1
|
Summers TC, Ord TJ. Signal detection shapes ornament allometry in functionally convergent Caribbean Anolis and Southeast Asian Draco lizards. J Evol Biol 2022; 35:1508-1523. [PMID: 36177770 PMCID: PMC9828585 DOI: 10.1111/jeb.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 01/12/2023]
Abstract
Visual ornaments have long been assumed to evolve hyper-allometry as an outcome of sexual selection. Yet growing evidence suggests many sexually selected morphologies can exhibit other scaling patterns with body size, including hypo-allometry. The large conspicuous throat fan, or dewlap, of arboreal Caribbean Anolis lizards was one ornament previously thought to conform to the classical expectation of hyper-allometry. We re-evaluated this classic example alongside a second arboreal group of lizards that has also independently evolved a functionally equivalent dewlap, the Southeast Asian Draco lizards. Across multiple closely related species in both genera, the Anolis and Draco dewlaps were either isometric or had hypo-allometric scaling patterns. In the case of the Anolis dewlap, variation in dewlap allometry was predicted by the distance of conspecifics and the light environment in which the dewlap was typically viewed. Signal efficacy, therefore, appears to have driven the evolution of hypo-allometry in what was originally thought to be a sexually selected ornament with hyper-allometry. Our findings suggest that other elaborate morphological structures used in social communication might similarly exhibit isometric or hypo-allometric scaling patterns because of environmental constraints on signal detection.
Collapse
Affiliation(s)
- Thomas C. Summers
- Evolution and Ecology Research Centre, and the School of Biological, Earth and Environmental SciencesUniversity of New South WalesKensingtonNew South WalesAustralia
| | - Terry J. Ord
- Evolution and Ecology Research Centre, and the School of Biological, Earth and Environmental SciencesUniversity of New South WalesKensingtonNew South WalesAustralia
| |
Collapse
|
2
|
Lopera D, Guo KC, Putman BJ, Swierk L. Keeping it cool to take the heat: tropical lizards have greater thermal tolerance in less disturbed habitats. Oecologia 2022; 199:819-829. [PMID: 35948691 DOI: 10.1007/s00442-022-05235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Global climate change has profound effects on species, especially those in habitats already altered by humans. Tropical ectotherms are predicted to be at high risk from global temperature increases, particularly those adapted to cooler temperatures at higher altitudes. We investigated how one such species, the water anole (Anolis aquaticus), is affected by temperature stress similar to that of a warming climate across a gradient of human-altered habitats at high elevation sites. We conducted a field survey on thermal traits and measured lizard critical thermal maxima across the sites. From the field survey, we found that (1) lizards from the least disturbed site and (2) operative temperature models of lizards placed in the least disturbed site had lower temperatures than those from sites with histories of human disturbance. Individuals from the least disturbed site also demonstrated greater tolerance to high temperatures than those from the more disturbed sites, in both their critical thermal maxima and the time spent at high temperatures prior to reaching critical thermal maxima. Our results demonstrate within-species variability in responses to high temperatures, depending on habitat type, and provide insight into how tropical reptiles may fare in a warming world.
Collapse
Affiliation(s)
- Diana Lopera
- Global Environmental Science, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Kimberly Chen Guo
- School of the Environment, Yale University, New Haven, CT, 06511, USA.,Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Breanna J Putman
- Department of Biology, California State University, San Bernardino, CA, 92407, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA.,Department of Herpetology and Urban Nature Research Center, Natural History Museum of Los Angeles County, Los Angeles, CA, 90007, USA
| | - Lindsey Swierk
- School of the Environment, Yale University, New Haven, CT, 06511, USA. .,Department of Biological Sciences, Environmental Studies Program, Binghamton University, State University of New York, Binghamton, NY, 13902, USA. .,Amazon Conservatory for Tropical Studies, Iquitos, Loreto, 16001, Perú.
| |
Collapse
|
3
|
Kabelik D, Julien AR, Waddell BR, Batschelett MA, O'Connell LA. Aggressive but not reproductive boldness in male green anole lizards correlates with baseline vasopressin activity. Horm Behav 2022; 140:105109. [PMID: 35066329 DOI: 10.1016/j.yhbeh.2022.105109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022]
Abstract
Across species, individuals within a population differ in their level of boldness in social encounters with conspecifics. This boldness phenotype is often stable across both time and social context (e.g., reproductive versus agonistic encounters). Various neural and hormonal mechanisms have been suggested as underlying these stable phenotypic differences, which are often also described as syndromes, personalities, and coping styles. Most studies examining the neuroendocrine mechanisms associated with boldness examine subjects after they have engaged in a social interaction, whereas baseline neural activity that may predispose behavioral variation is understudied. The present study tests the hypotheses that physical characteristics, steroid hormone levels, and baseline variation in Ile3-vasopressin (VP, a.k.a., Arg8-vasotocin) signaling predispose boldness during social encounters. Boldness in agonistic and reproductive contexts was extensively quantified in male green anole lizards (Anolis carolinensis), an established research organism for social behavior research that provides a crucial comparison group to investigations of birds and mammals. We found high stability of boldness across time, and between agonistic and reproductive contexts. Next, immunofluorescence was used to colocalize VP neurons with phosphorylated ribosomal protein S6 (pS6), a proxy marker of neural activity. Vasopressin-pS6 colocalization within the paraventricular and supraoptic nuclei of the hypothalamus was inversely correlated with boldness of aggressive behaviors, but not of reproductive behaviors. Our findings suggest that baseline vasopressin release, rather than solely context-dependent release, plays a role in predisposing individuals toward stable levels of displayed aggression toward conspecifics by inhibiting behavioral output in these contexts.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology & Program in Neuroscience, Rhodes College, Memphis, TN 38112, USA.
