1
|
Park KC, Crump NT, Louwman N, Krywawych S, Cheong YJ, Vendrell I, Gill EK, Gunadasa-Rohling M, Ford KL, Hauton D, Fournier M, Pires E, Watson L, Roseman G, Holder J, Koschinski A, Carnicer R, Curtis MK, Zaccolo M, Hulikova A, Fischer R, Kramer HB, McCullagh JSO, Trefely S, Milne TA, Swietach P. Disrupted propionate metabolism evokes transcriptional changes in the heart by increasing histone acetylation and propionylation. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1221-1245. [PMID: 38500966 PMCID: PMC7615744 DOI: 10.1038/s44161-023-00365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/15/2023] [Indexed: 03/20/2024]
Abstract
Propiogenic substrates and gut bacteria produce propionate, a post-translational protein modifier. In this study, we used a mouse model of propionic acidaemia (PA) to study how disturbances to propionate metabolism result in histone modifications and changes to gene expression that affect cardiac function. Plasma propionate surrogates were raised in PA mice, but female hearts manifested more profound changes in acyl-CoAs, histone propionylation and acetylation, and transcription. These resulted in moderate diastolic dysfunction with raised diastolic Ca2+, expanded end-systolic ventricular volume and reduced stroke volume. Propionate was traced to histone H3 propionylation and caused increased acetylation genome-wide, including at promoters of Pde9a and Mme, genes related to contractile dysfunction through downscaled cGMP signaling. The less severe phenotype in male hearts correlated with β-alanine buildup. Raising β-alanine in cultured myocytes treated with propionate reduced propionyl-CoA levels, indicating a mechanistic relationship. Thus, we linked perturbed propionate metabolism to epigenetic changes that impact cardiac function.
Collapse
Affiliation(s)
- Kyung Chan Park
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Nicholas T. Crump
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Present Address: Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Niamh Louwman
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Steve Krywawych
- Department of Chemical Pathology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Yuen Jian Cheong
- Epigenetics & Signalling Programmes, Babraham Institute, Cambridge, UK
| | - Iolanda Vendrell
- Nuffield Department of Medicine, Target Discovery Institute, Oxford, UK
- Nuffield Department of Medicine, Chinese Academy for Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Eleanor K. Gill
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | | | - Kerrie L. Ford
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - David Hauton
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | - Lydia Watson
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Gerald Roseman
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - James Holder
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Andreas Koschinski
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Ricardo Carnicer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - M. Kate Curtis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Alzbeta Hulikova
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, Oxford, UK
- Nuffield Department of Medicine, Chinese Academy for Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Holger B. Kramer
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Sophie Trefely
- Epigenetics & Signalling Programmes, Babraham Institute, Cambridge, UK
| | - Thomas A. Milne
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Chen S, Schumacher CA, Van Amersfoorth SCM, Fiolet JWT, Baartscheer A, Veldkamp MW, Coronel R, Zuurbier CJ. Protease XIV abolishes NHE inhibition by empagliflozin in cardiac cells. Front Physiol 2023; 14:1179131. [PMID: 37565139 PMCID: PMC10410854 DOI: 10.3389/fphys.2023.1179131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Background: SGLT2i directly inhibit the cardiac sodium-hydrogen exchanger-1 (NHE1) in isolated ventricular cardiomyocytes (CMs). However, other studies with SGLT2i have yielded conflicting results. This may be explained by methodological factors including cell isolation techniques, cell types and ambient pH. In this study, we tested whether the use of protease XIV (PXIV) may abrogate inhibition of SGLT2i on cardiac NHE1 activity in isolated rabbit CMs or rat cardiomyoblast cells (H9c2), in a pH dependent manner. Methods: Rabbit ventricular CMs were enzymatically isolated from Langendorff-perfused hearts during a 30-min perfusion period followed by a 25-min after-dissociation period, using a collagenase mixture without or with a low dose PXIV (0.009 mg/mL) present for different periods. Empagliflozin (EMPA) inhibition on NHE activity was then assessed at pH of 7.0, 7.2 and 7.4. In addition, effects of 10 min PXIV treatment were also evaluated in H9c2 cells for EMPA and cariporide NHE inhibition. Results: EMPA reduced NHE activity in rabbit CMs that were not exposed to PXIV treatment or undergoing a 35-min PXIV treatment, independent of pH levels. However, when exposure time to PXIV was extended to 55 min, NHE inhibition by Empa was completely abolished at all three pH levels. In H9c2 cells, NHE inhibition by EMPA was evident in non-treated cells but lost after 10-min incubation with PXIV. NHE inhibition by cariporide was unaffected by PXIV. Conclusion: The use of protease XIV in cardiac cell isolation procedures obliterates the inhibitory effects of SGLT2i on NHE1 activity in isolated cardiac cells, independent of pH.
