1
|
Gu B, Jiang Y, Huang Z, Li H, Yu W, Li T, Liu C, Wang P, Chen J, Sun L, Tan P, Fu W, Wen J. MRG15 aggravates sepsis-related liver injury by promoting PCSK9 synthesis and secretion. Int Immunopharmacol 2024; 140:112898. [PMID: 39128417 DOI: 10.1016/j.intimp.2024.112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE Disorders of lipid oxidation play an important role in organ damage, and lipid metabolites are associated with inflammation and coagulation dysfunction in sepsis. However, the specific molecular mechanism by which lipid metabolism-related proteins regulate sepsis is still unclear. The aim of this study is to investigate the role of mortality factor 4-like protein 1 (MORF4L1, also called MRG15), a hepatic lipid metabolism related gene, in sepsis-induced liver injury. METHODS In the mouse sepsis models established by cecal ligation and puncture (CLP) and lipopolysaccharide (LPS), the impact of pretreatment with the MRG15 inhibitor argatroban on sepsis-related liver injury was investigated. In the LPS-induced hepatocyte sepsis cell model, the effects of MRG15 overexpression or knockdown on hepatic inflammation and lipid metabolism were studied. Additionally, in a co-culture system of hepatocytes and macrophages, the influence of MRG15 knockdown in hepatocytes on the synthesis and secretion of inflammation-related protein PCSK9 as well as its effect on macrophage activation were examined. RESULTS Studies have shown that MRG15 expression was increased in septicemia mice and positively correlated with lipid metabolism and inflammation. However, knockdown of MRG15 ameliorates sepsis-induced hepatocyte injury. Increased MRG15 in LPS-stimulated hepatocytes promotes PCSK9 synthesis and secretion, which induces macrophage M1 polarization and exacerbates the inflammatory response. Agatroban, an inhibitor of MRG15, ameliorates sepsis-induced liver injury in mice by inhibiting MRG15-induced lipid metabolism disorders and inflammatory responses. CONCLUSIONS In sepsis, increased MRG15 expression in hepatocytes leads to disturbed hepatic lipid metabolism and induces macrophage M1 polarization by secreting PCSK9, ultimately exacerbating liver injury.
Collapse
Affiliation(s)
- Boyuan Gu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yu Jiang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhiwei Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Han Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Wenhao Yu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tongxi Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Pengru Wang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jiatong Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lei Sun
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Peng Tan
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China.
| | - Jian Wen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China.
| |
Collapse
|
2
|
Tauil RB, Golono PT, de Lima EP, de Alvares Goulart R, Guiguer EL, Bechara MD, Nicolau CCT, Yanaguizawa Junior JL, Fiorini AMR, Méndez-Sánchez N, Abenavoli L, Direito R, Valente VE, Laurindo LF, Barbalho SM. Metabolic-Associated Fatty Liver Disease: The Influence of Oxidative Stress, Inflammation, Mitochondrial Dysfunctions, and the Role of Polyphenols. Pharmaceuticals (Basel) 2024; 17:1354. [PMID: 39458995 PMCID: PMC11510109 DOI: 10.3390/ph17101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic-Associated Fatty Liver Disease (MAFLD) is a clinical-pathological scenario that occurs due to the accumulation of triglycerides in hepatocytes which is considered a significant cause of liver conditions and contributes to an increased risk of death worldwide. Even though the possible causes of MAFLD can involve the interaction of genetics, hormones, and nutrition, lifestyle (diet and sedentary lifestyle) is the most influential factor in developing this condition. Polyphenols comprise many natural chemical compounds that can be helpful in managing metabolic diseases. Therefore, the aim of this review was to investigate the impact of oxidative stress, inflammation, mitochondrial dysfunction, and the role of polyphenols in managing MAFLD. Some polyphenols can reverse part of the liver damage related to inflammation, oxidative stress, or mitochondrial dysfunction, and among them are anthocyanin, baicalin, catechin, curcumin, chlorogenic acid, didymin, epigallocatechin-3-gallate, luteolin, mangiferin, puerarin, punicalagin, resveratrol, and silymarin. These compounds have actions in reducing plasma liver enzymes, body mass index, waist circumference, adipose visceral indices, lipids, glycated hemoglobin, insulin resistance, and the HOMA index. They also reduce nuclear factor-KB (NF-KB), interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), blood pressure, liver fat content, steatosis index, and fibrosis. On the other hand, they can improve HDL-c, adiponectin levels, and fibrogenesis markers. These results show that polyphenols are promising in the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Raissa Bulaty Tauil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Paula Takano Golono
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Claudia C. T. Nicolau
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - José Luiz Yanaguizawa Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriana M. R. Fiorini
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Vitor Engrácia Valente
- Autonomic Nervous System Center, School of Philosophy and Sciences, São Paulo State University, Marília 17525-902, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil;
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
- Research Coordination, UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| |
Collapse
|
3
|
Huang Q, Zhou Z, Xu L, Zhan P, Huang G. PCSK9 inhibitor attenuates cardiac fibrosis in reperfusion injury rat by suppressing inflammatory response and TGF-β1/Smad3 pathway. Biochem Pharmacol 2024; 230:116563. [PMID: 39362501 DOI: 10.1016/j.bcp.2024.116563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Progressive cardiac fibrosis, a hallmark of heart failure, remains poorly understood regarding Proprotein convertase subtilisin/kexin type 9 (PCSK9) 's role. This study aims to elucidate PCSK9's involvement in cardiac fibrosis. After ischemia/reperfusion (I/R) injury surgery in rats, PCSK9 inhibitors were used to examine their effects on the transforming growth factor-β1 (TGF-β1)/small mother against decapentaplegic 3 (Smad3) pathway and inflammation. Elevated PCSK9, TGF-β1, and Smad3 levels were observed in cardiac tissues post-I/R injury, indicating fibrosis. PCSK9 inhibition reduced pro-fibrotic protein expression, protecting the heart and mitigating I/R-induced damage and fibrosis. Additionally, it ameliorated cardiac inflammation and reduced post-myocardial infarction (MI) size, improving cardiac function and slowing heart failure progression. PCSK9 inhibitors significantly attenuate myocardial fibrosis induced by I/R via the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
- Qing Huang
- Department of Cardiovascular Medicine, Anshun City People's Hospital, Anshun 561000, Guizhou, China
| | - Zhina Zhou
- Department of Hematology, Anshun City People's Hospital, Anshun 561000, Guizhou, China
| | - Lei Xu
- Anshun Maternal and Child Health Care Hospital, Anshun 561000, Guizhou, China
| | - Peng Zhan
- Department of Cardiovascular Medicine, Anshun City People's Hospital, Anshun 561000, Guizhou, China
| | - Guangwei Huang
- Department of Cardiovascular Medicine, Anshun City People's Hospital, Anshun 561000, Guizhou, China.
| |
Collapse
|
4
|
Wang H, Hu X, Zhang Y, Zhu A, Fan J, Wu Z, Wang X, Hu W, Ju D. Simultaneously blocking ANGPTL3 and IL-1β for the treatment of atherosclerosis through lipid-lowering and anti-inflammation. Inflamm Res 2024:10.1007/s00011-024-01941-1. [PMID: 39254873 DOI: 10.1007/s00011-024-01941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVE Blood lipid levels play a critical role in the progression of atherosclerosis. However, even with adequate lipid reduction, significant residual cardiovascular risk remains. Therefore, it is necessary to seek novel therapeutic strategies for atherosclerosis that can not only lower lipid levels but also inhibit inflammation simultaneously. METHODS The fusion protein FD03-IL-1Ra was designed by linking the Angiopoietin-like 3 (ANGPTL3) nanobody and human interleukin-1 receptor antagonist (IL-1Ra) sequences to a mutated human immunoglobulin gamma 1 (IgG1) Fc. This construct was transfected into HEK293 cells for expression. The purity and thermal stability of the fusion protein were assessed using SDS-PAGE, SEC-HPLC, and differential scanning calorimetry. Binding affinities of the fusion protein to ANGPTL3 and IL-1 receptor were measured using Biacore T200. The biological activity of the fusion protein was validated through in vitro experiments. The therapeutic efficacy of the fusion protein was evaluated in an ApoE-/- mouse model of atherosclerosis, including serum lipid level determination, histological analysis of aorta and aortic sinus sections, and detection of inflammatory and oxidative stress markers. ImageJ software was utilized for quantitative image analysis. Statistical analysis was performed using one-way ANOVA followed by Bonferroni post hoc test. RESULTS The FD03-IL-1Ra fusion protein was successfully expressed, with no polymer formation detected, and it demonstrated good thermal and conformational stability. High affinity for both murine and human ANGPTL3 was exhibited by FD03-IL-1Ra, and it was able to antagonize hANGPTL3's inhibition of LPL activity. FD03-IL-1Ra also showed high affinity for both murine and human IL-1R, inhibiting IL-6 expression in A549 cells induced by IL-1β stimulation, as well as suppressing IL-1β-induced activity inhibition in A375.S2 cells. Our study revealed that the fusion protein effectively lowered serum lipid levels and alleviated inflammatory responses in mice. Furthermore, the fusion protein enhanced plaque stability by increasing collagen content within atherosclerotic plaques. CONCLUSIONS These findings highlighted the potential of bifunctional interleukin-1 receptor antagonist and ANGPTL3 antibody fusion proteins for ameliorating the progression of atherosclerosis, presenting a promising novel therapeutic approach targeting both inflammation and lipid levels.
Collapse
Affiliation(s)
- Hanqi Wang
- Department of Cardiology, Minhang Hospital, Fudan University, No. 170 Zisong Road, Minhang District, Shanghai, China
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, No. 826 Zhangheng Road, Pudong New District, Shanghai, China
| | - Xiaozhi Hu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, No. 826 Zhangheng Road, Pudong New District, Shanghai, China
| | - Yuting Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, No. 826 Zhangheng Road, Pudong New District, Shanghai, China
| | - An Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, No. 826 Zhangheng Road, Pudong New District, Shanghai, China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, No. 826 Zhangheng Road, Pudong New District, Shanghai, China
| | - Zhengyu Wu
- TAU Cambridge Ltd, The Bradfield Centre UNIT 184, Cambridge Science Park, Cambridge, CB4 0GA, UK
| | - Xuebin Wang
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Luding Road, Putuo District, Shanghai, China.
| | - Wei Hu
- Department of Cardiology, Minhang Hospital, Fudan University, No. 170 Zisong Road, Minhang District, Shanghai, China.
| | - Dianwen Ju
- Department of Cardiology, Minhang Hospital, Fudan University, No. 170 Zisong Road, Minhang District, Shanghai, China.
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, No. 826 Zhangheng Road, Pudong New District, Shanghai, China.
| |
Collapse
|
5
|
Kordi N, Sanaei M, Akraminia P, Yavari S, Saydi A, Abadi FK, Heydari N, Jung F, Karami S. PANoptosis and cardiovascular disease: The preventive role of exercise training. Clin Hemorheol Microcirc 2024:CH242396. [PMID: 39269827 DOI: 10.3233/ch-242396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Regulated cell death, including pyroptosis, apoptosis, and necroptosis, is vital for the body's defense system. Recent research suggests that these three types of cell death are interconnected, giving rise to a new concept called PANoptosis. PANoptosis has been linked to various diseases, making it crucial to comprehend its mechanism for effective treatments. PANoptosis is controlled by upstream receptors and molecular signals, which form polymeric complexes known as PANoptosomes. Cell death combines necroptosis, apoptosis, and pyroptosis and cannot be fully explained by any of these processes alone. Understanding pyroptosis, apoptosis, and necroptosis is essential for understanding PANoptosis. Physical exercise has been shown to suppress pyroptotic, apoptotic, and necroptotic signaling pathways by reducing inflammatory factors, proapoptotic factors, and necroptotic factors such as caspases and TNF-alpha. This ultimately leads to a decrease in cardiac structural remodeling. The beneficial effects of exercise on cardiovascular health may be attributed to its ability to inhibit these cell death pathways.
