1
|
Samadishadlou M, Rahbarghazi R, Kavousi K, Bani F. An exploration into the diagnostic capabilities of microRNAs for myocardial infarction using machine learning. Biol Direct 2024; 19:127. [PMID: 39658789 PMCID: PMC11629498 DOI: 10.1186/s13062-024-00543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have shown potential as diagnostic biomarkers for myocardial infarction (MI) due to their early dysregulation and stability in circulation after MI. Moreover, they play a crucial role in regulating adaptive and maladaptive responses in cardiovascular diseases, making them attractive targets for potential biomarkers. However, their potential as novel biomarkers for diagnosing cardiovascular diseases requires systematic evaluation. METHODS This study aimed to identify a miRNA biomarker panel for early-stage MI detection using bioinformatics and machine learning (ML) methods. miRNA expression data were obtained for early-stage MI patients and healthy controls from the Gene Expression Omnibus. Separate datasets were allocated for training and independent testing. Differential expression analysis was performed to identify dysregulated miRNAs in the training set. The least absolute shrinkage and selection operator (LASSO) was applied for feature selection to prioritize relevant miRNAs associated with MI. The selected miRNAs were used to develop ML models including support vector machine, Gradient Boosted, XGBoost, and a hard voting ensemble (HVE). RESULTS Differential expression analysis discovered 99 dysregulated miRNAs in the training set. LASSO feature selection prioritized 21 miRNAs. Ten miRNAs were identified in both the LASSO subset and independent test set. The HVE model trained with the selected miRNAs achieved an accuracy of 0.86 and AUC of 0.83 on the independent test set. CONCLUSIONS An integrated framework for robust miRNA selection from omics data shows promise for developing accurate diagnostic models for early-stage MI detection. The HVE model demonstrated good performance despite differences between training and test datasets.
Collapse
Affiliation(s)
- Mehrdad Samadishadlou
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Douvris A, Viñas JL, Akbari S, Tailor K, Lalu MM, Burger D, Burns KD. Systematic review of microRNAs in human acute kidney injury. Ren Fail 2024; 46:2419960. [PMID: 39477814 PMCID: PMC11533245 DOI: 10.1080/0886022x.2024.2419960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
INTRODUCTION Early diagnosis of acute kidney injury (AKI) is limited with current tools. MicroRNAs (miRNAs) are implicated in AKI pathogenesis in preclinical models, but less is known about their role in humans. We conducted a systematic review to identify dysregulated miRNAs in humans with AKI. METHODS We searched Ovid MEDLINE, Embase, Web of Science, and CENTRAL (August 21, 2023) for studies of human subjects with AKI. We excluded reviews and pre-clinical studies without human data. The primary outcome was dysregulated miRNAs in AKI. Two reviewers screened abstracts, reviewed full texts, performed data extraction and quality assessment (Newcastle Ottawa Scale). RESULTS We screened 2,456 reports and included 92 for synthesis without meta-analysis. All studies except one were observational. Studies were grouped by etiology of AKI: cardiac surgery-associated (CS-AKI, n = 13 studies), sepsis (n = 25), nephrotoxic (n = 9), kidney transplant (n = 26), and other causes (n = 19). In total, 128 miRNAs were identified to be dysregulated across AKI studies (45 miRNAs upregulated, 55 downregulated, 28 both). miR-21 was the most frequently reported (n = 17 studies) and it was increased in all etiologies except CS-AKI where it was decreased (n = 3 studies). Study limitations included bias due to targeted approaches, absence of clinical data/controls, and miRNA normalization methods. Overall study quality was fair (median 5/9, range 2-8 points). CONCLUSION Dysregulated miRNAs, particularly miR-21, have potential as AKI biomarkers. These results should be interpreted cautiously due to methodological limitations. Standardized methods and unbiased approaches are needed to validate candidate miRNA biomarkers.Registration: International Prospective Register of Systematic Reviews (PROSPERO CRD42020201253).
Collapse
Affiliation(s)
- Adrianna Douvris
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jose L. Viñas
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Shareef Akbari
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Karishma Tailor
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Manoj M. Lalu
- Department of Anesthesiology and Pain Medicine, Clinical Epidemiology and Regenerative Medicine Program, Blueprint Translational Research Group, The Ottawa Hospital Research Institute, The University of Ottawa and The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Dylan Burger
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin D. Burns
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Khan K, Khan A, Rahman ZU, Khan F, Latief N, Fazal N. Genetic Polymorphism in miRNA Genes and Their Association with susceptibility of Coronary Heart Disease: An Updated Review. Pathol Res Pract 2024; 264:155675. [PMID: 39488988 DOI: 10.1016/j.prp.2024.155675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Coronary heart disease (CHD) remains a major public health concern worldwide, with a complex interplay of genetic, environmental and lifestyle factors contributing to its pathogenesis. The potential significance of microRNAs (miRNAs) in the onset and progression of CHD has attracted increasing attention in recent years. Small non-coding RNA molecules called miRNAs control gene expression at the post-transcriptional level. Dysregulation of miRNAs has been linked to a variety of biological processes, including cell division, proliferation, apoptosis, and inflammation. Numerous research studies have looked into the relationship between genetic variants in miRNA genes and CHD susceptibility. This review highlights the recent research work carried out to identify the relationship of miRNA genes polymorphism with the progression and susceptibility of CHD. Such studies could pave the way for the development of personalized strategies for CHD prevention and treatment based on an individual's genetic profile.
Collapse
Affiliation(s)
- Khalid Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan
| | - Aakif Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan
| | - Zia Ur Rahman
- University Institute of Medical Laboratory Technology, the University of Lahore, Pakistan
| | - Faisal Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan
| | - Noreen Latief
- National Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan
| | - Numan Fazal
- University Institute of Medical Laboratory Technology, the University of Lahore, Pakistan.
| |
Collapse
|
4
|
El Khayari A, Hakam SM, Malka G, Rochette L, El Fatimy R. New insights into the cardio-renal benefits of SGLT2 inhibitors and the coordinated role of miR-30 family. Genes Dis 2024; 11:101174. [PMID: 39224109 PMCID: PMC11367061 DOI: 10.1016/j.gendis.2023.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 09/04/2024] Open
Abstract
Sodium-glucose co-transporter inhibitors (SGLTis) are the latest class of anti-hyperglycemic agents. In addition to inhibiting the absorption of glucose by the kidney causing glycosuria, these drugs also demonstrate cardio-renal benefits in diabetic subjects. miR-30 family, one of the most abundant microRNAs in the heart, has recently been linked to a setting of cardiovascular diseases and has been proposed as novel biomarkers in kidney dysfunctions as well; their expression is consistently dysregulated in a variety of cardio-renal dysfunctions. The mechanistic involvement and the potential interplay between miR-30 and SGLT2i effects have yet to be thoroughly elucidated. Recent research has stressed the relevance of this cluster of microRNAs as modulators of several pathological processes in the heart and kidneys, raising the possibility of these small ncRNAs playing a central role in various cardiovascular complications, notably, endothelial dysfunction and pathological remodeling. Here, we review current evidence supporting the pleiotropic effects of SGLT2is in cardiovascular and renal outcomes and investigate the link and the coordinated implication of the miR-30 family in endothelial dysfunction and cardiac remodeling. We also discuss the emerging role of circulating miR-30 as non-invasive biomarkers and attractive therapeutic targets for cardiovascular diseases and kidney diseases. Clinical evidence, as well as metabolic, cellular, and molecular aspects, are comprehensively covered.
Collapse
Affiliation(s)
- Abdellatif El Khayari
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Soukaina Miya Hakam
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Gabriel Malka
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Luc Rochette
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne – Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, Dijon 21000, France
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| |
Collapse
|
5
|
Tong KL, Mahmood Zuhdi AS, Wong PF. The role of miR-134-5p in 7-ketocholesterol-induced human aortic endothelial dysfunction. EXCLI JOURNAL 2024; 23:1073-1090. [PMID: 39391056 PMCID: PMC11464864 DOI: 10.17179/excli2024-7342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024]
Abstract
Atherosclerotic cardiovascular diseases are the leading causes of morbidity and mortality worldwide. In our previous study, a panel of miRNA including miR-134-5p was deregulated in young acute coronary syndrome (ACS) patients. However, the roles of these ACS-associated miRNAs in endothelial dysfunction, an early event preceding atherosclerosis, remain to be investigated. In the present study, human aortic endothelial cells (HAECs) were treated with 7-ketocholesterol (7-KC) to induce endothelial dysfunction. Following treatment with 20 μg/ml 7-KC, miR-134-5p was significantly up-regulated and endothelial nitric oxide synthase (eNOS) expression was suppressed. Endothelial barrier disruption was evidenced by the deregulation of adhesion molecules including the activation of focal adhesion kinase (FAK), down-regulation of VE-cadherin, up-regulation of adhesion molecules (E-selectin and ICAM-1), increased expression of inflammatory genes (IL1B, IL6 and COX2) and AKT activation. Knockdown of miR-134-5p in 7-KC-treated HAECs attenuated the suppression of eNOS, the activation of AKT, the down-regulation of VE-cadherin and the up-regulation of E-selectin. In addition, the interaction between miR-134-5p and FOXM1 mRNA was confirmed by the enrichment of FOXM1 transcripts in the pull-down miRNA-mRNA complex. Knockdown of miR-134-5p increased FOXM1 expression whereas transfection with mimic miR-134-5p decreased FOXM1 protein expression. In summary, the involvement of an ACS-associated miRNA, miR-134-5p in endothelial dysfunction was demonstrated. Findings from this study could pave future investigations into utilizing miRNAs as a supplementary tool in ACS diagnosis or as targets for the development of therapeutics.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Mohd ON, Heng YJ, Wang L, Thavamani A, Massicott ES, Wulf GM, Slack FJ, Doyle PS. Sensitive Multiplexed MicroRNA Spatial Profiling and Data Classification Framework Applied to Murine Breast Tumors. Anal Chem 2024; 96:12729-12738. [PMID: 39044395 DOI: 10.1021/acs.analchem.4c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
MicroRNAs (miRNAs) are small RNAs that are often dysregulated in many diseases, including cancers. They are highly tissue-specific and stable, thus, making them particularly useful as biomarkers. As the spatial transcriptomics field advances, protocols that enable highly sensitive and spatially resolved detection become necessary to maximize the information gained from samples. This is especially true of miRNAs where the location their expression within tissue can provide prognostic value with regard to patient outcome. Equally as important as detection are ways to assess and visualize the miRNA's spatial information in order to leverage the power of spatial transcriptomics over that of traditional nonspatial bulk assays. We present a highly sensitive methodology that simultaneously quantitates and spatially detects seven miRNAs in situ on formalin-fixed paraffin-embedded tissue sections. This method utilizes rolling circle amplification (RCA) in conjunction with a dual scanning approach in nanoliter well arrays with embedded hydrogel posts. The hydrogel posts are functionalized with DNA probes that enable the detection of miRNAs across a large dynamic range (4 orders of magnitude) and a limit of detection of 0.17 zeptomoles (1.7 × 10-4 attomoles). We applied our methodology coupled with a data analysis pipeline to K14-Cre Brca1f/fTp53f/f murine breast tumors to showcase the information gained from this approach.
Collapse
Affiliation(s)
- Omar N Mohd
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yujing J Heng
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Lin Wang
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Abhishek Thavamani
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Erica S Massicott
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Gerburg M Wulf
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Frank J Slack
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Harvard Medical School Initiative for RNA Medicine, Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Patrick S Doyle
- Harvard Medical School Initiative for RNA Medicine, Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Sahebi R, Gandomi F, shojaei M, Farrokhi E. Exosomal miRNA-21-5p and miRNA-21-3p as key biomarkers of myocardial infarction. Health Sci Rep 2024; 7:e2228. [PMID: 38983683 PMCID: PMC11232052 DOI: 10.1002/hsr2.2228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
Objective Coronary artery disease (CAD) is a debilitating condition that can lead to myocardial infarction (MI). Exosomal miRNAs (exo-miRNA) can be diagnostic biomarkers for detecting MI. Here, we conduct a study to evaluate the efficacy of exo-miRNA-21-5p/3p for early detection of MI. Methods A total of 135 CAD patients and 150 healthy subjects participated in this study. Additionally, we randomly divided 26 male Wistar rats (12 weeks old) into two groups: control and induced MI. Angiographic images were used to identify patients and healthy individuals of all genders. In the following, serum exosomes were obtained, and exo-miRNA-21-5p/3p was measured by reverse-transcriptase polymerase chain reaction. Results We observed an upregulation of exo-miRNA-21-5p/3p in CAD patient and MI-induced animal groups compared to controls. Analysis of the ROC curves defined 82% and 88% of the participants' exo-miRNA-21-5p and exo-miRNA-21-3p diagnostic power, respectively, which in the animal model was 92 and 82. Conclusion This study revealed that the mean expression levels of exo-miRNA-21-5p/3p were significantly increased in CAD patients and animal models of induced MI. Also, these results are associated with the atherogenic lipid profile of CAD patients, which may play an important role in the progression of the disease. Therefore, they can be considered as novel biomarkers.