Collapse
Affiliation(s)
- Sha Chen
- Amsterdam UMC, Location AMC, Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
| | - Cees A. Schumacher
- Amsterdam UMC, Location AMC, Department of Experimental Cardiology, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
| | - Shirley C. M. Van Amersfoorth
- Amsterdam UMC, Location AMC, Department of Experimental Cardiology, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
| | - Jan W. T. Fiolet
- Amsterdam UMC, Location AMC, Department of Experimental Cardiology, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
| | - Antonius Baartscheer
- Amsterdam UMC, Location AMC, Department of Experimental Cardiology, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
| | - Marieke W. Veldkamp
- Amsterdam UMC, Location AMC, Department of Experimental Cardiology, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
| | - Ruben Coronel
- Amsterdam UMC, Location AMC, Department of Experimental Cardiology, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
| | - Coert J. Zuurbier
- Amsterdam UMC, Location AMC, Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
| |
Collapse
|
3
|
Subramaniam G, Schleicher K, Kovanich D, Zerio A, Folkmanaite M, Chao YC, Surdo NC, Koschinski A, Hu J, Scholten A, Heck AJ, Ercu M, Sholokh A, Park KC, Klussmann E, Meraviglia V, Bellin M, Zanivan S, Hester S, Mohammed S, Zaccolo M. Integrated Proteomics Unveils Nuclear PDE3A2 as a Regulator of Cardiac Myocyte Hypertrophy. Circ Res 2023; 132:828-848. [PMID: 36883446 PMCID: PMC10045983 DOI: 10.1161/circresaha.122.321448] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Signaling by cAMP is organized in multiple distinct subcellular nanodomains regulated by cAMP-hydrolyzing PDEs (phosphodiesterases). Cardiac β-adrenergic signaling has served as the prototypical system to elucidate cAMP compartmentalization. Although studies in cardiac myocytes have provided an understanding of the location and properties of a handful of cAMP subcellular compartments, an overall view of the cellular landscape of cAMP nanodomains is missing. METHODS Here, we combined an integrated phosphoproteomics approach that takes advantage of the unique role that individual PDEs play in the control of local cAMP, with network analysis to identify previously unrecognized cAMP nanodomains associated with β-adrenergic stimulation. We then validated the composition and function of one of these nanodomains using biochemical, pharmacological, and genetic approaches and cardiac myocytes from both rodents and humans. RESULTS We demonstrate the validity of the integrated phosphoproteomic strategy to pinpoint the location and provide critical cues to determine the function of previously unknown cAMP nanodomains. We characterize in detail one such compartment and demonstrate that the PDE3A2 isoform operates in a nuclear nanodomain that involves SMAD4 (SMAD family member 4) and HDAC-1 (histone deacetylase 1). Inhibition of PDE3 results in increased HDAC-1 phosphorylation, leading to inhibition of its deacetylase activity, derepression of gene transcription, and cardiac myocyte hypertrophic growth. CONCLUSIONS We developed a strategy for detailed mapping of subcellular PDE-specific cAMP nanodomains. Our findings reveal a mechanism that explains the negative long-term clinical outcome observed in patients with heart failure treated with PDE3 inhibitors.
Collapse
Affiliation(s)
- Gunasekaran Subramaniam
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Katharina Schleicher
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Duangnapa Kovanich
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands (D.K., A.S., A.J.R.H.)
- Centre for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Thailand (D.K.)
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Milda Folkmanaite
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Ying-Chi Chao
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Nicoletta C. Surdo
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
- Now with Neuroscience Institute, National Research Council of Italy (CNR), Padova (N.C.S.)
| | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Jianshu Hu
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Arjen Scholten
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands (D.K., A.S., A.J.R.H.)
