1
|
Cuyàs E, Pedarra S, Verdura S, Pardo MA, Espin Garcia R, Serrano-Hervás E, Llop-Hernández À, Teixidor E, Bosch-Barrera J, López-Bonet E, Martin-Castillo B, Lupu R, Pujana MA, Sardanyès J, Alarcón T, Menendez JA. Fatty acid synthase (FASN) is a tumor-cell-intrinsic metabolic checkpoint restricting T-cell immunity. Cell Death Discov 2024; 10:417. [PMID: 39349429 PMCID: PMC11442875 DOI: 10.1038/s41420-024-02184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024] Open
Abstract
Fatty acid synthase (FASN)-catalyzed endogenous lipogenesis is a hallmark of cancer metabolism. However, whether FASN is an intrinsic mechanism of tumor cell defense against T cell immunity remains unexplored. To test this hypothesis, here we combined bioinformatic analysis of the FASN-related immune cell landscape, real-time assessment of cell-based immunotherapy efficacy in CRISPR/Cas9-based FASN gene knockout (FASN KO) cell models, and mathematical and mechanistic evaluation of FASN-driven immunoresistance. FASN expression negatively correlates with infiltrating immune cells associated with cancer suppression, cytolytic activity signatures, and HLA-I expression. Cancer cells engineered to carry a loss-of-function mutation in FASN exhibit an enhanced cytolytic response and an accelerated extinction kinetics upon interaction with cytokine-activated T cells. Depletion of FASN results in reduced carrying capacity, accompanied by the suppression of mitochondrial OXPHOS and strong downregulation of electron transport chain complexes. Targeted FASN depletion primes cancer cells for mitochondrial apoptosis as it synergizes with BCL-2/BCL-XL-targeting BH3 mimetics to render cancer cells more susceptible to T-cell-mediated killing. FASN depletion prevents adaptive induction of PD-L1 in response to interferon-gamma and reduces constitutive overexpression of PD-L1 by abolishing PD-L1 post-translational palmitoylation. FASN is a novel tumor cell-intrinsic metabolic checkpoint that restricts T cell immunity and may be exploited to improve the efficacy of T cell-based immunotherapy.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Stefano Pedarra
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Miguel Angel Pardo
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Roderic Espin Garcia
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Àngela Llop-Hernández
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Eduard Teixidor
- Medical Oncology, Catalan Institute of Oncology, 17007, Girona, Spain
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Joaquim Bosch-Barrera
- Medical Oncology, Catalan Institute of Oncology, 17007, Girona, Spain
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17071, Girona, Spain
| | - Eugeni López-Bonet
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, 17007, Girona, Spain
| | - Begoña Martin-Castillo
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Unit of Clinical Research, Catalan Institute of Oncology, 17007, Girona, Spain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Laboratory, Rochester, MN, 55905, USA
| | - Miguel Angel Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Sardanyès
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
| | - Tomás Alarcón
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
- ICREA, 08010, Barcelona, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain.
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain.
| |
Collapse
|
2
|
Hossain F, Ucar DA, Monticone G, Ran Y, Majumder S, Larter K, Luu H, Wyczechowska D, Heidari S, Xu K, Shanthalingam S, Matossian M, Xi Y, Burow M, Collins-Burow B, Del Valle L, Hicks C, Zabaleta J, Golde T, Osborne B, Miele L. Sulindac sulfide as a non-immune suppressive γ-secretase modulator to target triple-negative breast cancer. Front Immunol 2023; 14:1244159. [PMID: 37901240 PMCID: PMC10612326 DOI: 10.3389/fimmu.2023.1244159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited. There is strong evidence supporting the involvement of Notch signaling in TNBC progression. Expression of Notch1 and its ligand Jagged1 correlate with poor prognosis. Notch inhibitors, including g-secretase inhibitors (GSIs), are quite effective in preclinical models of TNBC. However, the success of GSIs in clinical trials has been limited by their intestinal toxicity and potential for adverse immunological effects, since Notch plays key roles in T-cell activation, including CD8 T-cells in tumors. Our overarching goal is to replace GSIs with agents that lack their systemic toxicity and ideally, do not affect tumor immunity. We identified sulindac sulfide (SS), the active metabolite of FDA-approved NSAID sulindac, as a potential candidate to replace GSIs. Methods We investigated the pharmacological and immunotherapeutic properties of SS in TNBC models in vitro, ex-vivo and in vivo. Results We confirmed that SS, a known γ-secretase modulator (GSM), inhibits Notch1 cleavage in TNBC cells. SS significantly inhibited mammosphere growth in all human and murine TNBC models tested. In a transplantable mouse TNBC tumor model (C0321), SS had remarkable single-agent anti-tumor activity and eliminated Notch1 protein expression in tumors. Importantly, SS did not inhibit Notch cleavage in T- cells, and the anti-tumor effects of SS were significantly enhanced when combined with a-PD1 immunotherapy in our TNBC organoids and in vivo. Discussion Our data support further investigation of SS for the treatment of TNBC, in conjunction with chemo- or -chemo-immunotherapy. Repurposing an FDA-approved, safe agent for the treatment of TNBC may be a cost-effective, rapidly deployable therapeutic option for a patient population in need of more effective therapies.
Collapse
Affiliation(s)
- Fokhrul Hossain
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Deniz A. Ucar
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Giulia Monticone
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Yong Ran
- Department of Pharmacological and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Kristina Larter
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Hanh Luu
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Dorota Wyczechowska
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
| | - Soroor Heidari
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Keli Xu
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | | | - Yaguang Xi
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Matthew Burow
- School of Medicine, Tulane University, New Orleans, LA, United States
| | | | - Luis Del Valle
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
- Department of Pathology, Louisiana State University Health Sciences Center - New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
| | - Todd Golde
- Department of Pharmacological and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Barbara Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| |
Collapse
|
3
|
Emch MJ, Wicik Z, Aspros KG, Vukajlovic T, Pitel KS, Narum AK, Weivoda MM, Tang X, Kalari KR, Turner RT, Iwaniec UT, Monroe DG, Subramaniam M, Hawse JR. Estrogen-regulated miRs in bone enhance osteoblast differentiation and matrix mineralization. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:28-41. [PMID: 37359348 PMCID: PMC10285552 DOI: 10.1016/j.omtn.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Estrogen signaling is critical for the development and maintenance of healthy bone, and age-related decline in estrogen levels contributes to the development of post-menopausal osteoporosis. Most bones consist of a dense cortical shell and an internal mesh-like network of trabecular bone that respond differently to internal and external cues such as hormonal signaling. To date, no study has assessed the transcriptomic differences that occur specifically in cortical and trabecular bone compartments in response to hormonal changes. To investigate this, we employed a mouse model of post-menopausal osteoporosis (ovariectomy, OVX) and estrogen replacement therapy (ERT). mRNA and miR sequencing revealed distinct transcriptomic profiles between cortical and trabecular bone in the setting of OVX and ERT. Seven miRs were identified as likely contributors to the observed estrogen-mediated mRNA expression changes. Of these, four miRs were prioritized for further study and decreased predicted target gene expression in bone cells, enhanced the expression of osteoblast differentiation markers, and altered the mineralization capacity of primary osteoblasts. As such, candidate miRs and miR mimics may have therapeutic relevance for bone loss resulting from estrogen depletion without the unwanted side effects of hormone replacement therapy and therefore represent novel therapeutic approaches to combat diseases of bone loss.