Collapse
Affiliation(s)
- Reza Sahebi
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
- Metabolic Syndrome Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Fatemeh Gandomi
- Metabolic Syndrome Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mitra shojaei
- Metabolic Syndrome Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Effat Farrokhi
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| |
Collapse
|
8
|
Moawad AM, Awady S, Ali AAER, Abdelgwad M, Belal S, Taha SHN, Mohamed MI, Hassan FM. Phthalate Exposure and Coronary Heart Disease: Possible Implications of Oxidative Stress and Altered miRNA Expression. Chem Res Toxicol 2024; 37:723-730. [PMID: 38636967 DOI: 10.1021/acs.chemrestox.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The relationship between phthalate exposure and coronary heart disease (CHD) is still unclear. This study aimed to investigate the association between phthalate exposure and CHD and determine the possible atherogenic mechanisms of phthalates by assessing oxidative stress and altering miRNA expression. This case-control study included 110 participants (55 CHD patients and 55 healthy controls). The levels of oxidative stress markers, malondialdehyde (MDA), and superoxide dismutase (SOD), and the expression of miRNA-155 (miR-155) and miRNA-208a (miR-208a), were measured and correlated with the urinary mono-2-ethylhexyl phthalate (MEHP). Highly significant differences were detected between the CHD cases and the control group regarding MEHP, MDA, SOD, miR-155, and miR-208a (p-value < 0.001). Spearman correlations revealed a significant positive correlation between MDA and MEHP in urine (P = 0.001 and rs = 0.316) and a significant negative correlation between SOD and MEHP in urine (P < 0.001 and rs = -0.345). Furthermore, significant positive correlations were observed between miR-155 and urinary MEHP (P = 0.001 and rs = 0.318) and miR-208a and urinary MEHP (P < 0.001 and rs = -0.352). This study revealed an association between phthalate exposure, as indicated by urinary MEHP and CHD; altered expression of miR-155 and miR-208a and oxidative stress could be the fundamental mechanisms.
Collapse
Affiliation(s)
- Asmaa Mohammad Moawad
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Sara Awady
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Abla Abd El Rahman Ali
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Marwa Abdelgwad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Soliman Belal
- Department of Critical Care, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Sarah Hamed N Taha
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Marwa Issak Mohamed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Fatma Mohamed Hassan
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| |
Collapse
|
9
|
Huang X, Bai S, Luo Y. Advances in research on biomarkers associated with acute myocardial infarction: A review. Medicine (Baltimore) 2024; 103:e37793. [PMID: 38608048 PMCID: PMC11018244 DOI: 10.1097/md.0000000000037793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Acute myocardial infarction (AMI), the most severe cardiovascular event in clinical settings, imposes a significant burden with its annual increase in morbidity and mortality rates. However, it is noteworthy that mortality due to AMI in developed countries has experienced a decline, largely attributable to the advancements in medical interventions such as percutaneous coronary intervention. This trend highlights the importance of accurate diagnosis and effective treatment to preserve the myocardium at risk and improve patient outcomes. Conventional biomarkers such as myoglobin, creatine kinase isoenzymes, and troponin have been instrumental in the diagnosis of AMI. However, recent years have witnessed the emergence of new biomarkers demonstrating the potential to further enhance the accuracy of AMI diagnosis. This literature review focuses on the recent advancements in biomarker research in the context of AMI diagnosis.
Collapse
Affiliation(s)
| | - Suwen Bai
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| | - Yumei Luo
- Guangdong Medical University, Zhanjiang, China
- Cardiology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
10
|
Mo P, Tian CW, Li Q, Teng M, Fang L, Xiong Y, Liu B. Decreased plasma miR-140-3p is associated with coronary artery disease. Heliyon 2024; 10:e26960. [PMID: 38444486 PMCID: PMC10912453 DOI: 10.1016/j.heliyon.2024.e26960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
Background Although many circulating miRNAs (c-miRNAs) are associated with coronary artery disease (CAD), they are far from being the biomarker for CAD diagnosis or risk prediction. Therefore, novel c-miRNAs discovery and validation are still required, especially evaluating their prediction capacity. Objectives Identify novel CAD-related c-miRNAs and evaluate its risk prediction capacity for CAD. Methods: miRNAs associated with CAD were preliminarily investigated in three paired samples representing pre-CAD stage and CAD stage of three female individuals using the Applied Biosystems miRNA TaqMan® Low-Density Array (TLDA). Then, the candidate miRNAs were further verified in an independent case-control study including 129 CAD patients and 76 controls, and their potential practical value in prediction for CAD was evaluated using a machine learning (ML) algorithm. The accuracy of classification and prediction was assessed with the area under the receiver operating characteristic curve (AUC). Results TLDA analysis shows that miR-140-3p decreased significantly in CAD-stage (FC = -3.01, P = 0.007). Further study shows that miR-140-3p was significantly lower in CAD group [1.26 (0.68, 2.01)] than in control group [2.07 (1.19, 3.21)] (P < 0.001) and independently associated with CAD (P < 0.001). The addition of miR-140-3p to the variables including smoking history, HDL-c, and APOA1 improved the accuracy of classification by logistic regression and of prediction for CAD by ML models. The ML models built with miR-140-3p and HDL-c, respectively, had a similar prediction accuracy. The feature importance of miR-140-3p and HDL-c in the ML models was also similar. Decision curve analysis showed that miR-140-3p and HDL-c had almost identical net benefits. Conclusion Reduced levels of miR-140-3p is linked to CAD, and it is possible to use the plasma level of miR-140-3p as a means of evaluating the risk of CAD.
Collapse
Affiliation(s)
- Pei Mo
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Chao-Wei Tian
- Department of General Practice, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Qiqi Li
- Department of Medical Imaging, Second Clinical College, Guangzhou Medical University, Guangzhou, 510260, China
| | - Mo Teng
- Department of Obstetrics, The Second Affiliated Hospital, Guangzhou Medical University. Guangzhou, 510260, China
| | - Lei Fang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yujuan Xiong
- Department of Laboratory Medicine, Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 511400, China
| | - Benrong Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| |
Collapse
|
11
|
Pedersen OB, Hvas AM, Pasalic L, Kristensen SD, Grove EL, Nissen PH. Platelet Function and Maturity and Related microRNA Expression in Whole Blood in Patients with ST-Segment Elevation Myocardial Infarction. Thromb Haemost 2024; 124:192-202. [PMID: 37846463 DOI: 10.1055/s-0043-1776305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
BACKGROUND Reduced effect of antiplatelet therapy has been reported in patients with ST-segment elevation myocardial infarction (STEMI). MicroRNAs (miRs) may influence platelet function and maturity, and subsequently the effect of antiplatelet therapy. OBJECTIVES We aimed to explore the association between miR expression and platelet function and maturity in patients with acute STEMI and healthy individuals. METHODS We performed an observational study of STEMI patients admitted directly to primary percutaneous coronary intervention. Patients were treated with antiplatelet therapy according to guidelines. Within 24 hours after admission, blood samples were obtained to measure: the expression of 10 candidate miRs, platelet function markers using advanced flow cytometry, platelet aggregation, serum thromboxane B2, and platelet maturity markers. Furthermore, blood samples from healthy individuals were obtained to determine the normal variation. RESULTS In total, 61 STEMI patients and 50 healthy individuals were included. STEMI patients had higher expression of miR-21-5p, miR-26b-5p, and miR-223-3p and lower expression of miR-150-5p, miR423-5p, and miR-1180-3p than healthy individuals. In STEMI patients, the expression of miR-26b-5p showed the most consistent association with platelet function (all p-values <0.05, Spearman's rho ranging from 0.27 to 0.41), while the expression of miR-150-5p and miR-223-3p showed negative associations with platelet function. No association between miR expression and platelet maturity markers was observed. CONCLUSION In patients with STEMI, the expression of six miRs was significantly different from healthy individuals. The expression of miR-26b-5p may affect platelet function in acute STEMI patients and potentially influence the effect of antiplatelet therapy.
Collapse
Affiliation(s)
- Oliver Buchhave Pedersen
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | | | - Leonardo Pasalic
- Institute of Clinical Pathology and Medical Research, Westmead Hospital, NSW Health Pathology, Sydney, Australia
- Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Steen Dalby Kristensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Erik Lerkevang Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Peter H Nissen
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Liu N, Zhen Z, Xiong X, Xue Y. Aerobic exercise protects MI heart through miR-133a-3p downregulation of connective tissue growth factor. PLoS One 2024; 19:e0296430. [PMID: 38271362 PMCID: PMC10810442 DOI: 10.1371/journal.pone.0296430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE To investigate the effect of aerobic exercise intervention to inhibit cardiomyocyte apoptosis and thus improve cardiac function in myocardial infarction (MI) mice by regulating CTGF expression through miR-133a-3p. METHODS Male C57/BL6 mice, 7-8 weeks old, were randomly divided into sham-operated group (S group), sham-operated +aerobic exercise group (SE group), myocardial infarction group (MI group) and MI + aerobic exercise group (ME group). The mice were anesthetized the day after training and cardiac function was assessed by cardiac echocardiography. Myocardial collagen volume fraction (CVF%) was analyzed by Masson staining. Myocardial CTGF, Bax and Bcl-2 were detected by Western blotting, and myocardial miR-133a-3p was measured by RT-qPCR. RESULTS Compared with the S group, miR-133a-3p, Bcl-2 and EF were significantly decreased and CTGF, Bax, Bax/ Bcl-2, Caspase 3, Cleaved Caspase-3, LVIDd, LVIDs and CVF were significantly increased in the MI group. Compared with the MI group, miR-133a-3p, Bcl-2 and EF were significantly increased, cardiac function was significantly improved, and CTGF, Bax, Bax/ Bcl-2, Caspase 3, Cleaved Caspase-3, LVIDd, LVIDs and CVF were significantly decreased in ME group. The miR-133a-3p was significantly lower and CTGF was significantly higher in the H2O2 intervention group compared with the control group of H9C2 rat cardiomyocytes. miR-133a-3p was significantly higher and CTGF was significantly lower in the AICAR intervention group compared to the H2O2 intervention group. Compared with the control group of H9C2 rat cardiomyocytes, CTGF, Bax and Bax/Bcl-2 were significantly increased and Bcl-2 was significantly decreased in the miR-133a-3p inhibitor intervention group; CTGF, Bax and Bax/Bcl-2 were significantly decreased and Bcl-2 was significantly upregulated in the miR-133a-3p mimics intervention group. CONCLUSION Aerobic exercise down-regulated CTGF expression in MI mouse myocardium through miR-133a-3p, thereby inhibiting cardiomyocyte apoptosis and improving cardiac function.
Collapse
Affiliation(s)
- Niu Liu
- College of P.E, Beijing Normal University, Beijing, China
- School of Physical Education, Weinan Normal University, Weinan, Shaanxi, China
| | - Zhiping Zhen
- College of P.E, Beijing Normal University, Beijing, China
| | - Xin Xiong
- College of P.E, Beijing Normal University, Beijing, China
| | - Yaqi Xue
- College of P.E, Beijing Normal University, Beijing, China
| |
Collapse
|
13
|
Yang M, Li T, Guo S, Song K, Gong C, Huang N, Pang D, Xiao H. CVD phenotyping in oncologic disorders: cardio-miRNAs as a potential target to improve individual outcomes in revers cardio-oncology. J Transl Med 2024; 22:50. [PMID: 38216965 PMCID: PMC10787510 DOI: 10.1186/s12967-023-04680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/28/2023] [Indexed: 01/14/2024] Open
Abstract
With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) and cancer has also presented an increasing tendency. These two different diseases, which share some common risk factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a significant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardiovascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonalities and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great attention from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Meanwhile, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.