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands (D.K., A.S., A.J.R.H.)
| | - Maria Ercu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and German Centre for Cardiovascular Research, Partner Site Berlin (M.E., A.S., E.K.)
| | - Anastasiia Sholokh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and German Centre for Cardiovascular Research, Partner Site Berlin (M.E., A.S., E.K.)
| | - Kyung Chan Park
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and German Centre for Cardiovascular Research, Partner Site Berlin (M.E., A.S., E.K.)
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, the Netherlands (V.M., M.B.)
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, the Netherlands (V.M., M.B.)
- Department of Biology, University of Padua, Italy (M.B.)
- Veneto Institute of Molecular Medicine, Padua, Italy (M.B.)
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom (S.Z.)
- Institute of Cancer Sciences, University of Glasgow, United Kingdom (S.Z.)
| | - Svenja Hester
- Department of Biochemistry (S.H., S.M.), University of Oxford, United Kingdom
| | - Shabaz Mohammed
- Department of Biochemistry (S.H., S.M.), University of Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre (M.Z.)
| |
Collapse
|
4
|
Wilson AD, Richards MA, Curtis MK, Gunadasa-Rohling M, Monterisi S, Loonat AA, Miller JJ, Ball V, Lewis A, Tyler DJ, Moshnikova A, Andreev OA, Reshetnyak YK, Carr C, Swietach P. Acidic environments trigger intracellular H+-sensing FAK proteins to re-balance sarcolemmal acid-base transporters and auto-regulate cardiomyocyte pH. Cardiovasc Res 2022; 118:2946-2959. [PMID: 34897412 PMCID: PMC9648823 DOI: 10.1093/cvr/cvab364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS In cardiomyocytes, acute disturbances to intracellular pH (pHi) are promptly corrected by a system of finely tuned sarcolemmal acid-base transporters. However, these fluxes become thermodynamically re-balanced in acidic environments, which inadvertently causes their set-point pHi to fall outside the physiological range. It is unclear whether an adaptive mechanism exists to correct this thermodynamic challenge, and return pHi to normal. METHODS AND RESULTS Following left ventricle cryo-damage, a diffuse pattern of low extracellular pH (pHe) was detected by acid-sensing pHLIP. Despite this, pHi measured in the beating heart (13C NMR) was normal. Myocytes had adapted to their acidic environment by reducing Cl-/HCO3- exchange (CBE)-dependent acid-loading and increasing Na+/H+ exchange (NHE1)-dependent acid-extrusion, as measured by fluorescence (cSNARF1). The outcome of this adaptation on pHi is revealed as a cytoplasmic alkalinization when cells are superfused at physiological pHe. Conversely, mice given oral bicarbonate (to improve systemic buffering) had reduced myocardial NHE1 expression, consistent with a needs-dependent expression of pHi-regulatory transporters. The response to sustained acidity could be replicated in vitro using neonatal ventricular myocytes incubated at low pHe for 48 h. The adaptive increase in NHE1 and decrease in CBE activities was linked to Slc9a1 (NHE1) up-regulation and Slc4a2 (AE2) down-regulation. This response was triggered by intracellular H+ ions because it persisted in the absence of CO2/HCO3- and became ablated when acidic incubation media had lower chloride, a solution manoeuvre that reduces the extent of pHi-decrease. Pharmacological inhibition of FAK-family non-receptor kinases, previously characterized as pH-sensors, ablated this pHi autoregulation. In support of a pHi-sensing role, FAK protein Pyk2 (auto)phosphorylation was reduced within minutes of exposure to acidity, ahead of adaptive changes to pHi control. CONCLUSIONS Cardiomyocytes fine-tune the expression of pHi-regulators so that pHi is at least 7.0. This autoregulatory feedback mechanism defines physiological pHi and protects it during pHe vulnerabilities.