Collapse
Affiliation(s)
- Negin Kordi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | | | - Peyman Akraminia
- Department of Sports Physiology, Faculty of Physical Education and Sports Sciences, Islamic Azad University, South Tehran Branch, Iran
| | - Sajad Yavari
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ali Saydi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Fatemeh Khamis Abadi
- Department of Sport Physiology, Faculty of Human Sciences, Islamic Azad University, Borujerd, Iran
| | - Naser Heydari
- Faculty of Physical Education and Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Friedrich Jung
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Sajad Karami
- Faculty of Physical Education and Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
6
|
Guo H, Li W, Yang Z, Xing X. E3 ubiquitin ligase MARCH1 reduces inflammation and pyroptosis in cerebral ischemia-reperfusion injury via PCSK9 downregulation. Mamm Genome 2024; 35:346-361. [PMID: 39115562 DOI: 10.1007/s00335-024-10055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
Pyroptosis has been regarded as caspase-1-mediated monocyte death that induces inflammation, showing a critical and detrimental role in the development of cerebral ischemia-reperfusion injury (IRI). MARCH1 is an E3 ubiquitin ligase that exerts potential anti-inflammatory functions. Therefore, the study probed into the significance of MARCH1 in inflammation and pyroptosis elicited by cerebral IRI. Middle cerebral artery occlusion/reperfusion (MCAO/R)-treated mice and oxygen glucose deprivation/reoxygenation (OGD/R)-treated hippocampal neurons were established to simulate cerebral IRI in vivo and in vitro. MARCH1 and PCSK9 expression was tested in MCAO/R-operated mice, and their interaction was identified by means of the cycloheximide assay and co-immunoprecipitation. The functional roles of MARCH1 and PCSK9 in cerebral IRI were subsequently determined by examining the neurological function, brain tissue changes, neuronal viability, inflammation, and pyroptosis through ectopic expression and knockdown experiments. PCSK9 expression was increased in the brain tissues of MCAO/R mice, while PCSK9 knockdown reduced brain damage and neurological deficits. Additionally, inflammation and pyroptosis were inhibited in OGD/R-exposed hippocampal neurons upon PCSK9 knockdown, accompanied by LDLR upregulation and NLRP3 inflammasome inactivation. Mechanistic experiments revealed that MARCH1 mediated ubiquitination and degradation of PCSK9, lowering PCSK9 protein expression. Furthermore, it was demonstrated that MARCH1 suppressed inflammation and pyroptosis after cerebral IRI by downregulating PCSK9 both in vivo and in vitro. Taken together, the present study demonstrate the protective effect of MARCH1 against cerebral IRI through PCSK9 downregulation, which might contribute to the discovery of new therapies for improving cerebral IRI.
Collapse
Affiliation(s)
- Hongmei Guo
- Department of Neurology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan City, Hubei Province, 430080, China
| | - Wanli Li
- Department of Neurology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan City, Hubei Province, 430080, China
| | - Zhigang Yang
- Department of Neurology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan City, Hubei Province, 430080, China
| | - Xiaobin Xing
- Department of Neurology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan City, Hubei Province, 430080, China.
| |
Collapse
|
7
|
Dutka M, Zimmer K, Ćwiertnia M, Ilczak T, Bobiński R. The role of PCSK9 in heart failure and other cardiovascular diseases-mechanisms of action beyond its effect on LDL cholesterol. Heart Fail Rev 2024; 29:917-937. [PMID: 38886277 PMCID: PMC11306431 DOI: 10.1007/s10741-024-10409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a protein that regulates low-density lipoprotein (LDL) cholesterol metabolism by binding to the hepatic LDL receptor (LDLR), ultimately leading to its lysosomal degradation and an increase in LDL cholesterol (LDLc) levels. Treatment strategies have been developed based on blocking PCSK9 with specific antibodies (alirocumab, evolocumab) and on blocking its production with small regulatory RNA (siRNA) (inclisiran). Clinical trials evaluating these drugs have confirmed their high efficacy in reducing serum LDLc levels and improving the prognosis in patients with atherosclerotic cardiovascular diseases. Most studies have focused on the action of PCSK9 on LDLRs and the subsequent increase in LDLc concentrations. Increasing evidence suggests that the adverse cardiovascular effects of PCSK9, particularly its atherosclerotic effects on the vascular wall, may also result from mechanisms independent of its effects on lipid metabolism. PCSK9 induces the expression of pro-inflammatory cytokines contributing to inflammation within the vascular wall and promotes apoptosis, pyroptosis, and ferroptosis of cardiomyocytes and is thus involved in the development and progression of heart failure. The elimination of PCSK9 may, therefore, not only be a treatment for hypercholesterolaemia but also for atherosclerosis and other cardiovascular diseases. The mechanisms of action of PCSK9 in the cardiovascular system are not yet fully understood. This article reviews the current understanding of the mechanisms of PCSK9 action in the cardiovascular system and its contribution to cardiovascular diseases. Knowledge of these mechanisms may contribute to the wider use of PCSK9 inhibitors in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mieczysław Dutka
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland.
| | - Karolina Zimmer
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| | - Michał Ćwiertnia
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Tomasz Ilczak
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Rafał Bobiński
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| |
Collapse
|
8
|
Dimitriadis K, Pyrpyris N, Iliakis P, Beneki E, Adamopoulou E, Papanikolaou A, Konstantinidis D, Fragkoulis C, Kollias A, Aznaouridis K, Tsioufis K. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors in Patients Following Acute Coronary Syndromes: From Lipid Lowering and Plaque Stabilization to Improved Outcomes. J Clin Med 2024; 13:5040. [PMID: 39274253 PMCID: PMC11396287 DOI: 10.3390/jcm13175040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Lipid lowering, with the use of statins after an acute coronary syndrome (ACS), is a cornerstone, well-established strategy for the secondary prevention of ischemic events in this high-risk cohort. In addition to the positive effect on lipid levels, statins have also been linked to improved atherosclerotic plaque characteristics, such as plaque regression and inflammation reduction, associated with the extent of reduction in LDL-C. The recent emergence of PCSK9 inhibitors for the management of dyslipidemia and the more extensive lipid lowering provided by these agents may provide better prevention for ACS patients when initiated after the ACS event. Several trials have evaluated the immediate post-ACS initiation of PCSK9 inhibitors, which has shown, to date, beneficial results. Furthermore, PCSK9 inhibitors have been linked with positive plaque remodeling and associated mortality benefits, which makes their use in the initial management strategy of such patients appealing. Therefore, in this review, we will analyze the rationale behind immediate lipid lowering after an ACS, report the evidence of PCSK9 inhibition immediately after the ACS event and the available data on plaque stabilization, and discuss treatment algorithms and clinical perspectives for the use of these agents in this clinical setting.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Panagiotis Iliakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Eleni Adamopoulou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Aggelos Papanikolaou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Dimitrios Konstantinidis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Anastasios Kollias
- Hypertension Center STRIDE-7, Third Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, 15772 Athens, Greece
| | - Konstantinos Aznaouridis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| |
Collapse
|
9
|
Su H, Wang X, Wang L, Yuan N. Therapeutic Targeting of Pattern Recognition Receptors to Modulate Inflammation in Atherosclerosis. Cell Biochem Biophys 2024:10.1007/s12013-024-01481-9. [PMID: 39145823 DOI: 10.1007/s12013-024-01481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Atherosclerosis (AS), a potentially fatal cardiovascular disease (CVD), is a chronic inflammatory condition. The disease's onset and progression are influenced by inflammatory and immunological mechanisms. The innate immune pathways are essential in the progression of AS, as they are responsible for detecting first danger signals and causing long-term changes in immune cells. The innate immune system possesses distinct receptors known as pattern recognition receptors (PRRs) which can identify both pathogen-associated molecular patterns and danger-associated molecular signals. Activation of PRRs initiates the inflammatory response in various physiological systems, such as the cardiovascular system. This review specifically examines the contribution of the innate immune response and PRRs to the formation and advancement of AS. Studying the role of these particular receptors in AS would enhance our understanding of the development of AS and offer novel approaches for directly improving the inflammatory response associated with it.
Collapse
Affiliation(s)
- Hongyan Su
- Cardiology Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130000, China
| | - Xiancheng Wang
- Cardiology Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130000, China
| | - Lu Wang
- Cardiology Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130000, China
| | - Na Yuan
- Rheumatology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 30000, China.
| |
Collapse
|
10
|
Ghalali A, Alhamdan F, Upadhyay S, Ganguly K, Larsson K, Palmberg L, Rahman M. Contrasting effects of intracellular and extracellular human PCSK9 on inflammation, lipid alteration and cell death. Commun Biol 2024; 7:985. [PMID: 39138259 PMCID: PMC11322528 DOI: 10.1038/s42003-024-06674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is one of the major regulators of low-density lipoprotein receptor (LDLR). Information on role and regulation of PCSK9 in lung is very limited. Our study focuses on understanding the role and regulation of PCSK9 in the lung. PCSK9 levels are higher in Bronchoalveolar lavage fluid (BALF) of smokers with or without chronic obstructive pulmonary diseases (COPD) compared to BALF of nonsmokers. PCSK9-stimulated cells induce proinflammatory cytokines and activation of MAPKp38. PCSK9 transcripts are highly expressed in healthy individuals compared to COPD, pulmonary fibrosis or pulmonary systemic sclerosis. Cigarette smoke extract reduce PCSK9 levels in undifferentiated pulmonary bronchial epithelial cells (PBEC) but induce in differentiated PBEC. PCSK9 inhibition affect biological pathways, induces lipid peroxidation, and higher level of apoptosis in response to staurosporine. Our results suggest that higher levels of PCSK9 in BALF acts as an inflammatory marker. Furthermore, extracellular and intracellular PCSK9 play different roles.
Collapse
Affiliation(s)
- Aram Ghalali
- Vascular Biology Program, Boston Children Hospital, Harvard Medical school, Boston, MA, USA
| | - Fahd Alhamdan
- Department of Anesthesiology, Critical Care, and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Insitutet, Stockholm, Sweden
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Insitutet, Stockholm, Sweden
| | - Kjell Larsson
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Insitutet, Stockholm, Sweden
| | - Lena Palmberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Insitutet, Stockholm, Sweden
| | - Mizanur Rahman
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Insitutet, Stockholm, Sweden.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Wang Y, Yan K, Duan H, Tao N, Zhu S, Zhang Y, You Y, Zhang Z, Wang H, Hu S. High-fat-diet-induced obesity promotes simultaneous progression of lung cancer and atherosclerosis in apolipoprotein E-knockout mice. CANCER INNOVATION 2024; 3:e127. [PMID: 38948249 PMCID: PMC11212317 DOI: 10.1002/cai2.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 01/19/2024] [Indexed: 07/02/2024]
Abstract
Background Clinical studies have shown that atherosclerotic cardiovascular disease and cancer often co-exist in the same individual. The present study aimed to investigate the role of high-fat-diet (HFD)-induced obesity in the coexistence of the two diseases and the underlying mechanism in apolipoprotein E-knockout (ApoE-/-) mice. Methods Male ApoE-/- mice were fed with a HFD or a normal diet (ND) for 15 weeks. On the first day of Week 13, the mice were inoculated subcutaneously in the right axilla with Lewis lung cancer cells. At Weeks 12 and 15, serum lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and vascular endothelial growth factor levels were measured by enzyme-linked immunosorbent assay, and blood monocytes and macrophages were measured by fluorescence-activated cell sorting. At Week 15, the volume and weight of the local subcutaneous lung cancer and metastatic lung cancer and the amount of aortic atherosclerosis were measured. Results At Week 15, compared with mice in the ND group, those in the HFD group had a larger volume of local subcutaneous cancer (p = 0.0004), heavier tumors (p = 0.0235), more metastatic cancer in the lungs (p < 0.0001), a larger area of lung involved in metastatic cancer (p = 0.0031), and larger areas of atherosclerosis in the aorta (p < 0.0001). At Week 12, serum LOX-1, serum vascular endothelial growth factor, and proportions of blood monocytes and macrophages were significantly higher in the HFD group than those in the ND group (p = 0.0002, p = 0.0029, p = 0.0480, and p = 0.0106, respectively); this trend persisted until Week 15 (p = 0.0014, p = 0.0012, p = 0.0001, and p = 0.0204). Conclusions In this study, HFD-induced obesity could simultaneously promote progression of lung cancer and atherosclerosis in the same mouse. HFD-induced upregulation of LOX-1 may play an important role in the simultaneous progression of these two conditions via the inflammatory response and VEGF.
Collapse
Affiliation(s)
- Yihao Wang
- Department of CardiologyChinese PLA General HospitalBeijingChina
| | - Kaixin Yan
- Department of CardiologyChinese PLA General HospitalBeijingChina
| | - Han Duan
- Beijing Institute of Radiation MedicineBeijingChina
| | - Ning Tao
- Beijing Institute of Radiation MedicineBeijingChina
| | - Shaoning Zhu
- Department of CardiologyChinese PLA General HospitalBeijingChina
| | - Yuning Zhang
- Beijing Institute of Radiation MedicineBeijingChina
| | - Yonggang You
- Department of OrthopaedicsChinese PLA General HospitalBeijingChina
| | - Zhen Zhang
- Department of OrthopaedicsChinese PLA General HospitalBeijingChina
| | - Hua Wang
- Beijing Institute of Radiation MedicineBeijingChina
| | - Shunying Hu
- Department of CardiologyChinese PLA General HospitalBeijingChina
| |
Collapse
|
12
|
Zheng J, Li T, Hu F, Chen B, Xu M, Yan S, Lu C. Predictive value of peripheral neutrophil count on admission for young patients with acute coronary syndrome. Am J Med Sci 2024:S0002-9629(24)01389-2. [PMID: 39084522 DOI: 10.1016/j.amjms.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The present study aimed to explore the relationship between neutrophil count on admission and major adverse cardiovascular and cerebrovascular events (MACCE) and left ventricular ejection fraction (LVEF) during hospitalization in young ACS patients, which have rarely been investigated in previous studies. METHODS This study included 400 young ACS patients (<45 years old) who underwent coronary angiography. According to the median neutrophil count at admission, the patients were divided into two groups. The relationship between neutrophil count and MACCE and LVEF during hospitalization was analyzed by regression analysis. The receiver operating characteristic (ROC) curve and the Youden index was used to determine the optimal cut-off value of neutrophil count. RESULTS Neutrophil count at admission was an independent risk factor of in-hospital MACCE (OR: 1.33, 95 % CI: 1.13-1.56, P<0.001) and LVEF <50 % (OR: 1.28, 95 % CI: 1.12-1.47, P<0.001) in young ACS patients.The cutoff value of neutrophil count for predicting the occurrence of in-hospital MACCE was 6.935 × 10^9/L with a sensitivity of 92.1 %, specificity of 59.4 %, and AUC is 0.820 (95 % CI: 0.7587-0.8804, P<0.001), and for identifying the LVEF <50 % was 8.660 × 10^9/L with a sensitivity of 69.8 %, specificity of 76.8 %, and AUC is 0.775 (95 % CI: 0.6997-0.8505, P<0.001). CONCLUSION The neutrophil count upon admission is an independent predictor of in-hospital MACCE and LVEF in young ACS patients, giving important information for predicting the poor prognosis of young ACS patients.