Collapse
Affiliation(s)
- Michael J. Emch
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zofia Wicik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957 Warsaw, Poland
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B Street, 02-097 Warsaw, Poland
| | - Kirsten G.M. Aspros
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Tanja Vukajlovic
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin S. Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Megan M. Weivoda
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaojia Tang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Krishna R. Kalari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - David G. Monroe
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - John R. Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cancer Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Xue B, Rhee SY. Status of genome function annotation in model organisms and crops. PLANT DIRECT 2023; 7:e499. [PMID: 37426891 PMCID: PMC10326244 DOI: 10.1002/pld3.499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 07/11/2023]
Abstract
Since the entry into genome-enabled biology several decades ago, much progress has been made in determining, describing, and disseminating the functions of genes and their products. Yet, this information is still difficult to access for many scientists and for most genomes. To provide easy access and a graphical summary of the status of genome function annotation for model organisms and bioenergy and food crop species, we created a web application (https://genomeannotation.rheelab.org) to visualize, search, and download genome annotation data for 28 species. The summary graphics and data tables will be updated semi-annually, and snapshots will be archived to provide a historical record of the progress of genome function annotation efforts. Clear and simple visualization of up-to-date genome function annotation status, including the extent of what is unknown, will help address the grand challenge of elucidating the functions of all genes in organisms.
Collapse
Affiliation(s)
- Bo Xue
- Department of Plant BiologyCarnegie Institution for ScienceStanfordCaliforniaUSA
- Present address:
Plant Resilience InstituteMichigan State UniversityEast LansingMI 4882
| | - Seung Y. Rhee
- Department of Plant BiologyCarnegie Institution for ScienceStanfordCaliforniaUSA
- Present address:
Plant Resilience InstituteMichigan State UniversityEast LansingMI 4882
| |
Collapse
|
5
|
Firoz A, Ravanan P, Saha P, Prashar T, Talwar P. Genome-wide screening and identification of potential kinases involved in endoplasmic reticulum stress responses. Life Sci 2023; 317:121452. [PMID: 36720454 DOI: 10.1016/j.lfs.2023.121452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
AIM This study aims to identify endoplasmic reticulum stress response elements (ERSE) in the human genome to explore potentially regulated genes, including kinases and transcription factors, involved in the endoplasmic reticulum (ER) stress and its related diseases. MATERIALS AND METHODS Python-based whole genome screening of ERSE was performed using the Amazon Web Services elastic computing system. The Kinome database was used to filter out the kinases from the extracted list of ERSE-related genes. Additionally, network analysis and genome enrichment were achieved using NDEx, the Network and Data Exchange software, and web-based computational tools. To validate the gene expression, quantitative RT-PCR was performed for selected kinases from the list by exposing the HeLa cells to tunicamycin and brefeldin, ER stress inducers, for various time points. KEY FINDINGS The overall number of ERSE-associated genes follows a similar pattern in humans, mice, and rats, demonstrating the ERSE's conservation in mammals. A total of 2705 ERSE sequences were discovered in the human genome (GRCh38.p14), from which we identified 36 kinases encoding genes. Gene expression analysis has shown a significant change in the expression of selected genes under ER stress conditions in HeLa cells, supporting our finding. SIGNIFICANCE In this study, we have introduced a rapid method using Amazon cloud-based services for genome-wide screening of ERSE sequences from both positive and negative strands, which covers the entire genome reference sequences. Approximately 10 % of human protein-protein interactomes were found to be associated with ERSE-related genes. Our study also provides a rich resource of human ER stress-response-based protein networks and transcription factor interactions and a reference point for future research aiming at targeted therapeutics.
Collapse
Affiliation(s)
- Arman Firoz
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Palaniyandi Ravanan
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi campus, Thiruvarur 610005, Tamil Nadu, India
| | - Pritha Saha
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Tanish Prashar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Otohinoyi D, Kuchi A, Wu J, Hicks C. Integrating Genomic Information with Tumor-Immune Microenvironment in Triple-Negative Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113901. [PMID: 36360779 PMCID: PMC9659069 DOI: 10.3390/ijerph192113901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND the development and progression of triple-negative breast cancer (TNBC) is driven by somatic driver mutations and the tumor-immune microenvironment. To date, data on somatic mutations has not been leveraged and integrated with information on the immune microenvironment to elucidate the possible oncogenic interactions and their potential effects on clinical outcomes. Here, we investigated possible oncogenic interactions between somatic mutations and the tumor-immune microenvironment, and their correlation with patient survival in TNBC. METHODS We performed analysis combining data on 7,875 somatic mutated genes with information on 1,751 immune-modulated genes, using gene-expression data as the intermediate phenotype, and correlated the resulting information with survival. We conducted functional analysis to identify immune-modulated molecular networks and signaling pathways enriched for somatic mutations likely to drive clinical outcomes. RESULTS We discovered differences in somatic mutation profiles between patients who died and those who survived, and a signature of somatic mutated immune-modulated genes transcriptionally associated with TNBC, predictive of survival. In addition, we discovered immune-modulated molecular networks and signaling pathways enriched for somatic mutations. CONCLUSIONS The investigation revealed possible oncogenic interactions between somatic mutations and the tumor-immune microenvironment in TNBC, likely to affect clinical outcomes.
Collapse
|
7
|
A complex epigenome-splicing crosstalk governs epithelial-to-mesenchymal transition in metastasis and brain development. Nat Cell Biol 2022; 24:1265-1277. [PMID: 35941369 DOI: 10.1038/s41556-022-00971-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) renders epithelial cells migratory properties. While epigenetic and splicing changes have been implicated in EMT, the mechanisms governing their crosstalk remain poorly understood. Here we discovered that a C2H2 zinc finger protein, ZNF827, is strongly induced during various contexts of EMT, including in brain development and breast cancer metastasis, and is required for the molecular and phenotypic changes underlying EMT in these processes. Mechanistically, ZNF827 mediated these responses by orchestrating a large-scale remodelling of the splicing landscape by recruiting HDAC1 for epigenetic modulation of distinct genomic loci, thereby slowing RNA polymerase II progression and altering the splicing of genes encoding key EMT regulators in cis. Our findings reveal an unprecedented complexity of crosstalk between epigenetic landscape and splicing programme in governing EMT and identify ZNF827 as a master regulator coupling these processes during EMT in brain development and breast cancer metastasis.