Collapse
Affiliation(s)
- Ming Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tiepeng Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujin Guo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kangping Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Huang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China.
| | - Hengyi Xiao
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Mustafa R, Ghanbari M, Karhunen V, Evangelou M, Dehghan A. Phenome-wide association study on miRNA-related sequence variants: the UK Biobank. Hum Genomics 2023; 17:104. [PMID: 37996941 PMCID: PMC10668386 DOI: 10.1186/s40246-023-00553-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Genetic variants in the coding region could directly affect the structure and expression levels of genes and proteins. However, the importance of variants in the non-coding region, such as microRNAs (miRNAs), remain to be elucidated. Genetic variants in miRNA-related sequences could affect their biogenesis or functionality and ultimately affect disease risk. Yet, their implications and pleiotropic effects on many clinical conditions remain unknown. METHODS Here, we utilised genotyping and hospital records data in the UK Biobank (N = 423,419) to investigate associations between 346 genetic variants in miRNA-related sequences and a wide range of clinical diagnoses through phenome-wide association studies. Further, we tested whether changes in blood miRNA expression levels could affect disease risk through colocalisation and Mendelian randomisation analysis. RESULTS We identified 122 associations for six variants in the seed region of miRNAs, nine variants in the mature region of miRNAs, and 27 variants in the precursor miRNAs. These included associations with hypertension, dyslipidaemia, immune-related disorders, and others. Nineteen miRNAs were associated with multiple diagnoses, with six of them associated with multiple disease categories. The strongest association was reported between rs4285314 in the precursor of miR-3135b and celiac disease risk (odds ratio (OR) per effect allele increase = 0.37, P = 1.8 × 10-162). Colocalisation and Mendelian randomisation analysis highlighted potential causal role of miR-6891-3p in dyslipidaemia. CONCLUSIONS Our study demonstrates the pleiotropic effect of miRNAs and offers insights to their possible clinical importance.
Collapse
Affiliation(s)
- Rima Mustafa
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ville Karhunen
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | | | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- MRC Centre for Environment and Health, Imperial College London, London, UK.
| |
Collapse
|
15
|
Lee DY. Glimepiride Compared to Liraglutide Increases Plasma Levels of miR-206, miR-182-5p, and miR-766-3p in Type 2 Diabetes Mellitus: A Randomized Controlled Trial (Diabetes Metab J 2023;47:668-81). Diabetes Metab J 2023; 47:879-881. [PMID: 38043783 PMCID: PMC10695716 DOI: 10.4093/dmj.2023.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Affiliation(s)
- Da Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| |
Collapse
|
16
|
Nappi F, Avtaar Singh SS, Jitendra V, Alzamil A, Schoell T. The Roles of microRNAs in the Cardiovascular System. Int J Mol Sci 2023; 24:14277. [PMID: 37762578 PMCID: PMC10531750 DOI: 10.3390/ijms241814277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The discovery of miRNAs and their role in disease represent a significant breakthrough that has stimulated and propelled research on miRNAs as targets for diagnosis and therapy. Cardiovascular disease is an area where the restrictions of early diagnosis and conventional pharmacotherapy are evident and deserve attention. Therefore, miRNA-based drugs have significant potential for development. Research and its application can make considerable progress, as seen in preclinical and clinical trials. The use of miRNAs is still experimental but has a promising role in diagnosing and predicting a variety of acute coronary syndrome presentations. Its use, either alone or in combination with currently available biomarkers, might be adopted soon, particularly if there is diagnostic ambiguity. In this review, we examine the current understanding of miRNAs as possible targets for diagnosis and treatment in the cardiovascular system. We report on recent advances in recognising and characterising miRNAs with a focus on clinical translation. The latest challenges and perspectives towards clinical application are discussed.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| | | | - Vikram Jitendra
- Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, UK;
| | - Almothana Alzamil
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| | - Thibaut Schoell
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| |
Collapse
|
17
|
Samadishadlou M, Rahbarghazi R, Piryaei Z, Esmaeili M, Avcı ÇB, Bani F, Kavousi K. Unlocking the potential of microRNAs: machine learning identifies key biomarkers for myocardial infarction diagnosis. Cardiovasc Diabetol 2023; 22:247. [PMID: 37697288 PMCID: PMC10496209 DOI: 10.1186/s12933-023-01957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a crucial role in regulating adaptive and maladaptive responses in cardiovascular diseases, making them attractive targets for potential biomarkers. However, their potential as novel biomarkers for diagnosing cardiovascular diseases requires systematic evaluation. METHODS In this study, we aimed to identify a key set of miRNA biomarkers using integrated bioinformatics and machine learning analysis. We combined and analyzed three gene expression datasets from the Gene Expression Omnibus (GEO) database, which contains peripheral blood mononuclear cell (PBMC) samples from individuals with myocardial infarction (MI), stable coronary artery disease (CAD), and healthy individuals. Additionally, we selected a set of miRNAs based on their area under the receiver operating characteristic curve (AUC-ROC) for separating the CAD and MI samples. We designed a two-layer architecture for sample classification, in which the first layer isolates healthy samples from unhealthy samples, and the second layer classifies stable CAD and MI samples. We trained different machine learning models using both biomarker sets and evaluated their performance on a test set. RESULTS We identified hsa-miR-21-3p, hsa-miR-186-5p, and hsa-miR-32-3p as the differentially expressed miRNAs, and a set including hsa-miR-186-5p, hsa-miR-21-3p, hsa-miR-197-5p, hsa-miR-29a-5p, and hsa-miR-296-5p as the optimum set of miRNAs selected by their AUC-ROC. Both biomarker sets could distinguish healthy from not-healthy samples with complete accuracy. The best performance for the classification of CAD and MI was achieved with an SVM model trained using the biomarker set selected by AUC-ROC, with an AUC-ROC of 0.96 and an accuracy of 0.94 on the test data. CONCLUSIONS Our study demonstrated that miRNA signatures derived from PBMCs could serve as valuable novel biomarkers for cardiovascular diseases.
Collapse
Affiliation(s)
- Mehrdad Samadishadlou
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynab Piryaei
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mahdad Esmaeili
- Medical Bioengineering Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Çığır Biray Avcı
- Medical Biology Department, School of Medicine, Ege University, İzmir, Türkiye
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
18
|
Abstract
Atherosclerosis is the main cause of arterial thrombosis, causing acute occlusive cardiovascular syndromes. Numerous risk prediction models have been developed, which mathematically combine multiple predictors, to estimate the risk of developing cardiovascular events. Current risk models typically do not include information from biomarkers that can potentially improve these existing prediction models especially if they are pathophysiologically relevant. Numerous cardiovascular disease biomarkers have been investigated that have focused on known pathophysiological pathways including those related to cardiac stress, inflammation, matrix remodelling, and endothelial dysfunction. Imaging biomarkers have also been studied that have yielded promising results with a potential higher degree of clinical applicability in detection of atherosclerosis and cardiovascular event prediction. To further improve therapy decision-making and guidance, there is continuing intense research on emerging biologically relevant biomarkers. As the pathogenesis of cardiovascular disease is multifactorial, improvements in discrimination and reclassification in risk prediction models will likely involve multiple biomarkers. This article will provide an overview of the literature on potential blood-based and imaging biomarkers of atherosclerosis studied so far, as well as potential future directions.
Collapse
Affiliation(s)
- Kashan Ali
- From the Division of Molecular & Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Chim C Lang
- From the Division of Molecular & Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Jeffrey T J Huang
- Biomarker and Drug Analysis Core Facility, Medical Research Institute, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Anna-Maria Choy
- From the Division of Molecular & Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
19
|
Matute-Blanco L, Fernández-Rodríguez D, Casanova-Sandoval J, Belmonte T, Benítez ID, Rivera K, Garcia-Guimaraes M, Cortés Villar C, Peral Disdier V, Millán Segovia R, Barriuso I, de Gonzalo-Calvo D, Barbé F, Worner F. Study protocol for the epigenetic characterization of angor pectoris according to the affected coronary compartment: Global and comprehensive assessment of the relationship between invasive coronary physiology and microRNAs. PLoS One 2023; 18:e0283097. [PMID: 37167303 PMCID: PMC10174526 DOI: 10.1371/journal.pone.0283097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/01/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are noncoding RNAs involved in post-transcriptional genetic regulation with a proposed role in intercellular communication. miRNAs are considered promising biomarkers in ischemic heart disease. Invasive physiological evaluation allows a precise assessment of each affected coronary compartment. Although some studies have associated the expression of circulating miRNAs with invasive physiological indexes, their global relationship with coronary compartments has not been assessed. Here, we will evaluate circulating miRNAs profiles according to the coronary pattern of the vascular compartment affectation. STUDY AND DESIGN This is an investigator-initiated, multicentre, descriptive study to be conducted at three centres in Spain (NCT05374694). The study will include one hundred consecutive patients older than 18 years with chest pain of presumed coronary cause undergoing invasive physiological evaluation, including fractional flow reserve (FFR) and index of microvascular resistance (IMR). Patients will be initially classified into four groups, according to FFR and IMR: macrovascular and microvascular affectation (FFR≤0.80 / IMR≥25), isolated macrovascular affectation (FFR≤0.80 / IMR<25), isolated microvascular affectation (FFR>0.80 / IMR ≥25) and normal coronary indexes (FFR>0.80 / IMR<25). Patients with isolated microvascular affectation or normal indexes will also undergo the acetylcholine test and may be reclassified as a fifth group in the presence of spasm. A panel of miRNAs previously associated with molecular mechanisms linked to chronic coronary syndrome will be analysed using RT-qPCR. CONCLUSIONS The results of this study will identify miRNA profiles associated with patterns of coronary affectation and will contribute to a better understanding of the mechanistic pathways of coronary pathology.
Collapse
Affiliation(s)
- Lucía Matute-Blanco
- Department of Cardiology, Institut de Reçerca Biomèdica de Lleida (IRBLleida), University Hospital Arnau de Vilanova, Lleida, Spain
| | - Diego Fernández-Rodríguez
- Department of Cardiology, Institut de Reçerca Biomèdica de Lleida (IRBLleida), University Hospital Arnau de Vilanova, Lleida, Spain
| | - Juan Casanova-Sandoval
- Department of Cardiology, Institut de Reçerca Biomèdica de Lleida (IRBLleida), University Hospital Arnau de Vilanova, Lleida, Spain
| | - Thalía Belmonte
- Institut de Reçerca Biomèdica de Lleida (IRBLleida), Translational Research in Respiratory Medicine Group, Lleida, Spain
- Institute of Health Carlos III, CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Iván D. Benítez
- Institut de Reçerca Biomèdica de Lleida (IRBLleida), Translational Research in Respiratory Medicine Group, Lleida, Spain
- Institute of Health Carlos III, CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Kristian Rivera
- Department of Cardiology, Institut de Reçerca Biomèdica de Lleida (IRBLleida), University Hospital Arnau de Vilanova, Lleida, Spain
| | - Marcos Garcia-Guimaraes
- Department of Cardiology, Institut de Reçerca Biomèdica de Lleida (IRBLleida), University Hospital Arnau de Vilanova, Lleida, Spain
| | | | | | - Raúl Millán Segovia
- Department of Cardiology, University Hospital Son Espases, Palma de Mallorca, Spain
| | - Ignacio Barriuso
- Department of Cardiology, Institut de Reçerca Biomèdica de Lleida (IRBLleida), University Hospital Arnau de Vilanova, Lleida, Spain
| | - David de Gonzalo-Calvo
- Institut de Reçerca Biomèdica de Lleida (IRBLleida), Translational Research in Respiratory Medicine Group, Lleida, Spain
- Institute of Health Carlos III, CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Ferran Barbé
- Institut de Reçerca Biomèdica de Lleida (IRBLleida), Translational Research in Respiratory Medicine Group, Lleida, Spain
- Institute of Health Carlos III, CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Fernando Worner
- Department of Cardiology, Institut de Reçerca Biomèdica de Lleida (IRBLleida), University Hospital Arnau de Vilanova, Lleida, Spain
| |
Collapse
|
20
|
Nardin M, Verdoia M, Laera N, Cao D, De Luca G. New Insights into Pathophysiology and New Risk Factors for ACS. J Clin Med 2023; 12:jcm12082883. [PMID: 37109221 PMCID: PMC10146393 DOI: 10.3390/jcm12082883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiovascular disease still represents the main cause of mortality worldwide. Despite huge improvements, atherosclerosis persists as the principal pathological condition, both in stable and acute presentation. Specifically, acute coronary syndromes have received substantial research and clinical attention in recent years, contributing to improve overall patients' outcome. The identification of different evolution patterns of the atherosclerotic plaque and coronary artery disease has suggested the potential need of different treatment approaches, according to the mechanisms and molecular elements involved. In addition to traditional risk factors, the finer portrayal of other metabolic and lipid-related mediators has led to higher and deep knowledge of atherosclerosis, providing potential new targets for clinical management of the patients. Finally, the impressive advances in genetics and non-coding RNAs have opened a wide field of research both on pathophysiology and the therapeutic side that are extensively under investigation.