Collapse
Affiliation(s)
- Jia Zheng
- The First Central Clinical School, Tianjin Medical University, Tianjin, China; Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Tingting Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fang Hu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Bingwei Chen
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Mengping Xu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Shuangbing Yan
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China.
| |
Collapse
|
13
|
Lu F, Li E, Yang X. Proprotein convertase subtilisin/kexin type 9 deficiency in extrahepatic tissues: emerging considerations. Front Pharmacol 2024; 15:1413123. [PMID: 39139638 PMCID: PMC11319175 DOI: 10.3389/fphar.2024.1413123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily secreted by hepatocytes. PCSK9 is critical in liver low-density lipoprotein receptors (LDLRs) metabolism. In addition to its hepatocellular presence, PCSK9 has also been detected in cardiac, cerebral, islet, renal, adipose, and other tissues. Once perceived primarily as a "harmful factor," PCSK9 has been a focal point for the targeted inhibition of both systemic circulation and localized tissues to treat diseases. However, PCSK9 also contributes to the maintenance of normal physiological functions in numerous extrahepatic tissues, encompassing both LDLR-dependent and -independent pathways. Consequently, PCSK9 deficiency may harm extrahepatic tissues in close association with several pathophysiological processes, such as lipid accumulation, mitochondrial impairment, insulin resistance, and abnormal neural differentiation. This review encapsulates the beneficial effects of PCSK9 on the physiological processes and potential disorders arising from PCSK9 deficiency in extrahepatic tissues. This review also provides a comprehensive analysis of the disparities between experimental and clinical research findings regarding the potential harm associated with PCSK9 deficiency. The aim is to improve the current understanding of the diverse effects of PCSK9 inhibition.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Chen DQ, Xu WB, Xiao KY, Que ZQ, Feng JY, Sun NK, Cai DX, Rui G. PCSK9 inhibitors and osteoporosis: mendelian randomization and meta-analysis. BMC Musculoskelet Disord 2024; 25:548. [PMID: 39010016 PMCID: PMC11251371 DOI: 10.1186/s12891-024-07674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors represent an effective strategy for reducing cardiovascular disease risk. Yet, PCSK9's impact on osteoporosis remains unclear. Hence, we employed Mendelian randomization (MR) analysis for examining PCSK9 inhibitor effects on osteoporosis. METHODS Single nucleotide polymorphisms (SNPs) for 3-hydroxy-3-methylglutaryl cofactor A reductase (HMGCR) and PCSK9 were gathered from available online databases for European pedigrees. Four osteoporosis-related genome-wide association studies (GWAS) data served as the main outcomes, and coronary artery disease (CAD) as a positive control for drug-targeted MR analyses. The results of MR analyses examined by sensitivity analyses were incorporated into a meta-analysis for examining causality between PCSK9 and HMGCR inhibitors and osteoporosis. RESULTS The meta-analysis involving a total of 1,263,102 subjects, showed that PCSK9 inhibitors can increase osteoporosis risk (P < 0.05, I2, 39%). However, HMGCR inhibitors are not associated with osteoporosis risk. Additionally, a replication of the analysis was conducted with another exposure-related GWAS dataset, which led to similar conclusions. CONCLUSION PCSK9 inhibitors increase osteoporosis risk. However, HMGCR inhibitors are unremarkably linked to osteoporosis.
Collapse
Affiliation(s)
- Ding-Qiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Wen-Bin Xu
- Department of Orthopedics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Ke-Yi Xiao
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zhi-Qiang Que
- Department of Orthopedics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Jin-Yi Feng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Orthopedics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Nai-Kun Sun
- Department of Orthopedics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Di-Xin Cai
- Department of Orthopedics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Gang Rui
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, China.
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
- Department of Orthopedics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.
| |
Collapse
|
15
|
Sun X, Jia X, Tan Z, Fan D, Chen M, Cui N, Liu A, Liu D. Oral Nanoformulations in Cardiovascular Medicine: Advances in Atherosclerosis Treatment. Pharmaceuticals (Basel) 2024; 17:919. [PMID: 39065770 PMCID: PMC11279631 DOI: 10.3390/ph17070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerosis (AS) is the formation of atherosclerotic plaques on the walls of the arteries, causing them to narrow. If this occurs in the coronary arteries, the blood vessels may be completely blocked, resulting in myocardial infarction; if it occurs in the blood vessels of the brain, the blood vessels may be blocked, resulting in cerebral infarction, i.e., stroke. Studies have shown that the pathogenesis of atherosclerosis involves the processes of inflammation, lipid infiltration, oxidative stress, and endothelial damage, etc. SIRT, as a key factor regulating the molecular mechanisms of oxidative stress, inflammation, and aging, has an important impact on the pathogenesis of plaque formation, progression, and vulnerability. Statistics show that AS accounts for about 50 per cent of deaths in Western countries. Currently, oral medication is the mainstay of AS treatment, but its development is limited by side effects, low bioavailability and other unfavourable factors. In recent years, with the rapid development of nano-preparations, researchers have combined statins and natural product drugs within nanopreparations to improve their bioavailability. Based on this, this paper summarises the main pathogenesis of AS and also proposes new oral nanoformulations such as liposomes, nanoparticles, nanoemulsions, and nanocapsules to improve their application in the treatment of AS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aidong Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| |
Collapse
|
16
|
Chen SY, Kong XQ, Zhang JJ. Pathological Mechanism and Treatment of Calcified Aortic Stenosis. Cardiol Rev 2024; 32:320-327. [PMID: 38848535 DOI: 10.1097/crd.0000000000000510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Calcified aortic stenosis (AS) is one of the most common valvular heart diseases worldwide, characterized by progressive fibrocalcific remodeling and thickening of the leaflets, which ultimately leads to obstruction of blood flow. Its pathobiology is an active and complicated process, involving endothelial cell dysfunction, lipoprotein deposition and oxidation, chronic inflammation, phenotypic transformation of valve interstitial cells, neovascularization, and intravalvular hemorrhage. To date, no targeted drug has been proven to slow down or prevent disease progression. Aortic valve replacement is still the optimal treatment of AS. This article reviews the etiology, diagnosis, and management of calcified aortic stenosis and proposes novel potential therapeutic targets.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing 210006, China
| | - Xiang-Quan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing 210006, China
- Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing 210006, China
- Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| |
Collapse
|
17
|
Peng C, Li J, Chen Y, Zhang HR, Li TX, Jiang YH, Yang XY, Zhao Y. PCSK9 aggravated carotid artery stenosis in ApoE -/- mice by promoting the expression of tissue factors in endothelial cells via the TLR4/NF-κB pathway. Biochem Pharmacol 2024; 225:116314. [PMID: 38797271 DOI: 10.1016/j.bcp.2024.116314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Atherosclerosis, a chronic inflammatory disease, is the most relevant cause of carotid artery stenosis. Vascular endothelial cells (ECs) play a significant role in the development of atherosclerosis. In this chronic inflammatory environment, we aimed to investigate whether PCSK9 could mitigate atherosclerosis progression by reducing tissue factor expression in ECs via in vivo and in vitro assays. In vivo, we investigated the effect of PCSK9 inhibition on preventing atherosclerotic lesion formation in ApoE-/- mice fed a western diet. The results showed that inhibiting PCSK9 could significantly downregulate the protein expression of tissue factor (TF) in ECs to reduce the area of atherosclerotic plaques. In vitro, we incubated human umbilical vein endothelial cells (HUVECs) with lipopolysaccharide (LPS). We found that LPS-induced TF elevation was suppressed by a PCSK9 inhibitor at both the mRNA and protein levels and that the TLR4/NF-κB pathway was also suppressed by a PCSK9 inhibitor. With respect to plasma samples from patients with carotid artery stenosis, we also demonstrated that the expression of TF was positively correlated with that of PCSK9. Thus, in addition to regulating lipid metabolism, the regulation of endothelial cell TF expression through the TLR4/NF-κB pathway may be a potential mechanism of PCSK9 in promoting atherosclerotic carotid stenosis.
Collapse
Affiliation(s)
- Chao Peng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Jian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Heng-Rui Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Tian-Xing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yu-Hang Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xin-Yu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yan Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
18
|
Yang B, Hang S, Xu S, Gao Y, Yu W, Zang G, Zhang L, Wang Z. Macrophage polarisation and inflammatory mechanisms in atherosclerosis: Implications for prevention and treatment. Heliyon 2024; 10:e32073. [PMID: 38873669 PMCID: PMC11170185 DOI: 10.1016/j.heliyon.2024.e32073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterised by plaque accumulation in the arteries. Macrophages are immune cells that are crucial in the development of atherosclerosis. Macrophages can adopt different phenotypes, with the M1 phenotype promoting inflammation while the M2 phenotype counteracting it. This review focuses on the factors that drive the polarisation of M1 macrophages towards a pro-inflammatory phenotype during AS. Additionally, we explored metabolic reprogramming mechanisms and cytokines secretion by M1 macrophages. Hyperlipidaemia is widely recognised as a major risk factor for atherosclerosis. Modified lipoproteins released in the presence of hyperlipidaemia can trigger the release of cytokines and recruit circulating monocytes, which adhere to the damaged endothelium and differentiate into macrophages. Macrophages engulf lipids, leading to the formation of foam cells. As atherosclerosis progresses, foam cells become the necrotic core within the atherosclerotic plaques, destabilising them and triggering ischaemic disease. Furthermore, we discuss recent research focusing on targeting macrophages or inflammatory pathways for preventive or therapeutic purposes. These include statins, PCSK9 inhibitors, and promising nanotargeted drugs. These new developments hold the potential for the prevention and treatment of atherosclerosis and its related complications.
Collapse
Affiliation(s)
- Bo Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Sanhua Hang
- Department of Hematology, Affiliated Danyang Hospital of Nantong University, Danyang, 212300, China
| | - Siting Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yun Gao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Wenhua Yu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
19
|
Tang M, Yang S, Zou J, Li M, Sun Y, Wang M, Li W, He J, Chen Y, Tang Z. Global trends and research hotspots of PCSK9 and cardiovascular disease: a bibliometric and visual analysis. Front Cardiovasc Med 2024; 11:1336264. [PMID: 38887452 PMCID: PMC11180773 DOI: 10.3389/fcvm.2024.1336264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Background Cardiovascular disease (CVD) is a prevalent non-communicable disease globally and holds the position of being the primary cause of mortality worldwide. Consequently, considerable focus has been directed towards the prevention and management of CVD. PCSK9, a frequently targeted element in the treatment and prevention of CVD, can reduce cardiovascular risk by effectively lowering lipid levels even in the context of statin therapy. It also exhibits substantial potential in the diagnosis and treatment of familial hypercholesterolemia from genetic aspects. This bibliometric study aims to analyze and visualize the global trends and emerging hotspots of PCSK9 and CVD researches and provide researchers with new perspectives in further studies. Methods The data was obtained from the Web of Science Core Collection database. A total of 2,474 publications related to PCSK9 and CVD published between January 2006 and July 2023 were included. The VOSviewer was used to analyze most-cited references, co-authorship, co-citation, co-occurrence and generate a collaborative network map of authors, countries, and institutions. CiteSpace was used to analyze author and institution centroids, keyword bursts, and timeline graphs. Result A total of 2,474 articles related to CVD and PCSK9 were included. The number of articles and citations show an increasing trend from year to year. Publications were mainly from the United States. The most active institution was Amgen Inc. Watts, Gerald F. was the most prolific author. Atherosclerosis was the most published journal. Literature co-citation and keyword co-occurrence revealed that early studies focused on the lipid-lowering effects of PCSK9 inhibitors in the context of statins therapy, long-term efficacy, adverse effects, LDLR, diagnosis and treatment of familial hypercholesterolemia. In recent years, myocardial ischemic protection, CRISPR-based editing, and new therapeutic strategies for arteriosclerotic cardiovascular disease have gotten wide attention. The protein convertase, inflammation, beta-polyacetate, and inclisiran may be the important future research directions. Conclusion This study analyses the current status and global trends in the CVD and PCSK9 studies comprehensively, which may provide researchers and policymakers with new and comprehensive perspectives on in this field of research.