| | - Allison R Julien
- Department of Biology & Program in Neuroscience, Rhodes College, Memphis, TN 38112, USA
| | - Brandon R Waddell
- Department of Biology & Program in Neuroscience, Rhodes College, Memphis, TN 38112, USA
| | | | | |
Collapse
|
4
|
Wuthrich KL, Stock D, Talavera JB, Putman BJ, Swierk L. Sexual signal conspicuity is correlated with tail autotomy in an anoline lizard. Curr Zool 2021; 68:129-132. [PMID: 35169636 PMCID: PMC8836338 DOI: 10.1093/cz/zoab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Kelly Lin Wuthrich
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Derek Stock
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Janelle B Talavera
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
- Department of Biology, California State University, Northridge, CA 91330-8303, USA
| | - Breanna J Putman
- Department of Biology, California State University, San Bernardino, CA 92407, USA
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA
- Department of Herpetology and Urban Nature Research Center, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | - Lindsey Swierk
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
- School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA
- Amazon Conservatory for Tropical Studies, Iquitos, Loreto 16001, Perú
- The Morpho Institute, Kansas City, MO 64113, USA
- Address correspondence to Lindsey Swierk. E-mail:
| |
Collapse
|
5
|
Kabelik D, Julien AR, Ramirez D, O'Connell LA. Social boldness correlates with brain gene expression in male green anoles. Horm Behav 2021; 133:105007. [PMID: 34102460 PMCID: PMC8277760 DOI: 10.1016/j.yhbeh.2021.105007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/01/2021] [Accepted: 05/22/2021] [Indexed: 11/27/2022]
Abstract
Within populations, some individuals tend to exhibit a bold or shy social behavior phenotype relative to the mean. The neural underpinnings of these differing phenotypes - also described as syndromes, personalities, and coping styles - is an area of ongoing investigation. Although a social decision-making network has been described across vertebrate taxa, most studies examining activity within this network do so in relation to exhibited differences in behavioral expression. Our study instead focuses on constitutive gene expression in bold and shy individuals by isolating baseline gene expression profiles that influence social boldness predisposition, rather than those reflecting the results of social interaction and behavioral execution. We performed this study on male green anole lizards (Anolis carolinensis), an established model organism for behavioral research, which provides a crucial comparison group to investigations of birds and mammals. After identifying subjects as bold or shy through repeated reproductive and agonistic behavior testing, we used RNA sequencing to compare gene expression profiles between these groups within various forebrain, midbrain, and hindbrain regions. The ventromedial hypothalamus had the largest group differences in gene expression, with bold males having increased expression of neuroendocrine and neurotransmitter receptor and calcium channel genes compared to shy males. Conversely, shy males express more integrin alpha-10 in the majority of examined regions. There were no significant group differences in physiology or hormone levels. Our results highlight the ventromedial hypothalamus as an important center of behavioral differences across individuals and provide novel candidates for investigations into the regulation of individual variation in social behavior phenotype.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology & Program in Neuroscience, Rhodes College, Memphis, TN 38112, USA.
| | - Allison R Julien
- Department of Biology & Program in Neuroscience, Rhodes College, Memphis, TN 38112, USA
| | - Dave Ramirez
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
6
|
Talavera JB, Carriere A, Swierk L, Putman BJ. Tail autotomy is associated with boldness in male but not female water anoles. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02982-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Swierk L, Boyer JFF, Chang J, Petelo M, Drobniak SM. Intrasexual variability of a conspicuous social signal influences attack rate of lizard models in an experimental test. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10085-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Sørdalen TK, Halvorsen KT, Vøllestad LA, Moland E, Olsen EM. Marine protected areas rescue a sexually selected trait in European lobster. Evol Appl 2020; 13:2222-2233. [PMID: 33005220 PMCID: PMC7513721 DOI: 10.1111/eva.12992] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022] Open
Abstract
Marine protected areas (MPAs) are increasingly implemented worldwide to maintain and restore depleted populations. However, despite our knowledge on the myriad of positive responses to protection, there are few empirical studies on the ability to conserve species' mating patterns and secondary sexual traits. In male European lobsters (Homarus gammarus), the size of claws relative to body size correlates positively with male mating success and is presumably under sexual selection. At the same time, an intensive trap fishery exerts selection against large claws in males. MPAs could therefore be expected to resolve these conflicting selective pressures and preserve males with large claws. We explored this hypothesis by contrasting claw size of males and females in three pairs of MPAs and nearby fished areas in southern Norway. By finding that male lobsters have up to 8% larger claws inside MPAs compared to similarly sized males in fished areas, our study provides evidence that MPAs rescue a secondary sexual trait. Recovery from harvest selection acting on claws is the most likely explanation; however, the higher abundance of lobster inside MPAs does not rule out a plastic response on claw size due to increased competition. Regardless of the underlying cause, our study demonstrates (a) the value of protected areas as a management tool for mitigating fisheries-induced evolution and (b) that MPAs help maintaining the scope for sexual selection in populations with vulnerable life histories and complex mating system.