Collapse
Affiliation(s)
- Abigail D Wilson
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Mark A Richards
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - M Kate Curtis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Stefania Monterisi
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Aminah A Loonat
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Jack J Miller
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Vicky Ball
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Andrew Lewis
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Carolyn Carr
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
5
|
Karmazyn M, Pierce GN, Fliegel L. The Remaining Conundrum of the Role of the Na +/H + Exchanger Isoform 1 (NHE1) in Cardiac Physiology and Pathology: Can It Be Rectified? Rev Cardiovasc Med 2022; 23:284. [PMID: 39076631 PMCID: PMC11266974 DOI: 10.31083/j.rcm2308284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 07/31/2024] Open
Abstract
The mammalian Na + /H + exchanger (NHE) is a family of ubiquitous membrane proteins present in humans. Isoform one (NHE1) is present on the plasma membrane and regulates intracellular pH by removal of one intracellular proton in exchange for one extracellular sodium thus functioning as an electroneutral process. Human NHE1 has a 500 amino acid membrane domain plus a C-terminal 315 amino acid, regulatory cytosolic tail. It is regulated through a cytosolic regulatory C-terminal tail which is subject to phosphorylation and is modulated by proteins and lipids. Substantial evidence has implicated NHE1 activity in both myocardial ischemia and reperfusion damage and myocardial remodeling resulting in heart failure. Experimental data show excellent cardioprotection with NHE1 inhibitors although results from clinical results have been mixed. In cardiac surgery patients receiving the NHE1 inhibitor cariporide, subgroups showed beneficial effects of treatment. However, in one trial this was associated with a significantly increased incidence of ischemic strokes. This likely reflected both inappropriate dosing regimens as well as overly high drug doses. We suggest that further progress towards NHE1 inhibition as a treatment for cardiovascular disease is warranted through the development of novel compounds to inhibit NHE1 that are structurally different than those previously used in compromised clinical trials. Some novel pyrazinoyl guanidine inhibitors of NHE1 are already in development and the recent elucidation of the three-dimensional structure of the NHE1 protein and identity of the inhibitor binding site may facilitate development. An alternative approach may also be to control the endogenous regulation of activity of NHE1, which is activated in disease.
Collapse
Affiliation(s)
- Morris Karmazyn
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Grant N. Pierce
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, and Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Larry Fliegel
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
6
|
Maslov LN, Naryzhnaya NV, Sementsov AS, Derkachev IA, Gusakova SV, Sarybaev A. Role of Nitric Oxide Synthase in the Infarct-Limiting Effect of Normobaric Hypoxia. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Kamkin AG, Kamkina OV, Shim AL, Bilichenko A, Mitrokhin VM, Kazansky VE, Filatova TS, Abramochkin D, Mladenov MI. The role of activation of two different sGC binding sites by NO-dependent and NO-independent mechanisms in the regulation of SACs in rat ventricular cardiomyocytes. Physiol Rep 2022; 10:e15246. [PMID: 35384354 PMCID: PMC8981922 DOI: 10.14814/phy2.15246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 04/18/2023] Open
Abstract
The mechanoelectrical feedback (MEF) mechanism in the heart that plays a significant role in the occurrence of arrhythmias, involves cation flux through cation nonselective stretch-activated channels (SACs). It is well known that nitric oxide (NO) can act as a regulator of MEF. Here we addressed the possibility of SAC's regulation along NO-dependent and NO-independent pathways, as well as the possibility of S-nitrosylation of SACs. In freshly isolated rat ventricular cardiomyocytes, using the patch-clamp method in whole-cell configuration, inward nonselective stretch-activated cation current ISAC was recorded through SACs, which occurs during dosed cell stretching. NO donor SNAP, α1-subunit of sGC activator BAY41-2272, sGC blocker ODQ, PKG blocker KT5823, PKG activator 8Br-cGMP, and S-nitrosylation blocker ascorbic acid, were employed. We concluded that the physiological concentration of NO in the cell is a necessary condition for the functioning of SACs. An increase in NO due to SNAP in an unstretched cell causes the appearance of a Gd3+ -sensitive nonselective cation current, an analog of ISAC , while in a stretched cell it eliminates ISAC . The NO-independent pathway of sGC activation of α subunit, triggered by BAY41-2272, is also important for the regulation of SACs. Since S-nitrosylation inhibitor completely abolishes ISAC , this mechanism occurs. The application of BAY41-2272 cannot induce ISAC in a nonstretched cell; however, the addition of SNAP on its background activates SACs, rather due to S-nitrosylation. ODQ eliminates ISAC , but SNAP added on the background of stretch increases ISAC in addition to ODQ. This may be a result of the lack of NO as a result of inhibition of NOS by metabolically modified ODQ. KT5823 reduces PKG activity and reduces SACs phosphorylation, leading to an increase in ISAC . 8Br-cGMP reduces ISAC by activating PKG and its phosphorylation. These results demonstrate a significant contribution of S-nitrosylation to the regulation of SACs.