Collapse
Affiliation(s)
- Masong Tang
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| | - Sen Yang
- Department of Urology, Hunan University of Medicine General Hospital, Huaihua, Hunan, China
| | - Junying Zou
- Department of Gynecologic, Hunan University of Medicine General Hospital, Huaihua, Hunan, China
| | - Meng Li
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Sun
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| | - Mengqi Wang
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| | - Wanhan Li
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| | - Junhui He
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| | - Ying Chen
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| | - Zhanyou Tang
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
20
|
Xu L, Wang L, Wang Y, Wang Y, Jiang Y, Du P, Cheng J, Zhang C, Wang R, Jiao T, Xing L, Ma J, Li J. PCSK9 inhibitors ameliorate arterial stiffness in ACS patients: evidences from Mendelian randomization, a retrospective study and basic experiments. Front Med (Lausanne) 2024; 11:1408760. [PMID: 38860206 PMCID: PMC11163136 DOI: 10.3389/fmed.2024.1408760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
Background Current evidences suggest that Proprotein Convertase Subtilisin/kexin Type 9 inhibitors (PCSK9i) exhibit a protective influence on acute coronary syndrome (ACS). Nevertheless, further investigation is required to comprehend the impact and mechanisms of these pharmaceutical agents on inflammatory factors and arterial stiffness (AS) in patients with ACS. Consequently, the objective of this study is to ascertain the influence of PCSK9i on arterial stiffness in ACS patients and elucidate the underlying mechanisms behind their actions. Methods This study employed Mendelian randomization (MR) analysis to examine the association between genetic prediction of PCSK9 inhibition and arterial stiffness. Data of 71 patients with ACS were retrospectively collected, including PCSK9i group (n = 36, PCSK9 inhibitors combined with statins) and control group (n = 35, statins only). Blood lipid levels, inflammatory markers and pulse wave velocity (PWV) data were collected before treatment and at 1 and 6 months after treatment for analysis. Additionally, cell experiments were conducted to investigate the impact of PCSK9i on osteogenesis of vascular smooth muscle cells (VSMCs), utilizing western blot (WB), enzyme-linked immunosorbent assay (ELISA), and calcification index measurements. Results The results of the MR analysis suggest that genetic prediction of PCSK9 inhibition has potential to reduce the PWV. Following treatment of statins combined with PCSK9 inhibitors for 1 and 6 months, the PCSK9i group exhibited significantly lower levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), C-reactive protein (CRP), interleukin-6 (IL-6), fibrinogen (FIB) and procalcitonin (PCT) compared to the control group (p < 0.05). Additionally, PWV in the PCSK9i group demonstrated significant reduction after 6 months of treatment and was found to be associated with the circulating CRP level. In cell experiments, PCSK9i pretreatment ameliorated osteogenesis of VSMCs through reducing the deposition of calcium ions, alkaline phosphatase (ALP) activity, and expression of runt-related transcription factor 2 (RUNX2). Conclusion PCSK9i have potential to enhance arterial stiffness in ACS patients. Specifically, at the clinical level, this impact may be attributed to alterations in circulating CRP levels. At the cellular level, it is associated with the signaling pathway linked to RUNX2.
Collapse
Affiliation(s)
- Linghao Xu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanqi Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiqiong Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanzhen Jiang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peizhao Du
- Department of Cardiology, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Cheng
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunsheng Zhang
- Department of Cardiology, East Hospital of Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Ruijie Wang
- Department of Cardiology, Harbin Medical University First Affiliated Hospital, Harbin, China
| | - Tiantian Jiao
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lijian Xing
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiangping Ma
- School of Medicine, Tongji University, Shanghai, China
| | - Jiming Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Liang L, Chung SI, Guon TE, Park KH, Lee JH, Park JW. Statin administration or blocking PCSK9 alleviates airway hyperresponsiveness and lung fibrosis in high-fat diet-induced obese mice. Respir Res 2024; 25:213. [PMID: 38762465 PMCID: PMC11102611 DOI: 10.1186/s12931-024-02842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Obesity is associated with airway hyperresponsiveness and lung fibrosis, which may reduce the effectiveness of standard asthma treatment in individuals suffering from both conditions. Statins and proprotein convertase subtilisin/kexin-9 inhibitors not only reduce serum cholesterol, free fatty acids but also diminish renin-angiotensin system activity and exhibit anti-inflammatory effects. These mechanisms may play a role in mitigating lung pathologies associated with obesity. METHODS Male C57BL/6 mice were induced to develop obesity through high-fat diet for 16 weeks. Conditional TGF-β1 transgenic mice were fed a normal diet. These mice were given either atorvastatin or proprotein convertase subtilisin/kexin-9 inhibitor (alirocumab), and the impact on airway hyperresponsiveness and lung pathologies was assessed. RESULTS High-fat diet-induced obesity enhanced airway hyperresponsiveness, lung fibrosis, macrophages in bronchoalveolar lavage fluid, and pro-inflammatory mediators in the lung. These lipid-lowering agents attenuated airway hyperresponsiveness, macrophages in BALF, lung fibrosis, serum leptin, free fatty acids, TGF-β1, IL-1β, IL-6, and IL-17a in the lung. Furthermore, the increased RAS, NLRP3 inflammasome, and cholecystokinin in lung tissue of obese mice were reduced with statin or alirocumab. These agents also suppressed the pro-inflammatory immune responses and lung fibrosis in TGF-β1 over-expressed transgenic mice with normal diet. CONCLUSIONS Lipid-lowering treatment has the potential to alleviate obesity-induced airway hyperresponsiveness and lung fibrosis by inhibiting the NLRP3 inflammasome, RAS and cholecystokinin activity.
Collapse
Affiliation(s)
- Lin Liang
- Graduate School of Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Sook In Chung
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Eun Guon
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Hee Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jae-Hyun Lee
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jung-Won Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea.
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
22
|
Sánchez-León ME, Loaeza-Reyes KJ, Matias-Cervantes CA, Mayoral-Andrade G, Pérez-Campos EL, Pérez-Campos-Mayoral L, Hernández-Huerta MT, Zenteno E, Pérez-Cervera Y, Pina-Canseco S. LOX-1 in Cardiovascular Disease: A Comprehensive Molecular and Clinical Review. Int J Mol Sci 2024; 25:5276. [PMID: 38791315 PMCID: PMC11121106 DOI: 10.3390/ijms25105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
LOX-1, ORL-1, or lectin-like oxidized low-density lipoprotein receptor 1 is a transmembrane glycoprotein that binds and internalizes ox-LDL in foam cells. LOX-1 is the main receptor for oxidized low-density lipoproteins (ox-LDL). The LDL comes from food intake and circulates through the bloodstream. LOX-1 belongs to scavenger receptors (SR), which are associated with various cardiovascular diseases. The most important and severe of these is the formation of atherosclerotic plaques in the intimal layer of the endothelium. These plaques can evolve into complicated thrombi with the participation of fibroblasts, activated platelets, apoptotic muscle cells, and macrophages transformed into foam cells. This process causes changes in vascular endothelial homeostasis, leading to partial or total obstruction in the lumen of blood vessels. This obstruction can result in oxygen deprivation to the heart. Recently, LOX-1 has been involved in other pathologies, such as obesity and diabetes mellitus. However, the development of atherosclerosis has been the most relevant due to its relationship with cerebrovascular accidents and heart attacks. In this review, we will summarize findings related to the physiologic and pathophysiological processes of LOX-1 to support the detection, diagnosis, and prevention of those diseases.
Collapse
Affiliation(s)
- Maria Eugenia Sánchez-León
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.E.S.-L.); (K.J.L.-R.); (C.A.M.-C.); (G.M.-A.); (L.P.-C.-M.)
| | - Karen Julissa Loaeza-Reyes
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.E.S.-L.); (K.J.L.-R.); (C.A.M.-C.); (G.M.-A.); (L.P.-C.-M.)
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico
| | - Carlos Alberto Matias-Cervantes
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.E.S.-L.); (K.J.L.-R.); (C.A.M.-C.); (G.M.-A.); (L.P.-C.-M.)
| | - Gabriel Mayoral-Andrade
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.E.S.-L.); (K.J.L.-R.); (C.A.M.-C.); (G.M.-A.); (L.P.-C.-M.)
| | | | - Laura Pérez-Campos-Mayoral
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.E.S.-L.); (K.J.L.-R.); (C.A.M.-C.); (G.M.-A.); (L.P.-C.-M.)
| | - María Teresa Hernández-Huerta
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico;
| | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Yobana Pérez-Cervera
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.E.S.-L.); (K.J.L.-R.); (C.A.M.-C.); (G.M.-A.); (L.P.-C.-M.)
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico
| | - Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.E.S.-L.); (K.J.L.-R.); (C.A.M.-C.); (G.M.-A.); (L.P.-C.-M.)
| |
Collapse
|
23
|
Chang X, Wang B, Zhao Y, Deng B, Liu P, Wang Y. The role of IFI16 in regulating PANoptosis and implication in heart diseases. Cell Death Discov 2024; 10:204. [PMID: 38693141 PMCID: PMC11063201 DOI: 10.1038/s41420-024-01978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
Interferon Gamma Inducible Protein 16 (IFI16) belongs to the HIN-200 protein family and is pivotal in immunological responses. Serving as a DNA sensor, IFI16 identifies viral and aberrant DNA, triggering immune and inflammatory responses. It is implicated in diverse cellular death mechanisms, such as pyroptosis, apoptosis, and necroptosis. Notably, these processes are integral to the emergent concept of PANoptosis, which encompasses cellular demise and inflammatory pathways. Current research implies a significant regulatory role for IFI16 in PANoptosis, particularly regarding cardiac pathologies. This review delves into the complex interplay between IFI16 and PANoptosis in heart diseases, including atherosclerosis, myocardial infarction, heart failure, and diabetic cardiomyopathy. It synthesizes evidence of IFI16's impact on PANoptosis, with the intention of providing novel insights for therapeutic strategies targeting heart diseases.
Collapse
Affiliation(s)
- Xindi Chang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Bei Wang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Yingli Zhao
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Bing Deng
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Ping Liu
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| | - Yiru Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| |
Collapse
|
24
|
Shin D, Kim S, Lee H, Lee HC, Lee J, Park HW, Fukai M, Choi E, Choi S, Koo BJ, Yu JH, No G, Cho S, Kim CW, Han D, Jang HD, Kim HS. PCSK9 stimulates Syk, PKCδ, and NF-κB, leading to atherosclerosis progression independently of LDL receptor. Nat Commun 2024; 15:2789. [PMID: 38555386 PMCID: PMC10981688 DOI: 10.1038/s41467-024-46336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) binds to and degrades low-density lipoprotein (LDL) receptor, leading to increase of LDL cholesterol in blood. Its blockers have emerged as promising therapeutics for cardiovascular diseases. Here we show that PCSK9 itself directly induces inflammation and aggravates atherosclerosis independently of the LDL receptor. PCSK9 exacerbates atherosclerosis in LDL receptor knockout mice. Adenylyl cyclase-associated protein 1 (CAP1) is the main binding partner of PCSK9 and indispensable for the inflammatory action of PCSK9, including induction of cytokines, Toll like receptor 4, and scavenger receptors, enhancing the uptake of oxidized LDL. We find spleen tyrosine kinase (Syk) and protein kinase C delta (PKCδ) to be the key mediators of inflammation after PCSK9-CAP1 binding. In human peripheral blood mononuclear cells, serum PCSK9 levels are positively correlated with Syk, PKCδ, and p65 phosphorylation. The CAP1-fragment crystallizable region (CAP1-Fc) mitigates PCSK9-mediated inflammatory signal transduction more than the PCSK9 blocking antibody evolocumab does.
Collapse
Affiliation(s)
- Dasom Shin
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soungchan Kim
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hwan Lee
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Chae Lee
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jaewon Lee
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun-Woo Park
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mina Fukai
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - EunByule Choi
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Subin Choi
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bon-Jun Koo
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Yu
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gyurae No
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungyoon Cho
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chan Woo Kim
- Department of Preclinical Trial, Laboratory Animal Center, Osong Medical Innovation Foundation (KBIO), Cheongju, Chungbuk, Republic of Korea
| | - Dohyun Han
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun-Duk Jang
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Hyo-Soo Kim
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
- Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cardiovascular Center & Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Sardà H, Colom C, Benitez S, Carreras G, Amigó J, Miñambres I, Viladés D, Blanco-Vaca F, Sanchez-Quesada JL, Pérez A. PCSK9 plasma concentration is associated with epicardial adipose tissue volume and metabolic control in patients with type 1 diabetes. Sci Rep 2024; 14:7195. [PMID: 38532033 DOI: 10.1038/s41598-024-57708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Patients with type 1 diabetes (T1D) have a greater risk of cardiovascular disease. Proconvertase subtilisin-kexin 9 (PCSK9) is involved in the atherosclerosis process. This study aimed to determine the relationship between PCSK9 levels and epicardial adipose tissue (EAT) volume and cardiometabolic variables in patients with T1D. This was an observational cross-sectional study including 73 patients with T1D. Clinical, biochemical and imaging data were collected. We divided the patients into two groups according to their glycemic control and the EAT index (iEAT) percentile. We performed a correlation analysis between the collected variables and PCSK9 levels; subsequently, we performed a multiple regression analysis with the significant parameters. The mean age was 47.6 ± 8.5 years, 58.9% were men, and the BMI was 26.9 ± 4.6 kg/m2. A total of 31.5%, 49.3% and 34.2% of patients had hypertension, dyslipidemia and smoking habit, respectively. The PCSK9 concentration was 0.37 ± 0.12 mg/L, which was greater in patients with worse glycemic control (HbA1c > 7.5%), dyslipidemia and high EAT volume (iEAT > 75th percentile). The PCSK9 concentration was positively correlated with age (r = 0.259; p = 0.027), HbA1c (r = 0.300; p = 0.011), insulin dose (r = 0.275; p = 0.020), VLDL-C level (r = 0.331; p = 0.004), TG level (r = 0.328; p = 0.005), and iEAT (r = 0.438; p < 0.001). Multiple regression analysis revealed that 25% of the PCSK9 variability was explained by iEAT and HbA1c (p < 0.05). The PCSK9 concentration is associated with metabolic syndrome parameters, poor glycemic control and increased EAT volume in patients with T1D.