Collapse
Affiliation(s)
- Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- Third Medicine Division, Department of Medicine, ASST Spedali Civili, 25123 Brescia, Italy
| | - Monica Verdoia
- Division of Cardiology, Ospedale degli Infermi, ASL Biella, 13900 Biella, Italy
- Department of Translational Medicine, Eastern Piedmont University, 13100 Novara, Italy
| | - Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Davide Cao
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| | - Giuseppe De Luca
- Division of Cardiology, AOU "Policlinico G. Martino", Department of Clinical and Experimental Medicine, University of Messina, 98166 Messina, Italy
- Division of Cardiology, IRCCS Hospital Galeazzi-Sant'Ambrogio, 20161 Milan, Italy
| |
Collapse
|
21
|
Gager GM, Eyileten C, Postuła M, Nowak A, Gąsecka A, Jilma B, Siller-Matula JM. Expression Patterns of MiR-125a and MiR-223 and Their Association with Diabetes Mellitus and Survival in Patients with Non-ST-Segment Elevation Acute Coronary Syndrome. Biomedicines 2023; 11:biomedicines11041118. [PMID: 37189736 DOI: 10.3390/biomedicines11041118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Background: MicroRNAs (miRNA, miR) are small, non-coding RNAs which have become increasingly relevant as diagnostic and prognostic biomarkers. The objective of this study was the investigation of blood-derived miRNAs and their link to long-term all-cause mortality in patients who suffered from non-ST-segment elevation acute coronary syndrome (NSTE-ACS). Methods: This study was an observational prospective study, which included 109 patients with NSTE-ACS. Analysis of the expression of miR-125a and miR-223 was conducted by polymerase chain reaction (PCR). The follow-up period comprised a median of 7.5 years. Long-term all-cause mortality was considered as the primary endpoint. Adjusted Cox-regression analysis was performed for prediction of events. Results: Increased expression of miR-223 (>7.1) at the time point of the event was related to improved long-term all-cause survival (adjusted (adj.) hazard ratio (HR) = 0.09, 95% confidence interval (95%CI): 0.01-0.75; p = 0.026). The receiver operating characteristic (ROC) analysis provided sufficient c-statistics (area under the curve (AUC) = 0.73, 95%CI: 0.58-0.86; p = 0.034; negative predictive value of 98%) for miR-223 to predict long-term all-cause survival. The Kaplan-Meier time to event analysis showed a separation of the survival curves between the groups at an early stage (log rank p = 0.015). Higher plasma miR-125a levels were found in patients with diabetes mellitus vs. in those without (p = 0.010). Furthermore, increased miR-125a expression was associated with an elevated HbA1c concentration. Conclusions: In this hypothesis-generating study, higher values of miR-223 were related to improved long-term survival in patients after NSTE-ACS. Larger studies are required in order to evaluate whether miR-223 can be used as a suitable predictor for long-term all-cause mortality.
Collapse
Affiliation(s)
- Gloria M Gager
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ceren Eyileten
- Centre for Preclinical Research and Technology (CEPT), Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-091 Warsaw, Poland
- Genomics Core Facility, Center of New Technologies (CeNT), University of Warsaw, 00-927 Warsaw, Poland
| | - Marek Postuła
- Centre for Preclinical Research and Technology (CEPT), Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Nowak
- Centre for Preclinical Research and Technology (CEPT), Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-091 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Aleksandra Gąsecka
- Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jolanta M Siller-Matula
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
22
|
Abu-Halima M, Wagner V, Rishik S, Raedle-Hurst T, Meese E, Abdul-Khaliq H. Expression profiling analysis reveals key microRNA-mRNA interactions in patients with transposition of the great arteries and systemic left and right ventricles. Front Cardiovasc Med 2023; 9:1056427. [PMID: 36712263 PMCID: PMC9878113 DOI: 10.3389/fcvm.2022.1056427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
Background Patients with transposition of the great arteries (TGA) have different connected systemic chambers and this determines the long-term morbidities and survival. Limited findings have been reported to systematically identify miRNA and mRNA expression levels in such cohorts of patients. In this study, we aimed to characterize miRNAs, mRNAs, and miRNA-mRNA interaction networks in patients with TGA, with a systemic left (LV) and right ventricle (RV). Materials and methods Large panel of human miRNA and mRNA microarrays were conducted to determine the genome-wide expression profiles in the blood of 16 TGA-RV patients, 16 TGA-LV patients, and 16 age and gender-matched controls. Using real-time quantitative PCR (RT-qPCR), the differential expression level of a single miRNA was validated. Enrichment analyses of altered miRNA and mRNA expression levels were identified using bioinformatics tools. Results Altered miRNA and mRNA expression levels were observed between TGA-RV and TGA-LV patients, together or separated, compared to controls. Among the deregulated miRNAs and mRNAs, 39 and 101 miRNAs were identified as significantly differentially expressed in patients with TGA (both TGA-RV and TGA-LV) and TGA-RV, when compared to matched controls. Furthermore, 51 miRNAs were identified as significantly differentially expressed in patients with TGA-RV when compared to patients with TGA-LV. RT-qPCR relative expression level was highly consistent with microarray analysis results. Similarly, 36 and 164 mRNAs were identified as significantly differentially expressed in patients with TGA (both TGA-RV and TGA-LV) and TGA-RV, when compared to matched controls. Additionally, miR-140-3p showed a higher expression level in patients with overt heart failure (FC = 1.54; P = 0.001) and miR-502-3p showed a higher expression level in patients died due to cardiac death (FC = 1.41; P = 0.011). Integrative analysis resulted in 21 and 23 target genes with higher and lower expression levels, respectively (r ≥ 0.50 and P < 0.05). These target genes (i.e., 21 and 23 target genes) showed an inverse direction of regulation with miRNA and exhibited a miRNA binding site position within the 3'UTR of the target gene. Conclusion Our findings provide new insights into a potential molecular biomarker(s) for patients with TGA that may guide better risk stratification and the development of novel targeting therapies. Future studies are needed to investigate the potential significance of miRNAs and mRNAs in TGA-related cardiovascular diseases.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Institute of Human Genetics, Saarland University Medical Center, Homburg, Germany,Department of Paediatric Cardiology, Saarland University Medical Center, Homburg, Germany,*Correspondence: Masood Abu-Halima,
| | - Viktoria Wagner
- Institute of Human Genetics, Saarland University Medical Center, Homburg, Germany,Center for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Shusruto Rishik
- Center for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Tanja Raedle-Hurst
- Department of Paediatric Cardiology, Saarland University Medical Center, Homburg, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University Medical Center, Homburg, Germany
| | - Hashim Abdul-Khaliq
- Department of Paediatric Cardiology, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
23
|
Teixeira AR, Ferreira VV, Pereira-da-Silva T, Ferreira RC. The role of miRNAs in the diagnosis of stable atherosclerosis of different arterial territories: A critical review. Front Cardiovasc Med 2022; 9:1040971. [PMID: 36505351 PMCID: PMC9733725 DOI: 10.3389/fcvm.2022.1040971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022] Open
Abstract
Atherosclerotic disease is a major cause of morbidity and mortality worldwide. Atherosclerosis may be present in different arterial territories and as a single- or multi-territorial disease. The different phenotypes of atherosclerosis are attributable only in part to acquired cardiovascular risk factors and genetic Mendelian inheritance. miRNAs, which regulate the gene expression at the post-transcriptional level, may also contribute to such heterogeneity. Numerous miRNAs participate in the pathophysiology of atherosclerosis by modulating endothelial function, smooth vascular cell function, vascular inflammation, and cholesterol homeostasis in the vessel, among other biological processes. Moreover, miRNAs are present in peripheral blood with high stability and have the potential to be used as non-invasive biomarkers for the diagnosis of atherosclerosis. However, the circulating miRNA profile may vary according to the involved arterial territory, considering that atherosclerosis expression, including the associated molecular phenotype, varies according to the affected arterial territory. In this review, we discuss the specific circulating miRNA profiles associated with atherosclerosis of different arterial territories, the common circulating miRNA profile of stable atherosclerosis irrespective of the involved arterial territory, and the circulating miRNA signature of multi-territorial atherosclerosis. miRNAs may consist of a simple non-invasive method for discriminating atherosclerosis of different arterial sites. The limitations of miRNA profiling for such clinical application are also discussed.
Collapse
Affiliation(s)
- Ana Rita Teixeira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- *Correspondence: Ana Rita Teixeira
| | - Vera Vaz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Tiago Pereira-da-Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Rui Cruz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| |
Collapse
|
24
|
Shi L, Liu C, Wang H, Zheng J, Wang Q, Shi L, Li T. Framework and Spherical Nucleic Acids Synergistically Enhanced Electrochemiluminescence Nanosensors for Rapidly Diagnosing Acute Myocardial Infarction Based on Circulating MicroRNA Levels. Anal Chem 2022; 94:14394-14401. [PMID: 36198129 DOI: 10.1021/acs.analchem.2c03144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acute myocardial infarction (AMI)-related microRNAs (miRNAs) in circulating blood have been proved as promising biomarkers for AMI diagnosis. The detection of these miRNAs at ultralow levels usually requires nucleic acid amplification strategies to improve the sensitivity at the cost of time. Given that the first hour after an AMI attack is the golden time for saving AMI patients' lives, shortening the time of ultrasensitive miRNA analysis is of great significance for clinical AMI diagnosis. Toward this goal, here we present a direct electrochemiluminescence (ECL) sensing strategy for fast and ultrasensitive miRNA detection, circumventing the time-consuming signal amplification steps. Target miRNAs are directly hybridized with two probe strands that are attached to a covalently hemin-modified spherical nucleic acid enzyme (SNAzyme) and a truncated triangular pyramid DNA nanoplatform on the electrode, respectively. Both of them improve the ECL signal and meanwhile reduce the background, thereby remarkably promoting the detection sensitivity of target miRNAs. It enables the rapid detection of an AMI-related miRNA (miR-499) at 10 aM in human serum within 30 min using the SNAzyme-catalyzed luminol-H2O2 ECL reaction. This sensing strategy is then utilized for AMI diagnosis via probing endogenous miR-499 in patients' circulating blood with endogenous miR-16 as an intrinsic reference, showing a significant difference (P < 0.001) between the miR-499 levels of patients and the healthy.
Collapse
Affiliation(s)
- Lin Shi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Chengbin Liu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Han Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jiao Zheng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
25
|
Meng H, Ruan J, Yan Z, Chen Y, Liu J, Li X, Meng F. New Progress in Early Diagnosis of Atherosclerosis. Int J Mol Sci 2022; 23:ijms23168939. [PMID: 36012202 PMCID: PMC9409135 DOI: 10.3390/ijms23168939] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022] Open
Abstract
Coronary atherosclerosis is a potentially chronic circulatory condition that endangers human health. The biological cause underpinning cardiovascular disease is coronary atherosclerosis, and acute cardiovascular events can develop due to thrombosis, platelet aggregation, and unstable atherosclerotic plaque rupture. Coronary atherosclerosis is progressive, and three specific changes appear, with fat spots and stripes, atherosclerosis and thin-walled fiber atherosclerosis, and then complex changes in arteries. The progression and severity of cardiovascular disease are correlated with various levels of calcium accumulation in the coronary artery. The therapy and diagnosis of coronary atherosclerosis benefit from the initial assessment of the size and degree of calcification. This article will discuss the new progress in the early diagnosis of coronary atherosclerosis in terms of three aspects: imaging, gene and protein markers, and trace elements. This study intends to present the latest methods for diagnosing patients with early atherosclerosis through a literature review.