Collapse
|
8
|
Ebel M, Migliorelli G, Stanke M. Global, highly specific and fast filtering of alignment seeds. BMC Bioinformatics 2022; 23:225. [PMID: 35689182 PMCID: PMC9188137 DOI: 10.1186/s12859-022-04745-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Background An important initial phase of arguably most homology search and alignment methods such as required for genome alignments is seed finding. The seed finding step is crucial to curb the runtime as potential alignments are restricted to and anchored at the sequence position pairs that constitute the seed. To identify seeds, it is good practice to use sets of spaced seed patterns, a method that locally compares two sequences and requires exact matches at certain positions only. Results We introduce a new method for filtering alignment seeds that we call geometric hashing. Geometric hashing achieves a high specificity by combining non-local information from different seeds using a simple hash function that only requires a constant and small amount of additional time per spaced seed. Geometric hashing was tested on the task of finding homologous positions in the coding regions of human and mouse genome sequences. Thereby, the number of false positives was decreased about million-fold over sets of spaced seeds while maintaining a very high sensitivity. Conclusions An additional geometric hashing filtering phase could improve the run-time, accuracy or both of programs for various homology-search-and-align tasks. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04745-4.
Collapse
Affiliation(s)
- Matthis Ebel
- Institute for Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, 17489, Greifswald, Germany.,Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Giovanna Migliorelli
- Institute for Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, 17489, Greifswald, Germany.,Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Mario Stanke
- Institute for Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, 17489, Greifswald, Germany. .,Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany.
| |
Collapse
|
9
|
Sakellariou D, Bak ST, Isik E, Barroso SI, Porro A, Aguilera A, Bartek J, Janscak P, Peña-Diaz J. MutSβ regulates G4-associated telomeric R-loops to maintain telomere integrity in ALT cancer cells. Cell Rep 2022; 39:110602. [PMID: 35385755 DOI: 10.1016/j.celrep.2022.110602] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
Up to 15% of human cancers maintain their telomeres through a telomerase-independent mechanism, termed "alternative lengthening of telomeres" (ALT) that relies on homologous recombination between telomeric sequences. Emerging evidence suggests that the recombinogenic nature of ALT telomeres results from the formation of RNA:DNA hybrids (R-loops) between telomeric DNA and the long-noncoding telomeric repeat-containing RNA (TERRA). Here, we show that the mismatch repair protein MutSβ, a heterodimer of MSH2 and MSH3 subunits, is enriched at telomeres in ALT cancer cells, where it prevents the accumulation of telomeric G-quadruplex (G4) structures and R-loops. Cells depleted of MSH3 display increased incidence of R-loop-dependent telomere fragility and accumulation of telomeric C-circles. We also demonstrate that purified MutSβ recognizes and destabilizes G4 structures in vitro. These data suggest that MutSβ destabilizes G4 structures in ALT telomeres to regulate TERRA R-loops, which is a prerequisite for maintenance of telomere integrity during ALT.
Collapse
Affiliation(s)
- Despoina Sakellariou
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Sara Thornby Bak
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Esin Isik
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zürich, Switzerland
| | - Sonia I Barroso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, University of Seville-CSIC-UPO, Seville, Spain
| | - Antonio Porro
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zürich, Switzerland
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, University of Seville-CSIC-UPO, Seville, Spain
| | - Jiri Bartek
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, 17177 Stockholm, Sweden; Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14300 Prague, Czech Republic
| | - Pavel Janscak
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zürich, Switzerland; Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14300 Prague, Czech Republic.
| | - Javier Peña-Diaz
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
10
|
Kim EY, Che Y, Dean HJ, Lorenzo-Redondo R, Stewart M, Keller CK, Whorf D, Mills D, Dulin NN, Kim T, Votoupal M, Walter M, Fernandez-Sesma A, Kim H, Wolinsky SM. Transcriptome-wide changes in gene expression, splicing, and lncRNAs in response to a live attenuated dengue virus vaccine. Cell Rep 2022; 38:110341. [PMID: 35139383 PMCID: PMC8994511 DOI: 10.1016/j.celrep.2022.110341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/20/2021] [Accepted: 01/14/2022] [Indexed: 01/26/2023] Open
Abstract
The tetravalent dengue vaccine candidate, TAK-003, induces a functional antibody response, but the titers of antibodies against the four serotypes of the dengue virus (DENV) can vary. Here, through a transcriptomic analysis on whole blood collected from recipients of a two-dose schedule of TAK-003, we examine gene expression, splicing, and transcript isoform-level changes for both protein-coding and noncoding genes to broaden our understanding of the immune response. Our analysis reveals a dynamic pattern of vaccine-associated regulation of long noncoding RNAs (lncRNAs), differential splicing of interferon-stimulated gene exons, and gene expression changes related to multiple signaling pathways that detect viral infection. Co-expression networks isolate immune cell-type-related and interferon-response modules that represent specific biological processes that correlate with more robust antibody responses. These data provide insights into the early determinants of the variable immune response to the vaccine, highlighting the significance of splicing and isoform-level gene regulatory mechanisms in defining vaccine immunogenicity.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Yan Che
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | | | - Ramon Lorenzo-Redondo
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Michael Stewart
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Caroline K Keller
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Daniel Whorf
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Dawson Mills
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Nikita N Dulin
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Tiffany Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Megan Votoupal
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Miriam Walter
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Heejin Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Steven M Wolinsky
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA.
| |
Collapse
|
11
|
Wassan JT, Zheng H, Wang H. Role of Deep Learning in Predicting Aging-Related Diseases: A Scoping Review. Cells 2021; 10:cells10112924. [PMID: 34831148 PMCID: PMC8616301 DOI: 10.3390/cells10112924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Aging refers to progressive physiological changes in a cell, an organ, or the whole body of an individual, over time. Aging-related diseases are highly prevalent and could impact an individual’s physical health. Recently, artificial intelligence (AI) methods have been used to predict aging-related diseases and issues, aiding clinical providers in decision-making based on patient’s medical records. Deep learning (DL), as one of the most recent generations of AI technologies, has embraced rapid progress in the early prediction and classification of aging-related issues. In this paper, a scoping review of publications using DL approaches to predict common aging-related diseases (such as age-related macular degeneration, cardiovascular and respiratory diseases, arthritis, Alzheimer’s and lifestyle patterns related to disease progression), was performed. Google Scholar, IEEE and PubMed are used to search DL papers on common aging-related issues published between January 2017 and August 2021. These papers were reviewed, evaluated, and the findings were summarized. Overall, 34 studies met the inclusion criteria. These studies indicate that DL could help clinicians in diagnosing disease at its early stages by mapping diagnostic predictions into observable clinical presentations; and achieving high predictive performance (e.g., more than 90% accurate predictions of diseases in aging).