Collapse
Affiliation(s)
- Helena Sardà
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau - Hospital Dos de Maig, Antoni Maria Claret, 167, 08025, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cristina Colom
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau - Hospital Dos de Maig, Antoni Maria Claret, 167, 08025, Barcelona, Spain
| | - Sonia Benitez
- Cardiovascular Biochemistry Group, Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí, 77-79, 08041, Barcelona, Spain
- CIBER en Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| | - Gemma Carreras
- Department of Pediatrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Pediatrics, Obstetrics and Gynecology, and Preventive Medicine and Public Health, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Judit Amigó
- Department of Endocrinology and Nutrition, Hospital Universitari Vall d'Hebrón, Barcelona, Spain
| | - Inka Miñambres
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau - Hospital Dos de Maig, Antoni Maria Claret, 167, 08025, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER en Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| | - David Viladés
- Cardiac Imaging Unit, Cardiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Centro de Investigación en red de enfermedades cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Blanco-Vaca
- CIBER en Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
- Department of Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jose Luís Sanchez-Quesada
- Cardiovascular Biochemistry Group, Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí, 77-79, 08041, Barcelona, Spain.
- CIBER en Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain.
| | - Antonio Pérez
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau - Hospital Dos de Maig, Antoni Maria Claret, 167, 08025, Barcelona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- CIBER en Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
26
|
Duan H, Shi Y, Zhang Q, Shi X, Zhang Y, Liu J, Zhang Y. Causal relationship between PCSK9 inhibitor and primary glomerular disease: a drug target Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1335489. [PMID: 38510702 PMCID: PMC10951069 DOI: 10.3389/fendo.2024.1335489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Background Successive observational studies have highlighted low-density lipoprotein cholesterol (LDL-C) as a standalone risk factor for the progression of chronic kidney disease (CKD) to end-stage renal disease. Lowering LDL-C levels significantly reduces the incidence of atherosclerotic events in patients with progressive CKD. Recent research indicates that proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors not only effectively lower LDL-C levels in CKD patients but also exhibit therapeutic potential for autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and ulcerative colitis. However, the role of PCSK9 inhibitors (PCSK9i) in treating CKD beyond lowering LDL-C levels remains uncertain. Therefore, this study employs drug-targeted Mendelian randomization (MR) to investigate the causal impact of PCSK9i on primary glomerular diseases such as IgA nephropathy (IgAN), membranous nephropathy (MN), and nephrotic syndrome (NS). Methods Single-nucleotide polymorphisms (SNPs) linked to LDL-C were sourced from the Global Lipids Genetics Consortium genome-wide association study (GWAS). Genes situated in proximity to 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and PCSK9 served as proxies for therapeutic inhibition of these targets. The causal link between PCSK9i and the risk of primary glomerular disorders was discovered using drug-target MR studies. The HMGCR inhibitor, a drug target of statins, was utilized for comparative analysis with PCSK9i. Primary outcomes included the risk assessment for IgAN, MN, and NS, using the risk of coronary heart disease as a positive control. Results The inhibition of PCSK9, as proxied genetically, was found to significantly reduce the risk of IgAN [odds ratio, OR (95% confidence interval, CI) = 0.05 (-1.82 to 1.93), p = 2.10 × 10-3]. Conversely, this inhibition was associated with an increased risk of NS [OR (95% CI) = 1.78 (1.34-2.22), p = 0.01]. Similarly, HMGCR inhibitors (HMGCRi) demonstrated a potential reduction in the risk of IgAN [OR (95%CI) = 0.0032 (-3.58 to 3.59), p = 1.60 × 10-3). Conclusions PCSK9i markedly decreased the risk of IgAN, suggesting a potential mechanism beyond their primary effect on LDL-C. However, these inhibitors were also associated with an increased risk of NS. On the other hand, HMGCRi appears to serve as a protective factor against IgAN. Conversely, PCSK9i may pose a risk factor for NS, suggesting the necessity for cautious application and further research into their impacts on various glomerular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Li Z, Zhang S, Yin Z, Zhang W, Sui Y, Li J, Dou K, Qian J, Wu N. LDL-C rebound after long-term evolocumab treatment and intravascular imaging evidence in a familial hypercholesterolemia patient with early-onset myocardial infarction. Chronic Dis Transl Med 2024; 10:69-74. [PMID: 38450306 PMCID: PMC10914014 DOI: 10.1002/cdt3.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 03/08/2024] Open
Affiliation(s)
- Zhifan Li
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Shuang Zhang
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Zheng Yin
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Wenjia Zhang
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yonggang Sui
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Jianjun Li
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Kefei Dou
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Jie Qian
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Naqiong Wu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
28
|
Lv N, Wang L, Zeng M, Wang Y, Yu B, Zeng W, Jiang X, Suo Y. Saponins as therapeutic candidates for atherosclerosis. Phytother Res 2024; 38:1651-1680. [PMID: 38299680 DOI: 10.1002/ptr.8128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
Drug development for atherosclerosis, the underlying pathological state of ischemic cardiovascular diseases, has posed a longstanding challenge. Saponins, classified as steroid or triterpenoid glycosides, have shown promising therapeutic potential in the treatment of atherosclerosis. Through an exhaustive examination of scientific literature spanning from May 2013 to May 2023, we identified 82 references evaluating 37 types of saponins in terms of their prospective impacts on atherosclerosis. These studies suggest that saponins have the potential to ameliorate atherosclerosis by regulating lipid metabolism, inhibiting inflammation, suppressing apoptosis, reducing oxidative stress, and modulating smooth muscle cell proliferation and migration, as well as regulating gut microbiota, autophagy, endothelial senescence, and angiogenesis. Notably, ginsenosides exhibit significant potential and manifest essential pharmacological attributes, including lipid-lowering, anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects. This review provides a comprehensive examination of the pharmacological attributes of saponins in atherosclerosis, with particular emphasis on their role in the regulation of lipid metabolism regulation and anti-inflammatory effects. Thus, saponins may warrant further investigation as a potential therapy for atherosclerosis. However, due to various reasons such as low oral bioavailability, the clinical application of saponins in the treatment of atherosclerosis still needs further exploration.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijing Wang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou people's hospital, Ganzhou, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou people's hospital, Ganzhou, China
| |
Collapse
|
29
|
Gaber MA, Omar OHM, Meki ARMA, Nassar AY, Hassan AKM, Mahmoud MS. The significance of PCSK-9's level and polymorphism in premature coronary artery disease: Relation to risk and severity. Clin Biochem 2024; 125:110729. [PMID: 38342398 DOI: 10.1016/j.clinbiochem.2024.110729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK-9) is a circulating protein that plays an important role in lipid metabolism and is linked to inflammation, which has implications for atherosclerosis and its severe cardiac effects. We studied the potential association of the PCSK-9 gene single nucleotide polymorphism (SNP), Oxidized low-density lipoprotein receptor 1- (OLR-1), and caspase-3 serum levels with the risk and severity of premature coronary artery disease (PCAD). The potential contribution of PCSK-9 serum level to the severity of PCAD patients was also assessed. METHOD This case-control study included 120 PCAD patients (age < 45), and 60 age matched healthy controls. Serum PCSK-9 and caspase-3 levels and clinical characteristics were recorded. SYNTAX score was calculated to estimate the severity of the coronary artery lesions. The SNP rs2483205 of the PCSK-9 gene and the rs11053646 of the OLR-1gene were genotyped in all participants. RESULTS Serum PCSK-9 levels were higher in PCAD patients and were significantly different among the three SYNTAX score groups (SS ≤ 12, 12 < SS ≤ 21.5, and SS > 21.5). The diagnostic cutoff values of PCSK-9 and caspase-3 levels for PCAD were > 3.2 ng/mL for both, yielding an area under the curve (AUC) of 0.98 and 0.92, sensitivity of 85 %, 98 %, and specificity of 99.5 %, 93 % for PCSK-9 and caspase-3, respectively. The genotypes TT + CT vs. CC of PCSK-9's rs2483205 SNP presented a higher risk for PCAD and higher SYNTAX scores. Furthermore, the rs11053646 SNP of OLR-1 presented the CG genotype as more risky and having higher SYNTAX scores. CONCLUSION Circulating PCSK9 and caspase-3 concentrations were higher in PCAD patients and were associated with CAD severity. The SNPs of PCSK-9 (rs2483205) and OLR-1 (rs11053646) were associated with PCAD and its severity.
Collapse
Affiliation(s)
- Marwa A Gaber
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Omnia H M Omar
- Assiut International Center of Nanomedicine, Al-rajhy Liver Hospital, Assiut University, Assiut, Egypt
| | - Abdel-Raheim M A Meki
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Biochemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Ahmed Y Nassar
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ayman K M Hassan
- Cardiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwan S Mahmoud
- Cardiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
30
|
Xu J, Zuo J, Han C, Li T, Jin D, Zhao F, Cong H. Proprotein convertase subtilisin/kexin 9 inhibitor downregulates microRNA-130a-3p expression in hepatocytes to alleviates atherosclerosis progression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1727-1736. [PMID: 37721554 DOI: 10.1007/s00210-023-02708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9) inhibitors have been shown to regulate lipid metabolism and reduce the risk of cardiovascular events. This study explores the effect and potential mechanism of PCSK9 inhibitors on lipid metabolism and coronary atherosclerosis. HepG2 cells were incubated with PCSK9 inhibitor. ApoE-/- mice were fed with a high fat to construct an atherosclerosis model, and then treated with PCSK9 inhibitor (8 mg/kg for 8 w). PCSK9 inhibitor downregulated microRNA (miRNA)-130a-3p expression in a dose-dependent manner. And, miR-130a-3p could bind directly to the 3' untranslated region (3'-UTR) region of LDLR to down-regulate LDLR expression in HepG2 cells, as confirmed by the luciferase reporter gene assay. In addition, miR-130a-3p overexpression significantly attenuated the promoting effect of PCSK9 inhibitor on LDLR and DiI-LDL uptake in HepG2 cells. More importantly, in vivo experiments confirmed that PCSK9 inhibitor could significantly inhibit miR-130a-3p levels and promote LDLR expression in liver tissues, thus regulating serum lipid profile and alleviating the progression of coronary atherosclerosis. PCSK9 inhibitor could moderately improve coronary atherosclerosis by regulating miR-130a-3p/LDLR axis, providing an exploitable strategy for the treatment of coronary atherosclerosis.
Collapse
Affiliation(s)
- Jinghan Xu
- The Department of Cardiology, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
- The Department of Cardiology, Chest Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, China
- TianJin Institute of Cardiovascular Diseases, Tianjin, China
| | - Junrong Zuo
- Internal Medicine, Tianjin Jinnan Hospital, Tianjin, China
| | - Chuyi Han
- The Department of Cardiology, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
- The Department of Cardiology, Chest Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, China
- TianJin Institute of Cardiovascular Diseases, Tianjin, China
| | - Tingting Li
- The Department of Cardiology, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
- The Department of Cardiology, Chest Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, China
- TianJin Institute of Cardiovascular Diseases, Tianjin, China
| | - Dongxia Jin
- The Department of Cardiology, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
- The Department of Cardiology, Chest Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, China
- TianJin Institute of Cardiovascular Diseases, Tianjin, China
| | - Fumei Zhao
- The Department of Cardiology, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
- The Department of Cardiology, Chest Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, China
- TianJin Institute of Cardiovascular Diseases, Tianjin, China
| | - Hongliang Cong
- The Department of Cardiology, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China.
- The Department of Cardiology, Chest Hospital, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, China.
- TianJin Institute of Cardiovascular Diseases, Tianjin, China.
| |
Collapse
|
31
|
Wu NQ, Li ZF, Lu MY, Li JJ. Monoclonal antibodies for dyslipidemia in adults: a focus on vulnerable patients groups. Expert Opin Biol Ther 2024:1-13. [PMID: 38375817 DOI: 10.1080/14712598.2024.2321374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Dyslipidemia significantly contributes to atherosclerotic cardiovascular disease (ASCVD). Patients with lipid-rich vulnerable plaques are particularly susceptible to cardiovascular complications. Despite available lipid-lowering therapies (LLTs), challenges in effective lipid management remain. AREAS COVERED This article reviews monoclonal antibody (mAb) therapy in dyslipidemia, particularly focusing on vulnerable plaques and patients. We have reviewed the definitions of vulnerable plaques and patients, outlined the efficacy of traditional LLTs, and discussed in-depth the mAbs targeting PCSK9. We extensively discuss the potential mechanisms, intracoronary imaging, and clinical evidence of PCSK9mAbs in vulnerable plaques and patients. A brief overview of promising mAbs targeting other targets such as ANGPTL3 is also provided. EXPERT OPINION Research consistently supports the potential of mAb therapies in treating adult dyslipidemia, particularly in vulnerable patients. PCSK9mAbs are effective in regulating lipid parameters, such as LDL-C and Lp(a), and exhibit anti-inflammatory and anti-thrombotic properties. These antibodies also maintain endothelial and smooth muscle health, contributing to the stabilization of vulnerable plaques and reduction in adverse cardiovascular events. Future research aims to further understand PCSK9 and other targets like ANGPTL3, focusing on vulnerable groups. Overall, mAbs are emerging as a promising and superior approach in dyslipidemia management and cardiovascular disease prevention.