Collapse
Affiliation(s)
- Andre G. Kamkin
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
| | - Olga V. Kamkina
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
| | - Andrey L. Shim
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
| | - Andrey Bilichenko
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
| | - Vadim M. Mitrokhin
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
| | - Viktor E. Kazansky
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
| | - Tatiana S. Filatova
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
- Department of Human and Animal PhysiologyLomonosov Moscow State UniversityMoscowRussia
| | - Denis V. Abramochkin
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
- Department of Human and Animal PhysiologyLomonosov Moscow State UniversityMoscowRussia
| | - Mitko I. Mladenov
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
- Faculty of Natural Sciences and MathematicsInstitute of Biology, “Ss. Cyril and Methodius” UniversitySkopjeMacedonia
| |
Collapse
|
8
|
Ma J, Gao X, Li Y, DeCoursey TE, Shull GE, Wang HS. The HVCN1 voltage-gated proton channel contributes to pH regulation in canine ventricular myocytes. J Physiol 2022; 600:2089-2103. [PMID: 35244217 PMCID: PMC9058222 DOI: 10.1113/jp282126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
KEY POINTS Intracellular pH (pHi ) regulation is crucial for cardiac function, as acidification depresses contractility and causes arrhythmias. H+ ions are generated in cardiomyocytes from metabolic processes and particularly from CO2 hydration, which has been shown to facilitate CO2 -venting from mitochondria. Currently, the NHE1 Na+ /H+ exchanger is viewed as the dominant H+ -extrusion mechanism in cardiac muscle. We show that the HVCN1 voltage-gated proton channel is present and functional in canine ventricular myocytes, and that HVCN1 and NHE1 both contribute to pHi regulation. HVCN1 provides an energetically-efficient mechanism of H+ -extrusion that would not cause Na+ -loading, which can cause pathology, and that could contribute to transport-mediated CO2 disposal. These results provide a major advance in our understanding of pHi regulation in cardiac muscle. ABSTRACT Regulation of intracellular pH (pHi ) in cardiomyocytes is crucial for cardiac function; however, currently known mechanisms for direct or indirect extrusion of acid from cardiomyocytes seem insufficient for energetically-efficient extrusion of the massive H+ loads generated under in vivo conditions. In cardiomyocytes, voltage-sensitive H+ channel activity mediated by the HVCN1 proton channel would be a highly efficient means of disposing of H+ , while avoiding Na+ -loading, as occurs during direct acid extrusion via Na+ /H+ exchange or indirect acid extrusion via Na+ -HCO3 - cotransport. PCR and immunoblotting demonstrated expression of HVCN1 mRNA and protein in canine heart. Patch clamp analysis of canine ventricular myocytes revealed a voltage-gated H+ current that was highly H+ -selective. The current was blocked by external Zn2+ and the HVCN1 blocker 5-chloro-2-guanidinobenzimidazole (ClGBI). Both the gating and Zn2+ blockade of the current were strongly influenced by the pH gradient across the membrane. All characteristics of the observed current were consistent with the known hallmarks of HVCN1-mediated H+ current. Inhibition of HVCN1 and the NHE1 Na+ /H+ exchanger, singly and in combination, showed that either mechanism is largely sufficient to maintain pHi in beating cardiomyocytes, but that inhibition of both activities causes rapid acidification. These results show that HVCN1 is expressed in canine ventricular myocytes and provides a major H+ -extrusion activity, with a capacity similar to that of NHE1. In the beating heart in vivo, this activity would allow Na+ -independent extrusion of H+ during each action potential and, when functionally coupled with anion transport mechanisms, could facilitate transport-mediated CO2 disposal. Abstract figure legend The HVCN1 proton channel is expressed in canine ventricular myocytes and contributes to H+ extrusion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Xiaoqian Gao
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Yutian Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois, 60612, USA
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| |
Collapse
|
9
|
Chung YJ, Park KC, Tokar S, Eykyn TR, Fuller W, Pavlovic D, Swietach P, Shattock MJ. SGLT2 inhibitors and the cardiac Na+/H+ exchanger-1: the plot thickens. Cardiovasc Res 2021; 117:2702-2704. [PMID: 34051094 PMCID: PMC8683703 DOI: 10.1093/cvr/cvab184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/28/2022] Open