Collapse
Affiliation(s)
| | - Huiru Zheng
- School of Computing, Ulster University, Belfast BT15 1ED, UK;
- Correspondence:
| | - Haiying Wang
- School of Computing, Ulster University, Belfast BT15 1ED, UK;
| |
Collapse
|
12
|
Khan AA, Ali MS, Babar F, Fatima A, Shafqat MA, Asghar B, Ilyas N, Fatima M, Liaqat A, Gondal MA. Lack of CpG islands in human unitary pseudogenes and its implication. Mamm Genome 2021; 32:443-447. [PMID: 34272576 DOI: 10.1007/s00335-021-09893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022]
Abstract
CpG islands (CGIs) are aggregation of CpG dinucleotides in the promoters of mammalian genes. These CGIs are present in almost all the housekeeping genes and some tissue-specific genes in the mammalian genome. Extensive research has been done on the prevalence and role of CGIs in protein-coding genes. However, little is known about CGIs in pseudogenes. In the current research project, we focused on CGIs in three main classes of pseudogenes e.g., duplicated pseudogenes (DPGs), processed pseudogenes (PPGs), and unitary pseudogenes (UPGs). We discovered a predominant absence of CGIs in the promoters of all three pseudogenes. We also compared the CGI profile of these pseudogenes with their parent genes and found that unitary pseudogenes (UPGs) differ from the DPGs and PPGs in the sense that in the latter, lack of CGIs is a consequential event while in UPGs, this lack of CGIs in their promoters is not a result of pseudogenization process. We also discussed the implication of the results obtained from this comparison. To our knowledge, this is the first-ever study highlighting this aspect of UPGs throwing new insights into the evolution of genome in general and especially in the context of pseudogenes.
Collapse
Affiliation(s)
- Ammad Aslam Khan
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan.
| | - Muhammad Shahryar Ali
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | - Farah Babar
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | - Anees Fatima
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | - Muhammad Awais Shafqat
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | - Bisma Asghar
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | - Nimra Ilyas
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | - Maheen Fatima
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | - Ayesha Liaqat
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, 547 92, Pakistan
| | | |
Collapse
|
13
|
Favara DM, Liebscher I, Jazayeri A, Nambiar M, Sheldon H, Banham AH, Harris AL. Elevated expression of the adhesion GPCR ADGRL4/ELTD1 promotes endothelial sprouting angiogenesis without activating canonical GPCR signalling. Sci Rep 2021; 11:8870. [PMID: 33893326 PMCID: PMC8065136 DOI: 10.1038/s41598-021-85408-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
ADGRL4/ELTD1 is an orphan adhesion GPCR (aGPCR) expressed in endothelial cells that regulates tumour angiogenesis. The majority of aGPCRs are orphan receptors. The Stachel Hypothesis proposes a mechanism for aGPCR activation, in which aGPCRs contain a tethered agonist (termed Stachel) C-terminal to the GPCR-proteolytic site (GPS) cleavage point which, when exposed, initiates canonical GPCR signalling. This has been shown in a growing number of aGPCRs. We tested this hypothesis on ADGRL4/ELTD1 by designing full length (FL) and C-terminal fragment (CTF) ADGRL4/ELTD1 constructs, and a range of potential Stachel peptides. Constructs were transfected into HEK293T cells and HTRF FRET, luciferase-reporter and Alphascreen GPCR signalling assays were performed. A stable ADGRL4/ELTD1 overexpressing HUVEC line was additionally generated and angiogenesis assays, signalling assays and transcriptional profiling were performed. ADGRL4/ELTD1 has the lowest GC content in the aGPCR family and codon optimisation significantly increased its expression. FL and CTF ADGRL4/ELTD1 constructs, as well as Stachel peptides, did not activate canonical GPCR signalling. Furthermore, stable overexpression of ADGRL4/ELTD1 in HUVECs induced sprouting angiogenesis, lowered in vitro anastomoses, and decreased proliferation, without activating canonical GPCR signalling or MAPK/ERK, PI3K/AKT, JNK, JAK/HIF-1α, beta catenin or STAT3 pathways. Overexpression upregulated ANTXR1, SLC39A6, HBB, CHRNA, ELMOD1, JAG1 and downregulated DLL4, KIT, CCL15, CYP26B1. ADGRL4/ELTD1 specifically regulates the endothelial tip-cell phenotype through yet undefined signalling pathways.
Collapse
Affiliation(s)
- David M Favara
- Balliol College, University of Oxford, Oxford, OX1 3BJ, UK.
- Department of Oncology and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
- Cambridge University Hospitals NHS Foundation Trust and Department of Oncology, Cambridge University, Cambridge, CB2 0XZ, UK.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Department of Molecular Biochemistry, University of Leipzig, 04103, Leipzig, Germany
| | - Ali Jazayeri
- Heptares Therapeutics Ltd, Welwyn Garden City, AL7 3AX, UK
- OMass Therapeutics, Oxford, OX4 4GE, UK
| | - Madhulika Nambiar
- Heptares Therapeutics Ltd, Welwyn Garden City, AL7 3AX, UK
- Sosei Heptares, Cambridge, CB21 6DG, UK
| | - Helen Sheldon
- Department of Oncology and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Adrian L Harris
- Department of Oncology and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
14
|
Shemesh N, Jubran J, Dror S, Simonovsky E, Basha O, Argov C, Hekselman I, Abu-Qarn M, Vinogradov E, Mauer O, Tiago T, Carra S, Ben-Zvi A, Yeger-Lotem E. The landscape of molecular chaperones across human tissues reveals a layered architecture of core and variable chaperones. Nat Commun 2021; 12:2180. [PMID: 33846299 PMCID: PMC8042005 DOI: 10.1038/s41467-021-22369-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The sensitivity of the protein-folding environment to chaperone disruption can be highly tissue-specific. Yet, the organization of the chaperone system across physiological human tissues has received little attention. Through computational analyses of large-scale tissue transcriptomes, we unveil that the chaperone system is composed of core elements that are uniformly expressed across tissues, and variable elements that are differentially expressed to fit with tissue-specific requirements. We demonstrate via a proteomic analysis that the muscle-specific signature is functional and conserved. Core chaperones are significantly more abundant across tissues and more important for cell survival than variable chaperones. Together with variable chaperones, they form tissue-specific functional networks. Analysis of human organ development and aging brain transcriptomes reveals that these functional networks are established in development and decline with age. In this work, we expand the known functional organization of de novo versus stress-inducible eukaryotic chaperones into a layered core-variable architecture in multi-cellular organisms.
Collapse
Affiliation(s)
- Netta Shemesh
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Juman Jubran
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shiran Dror
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eyal Simonovsky
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omer Basha
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Chanan Argov
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Idan Hekselman
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Mehtap Abu-Qarn
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ekaterina Vinogradov
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omry Mauer
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tatiana Tiago
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
15
|
Liu X, Li C, Mou C, Dong Y, Tu Y. dbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Med 2020; 12:103. [PMID: 33261662 PMCID: PMC7709417 DOI: 10.1186/s13073-020-00803-9] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Whole exome sequencing has been increasingly used in human disease studies. Prioritization based on appropriate functional annotations has been used as an indispensable step to select candidate variants. Here we present the latest updates to dbNSFP (version 4.1), a database designed to facilitate this step by providing deleteriousness prediction and functional annotation for all potential nonsynonymous and splice-site SNVs (a total of 84,013,093) in the human genome. The current version compiled 36 deleteriousness prediction scores, including 12 transcript-specific scores, and other variant and gene-level functional annotations. The database is available at http://database.liulab.science/dbNSFP with a downloadable version and a web-service.