Collapse
Affiliation(s)
- Heyu Meng
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Jianjun Ruan
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Zhaohan Yan
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Yanqiu Chen
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Jinsha Liu
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Xiangdong Li
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Fanbo Meng
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Correspondence: ; Tel.: +86-15948346855
| |
Collapse
|
26
|
Guo B, Shan SK, Xu F, Lin X, Li FXZ, Wang Y, Xu QS, Zheng MH, Lei LM, Li CC, Zhou ZA, Ullah MHE, Wu F, Liao XB, Yuan LQ. Protective role of small extracellular vesicles derived from HUVECs treated with AGEs in diabetic vascular calcification. J Nanobiotechnology 2022; 20:334. [PMID: 35842695 PMCID: PMC9287893 DOI: 10.1186/s12951-022-01529-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
The pathogenesis of vascular calcification in diabetic patients remains elusive. As an effective information transmitter, small extracellular vesicles (sEVs) carry abundant microRNAs (miRNAs) that regulate the physiological and pathological states of recipient cells. In the present study, significant up-regulation of miR-126-5p was observed in sEVs isolated from human umbilical vein endothelial cells (HUVECs) stimulated with advanced glycation end-products (A-EC/sEVs). Intriguingly, these sEVs suppressed the osteogenic differentiation of vascular smooth muscle cells (VSMCs) by targeting BMPR1B, which encodes the receptor for BMP, thereby blocking the smad1/5/9 signalling pathway. In addition, knocking down miR-126-5p in HUVECs significantly diminished the anti-calcification effect of A-EC/sEVs in a mouse model of type 2 diabetes. Overall, miR-126-5p is highly enriched in sEVs derived from AGEs stimulated HUVECs and can target BMPR1B to negatively regulate the trans-differentiation of VSMCs both in vitro and in vivo.
Collapse
Affiliation(s)
- Bei Guo
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Muhammad Hasnain Ehsan Ullah
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China.
| |
Collapse
|
27
|
D’Alessandra Y, Valerio V, Moschetta D, Massaiu I, Bozzi M, Conte M, Parisi V, Ciccarelli M, Leosco D, Myasoedova VA, Poggio P. Extraction-Free Absolute Quantification of Circulating miRNAs by Chip-Based Digital PCR. Biomedicines 2022; 10:biomedicines10061354. [PMID: 35740375 PMCID: PMC9220272 DOI: 10.3390/biomedicines10061354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Circulating microRNAs (miRNA) have been proposed as specific biomarkers for several diseases. Quantitative Real-Time PCR (RT-qPCR) is the gold standard technique currently used to evaluate miRNAs expression from different sources. In the last few years, digital PCR (dPCR) emerged as a complementary and accurate detection method. When dealing with gene expression, the first and most delicate step is nucleic-acid isolation. However, all currently available protocols for RNA extraction suffer from the variable loss of RNA species due to the chemicals and number of steps involved, from sample lysis to nucleic acid elution. Here, we evaluated a new process for the detection of circulating miRNAs, consisting of sample lysis followed by direct evaluation by dPCR in plasma from healthy donors and in the cardiovascular setting. Our results showed that dPCR is able to detect, with high accuracy, low-copy-number as well as highly expressed miRNAs in human plasma samples without the need for RNA extraction. Moreover, we assessed a known myocardial infarction-related miR-133a in acute myocardial infarct patients vs. healthy subjects. In conclusion, our results show the suitability of the extraction-free quantification of circulating miRNAs as disease markers by direct dPCR.
Collapse
Affiliation(s)
- Yuri D’Alessandra
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (Y.D.); (V.V.); (D.M.); (I.M.); (M.B.); (V.A.M.)
| | - Vincenza Valerio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (Y.D.); (V.V.); (D.M.); (I.M.); (M.B.); (V.A.M.)
| | - Donato Moschetta
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (Y.D.); (V.V.); (D.M.); (I.M.); (M.B.); (V.A.M.)
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | - Ilaria Massaiu
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (Y.D.); (V.V.); (D.M.); (I.M.); (M.B.); (V.A.M.)
| | - Michele Bozzi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (Y.D.); (V.V.); (D.M.); (I.M.); (M.B.); (V.A.M.)
| | - Maddalena Conte
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Naples, Italy; (M.C.); (V.P.); (D.L.)
- Casa di Cura San Michele, 81024 Maddaloni, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Naples, Italy; (M.C.); (V.P.); (D.L.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy;
| | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Naples, Italy; (M.C.); (V.P.); (D.L.)
| | - Veronika A. Myasoedova
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (Y.D.); (V.V.); (D.M.); (I.M.); (M.B.); (V.A.M.)
| | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (Y.D.); (V.V.); (D.M.); (I.M.); (M.B.); (V.A.M.)
- Correspondence: ; Tel.: +39-02-5800-2853
| |
Collapse
|
28
|
Abstract
The discovery of microRNAs and their role in diseases was a breakthrough that inspired research into microRNAs as drug targets. Cardiovascular diseases are an area in which limitations of conventional pharmacotherapy are highly apparent and where microRNA-based drugs have appreciably progressed into preclinical and clinical testing. In this Review, we summarize the current state of microRNAs as therapeutic targets in the cardiovascular system. We report recent advances in the identification and characterization of microRNAs, their manipulation and clinical translation, and discuss challenges and perspectives toward clinical application.
Collapse
Affiliation(s)
- Bernhard Laggerbauer
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
29
|
Oh JH, Kim GB, Seok H. Implication of microRNA as a potential biomarker of myocarditis. Clin Exp Pediatr 2022; 65:230-238. [PMID: 35240034 PMCID: PMC9082251 DOI: 10.3345/cep.2021.01802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/29/2022] [Indexed: 12/15/2022] Open
Abstract
Myocarditis was previously attributed to an epidemic viral infection. Additional harmful reagents, in addition to viruses, play a role in its etiology. Coronavirus disease 2019 (COVID-19) vaccine-induced myocarditis has recently been described, drawing attention to vaccine-induced myocarditis in children and adolescents. Its pathology is based on a series of complex immune responses, including initial innate immune responses in response to viral entry, adaptive immune responses leading to the development of antigen-specific antibodies, and autoimmune responses to cellular injury caused by cardiomyocyte rupture that releases antigens. Chronic inflammation and fibrosis in the myocardium eventually result in cardiac failure. Recent advancements in molecular biology have remarkably increased our understanding of myocarditis. In particular, microRNAs (miRNAs) are a hot topic in terms of the role of new biomarkers and the pathophysiology of myocarditis. Myocarditis has been linked with microRNA-221/222 (miR-221/222), miR-155, miR-10a*, and miR-590. Despite the lack of clinical trials of miRNA intervention in myocarditis yet, multiple clinical trials of miRNAs in other cardiac diseases have been aggressively conducted to help pave the way for future research, which is bolstered by the success of recently U.S. Food and Drug Administration-approved small-RNA medications. This review presents basic information and recent research that focuses on myocarditis and related miRNAs as a potential novel biomarker and the therapeutics.
Collapse
Affiliation(s)
- Jin-Hee Oh
- Department of Pediatrics, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gi Beom Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Heeyoung Seok
- Department of Transdisciplinary Research and Collaboration, Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
30
|
Genetic Variants of MIR27A, MIR196A2 May Impact the Risk for the Onset of Coronary Artery Disease in the Pakistani Population. Genes (Basel) 2022; 13:genes13050747. [PMID: 35627132 PMCID: PMC9141586 DOI: 10.3390/genes13050747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic variants in microRNA genes have a detrimental effect on miRNA-mediated regulation of gene expression and may contribute to coronary artery disease (CAD). CAD is the primary cause of mortality worldwide. Several environmental, genetic, and epigenetic factors are responsible for CAD susceptibility. The contribution of protein-coding genes is extensively studied. However, the role of microRNA genes in CAD is at infancy. The study is aimed to investigate the impact of rs895819, rs11614913, and rs2168518 variants in MIR27A, MIR196A2, and MIR4513, respectively, in CAD using allele-specific PCR. Results: For variant rs11614913, significant distribution of the genotypes among the cases and controls was determined by co-dominant [χ2 = 54.4; p value ≤ 0.0001], dominant (C/C vs. C/T + T/T) [OR = 0.257 (0.133-0.496); p value ≤ 0.0001], recessive (T/T vs. C/T + C/C) [OR = 1.56 (0.677-0.632); p value = 0.398], and additive models [OR = 0.421 (0.262-0.675); p value = 0.0004]. Similarly, a significant association of rs895819 was determined by co-dominant [χ2 = 9.669; p value ≤ 0.008], dominant (A/A vs. A/G + G/G) [OR = 0.285 (0.1242-0.6575); p value ≤ 0.0034], recessive (G/G vs. A/G + A/A) [OR = 0.900 (0.3202-3.519); p value = 1.000], and additive models [OR = 0.604 (0.3640-1.002); p value = 0.05] while no significant association of rs2168518 with CAD was found. Conclusion: The variants rs895819 and rs11614913 are the susceptibility factors for CAD.
Collapse
|
31
|
Santovito D, Weber C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat Rev Cardiol 2022; 19:620-638. [PMID: 35304600 DOI: 10.1038/s41569-022-00680-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
Research showing that microRNAs (miRNAs) are versatile regulators of gene expression has instigated tremendous interest in cardiovascular research. The overwhelming majority of studies are predicated on the dogmatic notion that miRNAs regulate the expression of specific target mRNAs by inhibiting mRNA translation or promoting mRNA decay in the RNA-induced silencing complex (RISC). These efforts mostly identified and dissected contributions of multiple regulatory networks of miRNA-target mRNAs to cardiovascular pathogenesis. However, evidence from studies in the past decade indicates that miRNAs also operate beyond this canonical paradigm, featuring non-conventional regulatory functions and cellular localizations that have a pathophysiological role in cardiovascular disease. In this Review, we highlight the functional relevance of atypical miRNA biogenesis and localization as well as RISC heterogeneity. Moreover, we delineate remarkable non-canonical examples of miRNA functionality, including direct interactions with proteins beyond the Argonaute family and their role in transcriptional regulation in the nucleus and in mitochondria. We scrutinize the relevance of non-conventional biogenesis and non-canonical functions of miRNAs in cardiovascular homeostasis and pathology, and contextualize how uncovering these non-conventional properties can expand the scope of translational research in the cardiovascular field and beyond.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
32
|
Vavassori C, Cipriani E, Colombo GI. Circulating MicroRNAs as Novel Biomarkers in Risk Assessment and Prognosis of Coronary Artery Disease. Eur Cardiol 2022; 17:e06. [PMID: 35321524 PMCID: PMC8924954 DOI: 10.15420/ecr.2021.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease is among the leading causes of death worldwide. Nevertheless, available cardiovascular risk prediction algorithms still miss a significant portion of individuals at-risk. Thus, the search for novel non-invasive biomarkers to refine cardiovascular risk assessment is both an urgent need and an attractive topic, which may lead to a more accurate risk stratification and/or prognostic score definition for coronary artery disease. A new class of such non-invasive biomarkers is represented by extracellular microRNAs (miRNAs) circulating in the blood. MiRNAs are non-coding RNA of 22–25 nucleotides in length that play a significant role in both cardiovascular physiology and pathophysiology. Given their high stability and conservation, resistance to degradative enzymes, and detectability in body fluids, circulating miRNAs are promising emerging biomarkers, and specific expression patterns have already been associated with a wide range of cardiovascular conditions. In this review, an overview of the role of blood miRNAs in risk assessment and prognosis of coronary artery disease is given.