Collapse
Affiliation(s)
- Na-Qiong Wu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Zhi-Fan Li
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Meng-Ying Lu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jian-Jun Li
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Rallis D, Papathanasiou AE, Christou H. Maternal Obesity Modulates Cord Blood Concentrations of Proprotein Convertase Subtilisin/Kexin-type 9 Levels. J Endocr Soc 2024; 8:bvae031. [PMID: 38440108 PMCID: PMC10910593 DOI: 10.1210/jendso/bvae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 03/06/2024] Open
Abstract
Context In utero exposure to maternal obesity or diabetes is considered a pro-inflammatory state. Objective To evaluate whether cord blood proprotein convertase subtilisin/kexin-type 9 (PCSK9), which is regulated by inflammation and metabolic derangements, is elevated in neonates born to overweight, obese, or diabetic mothers. Methods A retrospective study in full-term neonates born between 2010 and 2023, at Brigham and Women's Hospital. There were 116 neonates included in our study, of which 74 (64%) were born to overweight/obese mothers and 42 (36%) were born to nonoverweight/nonobese mothers. Results Neonates born to overweight/obese mothers had significantly higher cord blood concentrations of PCSK9 compared with neonates born to nonoverweight/nonobese group (323 [253-442] ng/mL compared with 270 [244-382] ng/mL, P = .041). We found no significant difference in cord blood concentrations of PCSK9 between neonates of diabetic mothers compared with neonates of nondiabetic mothers. In multivariate linear regression analysis, higher cord plasma PCSK9 concentration was significantly associated with maternal overweight/obesity status (b = 50.12; 95% CI, 4.02-96.22; P = .033), after adjusting for gestational age, birth weight, male sex, and intrauterine growth restriction. Conclusion Neonates born to mothers with overweight/obesity have higher cord blood PCSK9 concentrations compared with the nonoverweight/nonobese group, and higher cord blood PCSK9 concentrations were significantly associated with maternal overweight/obesity status, after adjusting for perinatal factors. Larger longitudinal studies are needed to examine the role of PCSK9 in the development of metabolic syndrome in high-risk neonates born to overweight, obese, or diabetic mothers.
Collapse
Affiliation(s)
- Dimitrios Rallis
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Neonatal Intensive Care Unit, University of Ioannina, Faculty of Medicine, Ioannina 45110, Greece
| | | | - Helen Christou
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Huang J, Lin Z, Lin J, Xie S, Xia S, Chen G, Zheng Z, Xu Z, Liu F, Wu H, Li S. Causal role of lipid metabolism in pulmonary alveolar proteinosis: an observational and mendelian randomisation study. Thorax 2024; 79:135-143. [PMID: 38124156 DOI: 10.1136/thorax-2023-220789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Pulmonary alveolar proteinosis (PAP) is a rare interstitial lung disease characterised by the accumulation of lipoprotein material in the alveoli. Although dyslipidaemia is a prominet feature, the causal effect of lipid traits on PAP remains unclear. This study aimed to explore the role of lipid traits in PAP and evaluate the potential of lipid-lowering drug targets in PAP. METHODS Clinical outcomes, lipid profiles and lung function tests were analysed in a clinical cohort of diagnosed PAP patients and propensity score-matched healthy controls. Genome-wide association study data on PAP, lipid metabolism, blood cells and variants of genes encoding potential lipid-lowering drug targets were obtained for Mendelian randomisation (MR) and mediation analyses. FINDINGS Observational results showed that higher levels of total cholesterol (TC), triglycerides and low-density lipoprotein (LDL) were associated with increased risks of PAP. Higher levels of TC and LDL were also associated with worse PAP severity. In MR analysis, elevated LDL was associated with an increased risk of PAP (OR: 4.32, 95% CI: 1.63 to 11.61, p=0.018). Elevated monocytes were associated with a lower risk of PAP (OR 0.34, 95% CI: 0.18 to 0.66, p=0.002) and mediated the risk impact of LDL on PAP. Genetic mimicry of PCSK9 inhibition was associated with a reduced risk of PAP (OR 0.03, p=0.007). INTERPRETATION Our results support the crucial role of lipid and metabolism-related traits in PAP risk, emphasising the monocyte-mediated, causal effect of elevated LDL in PAP genetics. PCSK9 mediates the development of PAP by raising LDL. These finding provide evidence for lipid-related mechanisms and promising lipid-lowering drug target for PAP.
Collapse
Affiliation(s)
- Junfeng Huang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zikai Lin
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinsheng Lin
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuojia Xie
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shixin Xia
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gengjia Chen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziwen Zheng
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhe Xu
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fangcheng Liu
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongkai Wu
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiyue Li
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Ouyang Z, Ma M, Zhang Z, Wu H, Xue Y, Jian Y, Yin K, Yu S, Zhao C, Guo W, Gu X. Targeted Degradation of PCSK9 In Vivo by Autophagy-Tethering Compounds. J Med Chem 2024; 67:433-449. [PMID: 38112492 DOI: 10.1021/acs.jmedchem.3c01634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9), a secreted protein that is synthesized and spontaneously cleaved in the endoplasmic reticulum, has become a hot lipid-lowering target chased by pharmaceutical companies in recent years. Autophagosome-tethering compounds (ATTECs) represent a new strategy to degrade targeted biomolecules. Here, we designed and synthesized PCSK9·ATTECs that are capable of lowering PCSK9 levels via autophagy in vivo, providing the first report of the degradation of a secreted protein by ATTECs. OY3, one of the PCSK9·ATTECs synthesized, shows greater potency to reduce plasma low-density lipoprotein cholesterol (LDL-C) levels and improve atherosclerosis symptoms than treatment with the same dose of simvastatin. OY3 also significantly reduces the high expression of PCSK9 caused by simvastatin administration in atherosclerosis model mice and subsequently increases the level of low-density lipoprotein receptor, promoting simvastatin to clear plasma LDL-C and alleviate atherosclerosis symptoms. Thus, we developed a new candidate compound to treat atherosclerosis that could also promote statin therapy.
Collapse
Affiliation(s)
- Zhirong Ouyang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Muye Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Ziwen Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Hongyu Wu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Yongxing Xue
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Yuting Jian
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Kai Yin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Shaokun Yu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| |
Collapse
|
35
|
Zhou L, Zhang H, Wang S, Zhao H, Li Y, Han J, Zhang H, Li X, Qu Z. PCSK-9 inhibitors: a new direction for the future treatment of ischemic stroke. Front Pharmacol 2024; 14:1327185. [PMID: 38273837 PMCID: PMC10808616 DOI: 10.3389/fphar.2023.1327185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke, the most prevalent and serious manifestation of cerebrovascular disease, is the main cause of neurological problems that require hospitalization, resulting in disability and death worldwide. Currently, clinical practice focuses on the effective management of blood lipids as a crucial approach to preventing and treating ischemic stroke. In recent years, a great breakthrough in ischemic stroke treatment has been witnessed with the emergence and use of a novel lipid-lowering medication, Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitor. And its remarkable potential for reducing the occurrence of ischemic stroke is being acknowledged. This article aims to provide a comprehensive review, encompassing the association between PCSK9 and the heightened risk of ischemic stroke, the mechanisms, and the extensive evidence supporting the proven efficacy of PCSK9 inhibitors in clinical practice. Through this present study, we can gain deeper insights into the utilization and impact of PCSK9 inhibitors in treating ischemic stroke.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuyi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Hong Zhao
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongnan Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Juqian Han
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyuan Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhengyi Qu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Zhao J, Chen R, Luo M, Gong H, Li K, Zhao Q. Lipid-lowering drugs and inflammatory bowel disease's risk: a drug-target Mendelian randomization study. Diabetol Metab Syndr 2024; 16:12. [PMID: 38191425 PMCID: PMC10775535 DOI: 10.1186/s13098-023-01252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) has been associated with lipid-lowering drugs in observational studies. Drug-target Mendelian randomization (MR) was utilized in this study to examine the causal relationship between lipid-lowering drugs and incidence of IBD, aiming to identify new preventive uses for the drugs. METHODS We identified instrumental variables for three classes of lipid-lowering drugs: HMGCR inhibitors, PCSK9 inhibitors, and NPC1L1 inhibitors, using data from the Global Lipids Genetics Consortium. Summary statistics of IBD were obtained from UK Inflammatory Bowel Disease Genetics. The summary-data-based MR (SMR) and the inverse-variance weighted (IVW) MR were used for analysis. Sensitivity analyses were performed by conventional MR methods. RESULTS The SMR analysis showed no significant genetic association between increased gene expression of HMGCR, PCSK9, and NPC1L1 and IBD, Crohn's disease (CD) and ulcerative colitis (UC). According to IVW-MR analysis, increased HMGCR expression is associated with a reduced risk of IBD (OR = 0.73, 95% confidence interval (CI) 0.59-0.90, P = 0.003) and CD (OR = 0.75, 95% CI 0.57-0.97, P = 0.03), but not with UC. Additionally, increased NPC1L1 gene expression was associated with elevated risk of IBD (OR = 1.60, 95% CI 1.07-2.40, P = 0.023), but not with CD and UC. However, no significant causal relationships were found between PCSK9 gene expression and IBD, CD, and UC. The sensitivity analysis demonstrated no evidence of heterogeneity or pleiotropy among the reported results. CONCLUSIONS The heightened expression of genetic variations in HMGCR inhibitor targets could potentially reduce the risk of IBD and CD, while genetic variation in the expression of NPC1L1 targets was positively associated with IBD.
Collapse
Affiliation(s)
- Jiaxi Zhao
- General Practice Ward/International Medical Center Ward General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Rong Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mengqi Luo
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongping Gong
- General Practice Ward/International Medical Center Ward General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kaixin Li
- Department of Nephrology, Huadong Hospital, Shanghai, China
| | - Qian Zhao
- General Practice Ward/International Medical Center Ward General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
37
|
Ravi S, Martin LC, Krishnan M, Kumaresan M, Manikandan B, Ramar M. Interactions between macrophage membrane and lipid mediators during cardiovascular diseases with the implications of scavenger receptors. Chem Phys Lipids 2024; 258:105362. [PMID: 38006924 DOI: 10.1016/j.chemphyslip.2023.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The onset and progression of cardiovascular diseases with the major underlying cause being atherosclerosis, occur during chronic inflammatory persistence in the vascular system, especially within the arterial wall. Such prolonged maladaptive inflammation is driven by macrophages and their key mediators are generally attributed to a disparity in lipid metabolism. Macrophages are the primary cells of innate immunity, endowed with expansive membrane domains involved in immune responses with their signalling systems. During atherosclerosis, the membrane domains and receptors control various active organisations of macrophages. Their scavenger/endocytic receptors regulate the trafficking of intracellular and extracellular cargo. Corresponding influence on lipid metabolism is mediated by their dynamic interaction with scavenger membrane receptors and their integrated mechanisms such as pinocytosis, phagocytosis, cholesterol export/import, etc. This interaction not only results in the functional differentiation of macrophages but also modifies their structural configurations. Here, we reviewed the association of macrophage membrane biomechanics and their scavenger receptor families with lipid metabolites during the event of atherogenesis. In addition, the membrane structure of macrophages and the signalling pathways involved in endocytosis integrated with lipid metabolism are detailed. This article establishes future insights into the scavenger receptors as potential targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
38
|
Pan W, Zhang J, Zhang L, Zhang Y, Song Y, Han L, Tan M, Yin Y, Yang T, Jiang T, Li H. Comprehensive view of macrophage autophagy and its application in cardiovascular diseases. Cell Prolif 2024; 57:e13525. [PMID: 37434325 PMCID: PMC10771119 DOI: 10.1111/cpr.13525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the primary drivers of the growing public health epidemic and the leading cause of premature mortality and economic burden worldwide. With decades of research, CVDs have been proven to be associated with the dysregulation of the inflammatory response, with macrophages playing imperative roles in influencing the prognosis of CVDs. Autophagy is a conserved pathway that maintains cellular functions. Emerging evidence has revealed an intrinsic connection between autophagy and macrophage functions. This review focuses on the role and underlying mechanisms of autophagy-mediated regulation of macrophage plasticity in polarization, inflammasome activation, cytokine secretion, metabolism, phagocytosis, and the number of macrophages. In addition, autophagy has been shown to connect macrophages and heart cells. It is attributed to specific substrate degradation or signalling pathway activation by autophagy-related proteins. Referring to the latest reports, applications targeting macrophage autophagy have been discussed in CVDs, such as atherosclerosis, myocardial infarction, heart failure, and myocarditis. This review describes a novel approach for future CVD therapies.