Affiliation(s)
- Yu Jin Chung
- British Heart Foundation Centre of Research Excellence, King's College London, UK
| | - Kyung Chan Park
- Burdon Sanderson Cardiac Science Centre, Department of Anatomy, Physiology and Genetics, University of Oxford, Oxford, UK
| | - Sergiy Tokar
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - Thomas R Eykyn
- British Heart Foundation Centre of Research Excellence, King's College London, UK.,School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - William Fuller
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Davor Pavlovic
- Institute for Cardiovascular Sciences, University of Birmingham, UK
| | - Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, Department of Anatomy, Physiology and Genetics, University of Oxford, Oxford, UK
| | - Michael J Shattock
- British Heart Foundation Centre of Research Excellence, King's College London, UK
| |
Collapse
|
10
|
Decreased Brain pH and Pathophysiology in Schizophrenia. Int J Mol Sci 2021; 22:ijms22168358. [PMID: 34445065 PMCID: PMC8395078 DOI: 10.3390/ijms22168358] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Postmortem studies reveal that the brain pH in schizophrenia patients is lower than normal. The exact cause of this low pH is unclear, but increased lactate levels due to abnormal energy metabolism appear to be involved. Schizophrenia patients display distinct changes in mitochondria number, morphology, and function, and such changes promote anaerobic glycolysis, elevating lactate levels. pH can affect neuronal activity as H+ binds to numerous proteins in the nervous system and alters the structure and function of the bound proteins. There is growing evidence of pH change associated with cognition, emotion, and psychotic behaviors. Brain has delicate pH regulatory mechanisms to maintain normal pH in neurons/glia and extracellular fluid, and a change in these mechanisms can affect, or be affected by, neuronal activities associated with schizophrenia. In this review, we discuss the current understanding of the cause and effect of decreased brain pH in schizophrenia based on postmortem human brains, animal models, and cellular studies. The topic includes the factors causing decreased brain pH in schizophrenia, mitochondria dysfunction leading to altered energy metabolism, and pH effects on the pathophysiology of schizophrenia. We also review the acid/base transporters regulating pH in the nervous system and discuss the potential contribution of the major transporters, sodium hydrogen exchangers (NHEs), and sodium-coupled bicarbonate transporters (NCBTs), to schizophrenia.
Collapse
|
11
|
Barvitenko N, Aslam M, Lawen A, Saldanha C, Skverchinskaya E, Uras G, Manca A, Pantaleo A. Two Motors and One Spring: Hypothetic Roles of Non-Muscle Myosin II and Submembrane Actin-Based Cytoskeleton in Cell Volume Sensing. Int J Mol Sci 2021; 22:7967. [PMID: 34360739 PMCID: PMC8347689 DOI: 10.3390/ijms22157967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Changes in plasma membrane curvature and intracellular ionic strength are two key features of cell volume perturbations. In this hypothesis we present a model of the responsible molecular apparatus which is assembled of two molecular motors [non-muscle myosin II (NMMII) and protrusive actin polymerization], a spring [a complex between the plasma membrane (PM) and the submembrane actin-based cytoskeleton (smACSK) which behaves like a viscoelastic solid] and the associated signaling proteins. We hypothesize that this apparatus senses changes in both the plasma membrane curvature and the ionic strength and in turn activates signaling pathways responsible for regulatory volume increase (RVI) and regulatory volume decrease (RVD). During cell volume changes hydrostatic pressure (HP) changes drive alterations in the cell membrane curvature. HP difference has opposite directions in swelling versus shrinkage, thus allowing distinction between them. By analogy with actomyosin contractility that appears to sense stiffness of the extracellular matrix we propose that NMMII and actin polymerization can actively probe the transmembrane gradient in HP. Furthermore, NMMII and protein-protein interactions in the actin cortex are sensitive to ionic strength. Emerging data on direct binding to and regulating activities of transmembrane mechanosensors by NMMII and actin cortex provide routes for signal transduction from transmembrane mechanosensors to cell volume regulatory mechanisms.