Collapse
Affiliation(s)
- Chiara Vavassori
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Eleonora Cipriani
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | |
Collapse
|
33
|
Yang D, Deschênes I, Fu JD. Multilayer control of cardiac electrophysiology by microRNAs. J Mol Cell Cardiol 2022; 166:107-115. [PMID: 35247375 PMCID: PMC9035102 DOI: 10.1016/j.yjmcc.2022.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
The electrophysiological properties of the heart include cardiac automaticity, excitation (i.e., depolarization and repolarization of action potential) of individual cardiomyocytes, and highly coordinated electrical propagation through the whole heart. An abnormality in any of these properties can cause arrhythmias. MicroRNAs (miRs) have been recognized as essential regulators of gene expression through the conventional RNA interference (RNAi) mechanism and are involved in a variety of biological events. Recent evidence has demonstrated that miRs regulate the electrophysiology of the heart through fine regulation by the conventional RNAi mechanism of the expression of ion channels, transporters, intracellular Ca2+-handling proteins, and other relevant factors. Recently, a direct interaction between miRs and ion channels has also been reported in the heart, revealing a biophysical modulation by miRs of cardiac electrophysiology. These advanced discoveries suggest that miR controls cardiac electrophysiology through two distinct mechanisms: immediate action through biophysical modulation and long-term conventional RNAi regulation. Here, we review the recent research progress and summarize the current understanding of how miR manipulates the function of ion channels to maintain the homeostasis of cardiac electrophysiology.
Collapse
Affiliation(s)
- Dandan Yang
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, 333 W. 10(th) Avenue, Columbus, OH 43210, USA
| | - Isabelle Deschênes
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, 333 W. 10(th) Avenue, Columbus, OH 43210, USA
| | - Ji-Dong Fu
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, 333 W. 10(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
34
|
Taraldsen MD, Wiseth R, Videm V, Bye A, Madssen E. Associations between circulating microRNAs and coronary plaque characteristics: potential impact from physical exercise. Physiol Genomics 2022; 54:129-140. [PMID: 35226566 DOI: 10.1152/physiolgenomics.00071.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background and aims MicroRNAs (miRs) are involved in different steps in the development of atherosclerosis and are proposed as promising biomarkers of coronary artery disease (CAD). We hypothesized that circulating levels of miRs were associated with coronary plaque components assessed by radiofrequency intravascular ultrasound (RF-IVUS) before and after aerobic exercise intervention. Methods 31 patients with CAD treated with percutaneous coronary intervention (PCI) previously included in a randomized trial with aerobic interval training (AIT) or moderate continuous training (MCT) as post-PCI intervention were included. Coronary plaque characteristics by grayscale and RF-IVUS and predefined circulating candidate miRs in plasma were analysed at baseline and follow-up. Associations between miRs and coronary plaque composition, and the potential effect from exercise, were analysed using linear regression. Results Circulating levels of miR-15a-5p, miR-30e-5p, miR-92a-3p, miR-199a-3p, miR-221-3p, and miR-222-3p were associated with baseline coronary necrotic core volume. Following exercise intervention, decreased levels of miR-15a-5p, miR-93-5p, and miR-451a, and increased levels of miR-146a-5p were associated with an observed regression of coronary plaque burden. A mirPath prediction tool identified that genes regulated by miR-15a-5p, miR-199a-3p, and miR-30e-5p were significantly overrepresented in pathways related to fatty acid biosynthesis and fatty acid metabolism. Conclusion This exploratory study demonstrated six miRs associated with coronary necrotic core, a marker of plaque vulnerability. In addition, changes in four miRs were associated with a regression of coronary plaque burden following exercise intervention. These novel findings may identify potential future biomarkers of CAD and coronary plaque composition.
Collapse
Affiliation(s)
- Maria Dalen Taraldsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rune Wiseth
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olav's University Hospital, Trondheim, Norway
| | - Vibeke Videm
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St Olav's University Hospital, Trondheim, Norway
| | - Anja Bye
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olav's University Hospital, Trondheim, Norway
| | - Erik Madssen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
35
|
Han JJ, Wang XQ, Zhang XA. Functional Interactions Between lncRNAs/circRNAs and miRNAs: Insights Into Rheumatoid Arthritis. Front Immunol 2022; 13:810317. [PMID: 35197980 PMCID: PMC8858953 DOI: 10.3389/fimmu.2022.810317] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-articular disorders. However, the pathogenesis of RA is still unclear, and the lack of effective early diagnosis and treatment causes severe disability, and ultimately, early death. Accumulating evidence revealed that the regulatory network that includes long non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNA) plays important roles in regulating the pathological and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory response. Thereby providing new strategies for its diagnosis and treatment. In this review, we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and therapeutic targets for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Juan-Juan Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| | - Xin-An Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| |
Collapse
|
36
|
Deng S, Wang Z, Zhang Y, Xin Y, Zeng C, Hu X. Association of fasting blood glucose to high-density lipoprotein cholesterol ratio with short-term outcomes in patients with acute coronary syndrome. Lipids Health Dis 2022; 21:17. [PMID: 35094695 PMCID: PMC8802470 DOI: 10.1186/s12944-021-01618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Biochemical markers are crucial for determining risk in coronary artery disease (CAD) patients; however, the relationship between fasting blood glucose to high-density lipoprotein cholesterol (FG/HDL-C) ratio and short-term outcomes in acute coronary syndrome (ACS) patients remains unknown. Therefore, we have investigated the relationship between the FG/HDL-C ratio and short-term outcomes in ACS patients.
Methods
We used data from a pragmatic, stepped-wedge, cluster-randomized clinical trial to perform a post hoc analysis. A total of 11,284 individuals with ACS were subdivided into quartiles according to their FG/HDL-C ratios. We used a multivariate logistic regression model, two-piecewise linear regression model, and generalized additive model (GAM) to evaluate the relationship between the FG/HDL-C ratio and short-term outcomes (major adverse cardiovascular events [MACEs] and cardiovascular [CV] death within 30 days).
Results
The FG/HDL-C ratio was remarkably linked to an enhanced risk of MACEs and CV death in individuals with ACS in the highest quartile (MACEs, odds ratio [OR]: 1.49; 95% confidence interval [CI], [1.11, 1.99]; P < 0.01; CV death, OR: 1.69; 95% CI, [1.01, 1.41]; P = 0.04). The GAM suggested that the relationship between the FG/HDL-C ratio and MACEs and CV death was non-linear. The two-piecewise linear regression model demonstrated that the threshold values were 3.02 and 3.00 for MACEs and CV death, respectively.
Conclusions
A higher FG/HDL-C ratio is associated with a higher risk of MACEs and CV death in patients with ACS.
Collapse
|
37
|
Vasiliev SV, Akselrod AS, Zhelankin AV, Schekochikhin DY, Generozov EV, Sharova EI, Stonogina DA. Circulating miR-21-5p, miR-146a-5p, miR-320a-3p in patients with atrial fibrillation in combination with hypertension and coronary artery disease. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2022-2814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aim. To study the plasma profiles of circulating extracellular microribonucleic acids (miRNAs), potentially including in pathogenesis of cardiovascular diseases, in patients with atrial fibrillation (AF) in combination with hypertension (HTN) or coronary artery disease (CAD).Material and methods. The study included patients with AF in combi nation with HTN (n=21) or CAD (n=10), as well as following control groups: patients with uncomplicated HTN without AF (n=28), patients with stable CAD without AF (n=10) and healthy individuals (n=30). MiRNA samples were isolated from blood plasma of the study participants. MiRNAs were detected by TaqMan quantitative polymerase chain reaction assay. The relative plasma levels of five candidate miRNAs were estimated relative to the reference miR-16-5p.Results. Among the analyzed circulating plasma miRNAs, a higher level of miR-320a-3p was associated with AF, while increased levels of miR 146a-5p and miR-21-5p are potentially associated with presence of both AF and CAD.Conclusion. Differences were found in the plasma miRNA profiles (miR-21-5p, miR-320a-3p, miR-146a-5p) between patients with AF, regardless of concomitant disease (CAD or HTN), and healthy individuals in the control group.
Collapse
Affiliation(s)
| | | | - A. V. Zhelankin
- Federal Research and Clinical Center for Physical and Chemical Medicine of the FMBA of Russia
| | | | - E. V. Generozov
- Federal Research and Clinical Center for Physical and Chemical Medicine of the FMBA of Russia
| | - E. I. Sharova
- Federal Research and Clinical Center for Physical and Chemical Medicine of the FMBA of Russia
| | | |
Collapse
|
38
|
Research on the Health Literacy Status and Compliance Behavior of Patients with Acute Coronary Syndrome. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9648708. [PMID: 34790257 PMCID: PMC8592731 DOI: 10.1155/2021/9648708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/06/2021] [Accepted: 10/30/2021] [Indexed: 11/21/2022]
Abstract
This study is aimed at assessing the current status of ACS patients' health literacy and medication compliance, analyzing the relationship between the two, and providing ideas for clinically improving the medication compliance of ACS patients and preventing the recurrence of cardiovascular events. ACS patients need long-term medication to prevent vascular restenosis after surgery, and bad living habits and mood swings will affect postoperative recovery, so clinical interventions are needed to help patients establish a healthy lifestyle. The effect of conventional care is not ideal. Therefore, this paper uses regression analysis to analyze the correlation between the health literacy status of ACS patients and the compliance behavior, combines the investigation and experiment to perform regression analysis and uses mathematical statistics to process data. The connection between health literacy level and compliance behavior is discovered via a study, providing a point of reference for future research.
Collapse
|
39
|
Coban N, Ozuynuk AS, Erkan AF, Guclu-Geyik F, Ekici B. Levels of miR-130b-5p in peripheral blood are associated with severity of coronary artery disease. Mol Biol Rep 2021; 48:7719-7732. [PMID: 34689283 DOI: 10.1007/s11033-021-06780-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/20/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Although patients with coronary artery disease (CAD) have a high mortality rate, the pathogenesis of CAD is still poorly understood. During the past decade, microRNAs (miRNAs) have emerged as new, potential diagnostic biomarkers in several diseases, including CAD. This study aimed to investigate the expression profiles of miRNAs in individuals with CAD and non-CAD. METHODS AND RESULTS The Agilent's microarray analyses were performed to compare the whole blood miRNA profile of selected individuals with severe CAD (n = 12, ≥ 90% stenosis) and non-CAD (n = 12, ≤ 20 stenosis). Expressions of selected differentially expressed miRNAs (DEMs) were analyzed for validation in individuals with critical CAD (n = 50) and non-CAD (n = 43) using real-time PCR. Target prediction tools were utilized to identify miRNA target genes. We identified 6 DEMs that were downregulated in CAD patients, which included hsa-miR-18a-3p and hsa-miR-130b-5p, that were analyzed for further testing. Expression levels of hsa-miR-130b-5p were found negatively correlated with SYNTAX score and stenosis in female CAD patients (p < 0.05). In addition, both miRNAs were found positively correlated with plasma HDL and inversely correlated with fasting triglyceride levels (p < 0.05). In linear regression analysis adjusted for several confounders, the correlations have remained statistically significant. Computational prediction of target genes indicated a relevant role of hsa-miR-130b-5p and hsa-miR-18a-3p in modulating the expression of genes associated with cardiovascular diseases. CONCLUSION Our findings highlight a significantly different pattern of miRNA expression in CAD patients in microarray results. Hsa-miR-18a-3p and hsa-miR-130b-5p might serve as biomarkers of CAD development and progression and warrant further attention.