Collapse
Affiliation(s)
- Tonje Knutsen Sørdalen
- Department of Natural Sciences Centre for Coastal Research University of Agder Kristiansand Norway
- Institute of Marine Research Flødevigen Norway
| | | | - Leif Asbjørn Vøllestad
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis (CEES) University of Oslo Oslo Norway
| | - Even Moland
- Department of Natural Sciences Centre for Coastal Research University of Agder Kristiansand Norway
- Institute of Marine Research Flødevigen Norway
| | - Esben Moland Olsen
- Department of Natural Sciences Centre for Coastal Research University of Agder Kristiansand Norway
- Institute of Marine Research Flødevigen Norway
| |
Collapse
|
9
|
Physiological Stress Integrates Resistance to Rattlesnake Venom and the Onset of Risky Foraging in California Ground Squirrels. Toxins (Basel) 2020; 12:toxins12100617. [PMID: 32992585 PMCID: PMC7601495 DOI: 10.3390/toxins12100617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Using venom for predation often leads to the evolution of resistance in prey. Understanding individual variation in venom resistance is key to unlocking basic mechanisms by which antagonistic coevolution can sustain variation in traits under selection. For prey, the opposing challenges of predator avoidance and resource acquisition often lead to correlated levels of risk and reward, which in turn can favor suites of integrated morphological, physiological and behavioral traits. We investigate the relationship between risk-sensitive behaviors, physiological resistance to rattlesnake venom, and stress in a population of California ground squirrels. For the same individuals, we quantified foraging decisions in the presence of snake predators, fecal corticosterone metabolites (a measure of “stress”), and blood serum inhibition of venom enzymatic activity (a measure of venom resistance). Individual responses to snakes were repeatable for three measures of risk-sensitive behavior, indicating that some individuals were consistently risk-averse whereas others were risk tolerant. Venom resistance was lower in squirrels with higher glucocorticoid levels and poorer body condition. Whereas resistance failed to predict proximity to and interactions with snake predators, individuals with higher glucocorticoid levels and in lower body condition waited the longest to feed when near a snake. We compared alternative structural equation models to evaluate alternative hypotheses for the relationships among stress, venom resistance, and behavior. We found support for stress as a shared physiological correlate that independently lowers venom resistance and leads to squirrels that wait longer to feed in the presence of a snake, whereas we did not find evidence that resistance directly facilitates latency to forage. Our findings suggest that stress may help less-resistant squirrels avoid a deadly snakebite, but also reduces feeding opportunities. The combined lethal and non-lethal effects of stressors in predator–prey interactions simultaneously impact multiple key traits in this system, making environmental stress a potential contributor to geographic variation in trait expression of toxic predators and resistant prey.
Collapse
|
10
|
You're Just My Type: Mate Choice and Behavioral Types. Trends Ecol Evol 2020; 35:823-833. [PMID: 32451175 DOI: 10.1016/j.tree.2020.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022]
Abstract
Consistent individual differences in behavior [i.e., behavioral types (BTs)], are common across the animal kingdom. Consistency can make behavior an adaptive trait for mate choice decisions. Here, we present a conceptual framework to explain how and why females might evaluate a male's BT before mating. Because BTs are consistent across time or context, a male's BT can be a reliable indicator of his potential to provide direct benefits. Heritable BTs can enable informed mate choice via indirect benefits. Many key issues regarding patterns of mate choice, including sensory biases, context dependence, and assortative mating apply to BT-dependent mate choice. Understanding the relationship between BTs and mate choice may offer insights into patterns of variation and consistency common in behavioral traits.
Collapse
|
11
|
Fondren A, Swierk L, Putman BJ. Clothing color mediates lizard responses to humans in a tropical forest. Biotropica 2019. [DOI: 10.1111/btp.12744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Andrea Fondren
- College of Agriculture and Sciences Iowa State University Ames IA USA
| | - Lindsey Swierk
- Department of Biological Sciences Binghamton University State University of New York Binghamton NY USA
| | - Breanna J. Putman
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
- Section of Herpetology and Urban Nature Research Center Natural History Museum of Los Angeles County Los Angeles CA USA
| |
Collapse
|