Collapse
Affiliation(s)
- Xiaoming Liu
- USF Genomics & College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Chang Li
- USF Genomics & College of Public Health, University of South Florida, Tampa, FL, USA
| | - Chengcheng Mou
- Department of Computer Science and Engineering, College of Engineering, University of South Florida, Tampa, FL, USA
| | - Yibo Dong
- USF Genomics & College of Public Health, University of South Florida, Tampa, FL, USA
| | - Yicheng Tu
- Department of Computer Science and Engineering, College of Engineering, University of South Florida, Tampa, FL, USA
| |
Collapse
|
16
|
Ferretti L, Krämer-Eis A, Schiffer PH. Conserved Patterns in Developmental Processes and Phases, Rather than Genes, Unite the Highly Divergent Bilateria. Life (Basel) 2020; 10:E182. [PMID: 32899936 PMCID: PMC7555945 DOI: 10.3390/life10090182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023] Open
Abstract
Bilateria are the predominant clade of animals on Earth. Despite having evolved a wide variety of body plans and developmental modes, they are characterized by common morphological traits. By default, researchers have tried to link clade-specific genes to these traits, thus distinguishing bilaterians from non-bilaterians, by their gene content. Here we argue that it is rather biological processes that unite Bilateria and set them apart from their non-bilaterian sisters, with a less complex body morphology. To test this hypothesis, we compared proteomes of bilaterian and non-bilaterian species in an elaborate computational pipeline, aiming to search for a set of bilaterian-specific genes. Despite the limited confidence in their bilaterian specificity, we nevertheless detected Bilateria-specific functional and developmental patterns in the sub-set of genes conserved in distantly related Bilateria. Using a novel multi-species GO-enrichment method, we determined the functional repertoire of genes that are widely conserved among Bilateria. Analyzing expression profiles in three very distantly related model species-D. melanogaster, D. rerio and C. elegans-we find characteristic peaks at comparable stages of development and a delayed onset of expression in embryos. In particular, the expression of the conserved genes appears to peak at the phylotypic stage of different bilaterian phyla. In summary, our study illustrate how development connects distantly related Bilateria after millions of years of divergence, pointing to processes potentially separating them from non-bilaterians. We argue that evolutionary biologists should return from a purely gene-centric view of evolution and place more focus on analyzing and defining conserved developmental processes and periods.
Collapse
Affiliation(s)
- Luca Ferretti
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Andrea Krämer-Eis
- Institut für Genetik, Universität zu Köln, Zülpicher Straße 47a, 50674 Köln, Germany;
| | - Philipp H. Schiffer
- Institut für Zoologie, Universität zu Köln, Zülpicher Straße 47b, 50674 Köln, Germany
| |
Collapse
|
17
|
Lietz CE, Garbutt C, Barry WT, Deshpande V, Chen YL, Lozano-Calderon SA, Wang Y, Lawney B, Ebb D, Cote GM, Duan Z, Hornicek FJ, Choy E, Petur Nielsen G, Haibe-Kains B, Quackenbush J, Spentzos D. MicroRNA-mRNA networks define translatable molecular outcome phenotypes in osteosarcoma. Sci Rep 2020; 10:4409. [PMID: 32157112 PMCID: PMC7064533 DOI: 10.1038/s41598-020-61236-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/03/2020] [Indexed: 12/30/2022] Open
Abstract
There is a lack of well validated prognostic biomarkers in osteosarcoma, a rare, recalcitrant disease for which treatment standards have not changed in over 20 years. We performed microRNA sequencing in 74 frozen osteosarcoma biopsy samples, constituting the largest single center translationally analyzed osteosarcoma cohort to date, and we separately analyzed a multi-omic dataset from a large NCI supported national cooperative group cohort. We validated the prognostic value of candidate microRNA signatures and contextualized them in relevant transcriptomic and epigenomic networks. Our results reveal the existence of molecularly defined phenotypes associated with outcome independent of clinicopathologic features. Through machine learning based integrative pharmacogenomic analysis, the microRNA biomarkers identify novel therapeutics for stratified application in osteosarcoma. The previously unrecognized osteosarcoma subtypes with distinct clinical courses and response to therapy could be translatable for discerning patients appropriate for more intensified, less intensified, or alternate therapeutic regimens.
Collapse
Affiliation(s)
- Christopher E Lietz
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Cassandra Garbutt
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Illumina, Inc., San Diego, United States
| | - William T Barry
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yen-Lin Chen
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Santiago A Lozano-Calderon
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yaoyu Wang
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Brian Lawney
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States
| | - David Ebb
- Pediatric Hematology-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Gregory M Cote
- Department of Hematology/Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhenfeng Duan
- Department of Orthopaedic Surgery, UCLA, Los Angeles, CA, United States
| | | | - Edwin Choy
- Department of Hematology/Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Benjamin Haibe-Kains
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Dimitrios Spentzos
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
18
|
Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinform Biol Insights 2020; 14:1177932219899051. [PMID: 32076369 PMCID: PMC7003173 DOI: 10.1177/1177932219899051] [Citation(s) in RCA: 574] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/22/2022] Open
Abstract
To study complex biological processes holistically, it is imperative to take an integrative approach that combines multi-omics data to highlight the interrelationships of the involved biomolecules and their functions. With the advent of high-throughput techniques and availability of multi-omics data generated from a large set of samples, several promising tools and methods have been developed for data integration and interpretation. In this review, we collected the tools and methods that adopt integrative approach to analyze multiple omics data and summarized their ability to address applications such as disease subtyping, biomarker prediction, and deriving insights into the data. We provide the methodology, use-cases, and limitations of these tools; brief account of multi-omics data repositories and visualization portals; and challenges associated with multi-omics data integration.
Collapse
Affiliation(s)
| | | | | | - Abhay Jere
- Innovation Cell, Ministry of Human Resource Development, New Delhi, India
| | | |
Collapse
|
19
|
Tahira AC, Barbosa AR, Feltrin AS, Gastaldi VD, de Toledo VHC, de Carvalho Pereira JG, Lisboa BCG, de Souza Reis VN, dos Santos ACF, Maschietto M, Brentani H. Putative contributions of the sex chromosome proteins SOX3 and SRY to neurodevelopmental disorders. Am J Med Genet B Neuropsychiatr Genet 2019; 180:390-414. [PMID: 30537354 PMCID: PMC6767407 DOI: 10.1002/ajmg.b.32704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
The male-biased prevalence of certain neurodevelopmental disorders and the sex-biased outcomes associated with stress exposure during gestation have been previously described. Here, we hypothesized that genes distinctively targeted by only one or both homologous proteins highly conserved across therian mammals, SOX3 and SRY, could induce sexual adaptive changes that result in a differential risk for neurodevelopmental disorders. ChIP-seq/chip data showed that SOX3/SRY gene targets were expressed in different brain cell types in mice. We used orthologous human genes in rodent genomes to extend the number of SOX3/SRY set (1,721). These genes were later found to be enriched in five modules of coexpressed genes during the early and mid-gestation periods (FDR < 0.05), independent of sexual hormones. Genes with differential expression (24, p < 0.0001) and methylation (40, p < 0.047) between sexes were overrepresented in this set. Exclusive SOX3 or SRY target genes were more associated with the late gestational and postnatal periods. Using autism as a model sex-biased disorder, the SOX3/SRY set was enriched in autism gene databases (FDR ≤ 0.05), and there were more de novo variations from the male autism spectrum disorder (ASD) samples under the SRY peaks compared to the random peaks (p < 0.024). The comparison of coexpressed networks of SOX3/SRY target genes between male autism and control samples revealed low preservation in gene modules related to stress response (99 genes) and neurogenesis (78 genes). This study provides evidence that while SOX3 is a regulatory mechanism for both sexes, the male-exclusive SRY also plays a role in gene regulation, suggesting a potential mechanism for sex bias in ASD.