Collapse
Affiliation(s)
- Neslihan Coban
- Department of Genetics, Aziz Sancar Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Aybike Sena Ozuynuk
- Department of Genetics, Aziz Sancar Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Aycan Fahri Erkan
- Department of Cardiology, Faculty of Medicine, Ufuk University, Ankara, Turkey
| | - Filiz Guclu-Geyik
- Department of Genetics, Aziz Sancar Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Berkay Ekici
- Department of Cardiology, Faculty of Medicine, Ufuk University, Ankara, Turkey
| |
Collapse
|
40
|
Tanase DM, Gosav EM, Ouatu A, Badescu MC, Dima N, Ganceanu-Rusu AR, Popescu D, Floria M, Rezus E, Rezus C. Current Knowledge of MicroRNAs (miRNAs) in Acute Coronary Syndrome (ACS): ST-Elevation Myocardial Infarction (STEMI). Life (Basel) 2021; 11:life11101057. [PMID: 34685428 PMCID: PMC8541211 DOI: 10.3390/life11101057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Regardless of the newly diagnostic and therapeutic advances, coronary artery disease (CAD) and more explicitly, ST-elevation myocardial infarction (STEMI), remains one of the leading causes of morbidity and mortality worldwide. Thus, early and prompt diagnosis of cardiac dysfunction is pivotal in STEMI patients for a better prognosis and outcome. In recent years, microRNAs (miRNAs) gained attention as potential biomarkers in myocardial infarction (MI) and acute coronary syndromes (ACS), as they have key roles in heart development, various cardiac processes, and act as indicators of cardiac damage. In this review, we describe the current available knowledge about cardiac miRNAs and their functions, and focus mainly on their potential use as novel circulating diagnostic and prognostic biomarkers in STEMI.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence: (E.M.G.); (M.F.); (E.R.)
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ana Roxana Ganceanu-Rusu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Diana Popescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, Emergency Military Clinical Hospital Iasi, 700483 Iasi, Romania
- Correspondence: (E.M.G.); (M.F.); (E.R.)
| | - Elena Rezus
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Correspondence: (E.M.G.); (M.F.); (E.R.)
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
41
|
MicroRNA-320a-3p Signatures as a Satisfactory Predictor of Acute Coronary Syndrome and Attenuates Inflammation by Targeting X-Linked Inhibitor of Apoptosis Protein. Artery Res 2021. [DOI: 10.1007/s44200-021-00002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractAcute coronary syndrome (ACS) is a heart disease with a high mortality rate. Recently, more and more evidence illustrated that microRNAs (miRNA) participated in regulating the occurrence of heart disease. This study aimed to detect the level of serum miR-320a-3p in patients with ACS, predict its possibility as a candidate gene for diagnosis, and explore its potential mechanism in the regulation of ACS. 139 ACS patients and 126 controls were recruited in this study. The expression level of miR-320a-3p was determined by qRT-PCR. The predictive value in ACS was assessed by receiver operating characteristic (ROC) curve. Enzyme-linked immunosorbent assay (ELISA) was used to measure the protein expression levels of inflammatory factors. The downstream targets of miR-320a-3p were verified by luciferase reporter gene assay. In ACS patients and rat models, the expression level of serum miR-320a-3p was significantly increased. ROC curve revealed that abnormal expression of miR-320a-3p was of diagnostic value for ACS. In an in vivo rat model, down-regulation of miR-320a-3p inhibited the production of von Willebrand factor (vWF), Heart fatty acid-binding protein (H-FABP), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α). In other words, down-regulation of miR-320a-3p reduced rat vascular endothelial injury and inflammation. X-linked inhibitor of apoptosis protein (XIAP) was determined to be a direct target of miR-320a-3p. miR-320a-3p is useful for the diagnosis of ACS. Animal experiments confirmed that up-regulated miR-320a-3p promoted vascular endothelial injury and inflammatory response by targeting XIAP, thus promoting the development of ACS. MiR-320a-3p may be a new breakthrough in the diagnosis and treatment of ACS.
Collapse
|
42
|
Brown OI, Bridge KI, Kearney MT. Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Glucose Homeostasis and Diabetes-Related Endothelial Cell Dysfunction. Cells 2021; 10:cells10092315. [PMID: 34571964 PMCID: PMC8469180 DOI: 10.3390/cells10092315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress within the vascular endothelium, due to excess generation of reactive oxygen species (ROS), is thought to be fundamental to the initiation and progression of the cardiovascular complications of type 2 diabetes mellitus. The term ROS encompasses a variety of chemical species including superoxide anion (O2•-), hydroxyl radical (OH-) and hydrogen peroxide (H2O2). While constitutive generation of low concentrations of ROS are indispensable for normal cellular function, excess O2•- can result in irreversible tissue damage. Excess ROS generation is catalysed by xanthine oxidase, uncoupled nitric oxide synthases, the mitochondrial electron transport chain and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Amongst enzymatic sources of O2•- the Nox2 isoform of NADPH oxidase is thought to be critical to the oxidative stress found in type 2 diabetes mellitus. In contrast, the transcriptionally regulated Nox4 isoform, which generates H2O2, may fulfil a protective role and contribute to normal glucose homeostasis. This review describes the key roles of Nox2 and Nox4, as well as Nox1 and Nox5, in glucose homeostasis, endothelial function and oxidative stress, with a key focus on how they are regulated in health, and dysregulated in type 2 diabetes mellitus.
Collapse
|
43
|
Siegel PM, Schmich J, Barinov G, Bojti I, Vedecnik C, Simanjuntak NR, Bode C, Moser M, Peter K, Diehl P. Cardiomyocyte microvesicles: proinflammatory mediators after myocardial ischemia? J Thromb Thrombolysis 2021; 50:533-542. [PMID: 32537679 PMCID: PMC8443479 DOI: 10.1007/s11239-020-02156-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Myocardial infarction is a frequent complication of cardiovascular disease leading to high morbidity and mortality worldwide. Elevated C-reactive protein (CRP) levels after myocardial infarction are associated with heart failure and poor prognosis. Cardiomyocyte microvesicles (CMV) are released during hypoxic conditions and can act as mediators of intercellular communication. MicroRNA (miRNA) are short non-coding RNA which can alter cellular mRNA-translation. Microvesicles (MV) have been shown to contain distinct patterns of miRNA from their parent cells which can affect protein expression in target cells. We hypothesized that miRNA containing CMV mediate hepatic CRP expression after cardiomyocyte hypoxia. H9c2-cells were cultured and murine cardiomyocytes were isolated from whole murine hearts. H9c2- and murine cardiomyocytes were exposed to hypoxic conditions using a hypoxia chamber. Microvesicles were isolated by differential centrifugation and analysed by flow cytometry. Next-generation-sequencing was performed to determine the miRNA-expression profile in H9c2 CMV compared to their parent cells. Microvesicles were incubated with a co-culture model of the liver consisting of THP-1 macrophages and HepG2 cells. IL-6 and CRP expression in the co-culture was assessed by qPCR and ELISA. CMV contain a distinct pattern of miRNA compared to their parent cells including many inflammation-related miRNA. CMV induced IL-6 expression in THP-1 macrophages alone and CRP expression in the hepatic co-culture model. MV from hypoxic cardiomyocytes can mediate CRP expression in a hepatic co-culture model. Further studies will have to show whether these effects are reproducible in-vivo.
Collapse
Affiliation(s)
- Patrick Malcolm Siegel
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany. .,Baker Heart & Diabetes Institute, Atherothrombosis & Vascular Biology Laboratory, Melbourne, Australia.
| | - Judith Schmich
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany.,Baker Heart & Diabetes Institute, Atherothrombosis & Vascular Biology Laboratory, Melbourne, Australia
| | - Georg Barinov
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany
| | - István Bojti
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany
| | - Christopher Vedecnik
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany
| | - Novita Riani Simanjuntak
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany
| | - Christoph Bode
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany
| | - Martin Moser
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany
| | - Karlheinz Peter
- Baker Heart & Diabetes Institute, Atherothrombosis & Vascular Biology Laboratory, Melbourne, Australia.,Faculty for Medicine & Nursing, Monash University, Melbourne, Australia
| | - Philipp Diehl
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany.,Baker Heart & Diabetes Institute, Atherothrombosis & Vascular Biology Laboratory, Melbourne, Australia.,Faculty for Medicine & Nursing, Monash University, Melbourne, Australia
| |
Collapse
|
44
|
Zhelankin AV, Stonogina DA, Vasiliev SV, Babalyan KA, Sharova EI, Doludin YV, Shchekochikhin DY, Generozov EV, Akselrod AS. Circulating Extracellular miRNA Analysis in Patients with Stable CAD and Acute Coronary Syndromes. Biomolecules 2021; 11:962. [PMID: 34209965 PMCID: PMC8301961 DOI: 10.3390/biom11070962] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Extracellular circulating microRNAs (miRNAs) are currently a focus of interest as non-invasive biomarkers of cardiovascular pathologies, including coronary artery disease (CAD) and acute coronary syndromes (ACS): myocardial infarction with and without ST-segment elevation (STEMI and NSTEMI) and unstable angina (UA). However, the current data for some miRNAs are controversial and inconsistent, probably due to pre-analytical and methodological variances in different studies. In this work, we fulfilled the basic pre-analytical requirements provided for circulating miRNA studies for application to stable CAD and ACS research. We used quantitative PCR to determine the relative plasma levels of eight circulating miRNAs that are potentially associated with atherosclerosis. In a cohort of 136 adult clinic CAD patients and outpatient controls, we found that the plasma levels of miR-21-5p and miR-146a-5p were significantly elevated in ACS patients, and the level of miR-17-5p was decreased in ACS and stable CAD patients compared to both healthy controls and hypertensive patients without CAD. Within the ACS patient group, no differences were found in the plasma levels of these miRNAs between patients with positive and negative troponin, nor were any differences found between STEMI and NSTEMI. Our results indicate that increased plasma levels of miR-146a-5p and miR-21-5p can be considered general ACS circulating biomarkers and that lowered miR-17-5p can be considered a general biomarker of CAD.
Collapse
Affiliation(s)
- Andrey V. Zhelankin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (K.A.B.); (E.I.S.); (E.V.G.)
| | - Daria A. Stonogina
- Department of Cardiology, Functional and Ultrasound Diagnostics, Faculty of Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119146 Moscow, Russia; (D.A.S.); (S.V.V.); (D.Y.S.); (A.S.A.)
| | - Sergey V. Vasiliev
- Department of Cardiology, Functional and Ultrasound Diagnostics, Faculty of Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119146 Moscow, Russia; (D.A.S.); (S.V.V.); (D.Y.S.); (A.S.A.)
| | - Konstantin A. Babalyan
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (K.A.B.); (E.I.S.); (E.V.G.)
| | - Elena I. Sharova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (K.A.B.); (E.I.S.); (E.V.G.)
| | - Yurii V. Doludin
- FSI National Research Center for Preventive Medicine of the Ministry of Health of the Russian Federation, 101990 Moscow, Russia;
| | - Dmitry Y. Shchekochikhin
- Department of Cardiology, Functional and Ultrasound Diagnostics, Faculty of Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119146 Moscow, Russia; (D.A.S.); (S.V.V.); (D.Y.S.); (A.S.A.)
| | - Eduard V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (K.A.B.); (E.I.S.); (E.V.G.)
| | - Anna S. Akselrod
- Department of Cardiology, Functional and Ultrasound Diagnostics, Faculty of Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119146 Moscow, Russia; (D.A.S.); (S.V.V.); (D.Y.S.); (A.S.A.)
| |
Collapse
|
45
|
Song Y, Wang M, Qian Q, Xu J, Zhou Q, Lv S, Miao P. Trace miRNA Assay Based on DNA Nanostructures Formed by Hybridization Chain Reaction and Gold‐Nanoparticle Tags. ChemElectroChem 2021. [DOI: 10.1002/celc.202100466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yan Song
- Beihua University Jilin 132013 P. R. China
| | | | - Qin Qian
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences Suzhou 215163 P. R. China
| | - Jun Xu
- Suzhou Blood Center Suzhou 215006 P. R. China
| | | | - Shujie Lv
- Beihua University Jilin 132013 P. R. China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences Suzhou 215163 P. R. China
- Ji Hua Laboratory Foshan 528200 P. R. China
| |
Collapse
|
46
|
Guo N, Wang P, Yang J, Yang X, van der Voet M, Wildwater M, Wei J, Tang X, Wang M, Yang H. Serum Metabolomic Analysis of Coronary Heart Disease Patients with Stable Angina Pectoris Subtyped by Traditional Chinese Medicine Diagnostics Reveals Biomarkers Relevant to Personalized Treatments. Front Pharmacol 2021; 12:664320. [PMID: 34194326 PMCID: PMC8236985 DOI: 10.3389/fphar.2021.664320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
To improve the treatment of patients with coronary heart disease (CHD), personalized treatments based on potential biomarkers could make a difference. To investigate if such potential biomarkers could be found for CHD inhomogeneous, we combined traditional Chinese medicine based diagnosis with untargeted and targeted metabolomics analyses. Shi and Xu patient subtype groups of CHD with angina pectoris were identified. Different metabolites including lipids, fatty acids and amino acids were further analyzed with targeted metabolomics and mapped to disease-related pathways. The long-chain unsaturated lipids ceramides metabolism, bile acid metabolism were differentially affected in the Xu subtype groups. While, Shi-subtype patients seemed to show inflammation, anomalous levels of bioactive phospholipids and antioxidant molecules. Furthermore, variations in the endothelial damage response and energy metabolism found based on ELISA analysis are the key divergence points between different CHD subtypes. The results showed Xu subtype patients might benefit from long-chain unsaturated lipids ceramides as therapeutic targets. Shi subtype patients might benefit more from levels of polyunsaturated fatty acid consumption and treatments that help in restoring energy balance. Metabolic differences can be essential for treatment protocols. Thus, patient group specific differences can serve as important information to refine current treatment approaches in a personalized manner.