Collapse
Affiliation(s)
- Wanqian Pan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lei Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yue Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yiyi Song
- Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Lianhua Han
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mingyue Tan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yunfei Yin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tianke Yang
- Department of Ophthalmology, Eye Institute, Eye & ENT HospitalFudan UniversityShanghaiChina
- Department of OphthalmologyThe First Affiliated Hospital of USTC, University of Science and Technology of ChinaHefeiChina
| | - Tingbo Jiang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hongxia Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
39
|
Zhang Z, Zou Y, Song C, Cao K, Cai K, Chen S, Wu Y, Geng D, Sun G, Zhang N, Zhang X, Zhang Y, Sun Y, Zhang Y. Advances in the study of exosomes in cardiovascular diseases. J Adv Res 2023:S2090-1232(23)00402-2. [PMID: 38123019 DOI: 10.1016/j.jare.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.
Collapse
Affiliation(s)
- Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xingang Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
40
|
Liu J, Diao L, Xia W, Zeng X, Li W, Zou J, Liu T, Pang X, Wang Y. Meteorin-like protein elevation post-exercise improved vascular inflammation among coronary artery disease patients by downregulating NLRP3 inflammasome activity. Aging (Albany NY) 2023; 15:14720-14732. [PMID: 38054817 PMCID: PMC10781447 DOI: 10.18632/aging.205268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Coronary artery disease (CAD) has become the most common cause of death worldwide. However, the negative effects of CAD are able to be alleviated via exercises, possibly via increased production of meteorin-like protein (Metrnl). In this study, we aim to evaluate the connection between Metrnl production during exercise with lowered CAD risk and severity. METHODS Two age and gender-matched groups of 60 human patients, one with CAD, and one without were randomly recruited. The CAD group were subjected to continuous training exercises. Mice were exercised by using a treadmill, establishing an animal exercise model. ELISA was used to measure plasma Metrnl and inflammatory factors. To determine the impact of Metrnl on glucose metabolism, oxygen consumption and extracellular acid rates were taken for untreated, palmitic acid (PA)-treated, and PA+Metrnl co-treated human umbilical vein endothelial cells. Western blot was used to measure expression levels for the NLR family pyrin domain containing 3 inflammasome. RESULTS CAD patients had lower Metrnl levels compared to non-CAD controls. Furthermore, higher Metrnl levels post-exercise were inversely associated with LDL, inflammatory cytokines, and CAD severity, as well as being positively associated with HDL. Metrnl was able to counteract against PA-induced HUVEC glucose metabolic dysfunction via reducing ROS production, which in turn lowered NLRP3 inflammasome expression, thereby serving as the basis behind the inverse correlation between Metrnl and inflammatory cytokines. CONCLUSIONS Exercise was able to increase Metrnl production from skeletal muscle among CAD patients, and subsequently improve patient atherosclerosis via counteracting against endothelial metabolic dysfunction and pro-inflammatory activities.
Collapse
Affiliation(s)
- Jingjin Liu
- Department of Cardiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu, Shenzhen 518020, Guangdong, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital, Luohu, Shenzhen 518020, Guangdong, China
| | - Liwei Diao
- Center for Cardiovascular Disease Prevention and Rehabilitation, University of Chinese Academy of Science, Shenzhen Hospital, Guangming, Shenzhen 518107, Guangdong, China
| | - Weiyi Xia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, Hong Kong SAR, China
| | - Xiaoyi Zeng
- Department of Cardiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu, Shenzhen 518020, Guangdong, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital, Luohu, Shenzhen 518020, Guangdong, China
| | - Wen Li
- Department of Cardiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu, Shenzhen 518020, Guangdong, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital, Luohu, Shenzhen 518020, Guangdong, China
| | - Jieru Zou
- Department of Cardiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu, Shenzhen 518020, Guangdong, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital, Luohu, Shenzhen 518020, Guangdong, China
| | - Tiansheng Liu
- Department of Cardiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu, Shenzhen 518020, Guangdong, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital, Luohu, Shenzhen 518020, Guangdong, China
| | - Xinli Pang
- Department of Cardiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu, Shenzhen 518020, Guangdong, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital, Luohu, Shenzhen 518020, Guangdong, China
| | - Yongshun Wang
- Department of Cardiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu, Shenzhen 518020, Guangdong, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital, Luohu, Shenzhen 518020, Guangdong, China
| |
Collapse
|
41
|
Puspitasari YM, Ministrini S, Liberale L, Vukolic A, Baumann-Zumstein P, Holy EW, Montecucco F, Lüscher TF, Camici GG. Antibody-mediated PCSK9 neutralization worsens outcome after bare-metal stent implantation in mice. Vascul Pharmacol 2023; 153:107170. [PMID: 37659608 DOI: 10.1016/j.vph.2023.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 09/04/2023]
Abstract
AIMS Despite advances in pharmacotherapy and device innovation, in-stent restenosis (ISR) and stent thrombosis (ST) remain serious complications following percutaneous coronary intervention (PCI) procedure with stent implantation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme involved in plasma cholesterol homeostasis and recently emerged as a therapeutic target for hypercholesterolemia. Antibody-based PCSK9 inhibition is increasingly used in different subsets of patients, including those undergoing PCI. However, whether PCSK9 inhibition affects outcome after stent implantation remains unknown. METHODS AND RESULTS 12 to 14 weeks old C57Bl/6 mice underwent carotid artery bare-metal stent implantation. Compared to sham intervention, stent implantation was associated with increased expression of several inflammatory mediators, including PCSK9. The increase in PCSK9 protein expression was confirmed in the stented vascular tissue, but not in plasma. To inhibit PCSK9, alirocumab was administered weekly to mice before stent implantation. After 6 weeks, histological examination revealed increased intimal hyperplasia in the stented segment of alirocumab-treated animals compared to controls. In vitro, alirocumab promoted migration and inhibited the onset of senescence in primary human vascular smooth muscle cells (VSMC). Conversely, it blunted the migration and increased the senescence of endothelial cells (EC). CONCLUSION Antibody-based PCSK9 inhibition promotes in-stent intimal hyperplasia and blunts vascular healing by increasing VSMC migration, while reducing that of EC. This effect is likely mediated, at least in part, by a differential effect on VSMC and EC senescence. The herein-reported data warrant additional investigations concerning the use of PCSK9 inhibitors in patients undergoing PCI with stent implantation.
Collapse
Affiliation(s)
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Ana Vukolic
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Erik W Holy
- Department of Angiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Cardiology, Royal Brompton & Harefield Hospitals and National Heart & Lung Institute, Imperial College, London, United Kingdom
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Research and Education, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
42
|
Ning L, Zou Y, Li S, Cao Y, Xu B, Zhang S, Cai Y. Anti-PCSK9 Treatment Attenuates Liver Fibrosis via Inhibiting Hypoxia-Induced Autophagy in Hepatocytes. Inflammation 2023; 46:2102-2119. [PMID: 37466835 PMCID: PMC10673768 DOI: 10.1007/s10753-023-01865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
Hypoxia and its induced autophagy are involved in the initiation and progression of liver fibrosis. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been recognized as a potential regulator of autophagy. Our previously reported study found that PCSK9 expression increased in liver fibrosis and that anti-PCSK9 treatment alleviated liver injury. This study aimed to investigate the mechanism of anti-PCSK9 treatment on liver fibrosis by inhibiting hypoxia-induced autophagy. Carbon tetrachloride-induced mouse liver fibrosis and mouse hepatocyte line AML12, cultured under the hypoxic condition, were established to undergo PCSK9 inhibition. The degree of liver fibrosis was shown with histological staining. The reactive oxygen species (ROS) generation was detected by flow cytometry. The expression of PCSK9, hypoxia-inducible factor-1α (HIF-1α), and autophagy-related proteins was examined using Western blot. The autophagic flux was assessed under immunofluorescence and transmission electron microscope. The mouse liver samples were investigated via RNA-sequencing to explore the underlying signaling pathway. The results showed that PCSK9 expression was upregulated with the development of liver fibrosis, which was accompanied by enhanced autophagy. In vitro data verified that PCSK9 increased via hypoxia and inflammation, accompanied by the hypoxia-induced autophagy increased. Then, the validation was acquired of the bidirectional interaction of hypoxia-ROS and PCSK9. The hypoxia reversal attenuated PCSK9 expression and autophagy. Additionally, anti-PCSK9 treatment alleviated liver inflammation and fibrosis, reducing hypoxia and autophagy in vivo. In mechanism, the AMPK/mTOR/ULK1 signaling pathway was identified as a target for anti-PCSK9 therapy. In conclusion, anti-PCSK9 treatment could alleviate liver inflammation and fibrosis by regulating AMPK/mTOR/ULK1 signaling pathway to reduce hypoxia-induced autophagy in hepatocytes.
Collapse
Affiliation(s)
- Liuxin Ning
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Shanghai, 200032, China
| | - Yanting Zou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Shanghai, 200032, China
| | - Shuyu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Shanghai, 200032, China
| | - Yue Cao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Shanghai, 200032, China
| | - Beili Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Shanghai, 200032, China
| | - Shuncai Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Shanghai, 200032, China
| | - Yu Cai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Shanghai, 200032, China.
| |
Collapse
|
43
|
Zhao J, Wang R, Song L, Han H, Wang P, Zhao Y, Zhang Y, Zhang H. Causal association between lipid-lowering drugs and female reproductive endocrine diseases: a drug-targeted Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1295412. [PMID: 38027179 PMCID: PMC10668027 DOI: 10.3389/fendo.2023.1295412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose The relationship between dyslipidemia and female reproductive endocrine diseases has been increasingly studied. The use of lipid-lowering drugs in treating various related diseases, including coronary heart disease, may affect female reproductive endocrine diseases. Therefore, our study aims to investigate the effects of lipid-lowering drugs on female reproductive endocrine diseases and provide a basis for the appropriate selection of drugs. Methods In this study, we focused on three drug targets of statins, namely HMG-CoA reductase (HMGCR) inhibitors, proprotein convertase kexin 9 (PCSK9) inhibitors, and Niemann-Pick C1-Like 1 (NPC1L1) inhibitors. To identify potential inhibitors for these targets, we collected single nucleotide polymorphisms (SNPs) associated with HMGCR, PCSK9, and NPC1L1 from published genome-wide association study statistics. Subsequently, we conducted a drug target Mendelian randomization (MR) analysis to investigate the effects of these inhibitors on reproductive endocrine diseases mediated by low-density lipoprotein cholesterol (LDL-C) levels. Alongside coronary heart disease as a positive control, our main outcomes of interest included the risk of polycystic ovary syndrome (PCOS), premature ovarian insufficiency (POI), premenstrual syndrome (PMS), abnormal uterine bleeding (including menorrhagia and oligomenorrhea), and infertility. Results PCSK9 inhibitors significantly increased the risk of infertility in patients (OR [95%CI] = 1.14 [1.06, 1.23], p<0.05). In contrast, HMGCR inhibitors significantly reduced the risk of menorrhagia in female patients (OR [95%CI] = 0.85 [0.75, 0.97], p<0.05), but had no statistical impact on patients with oligomenorrhea. Conclusion The findings suggest that PCSK9 inhibitors may significantly increase the risk of infertility in patients. On the other hand, HMGCR inhibitors could potentially offer protection against menorrhagia in women. However, no effects of lipid-lowering drugs have been observed on other reproductive endocrine disorders, such as PCOS, POF, PMS and oligomenorrhea.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Runfang Wang
- Department of Obstetrics, Hebei General Hospital, Shijiazhuang, China
| | - Liyun Song
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Hua Han
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Pei Wang
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Yuan Zhao
- Department of Clinical Laboratories, Kunhua Affiliated Hospital, Kunming University of Science and Technology, Kunming, China
| | - Yunxia Zhang
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Hongzhen Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
44
|
Wang J, Zhang S, Hu L, Wang Y, Liu K, Le J, Tan Y, Li T, Xue H, Wei Y, Zhong O, He J, Zi D, Lei X, Deng R, Luo Y, Tang M, Su M, Cao Y, Liu Q, Tang Z, Lei X. Pyrroloquinoline quinone inhibits PCSK9-NLRP3 mediated pyroptosis of Leydig cells in obese mice. Cell Death Dis 2023; 14:723. [PMID: 37935689 PMCID: PMC10630350 DOI: 10.1038/s41419-023-06162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023]
Abstract
Abnormal lipid metabolism and chronic low-grade inflammation are the main traits of obesity. Especially, the molecular mechanism of concomitant deficiency in steroidogenesis-associated enzymes related to testosterone (T) synthesis of obesity dominated a decline in male fertility is still poorly understood. Here, we found that in vivo, supplementation of pyrroloquinoline quinone (PQQ) efficaciously ameliorated the abnormal lipid metabolism and testicular spermatogenic function from high-fat-diet (HFD)-induced obese mice. Moreover, the transcriptome analysis of the liver and testicular showed that PQQ supplementation not only inhibited the high expression of proprotein convertase subtilisin/Kexin type 9 (PCSK9) but also weakened the NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated pyroptosis, which both played a negative role in T synthesis of Leydig Cells (LCs). Eventually, the function and the pyroptosis of LCs cultured with palmitic acid in vitro were simultaneously benefited by suppressing the expression of NLRP3 or PCSK9 respectively, as well the parallel effects of PQQ were affirmed. Collectively, our data revealed that PQQ supplementation is a feasible approach to protect T synthesis from PCSK9-NLRP3 crosstalk-induced LCs' pyroptosis in obese men.