Collapse
Affiliation(s)
| | - Muhammad Aslam
- Department of Internal Medicine I, Experimental Cardiology, Justus Liebig University, 35392 Giessen, Germany;
| | - Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Carlota Saldanha
- Institute of Biochemistry, Institute of Molecular Medicine, Faculty of Medicine University of Lisbon, 1649-028 Lisboa, Portugal;
| | | | - Giuseppe Uras
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK;
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| |
Collapse
|
12
|
Trial J, Diaz Lankenau R, Angelini A, Tovar Perez JE, Taffet GE, Entman ML, Cieslik KA. Treatment with a DC-SIGN ligand reduces macrophage polarization and diastolic dysfunction in the aging female but not male mouse hearts. GeroScience 2021; 43:881-899. [PMID: 32851570 PMCID: PMC8110645 DOI: 10.1007/s11357-020-00255-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiac diastolic dysfunction in aging arises from increased ventricular stiffness caused by inflammation and interstitial fibrosis. The diastolic dysfunction contributes to heart failure with preserved ejection fraction (HFpEF), which in the aging population is more common in women. This report examines its progression over 12 weeks in aging C57BL/6J mice and correlates its development with changes in macrophage polarization and collagen deposition.Aged C57BL/6J mice were injected with dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) ligand 1 (DCSL1, an anti-inflammatory agent) or saline for 12 weeks. Echo and Doppler measurements were performed before and after 4 and 12 weeks of treatment. DCSL1 prevented the worsening of diastolic dysfunction over time in females but not in males. Cardiac single cell suspensions analyzed by flow cytometry revealed changes in the inflammatory infiltrate: (1) in males, there was an increased total number of leukocytes with an increased pro-inflammatory profile compared with females and they did not respond to DCSL1; (2) by contrast, DCSL1 treatment resulted in a shift in macrophage polarization to an anti-inflammatory phenotype in females. Notably, DCSL1 preferentially targeted tumor necrosis factor-α (TNFα+) pro-inflammatory macrophages. The reduction in pro-inflammatory macrophage polarization was accompanied by a decrease in collagen content in the heart.Age-associated diastolic dysfunction in mice is more severe in females and is associated with unique changes in macrophage polarization in cardiac tissue. Treatment with DCSL1 mitigates the changes in inflammation, cardiac function, and fibrosis. The characteristics of diastolic dysfunction in aging female mice mimic similar changes in aging women.
Collapse
Affiliation(s)
- JoAnn Trial
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
| | - Rodrigo Diaz Lankenau
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
| | - Aude Angelini
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
| | - Jorge E Tovar Perez
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
- Texas A&M University, 2121 W. Holcombe Blvd, Houston, TX, 77030, USA
| | - George E Taffet
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
- The DeBakey Heart Center, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Mark L Entman
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
- The DeBakey Heart Center, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Katarzyna A Cieslik
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, largely associated to morbidity and mortality. Over the past decades, research in appearance and progression of this arrhythmia have turned into significant advances in its management. However, the incidence of AF continues to increase with the aging of the population and many important fundamental and translational underlaying mechanisms remain elusive. Here, we review recent advances in molecular and cellular basis for AF initiation, maintenance and progression. We first provide an overview of the basic molecular and electrophysiological mechanisms that lead and characterize AF. Next, we discuss the upstream regulatory factors conducting the underlying mechanisms which drive electrical and structural AF-associated remodeling, including genetic factors (risk variants associated to AF as transcriptional regulators and genetic changes associated to AF), neurohormonal regulation (i.e., cAMP) and oxidative stress imbalance (cGMP and mitochondrial dysfunction). Finally, we discuss the potential therapeutic implications of those findings, the knowledge gaps and consider future approaches to improve clinical management.