Collapse
Affiliation(s)
- Ana Carolina Tahira
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - André Rocha Barbosa
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Inter‐institutional Grad Program on BioinformaticsUniversity of São PauloSão PauloSPBrazil
| | | | - Vinicius Daguano Gastaldi
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Victor Hugo Calegari de Toledo
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | | | - Bianca Cristina Garcia Lisboa
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Viviane Neri de Souza Reis
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Ana Cecília Feio dos Santos
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Laboratório de Pesquisas Básicas em Malária – EntomologiaSeção de Parasitologia – Instituto Evandro Chagas/SVS/MSAnanindeuaPABrazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasSPBrazil
| | - Helena Brentani
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Inter‐institutional Grad Program on BioinformaticsUniversity of São PauloSão PauloSPBrazil
- Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSPBrazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD)Sao PauloSPBrazil
- Faculdade de Medicina FMUSPUniversidade de Sao PauloSao PauloSPBrazil
| |
Collapse
|
20
|
Favara DM, Banham AH, Harris AL. ADGRL4/ELTD1 is a highly conserved angiogenesis-associated orphan adhesion GPCR that emerged with the first vertebrates and comprises 3 evolutionary variants. BMC Evol Biol 2019; 19:143. [PMID: 31299890 PMCID: PMC6626334 DOI: 10.1186/s12862-019-1445-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Our laboratory identified ADGRL4/ELTD1, an orphan GPCR belonging to the adhesion GPCR (aGPCR) family, as a novel regulator of angiogenesis and a potential anti-cancer therapeutic target. Little is known about how ADGRL4/ELTD1 (and aGPCRs in general) function, a problem compounded by a lack of known ligands or means of activation. With this in mind, we turned to computational evolutionary biology with the aim of better understanding ADGRL4/ELTD1. RESULTS We identified ADGRL4/ELTD1 as a highly conserved early angiogenic gene which emerged in the first true vertebrates (bony fish) approximately 435 million years ago (mya), evolving alongside key angiogenic genes VEGFR2 and DLL4. We identified 3 evolutionary ADGRL4/ELTD1 variants based on EGF domain deletions with variant 2 first emerging 101 mya (95% CI 96-105) in Afrotheria and 82 mya (95% CI 76-89) in Primates. Additionally, conservation mapping across all orthologues reveals highest level conservation in EGF Ca binding domain 1, suggesting that this motif plays an essential role, as well as specific regions of the GAIN domain, GPS motif and 7TM domain, suggesting possible activation mechanisms and ligand binding positions. Additionally, we found that ADGRL4/ELTD1 (a member aGPCR family 1) is possibly ancestral to members of aGPCR family 2. CONCLUSION This work establishes ADGRL4/ELTD1's evolution, sheds light on its possible activation and ligand binding zones, and establishes the first temporal references for the emergence of ADGRL4/ELTD1 variants during vertebrate evolution. Our approach is applicable to the greater aGPCR family and opens up new avenues for future experimental work.
Collapse
Affiliation(s)
- David M. Favara
- Balliol College, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Alison H. Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
21
|
Schokker D, Hulsegge I, Woelders H, Rebel JMJ. Plasticity of intestinal gene expression profile signatures reflected by nutritional interventions in piglets. BMC Genomics 2019; 20:414. [PMID: 31122193 PMCID: PMC6533718 DOI: 10.1186/s12864-019-5748-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immediately after birth, the porcine intestine rapidly develops morphologically, functionally, and immunologically. The jejunum, the second part of the small intestine, is of importance for nutrient uptake and immune surveillance. To study the early postnatal development of the jejunum, a meta-analysis was performed on different transcriptomic datasets. These datasets were acquired from different experimental in-house studies or from experiments described in literature of porcine jejunum mucosa. Gene expression was measured under different experimental interventions, such as nutritional intervention, at various time-points (age). RESULTS The studies included in the meta-analysis provided gene expression data for various time-points (piglet ages) for piglets that had received a treatment versus control piglets. In separate studies, treatments were administered to the sow (i.e. amoxicillin), or nutritional supplementation directly to the piglets with medium chain fatty acids (MCFAs), and oral administration of fructooligosaccharides (FOS) or a high dose of zinc-oxide, respectively. In the meta-analysis, genes were grouped into 16 clusters according to their temporal gene expression profiles for control piglets, i.e. the changes of gene expression level over time. Functional analysis showed that these temporal profile clusters had different dominant processes, such as immune related processes or barrier function. Transcriptomics data of treatment piglets was subsequently superimposed over the control temporal profiles. In this way we could investigate which temporal profile clusters (and which biological processes) were modulated by the treatments. Interestingly, not all 16 temporal profiles were modulated. CONCLUSIONS We showed that it is possible to re-use (publicly available) transcriptomics data and produce temporal gene expression profiles for control piglets with overexpression of genes representing specific biological processes. Subsequently, by superimposing gene expression data from (nutritional) intervention studies we observed deviations from some of these reference profile(s) and thus the plasticity of the system. By employing this meta-analysis approach we highlighted the importance of birth and weaning and the underlying biological processes.
Collapse
Affiliation(s)
- Dirkjan Schokker
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700, AH, Wageningen, The Netherlands.
| | - Ina Hulsegge
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700, AH, Wageningen, The Netherlands
| | - Henri Woelders
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700, AH, Wageningen, The Netherlands
| | - Johanna M J Rebel
- Wageningen University & Research Animal Health and Welfare, P.O. Box 338, 6700, AH, Wageningen, The Netherlands
| |
Collapse
|
22
|
Feyertag F, Berninsone PM, Alvarez-Ponce D. N-glycoproteins exhibit a positive expression level-evolutionary rate correlation. J Evol Biol 2019; 32:390-394. [PMID: 30697857 DOI: 10.1111/jeb.13420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/22/2022]
Abstract
The different proteins of any proteome evolve at enormously different rates. One of the primary factors influencing rates of protein evolution is expression level, with highly expressed proteins tending to evolve at slow rates. This phenomenon, known as the expression level-evolutionary rate (E-R) anticorrelation, has been attributed to the abundance-dependent deleterious effects of misfolding or misinteraction. We have recently shown that secreted proteins either lack an E-R anticorrelation or exhibit a significantly reduced E-R anticorrelation. This effect may be due to the strict quality control to which secreted proteins are subject in the endoplasmic reticulum (which is expected to reduce the rate of misfolding and its deleterious effects) or to their extracellular location (expected to reduce the rate of misinteraction and its deleterious effects). Among secreted proteins, N-glycosylated ones are under particularly strong quality control. Here, we investigate how N-linked glycosylation affects the E-R anticorrelation. Strikingly, we observe a positive E-R correlation among N-glycosylated proteins. That is, N-glycoproteins that are highly expressed evolve at faster rates than lowly expressed N-glycoproteins, in contrast to what is observed among intracellular proteins.