Collapse
Affiliation(s)
- Jinyuan Wang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Linlin Hu
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Ke Liu
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jianghua Le
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Yongpeng Tan
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Tianlong Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haoxuan Xue
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yanhong Wei
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Ou Zhong
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Junhui He
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Dan Zi
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xin Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Renhe Deng
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yafei Luo
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Masong Tang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Mingxuan Su
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yichang Cao
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Zhihan Tang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Xiaocan Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
45
|
Zhang X, Zheng Y, Wang Z, Gan J, Yu B, Lu B, Jiang X. Melatonin as a therapeutic agent for alleviating endothelial dysfunction in cardiovascular diseases: Emphasis on oxidative stress. Biomed Pharmacother 2023; 167:115475. [PMID: 37722190 DOI: 10.1016/j.biopha.2023.115475] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
The vascular endothelium is vital in maintaining cardiovascular health by regulating vascular permeability and tone, preventing thrombosis, and controlling vascular inflammation. However, when oxidative stress triggers endothelial dysfunction, it can lead to chronic cardiovascular diseases (CVDs). This happens due to oxidative stress-induced mitochondrial dysfunction, inflammatory responses, and reduced levels of nitric oxide. These factors cause damage to endothelial cells, leading to the acceleration of CVD progression. Melatonin, a natural antioxidant, has been shown to inhibit oxidative stress and stabilize endothelial function, providing cardiovascular protection. The clinical application of melatonin in the prevention and treatment of CVDs has received widespread attention. In this review, based on bibliometric studies, we first discussed the relationship between oxidative stress-induced endothelial dysfunction and CVDs, then summarized the role of melatonin in the treatment of atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and other CVDs. Finally, the potential clinical use of melatonin in the treatment of these diseases is discussed.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bin Lu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
46
|
Wu T, Ye L, Wang S, Huang J, Zhang J. Association of lipid lowering drugs and the risk of systemic lupus erythematosus: a drug target Mendelian randomization. Front Pharmacol 2023; 14:1258018. [PMID: 37964871 PMCID: PMC10642506 DOI: 10.3389/fphar.2023.1258018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Background and objective: An interaction between low-density lipoprotein level, lipid-lowering drugs, and systemic lupus erythematosus (SLE) was reported by previous studies. However, whether lipid-lowering drugs provided protective effect for reducing the risk of SLE was unclear. We aimed to clarify this causal relationship through a drug-target Mendelian randomization (MR) study. Methods: Genetic instruments-single nucleotide polymorphism (SNPs)-were utilized to proxy inhibition of the three genes-3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), proprotein convertase subtilisin/kexin type 9 (PCSK9), and Niemann-Pick C1-Like 1(NPC1L1), which was corresponded to three lipid-lowering drugs-statins, evolocumab, and ezetimibe. Low-density lipoprotein (LDL) cholesterol was selected as the biomarker for the measurement of the inhibitors of HMGCR, PCSK9, and NPC1L1, and the genetic data were acquired from the Global Lipids Genetics Consortium, which consisted of 1.3 million participants of European ancestry and 146.5 thousand participants of East Asian ancestry. The genetic dataset of SLE was acquired from two large-scale GWAS studies; one recruited 23,210 participants (7,219 SLE cases and 15,991 controls) of European ancestry and the other one recruited 12,653 participants (4,222 SLE cases and 8,431 controls) of Chinese ancestry. The primary analysis used the inverse variance weighted (IVW) method. Four additional sensitivity analyses, colocalization analysis, and stratification analysis were performed. Results: The primary analysis showed that inhibition of PCSK9 (evolocumab) was associated with a significantly lower risk of SLE [odds ratio (OR) 0.51, 95%CI 0.34 to 0.76, p = 0.001] in the European population. The secondary analyses had similar findings. Stratification analysis demonstrated that the preventive effect of PCSK9 inhibition for SLE was similar in both males and females. However, the results were not replicated in the East Asian population. The inhibition of HMGCR (statins) and NPC1L1 (ezetimibe) did not cause a lower risk of SLE. Conclusion: Evolocumab might provide a protective effect on the risk of SLE in the European population, but statins and ezetimibe might not have the protective effect. Further research is necessary to elucidate the specific mechanisms and potential therapeutic applications of PCSK9 inhibitors (evolocumab) in the context of SLE protection.
Collapse
Affiliation(s)
- Tong Wu
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Ye
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shenglan Wang
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Huang
- Department of Neurology, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Jing Zhang
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
47
|
Ayati A, Akbari K, Shafiee A, Zoroufian A, Jalali A, Samimi S, Pashang M, Hosseini K, Bagheri J, Masoudkabir F. Time-varying effect of postoperative cholesterol profile on long-term outcomes of isolated coronary artery bypass graft surgery. Lipids Health Dis 2023; 22:163. [PMID: 37789387 PMCID: PMC10546688 DOI: 10.1186/s12944-023-01927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Controlling cholesterol levels is one of the primary goals of preventing atherosclerotic plaque progression in patients undergoing coronary artery bypass graft (CABG) surgery. This study aimed to investigate the impact of serum cholesterol profile at multiple time points following isolated CABG surgery on long-term patient outcomes. METHOD This retrospective cohort study was conducted on the admission and follow-up data of isolated CABG patients from the Tehran Heart Center registry between 2009 and 2016. The association of low-density lipoprotein (LDL), high-density lipoprotein (HDL), and their ratio as an atherogenic index with major adverse cardiac and cerebrovascular events (MACCE) and all-cause mortality were evaluated using time-varying survival analysis methods. RESULT A total of 18657 patients were included in this analysis. After adjusting for known confounding factors, no significant difference in all-cause mortality and MACCE was observed at different LDL levels. The incidence of acute coronary syndrome (ACS) in patients with LDL > 100 mg/dl and LDL < 50 mg/dl was significantly higher than in the control group (P-value = 0.004 and 0.04, respectively). The incidence of cerebrovascular accidents (CVA) at LDL > 100 mg/dl was also significantly higher compared to the control group (P -value = 0.033). Lower HDL levels were significantly associated with a higher MACCE (P -value < 0.001), all-cause mortality (P -value < 0.001), ACS (P -value = 0.00), and CVA (P -value = 0.014). The atherogenic index was also directly related to MACCE and all its components (all P-values < 0.001). CONCLUSION LDL/HDL ratio is suggested as a better marker for secondary prevention goals compared to LDL alone in patients undergoing CABG surgery.
Collapse
Affiliation(s)
- Aryan Ayati
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kasra Akbari
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Shafiee
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Zoroufian
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Jalali
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Samimi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Pashang
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Hosseini
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Bagheri
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Masoudkabir
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Zhou Q, Tang H, Li S. Protective effect of evolocumab on Müller cells in the rat retina under hyperglycaemic and hypoxic conditions. J Diabetes Complications 2023; 37:108593. [PMID: 37717351 DOI: 10.1016/j.jdiacomp.2023.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 09/19/2023]
Abstract
AIMS In this study, rat retinal Müller cells (RMCs) were cultured in vitro to investigate the protective mechanism of evolocumab on rat RMCs in diabetes mellitus (DM) and the expression of relevant inflammatory factors. METHODS The expression of proprotein convertase subtilisin/kexin type 9 (PCSK9) in the retinal tissues of diabetic rats was detected by immunohistochemistry. Sprague-Dawley (SD) rats at 5-7 d of life were selected as the source of RMCs and divided equally into three groups of 12 rats/24 eyes each. The effect of CoCl2 and evolocumab on the cellular activity of RMCs was determined by CCK-8 assay. The effect of CoCl2 and evolocumab on the migration level of RMCs after 72 h was measured by scratch test and the expression of various proteins after 72 h was measured by Western blot. RESULTS In STZ rats, the expression of PCSK9 was significantly upregulated in the retina, especially in the inner nuclear layer, which is mainly composed of RMCs. High glucose and CoCl2 stimulation markedly elevated PCSK9 and GFAP expression at the protein level in RMCs (P < 0.05). Evolocumab treatment (100 μg/ml) reduced the expression and secretion of inflammatory factors in stimulated RMCs (P < 0.05). Furthermore, evolocumab downregulates toll-like receptor-4 (TLR-4) levels and inhibited nuclear transcription factor-κB (NF-κB) phosphorylation in RMCs (P < 0.05). CONCLUSIONS Evolocumab protects against inflammation in RMCs, at least in part, by negatively regulating the activation of the TLR-4/NF-κB signalling pathway. Evolocumab may be a promising anti-inflammatory therapy for ocular fundus diseases, such as DR.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Ophthalmology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Huan Tang
- Department of Ophthalmology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Shuting Li
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
49
|
Feng Z, Liao X, Peng J, Quan J, Zhang H, Huang Z, Yi B. PCSK9 causes inflammation and cGAS/STING pathway activation in diabetic nephropathy. FASEB J 2023; 37:e23127. [PMID: 37561547 DOI: 10.1096/fj.202300342rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Our previous research revealed that an increase in PCSK9 is linked to aggravated inflammation in the kidneys of mice affected by a high-fat diet and streptozotocin (HFD/STZ) or in HGPA-induced HK-2 cells. Furthermore, the cGAS/STING pathway has been reported to be involved in diabetic nephropathy (DN). Therefore, in this study, we aimed to examine the correlation between the proinflammatory effect of PCSK9 and the cGAS/STING pathway in DN. We used PCSK9 mAbs to inhibit PCSK9 in vivo and PCSK9 siRNA in vitro and measured the inflammatory phenotype in HFD/STZ-treated mice or HGPA-induced HK-2 cells, and observed decreased blood urea nitrogen, creatinine, UACR, and kidney injury in response to the PCSK9 mAb in HFD/STZ-treated mice. Moreover, IL-1 β, MCP-1, and TNF-α levels were reduced by the PCSK9 mAb in vivo and PCSK9 siRNA in vitro. We observed increased mtDNA damage and activation of the cGAS-STING signaling pathway during DN, as well as the downstream targets p-TBK1, p-NF-κB p65, and IL-1β. In a further experiment with an HGPA-induced DN model in HK-2 cells, we revealed that mtDNA damage was increased, which led to the activation of the cGAS/STING system and its downstream targets. Notably, the cGAS-STING signaling pathway was inhibited by the PCSK9 mAb in vivo and PCSK9 siRNA in vitro. In addition, inhibition of STING with C-176 in HGPA-induced HK-2 cells markedly blocked inflammation. In conclusion, we report for the first time that PCSK9 triggers mitochondrial DNA damage and activates the cGAS-STING pathway in DN, which leads to a series of inflammation cascades. PCSK9-targeted intervention can effectively reduce DN inflammation and delay its progression. Moreover, the inhibition of STING significantly abrogated the inflammation triggered by HGPA in HK-2 cells.
Collapse
Affiliation(s)
- Zhicai Feng
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xiangyu Liao
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Juan Peng
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Jingjing Quan
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Zhijun Huang
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
- Furong Laboratory, Changsha, China
- Center for Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| |
Collapse
|
50
|
Liu X, Yang L, Zhang G, Ling J. Neuroprotective Effects of Phenolic Antioxidant Tert-butylhydroquinone (tBHQ) in Brain Diseases. Mol Neurobiol 2023; 60:4909-4923. [PMID: 37191855 DOI: 10.1007/s12035-023-03370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Human life and health are gravely threatened by brain diseases. The onset and progression of the illnesses are influenced by a variety of factors, including pathogenic causes, environmental factors, mental issues, etc. According to scientific studies, neuroinflammation and oxidative stress play a significant role in the development and incidence of brain diseases by producing pro-inflammatory cytokines and oxidative tissue damage to induce inflammation and apoptosis. Neuroinflammation, oxidative stress, and oxidative stress-related changes are inseparable factors in the etiology of several brain diseases. Numerous neurodegenerative diseases have undergone substantial research into the therapeutic alternatives that target oxidative stress, the function of oxidative stress, and the possible therapeutic use of antioxidants. Formerly, tBHQ is a synthetic phenolic antioxidant, which has been widely used as a food additive. According to recent researches, tBHQ can suppress the processes that lead to neuroinflammation and oxidative stress, which offers a fresh approach to treating brain diseases. In order to achieve the goal of decreasing inflammation and apoptosis, tBHQ is a specialized nuclear factor erythroid 2-related factor (Nrf2) activator that decreases oxidative stress and enhances antioxidant status by upregulating the Nrf2 gene and reducing nuclear factor kappa-B (NF-κB) activity. This article reviews the effects of tBHQ on neuroinflammation and oxidative stress in recent years and looks into how tBHQ inhibits neuroinflammation and oxidative stress through human, animal, and cell experiments to play a neuroprotective role in Alzheimer's disease (AD), stroke, depression, and Parkinson's disease (PD). It is anticipated that this article will be useful as a reference for upcoming research and the creation of drugs to treat brain diseases.
Collapse
Affiliation(s)
- Xiaojin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Shandong Medical College, Linyi, 276000, China
| | - Luodan Yang
- College of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|