Collapse
|
14
|
Escudero DS, Pérez NG, Díaz RG. Myocardial Impact of NHE1 Regulation by Sildenafil. Front Cardiovasc Med 2021; 8:617519. [PMID: 33693035 PMCID: PMC7937606 DOI: 10.3389/fcvm.2021.617519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The cardiac Na+/H+ exchanger (NHE1) is a membrane glycoprotein fundamental for proper cell functioning due its multiple housekeeping tasks, including regulation of intracellular pH, Na+ concentration, and cell volume. In the heart, hyperactivation of NHE1 has been linked to the development of different pathologies. Several studies in animal models that reproduce the deleterious effects of ischemia/reperfusion injury or cardiac hypertrophy have conclusively demonstrated that NHE1 inhibition provides cardioprotection. Unfortunately, NHE1 inhibitors failed to reproduce these effects in the clinical arena. The reasons for those discrepancies are not apparent yet. However, a reasonable clue to consider would be that drugs that completely abolish the exchanger activity, including that its essential housekeeping function may not be the best therapeutic approach. Therefore, interventions tending to specifically reduce its hyperactive state without affecting its basal activity emerge as a novel potential gold standard. In this regard, a promising goal seems to be the modulation of the phosphorylation state of the cytosolic tail of the exchanger. Recent own experiments demonstrated that Sildenafil, a phosphodiesterase 5A inhibitor drug that has been widely used for the treatment of erectile dysfunction is able to decrease NHE1 phosphorylation, and hence reduce its hyperactivity. In connection, growing evidence demonstrates cardioprotective properties of Sildenafil against different cardiac pathologies, with the distinctive characteristic of directly affecting cardiac tissue without altering blood pressure. This mini-review was aimed to focus on the regulation of NHE1 activity by Sildenafil. For this purpose, experimental data reporting Sildenafil effects in different animal models of heart disease will be discussed.
Collapse
Affiliation(s)
- Daiana S Escudero
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Néstor G Pérez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Romina G Díaz
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
15
|
Kandilci HB, Richards MA, Fournier M, Şimşek G, Chung YJ, Lakhal-Littleton S, Swietach P. Cardiomyocyte Na +/H + Exchanger-1 Activity Is Reduced in Hypoxia. Front Cardiovasc Med 2021; 7:617038. [PMID: 33585583 PMCID: PMC7873356 DOI: 10.3389/fcvm.2020.617038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/29/2020] [Indexed: 12/30/2022] Open
Abstract
Fully-activated Na+/H+ exchanger-1 (NHE1) generates the cardiomyocyte's largest trans-membrane extrusion of H+ ions for an equimolar influx of Na+ ions. This has the desirable effect of clearing excess intracellular acidity, but comes at a large energetic premium because the exchanged Na+ ions must ultimately be extruded by the sodium pump, a process that consumes the majority of the heart's non-contractile ATP. We hypothesize that the state of NHE1 activation depends on metabolic resources, which become limiting in periods of myocardial hypoxia. To test this functionally, NHE1 activity was measured in response to in vitro and in vivo hypoxic treatments. NHE1 flux was interrogated as a function of intracellular pH by fluorescence imaging of rodent ventricular myocytes loaded with pH-sensitive dyes BCECF or cSNARF1. Anoxic superfusates promptly inhibited NHE1, tracking the time-course of mitochondrial depolarization. Mass spectrometry of NHE1 immuno-precipitated from Langendorff-perfused anoxic hearts identified Tyr-581 dephosphorylation and Tyr-561 phosphorylation. The latter residue is part of the domain that interacts with phosphatidylinositol 4,5-bisphosphate (PIP2), a membrane lipid that becomes depleted under metabolic inhibition. Tyr-561 phosphorylation is expected to electrostatically weaken this activatory interaction. To test if a period of hypoxia produces a persistent inhibition of NHE1, measurements under normoxia were performed on myocytes that had been incubated in 2% O2 for 4 h. NHE1 activity remained inhibited, but the effect was ablated in the presence of Dasatinib, an inhibitor of Abl/Src-family tyrosine kinases. Chronic tissue hypoxia in vivo, attained in a mouse model of anemic hypoxia, also resulted in persistently slower NHE1. In summary, we show that NHE1 responds to oxygen, a physiologically-relevant metabolic regulator, ostensibly to divert ATP for contraction. We describe a novel mechanism of NHE1 inhibition that may be relevant in cardiac disorders featuring altered oxygen metabolism, such as myocardial ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Hilmi Burak Kandilci
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Mark A Richards
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Marjorie Fournier
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Gül Şimşek
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Yu Jin Chung
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pawel Swietach
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Zhang M, Shah AM. Nitric oxide fine-tunes NHE1 to control cardiomyocyte pH. Cardiovasc Res 2020; 116:1925-1926. [PMID: 32176247 DOI: 10.1093/cvr/cvaa065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Min Zhang
- Department of Cardiology, King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ajay M Shah
- Department of Cardiology, King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|