Collapse
Affiliation(s)
- Felix Feyertag
- Department of Biology, University of Nevada, Reno, Reno, Nevada
| | | | | |
Collapse
|
23
|
Erkelenz S, Theiss S, Kaisers W, Ptok J, Walotka L, Müller L, Hillebrand F, Brillen AL, Sladek M, Schaal H. Ranking noncanonical 5' splice site usage by genome-wide RNA-seq analysis and splicing reporter assays. Genome Res 2018; 28:1826-1840. [PMID: 30355602 PMCID: PMC6280755 DOI: 10.1101/gr.235861.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/20/2018] [Indexed: 01/01/2023]
Abstract
Most human pathogenic mutations in 5' splice sites affect the canonical GT in positions +1 and +2, leading to noncanonical dinucleotides. On the other hand, noncanonical dinucleotides are observed under physiological conditions in ∼1% of all human 5'ss. It is therefore a challenging task to understand the pathogenic mutation mechanisms underlying the conditions under which noncanonical 5'ss are used. In this work, we systematically examined noncanonical 5' splice site selection, both experimentally using splicing competition reporters and by analyzing a large RNA-seq data set of 54 fibroblast samples from 27 subjects containing a total of 2.4 billion gapped reads covering 269,375 exon junctions. From both approaches, we consistently derived a noncanonical 5'ss usage ranking GC > TT > AT > GA > GG > CT. In our competition splicing reporter assay, noncanonical splicing was strictly dependent on the presence of upstream or downstream splicing regulatory elements (SREs), and changes in SREs could be compensated by variation of U1 snRNA complementarity in the competing 5'ss. In particular, we could confirm splicing at different positions (i.e., -1, +1, +5) of a splice site for all noncanonical dinucleotides "weaker" than GC. In our comprehensive RNA-seq data set analysis, noncanonical 5'ss were preferentially detected in weakly used exon junctions of highly expressed genes. Among high-confidence splice sites, they were 10-fold overrepresented in clusters with a neighboring, more frequently used 5'ss. Conversely, these more frequently used neighbors contained only the dinucleotides GT, GC, and TT, in accordance with the above ranking.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Wolfgang Kaisers
- Center for Biological and Medical Research (BMFZ), Center of Bioinformatics and Biostatistics (CBiBs), Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lara Walotka
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Frank Hillebrand
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Anna-Lena Brillen
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Michael Sladek
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Parvati Sai Arun PV, Miryala SK, Rana A, Kurukuti S, Akhter Y, Yellaboina S. System-wide coordinates of higher order functions in host-pathogen environment upon Mycobacterium tuberculosis infection. Sci Rep 2018; 8:5079. [PMID: 29567998 PMCID: PMC5864717 DOI: 10.1038/s41598-018-22884-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/28/2018] [Indexed: 01/16/2023] Open
Abstract
Molecular signatures and their interactions behind the successful establishment of infection of Mycobacterium tuberculosis (Mtb) inside macrophage are largely unknown. In this work, we present an inter-system scale atlas of the gene expression signatures, their interactions and higher order gene functions of macrophage-Mtb environment at the time of infection. We have carried out large-scale meta-analysis of previously published gene expression microarray studies andhave identified a ranked list of differentially expressed genes and their higher order functions in intracellular Mtb as well as the infected macrophage. Comparative analysis of gene expression signatures of intracellular Mtb with the in vitro dormant Mtb at different hypoxic and oxidative stress conditions led to the identification of the large number of Mtb functional groups, namely operons, regulons and pathways that were common and unique to the intracellular environment and dormancy state. Some of the functions that are specific to intracellular Mtb are cholesterol degradation and biosynthesis of immunomodulatory phenolic compounds. The molecular signatures we have identified to be involved in adaptation to different stress conditions in macrophage environment may be critical for designing therapeutic interventions against tuberculosis. And, our approach may be broadly applicable for investigating other host-pathogen interactions.
Collapse
Affiliation(s)
| | - Sravan Kumar Miryala
- IOB-YU Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre Yenepoya University, Mangalore, Karnataka, India
| | - Aarti Rana
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, India
| | - Sreenivasulu Kurukuti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Sailu Yellaboina
- IOB-YU Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre Yenepoya University, Mangalore, Karnataka, India.
| |
Collapse
|
25
|
Ebner F, Sedlyarov V, Tasciyan S, Ivin M, Kratochvill F, Gratz N, Kenner L, Villunger A, Sixt M, Kovarik P. The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection. J Clin Invest 2017; 127:2051-2065. [PMID: 28504646 PMCID: PMC5451238 DOI: 10.1172/jci80631] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/16/2017] [Indexed: 02/06/2023] Open
Abstract
Protective responses against pathogens require a rapid mobilization of resting neutrophils and the timely removal of activated ones. Neutrophils are exceptionally short-lived leukocytes, yet it remains unclear whether the lifespan of pathogen-engaged neutrophils is regulated differently from that in the circulating steady-state pool. Here, we have found that under homeostatic conditions, the mRNA-destabilizing protein tristetraprolin (TTP) regulates apoptosis and the numbers of activated infiltrating murine neutrophils but not neutrophil cellularity. Activated TTP-deficient neutrophils exhibited decreased apoptosis and enhanced accumulation at the infection site. In the context of myeloid-specific deletion of Ttp, the potentiation of neutrophil deployment protected mice against lethal soft tissue infection with Streptococcus pyogenes and prevented bacterial dissemination. Neutrophil transcriptome analysis revealed that decreased apoptosis of TTP-deficient neutrophils was specifically associated with elevated expression of myeloid cell leukemia 1 (Mcl1) but not other antiapoptotic B cell leukemia/lymphoma 2 (Bcl2) family members. Higher Mcl1 expression resulted from stabilization of Mcl1 mRNA in the absence of TTP. The low apoptosis rate of infiltrating TTP-deficient neutrophils was comparable to that of transgenic Mcl1-overexpressing neutrophils. Our study demonstrates that posttranscriptional gene regulation by TTP schedules the termination of the antimicrobial engagement of neutrophils. The balancing role of TTP comes at the cost of an increased risk of bacterial infections.
