found that GXST medium-dose group (1 g/kg/d) dosage was the most efficacious. In conclusion, GXST protected cardiac tissues against MI by reducing VR, thus indicating the potential application of GXST in the treatment of MI.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Yuming Pan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Qiyang Shou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Minsun Fang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| |
Collapse
|
25
|
Yan W, Lin C, Guo Y, Chen Y, Du Y, Lau WB, Xia Y, Zhang F, Su R, Gao E, Wang Y, Li C, Liu R, Ma XL, Tao L. N-Cadherin Overexpression Mobilizes the Protective Effects of Mesenchymal Stromal Cells Against Ischemic Heart Injury Through a β-Catenin-Dependent Manner. Circ Res 2020; 126:857-874. [PMID: 32079489 DOI: 10.1161/circresaha.119.315806] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Mesenchymal stromal cell-based therapy is promising against ischemic heart failure. However, its efficacy is limited due to low cell retention and poor paracrine function. A transmembrane protein capable of enhancing cell-cell adhesion, N-cadherin garnered attention in the field of stem cell biology only recently. OBJECTIVE The current study investigates whether and how N-cadherin may regulate mesenchymal stromal cells retention and cardioprotective capability against ischemic heart failure. METHODS AND RESULTS Adult mice-derived adipose tissue-derived mesenchymal stromal cells (ADSC) were transfected with adenovirus harboring N-cadherin, T-cadherin, or control adenovirus. CM-DiI-labeled ADSC were intramyocardially injected into the infarct border zone at 3 sites immediately after myocardial infarction (MI) or myocardial ischemia/reperfusion. ADSC retention/survival, cardiomyocyte apoptosis/proliferation, capillary density, cardiac fibrosis, and cardiac function were determined. Discovery-driven/cause-effect analysis was used to determine the molecular mechanisms. Compared with ADSC transfected with adenovirus-control, N-cadherin overexpression (but not T-cadherin) markedly increased engrafted ADSC survival/retention up to 7 days post-MI. Histological analysis revealed that ADSC transfected with adenovirus-N-cadherin significantly preserved capillary density and increased cardiomyocyte proliferation and moderately reduced cardiomyocyte apoptosis 3 days post-MI. More importantly, ADSC transfected with adenovirus-N-cadherin (but not ADSC transfected with adenovirus-T-cadherin) significantly increased left ventricular ejection fraction and reduced fibrosis in both MI and myocardial ischemia/reperfusion mice. In vitro experiments demonstrated that N-cadherin overexpression promoted ADSC-cardiomyocyte adhesion and ADSC migration, enhancing their capability to increase angiogenesis and cardiomyocyte proliferation. MMP (matrix metallopeptidases)-10/13 and HGF (hepatocyte growth factor) upregulation is responsible for N-cadherin's effect upon ADSC migration and paracrine angiogenesis. N-cadherin overexpression promotes cardiomyocyte proliferation by HGF release. Mechanistically, N-cadherin overexpression significantly increased N-cadherin/β-catenin complex formation and active β-catenin levels in the nucleus. β-catenin knockdown abolished N-cadherin overexpression-induced MMP-10, MMP-13, and HGF expression and blocked the cellular actions and cardioprotective effects of ADSC overexpressing N-cadherin. CONCLUSIONS We demonstrate for the first time that N-cadherin overexpression enhances mesenchymal stromal cells-protective effects against ischemic heart failure via β-catenin-mediated MMP-10/MMP-13/HGF expression and production, promoting ADSC/cardiomyocyte adhesion and ADSC retention.
Collapse
Affiliation(s)
- Wenjun Yan
- From the Department of Cardiology, Xijing Hospital (W.Y., C. Lin, Y.G., Y.C., Y.X., F.Z., R.S., C. Li, L.T.), Fourth Military Medical University, China
| | - Chen Lin
- From the Department of Cardiology, Xijing Hospital (W.Y., C. Lin, Y.G., Y.C., Y.X., F.Z., R.S., C. Li, L.T.), Fourth Military Medical University, China
| | - Yongzhen Guo
- From the Department of Cardiology, Xijing Hospital (W.Y., C. Lin, Y.G., Y.C., Y.X., F.Z., R.S., C. Li, L.T.), Fourth Military Medical University, China
| | - Youhu Chen
- From the Department of Cardiology, Xijing Hospital (W.Y., C. Lin, Y.G., Y.C., Y.X., F.Z., R.S., C. Li, L.T.), Fourth Military Medical University, China
| | - Yunhui Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, China (Y.D.)
| | - Wayne Bond Lau
- Medicine and Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., Y.W., X.M.)
| | - Yunlong Xia
- From the Department of Cardiology, Xijing Hospital (W.Y., C. Lin, Y.G., Y.C., Y.X., F.Z., R.S., C. Li, L.T.), Fourth Military Medical University, China
| | - Fuyang Zhang
- From the Department of Cardiology, Xijing Hospital (W.Y., C. Lin, Y.G., Y.C., Y.X., F.Z., R.S., C. Li, L.T.), Fourth Military Medical University, China.,Department of Physiology, School of Basic Medicine (F.Z.), Fourth Military Medical University, China
| | - Renzhi Su
- From the Department of Cardiology, Xijing Hospital (W.Y., C. Lin, Y.G., Y.C., Y.X., F.Z., R.S., C. Li, L.T.), Fourth Military Medical University, China
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (E.G.)
| | - Yajing Wang
- Medicine and Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., Y.W., X.M.)
| | - Congye Li
- From the Department of Cardiology, Xijing Hospital (W.Y., C. Lin, Y.G., Y.C., Y.X., F.Z., R.S., C. Li, L.T.), Fourth Military Medical University, China
| | - Rui Liu
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public Health (R.L.), Fourth Military Medical University, China
| | - Xin-Liang Ma
- Medicine and Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., Y.W., X.M.)
| | - Ling Tao
- From the Department of Cardiology, Xijing Hospital (W.Y., C. Lin, Y.G., Y.C., Y.X., F.Z., R.S., C. Li, L.T.), Fourth Military Medical University, China
| |
Collapse
|