Collapse
Affiliation(s)
- Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Center for Post-doctoral Research, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peili Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaying Yang
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaofang Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | - Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Tang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mei Wang
- LU-European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Pedersen OB, Grove EL, Kristensen SD, Nissen PH, Hvas AM. MicroRNA as Biomarkers for Platelet Function and Maturity in Patients with Cardiovascular Disease. Thromb Haemost 2021; 122:181-195. [PMID: 34091883 DOI: 10.1055/s-0041-1730375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with cardiovascular disease (CVD) are at increased risk of suffering myocardial infarction. Platelets are key players in thrombus formation and, therefore, antiplatelet therapy is crucial in the treatment and prevention of CVD. MicroRNAs (miRs) may hold the potential as biomarkers for platelet function and maturity. This systematic review was conducted using the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). To identify studies investigating the association between miRs and platelet function and maturity in patients with CVD, PubMed and Embase were searched on October 13 and December 13, 2020 without time boundaries. Risk of bias was evaluated using a standardized quality assessment tool. Of the 16 included studies, 6 studies were rated "good" and 10 studies were rated "fair." In total, 45 miRs correlated significantly with platelet function or maturity (rho ranging from -0.68 to 0.38, all p < 0.05) or differed significantly between patients with high platelet reactivity and patients with low platelet reactivity (p-values ranging from 0.0001 to 0.05). Only four miRs were investigated in more than two studies, namely miR-223, miR-126, miR-21 and miR-150. Only one study reported on the association between miRs and platelet maturity. In conclusion, a total of 45 miRs were associated with platelet function or maturity in patients with CVD, with miR-223 and miR-126 being the most frequently investigated. However, the majority of the miRs were only investigated in one study. More data are needed on the potential use of miRs as biomarkers for platelet function and maturity in CVD patients.
Collapse
Affiliation(s)
- Oliver Buchhave Pedersen
- Department of Clinical Biochemistry, Thrombosis and Haemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Erik Lerkevang Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Steen Dalby Kristensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Peter H Nissen
- Department of Clinical Biochemistry, Thrombosis and Haemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Thrombosis and Haemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
48
|
Hromadnikova I, Kotlabova K, Krofta L. A History of Preterm Delivery Is Associated with Aberrant Postpartal MicroRNA Expression Profiles in Mothers with an Absence of Other Pregnancy-Related Complications. Int J Mol Sci 2021; 22:ijms22084033. [PMID: 33919834 PMCID: PMC8070839 DOI: 10.3390/ijms22084033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022] Open
Abstract
This prospective cross-sectional case-control study investigated the postpartal gene expression of microRNAs associated with diabetes/cardiovascular/cerebrovascular diseases in the peripheral white blood cells of women with anamnesis of preterm prelabor rupture of membranes (n = 58), spontaneous preterm birth (n = 55), and term delivery (n = 89) by a quantitative reverse transcription polymerase chain reaction. After pregnancies complicated by preterm prelabor rupture of membranes or spontaneous preterm birth, mothers showed diverse expression profiles for 25 out of 29 tested microRNAs (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-100-5p, miR-103a-3p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-221-3p, miR-499a-5p, and miR-574-3p). The earliest gestational ages at delivery and the lowest birth weights of newborns were associated with the highest postpartal levels of the previously mentioned microRNAs in maternal peripheral white blood cells. Administration of tocolytic drugs in order to prolong pregnancy, used in order to administer and complete a full course of antenatal corticosteroids, was associated with alterations in postpartal microRNA expression profiles to a lesser extent than in women with imminent delivery, where there was insufficient time for administration of tocolytics and antenatal corticosteroids. Overall, mothers who did not receive tocolytic therapy (miR-24-3p and miR-146a-5p) and mothers who did not receive corticosteroid therapy (miR-1-3p, miR-100-5p, and miR-143-3p) had increased or showed a trend toward increased postpartal microRNA expression when compared with mothers given tocolytic and corticosteroid therapy. In addition, mothers with serum C-reactive protein levels above 20 mg/L, who experienced preterm labour, showed a trend toward increased postpartal expression profiles of miR-143-3p and miR-199a-5p when compared with mothers with normal serum C-reactive protein levels. On the other hand, the occurrence of maternal leukocytosis, the presence of intra-amniotic inflammation (higher levels of interleukin 6 in the amniotic fluid), and the administration of antibiotics at the time of preterm delivery had no impact on postpartal microRNA expression profiles in mothers with a history of preterm delivery. Likewise, the condition of the newborns at the moment of birth, determined by Apgar scores at 5 and 10 min and the pH of cord arterial blood, had no influence on the postpartal expression profiles of mothers with a history of preterm delivery. These findings may contribute to explaining the increased cardiovascular risk in mothers with anamnesis of preterm delivery, and the greater increase of maternal cardiovascular risk with the decrease of gestational age at delivery. Women with preterm delivery in their anamnesis represent a high-risk group with special needs on a long-term basis, with a need to apply preventive and therapeutic interventions as early as possible.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-296511336
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic;
| | - Ladislav Krofta
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, 14700 Prague, Czech Republic;
| |
Collapse
|
49
|
Elgebaly SA, Christenson RH, Kandil H, Ibrahim M, Rizk H, El-Khazragy N, Rashed L, Yacoub B, Eldeeb H, Ali MM, Kreutzer DL. Nourin-Dependent miR-137 and miR-106b: Novel Biomarkers for Early Diagnosis of Myocardial Ischemia in Coronary Artery Disease Patients. Diagnostics (Basel) 2021; 11:diagnostics11040703. [PMID: 33919942 PMCID: PMC8070915 DOI: 10.3390/diagnostics11040703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Background: Although cardiovascular imaging techniques are widely used to diagnose myocardial ischemia in patients with suspected stable coronary artery disease (CAD), they have limitations related to lack of specificity, sensitivity and “late” diagnosis. Additionally, the absence of a simple laboratory test that can detect myocardial ischemia in CAD patients, has led to many patients being first diagnosed at the time of the development of myocardial infarction. Nourin is an early blood-based biomarker rapidly released within five minutes by “reversible” ischemic myocardium before progressing to necrosis. Recently, we demonstrated that the Nourin-dependent miR-137 (marker of cell damage) and miR-106b-5p (marker of inflammation) can diagnose myocardial ischemia in patients with unstable angina (UA) and also stratify severity of ischemia, with higher expression in acute ST-segment elevation myocardial infarction (STEMI) patients compared to UA patients. Minimal baseline-gene expression levels of Nourin miRNAs were detected in healthy subjects. Objectives: To determine: (1) whether Nourin miRNAs are elevated in chest pain patients with myocardial ischemia suspected of CAD, who also underwent dobutamine stress echocardiography (DSE) or ECG/Treadmill stress test, and (2) whether the elevated levels of serum Nourin miRNAs correlate with results of ECHO/ECG stress test in diagnosing CAD patients. Methods: Serum gene expression levels of miR-137, miR-106b-5p and their corresponding molecular pathway network were measured blindly in 70 enrolled subjects using quantitative real time PCR (qPCR). Blood samples were collected from: (1) patients with chest pain suspected of myocardial ischemia (n = 38) both immediately “pre-stress test” and “post-stress test” 30 min. after test termination; (2) patients with acute STEMI (n = 16) functioned as our positive control; and (3) healthy volunteers (n = 16) who, also, exercised on ECG/Treadmill stress test for Nourin baseline-gene expression levels. Results: (1) strong correlation was observed between Nourin miRNAs serum expression levels and results obtained from ECHO/ECG stress test in diagnosing myocardial ischemia in CAD patients; (2) positive “post-stress test” patients with CAD diagnosis showed upregulation of miR-137 by 572-fold and miR-106b-5p by 122-fold, when compared to negative “post-stress test” patients (p < 0.001); (3) similarly, positive “pre-stress test” CAD patients showed upregulation of miR-137 by 1198-fold and miR-106b-5p by 114-fold, when compared to negative “pre-stress test” patients (p < 0.001); and (4) healthy subjects had minimal baseline-gene expressions of Nourin miRNAs. Conclusions: Nourin-dependent miR-137 and miR-106b-5p are promising novel blood-based biomarkers for early diagnosis of myocardial ischemia in chest pain patients suspected of CAD in outpatient clinics. Early identification of CAD patients, while patients are in the stable state before progressing to infarction, is key to providing crucial diagnostic steps and therapy to limit adverse cardiac events, improve patients’ health outcome and save lives.
Collapse
Affiliation(s)
- Salwa A. Elgebaly
- Research & Development, Nour Heart, Inc., Vienna, VA 22180, USA
- Department of Surgery, UConn Health, School of Medicine, Farmington, CT 06032, USA;
- Correspondence: ; Tel.: +1-860-680-8860
| | - Robert H. Christenson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Hossam Kandil
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (M.I.); (H.R.); (B.Y.); (H.E.); (M.M.A.)
| | - Mohsen Ibrahim
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (M.I.); (H.R.); (B.Y.); (H.E.); (M.M.A.)
| | - Hussien Rizk
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (M.I.); (H.R.); (B.Y.); (H.E.); (M.M.A.)
| | - Nashwa El-Khazragy
- Department of Clinical Pathology-Hematology, Ain Shams Medical Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Laila Rashed
- Department of Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Beshoy Yacoub
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (M.I.); (H.R.); (B.Y.); (H.E.); (M.M.A.)
| | - Heba Eldeeb
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (M.I.); (H.R.); (B.Y.); (H.E.); (M.M.A.)
| | - Mahmoud M. Ali
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (M.I.); (H.R.); (B.Y.); (H.E.); (M.M.A.)
| | - Donald L. Kreutzer
- Department of Surgery, UConn Health, School of Medicine, Farmington, CT 06032, USA;
- Cell & Molecular Tissue Engineering, LLC, Farmington, CT 06032, USA
| |
Collapse
|
50
|
A critical approach for successful use of circulating microRNAs as biomarkers in cardiovascular diseases: the case of hypertrophic cardiomyopathy. Heart Fail Rev 2021; 27:281-294. [PMID: 33656618 DOI: 10.1007/s10741-021-10084-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that act as major regulators of gene expression at the post-transcriptional level. As the potential applications of miRNAs in the diagnosis and treatment of human diseases have become more evident, many studies of hypertrophic cardiomyopathy (HCM) have focused on the systemic identification and quantification of miRNAs in biofluids and myocardial tissues. HCM is a hereditary cardiomyopathy caused by mutations in genes encoding proteins of the sarcomere. Despite overall improvements in survival, progression to heart failure, stroke, and sudden cardiac death remain prominent features of living with HCM. Several miRNAs have been shown to be promising biomarkers of HCM; however, there are many challenges to ensuring the validity, consistency, and reproducibility of these biomarkers for clinical use. In particular, miRNA testing may be limited by pre-analytical and analytical caveats, making our interpretation of results challenging. Such factors that may affect miRNA testing include sample type selection, hemolysis, platelet activation, and renal dysfunction. Therefore, researchers should be careful when developing appropriate standards for the design of miRNA profiling studies in order to ensure that all results provided are both accurate and reliable. In this review, we discuss the application of miRNAs as biomarkers for HCM.
Collapse
|