Collapse
Affiliation(s)
- Florian Ebner
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Vitaly Sedlyarov
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Saren Tasciyan
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Masa Ivin
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | - Nina Gratz
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Unit of Pathology of Laboratory Animals (UPLA), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Villunger
- Medical University of Innsbruck, Division of Developmental Immunology, Innsbruck, Austria
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
McFarland CD, Yaglom JA, Wojtkowiak JW, Scott JG, Morse DL, Sherman MY, Mirny LA. The Damaging Effect of Passenger Mutations on Cancer Progression. Cancer Res 2017; 77:4763-4772. [PMID: 28536279 DOI: 10.1158/0008-5472.can-15-3283-t] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/02/2017] [Accepted: 05/16/2017] [Indexed: 01/29/2023]
Abstract
Genomic instability and high mutation rates cause cancer to acquire numerous mutations and chromosomal alterations during its somatic evolution; most are termed passengers because they do not confer cancer phenotypes. Evolutionary simulations and cancer genomic studies suggest that mildly deleterious passengers accumulate and can collectively slow cancer progression. Clinical data also suggest an association between passenger load and response to therapeutics, yet no causal link between the effects of passengers and cancer progression has been established. To assess this, we introduced increasing passenger loads into human cell lines and immunocompromised mouse models. We found that passengers dramatically reduced proliferative fitness (∼3% per Mb), slowed tumor growth, and reduced metastatic progression. We developed new genomic measures of damaging passenger load that can accurately predict the fitness costs of passengers in cell lines and in human breast cancers. We conclude that genomic instability and an elevated load of DNA alterations in cancer is a double-edged sword: it accelerates the accumulation of adaptive drivers, but incurs a harmful passenger load that can outweigh driver benefit. The effects of passenger alterations on cancer fitness were unrelated to enhanced immunity, as our tests were performed either in cell culture or in immunocompromised animals. Our findings refute traditional paradigms of passengers as neutral events, suggesting that passenger load reduces the fitness of cancer cells and slows or prevents progression of both primary and metastatic disease. The antitumor effects of chemotherapies can in part be due to the induction of genomic instability and increased passenger load. Cancer Res; 77(18); 4763-72. ©2017 AACR.
Collapse
Affiliation(s)
| | - Julia A Yaglom
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Jonathan W Wojtkowiak
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jacob G Scott
- Translational Hematology and Oncology Research, and Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | - David L Morse
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Michael Y Sherman
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts.
| | - Leonid A Mirny
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts. .,Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
27
|
Kaisers W, Boukamp P, Stark HJ, Schwender H, Tigges J, Krutmann J, Schaal H. Age, gender and UV-exposition related effects on gene expression in in vivo aged short term cultivated human dermal fibroblasts. PLoS One 2017; 12:e0175657. [PMID: 28475575 PMCID: PMC5419556 DOI: 10.1371/journal.pone.0175657] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
Ageing, the progressive functional decline of virtually all tissues, affects numerous living organisms. Main phenotypic alterations of human skin during the ageing process include reduced skin thickness and elasticity which are related to extracellular matrix proteins. Dermal fibroblasts, the main source of extracellular fibrillar proteins, exhibit complex alterations during in vivo ageing and any of these are likely to be accompanied or caused by changes in gene expression. We investigated gene expression of short term cultivated in vivo aged human dermal fibroblasts using RNA-seq. Therefore, fibroblast samples derived from unaffected skin were obtained from 30 human donors. The donors were grouped by gender and age (Young: 19 to 25 years, Middle: 36 to 45 years, Old: 60 to 66 years). Two samples were taken from each donor, one from a sun-exposed and one from a sun-unexposed site. In our data, no consistently changed gene expression associated with donor age can be asserted. Instead, highly correlated expression of a small number of genes associated with transforming growth factor beta signalling was observed. Also, known gene expression alterations of in vivo aged dermal fibroblasts seem to be non-detectable in cultured fibroblasts.
Collapse
Affiliation(s)
- Wolfgang Kaisers
- Center for Bioinformatics and Biostatistics, BMFZ, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Petra Boukamp
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Holger Schwender
- Center for Bioinformatics and Biostatistics, BMFZ, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Mathematical Institute, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Heiner Schaal
- Institut für Virologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
28
|
Keel BN, Lindholm-Perry AK, Snelling WM. Evolutionary and Functional Features of Copy Number Variation in the Cattle Genome. Front Genet 2016; 7:207. [PMID: 27920798 PMCID: PMC5118444 DOI: 10.3389/fgene.2016.00207] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/08/2016] [Indexed: 01/18/2023] Open
Abstract
Genomic structural variations are an important source of genetic diversity. Copy number variations (CNVs), gains and losses of large regions of genomic sequence between individuals of a species, have been associated with a wide variety of phenotypic traits. However, in cattle, as well as many other species, relatively little is understood about CNV, including frequency of CNVs in the genome, sizes, and locations, chromosomal properties, and evolutionary processes acting to shape CNV. In this work, we focused on copy number variation in the bovine genome, with the aim to detect CNVs in Bos taurus coding sequence and explore potential evolutionary mechanisms shaping these CNV. We identified and characterized CNV regions by utilizing exome sequence from 175 influential sires used in the Germplasm Evaluation project, representing 10 breeds. We examined various evolutionary and functional aspects of these CNVs, including selective constraint on CNV-overlapped genes, centrality of CNV genes in protein-protein interaction networks, and tissue-specific expression of CNV genes. Patterns of CNV in the Bos taurus genome reveal that reduced functional constraint and mutational bias may play a prominent role in shaping this type of structural variation.
Collapse
Affiliation(s)
- Brittney N Keel
- Agricultural Research Service (USDA), Meat Animal Research Center Clay Center, NE, USA
| | | | - Warren M Snelling
- Agricultural Research Service (USDA), Meat Animal Research Center Clay Center, NE, USA
| |
Collapse
|
29
|
Mokry M, Harakalova M, Asselbergs FW, de Bakker PIW, Nieuwenhuis EES. Extensive Association of Common Disease Variants with Regulatory Sequence. PLoS One 2016; 11:e0165893. [PMID: 27875544 PMCID: PMC5119736 DOI: 10.1371/journal.pone.0165893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022] Open
Abstract
Overlap between non-coding DNA regulatory sequences and common variant associations can help to identify specific cell and tissue types that are relevant for particular diseases. In a systematic manner, we analyzed variants from 94 genome-wide association studies (reporting at least 12 loci at p<5x10-8) by projecting them onto 466 epigenetic datasets (characterizing DNase I hypersensitive sites; DHSs) derived from various adult and fetal tissue samples and cell lines including many biological replicates. We were able to confirm many expected associations, such as the involvement of specific immune cell types in immune-related diseases and tissue types in diseases that affect specific organs, for example, inflammatory bowel disease and coronary artery disease. Other notable associations include adrenal glands in coronary artery disease, the immune system in Alzheimer’s disease, and the kidney for bone marrow density. The association signals for some GWAS (for example, myopia or age at menarche) did not show a clear pattern with any of the cell or tissue types studied. In general, the identified variants from GWAS tend to be located outside coding regions. Altogether, we have performed an extensive characterization of GWAS signals in relation to cell and tissue-specific DHSs, demonstrating a key role for regulatory mechanisms in common diseases and complex traits.
Collapse
Affiliation(s)
- Michal Mokry
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
- * E-mail: (MM); (EESN)
| | - Magdalena Harakalova
- Department of Cardiology, Division Heart and Lungs, University Medical Centre Utrecht, Utrecht, 3508 GA, The Netherlands
| | - Folkert W. Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Centre Utrecht, Utrecht, 3508 GA, The Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, 3501 DG, The Netherlands
- Institute of Cardiovascular Science, faculty of Population Health Sciences, University College London, London, WC1E 6BT, United Kingdom
| | - Paul I. W. de Bakker
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
| | - Edward E. S. Nieuwenhuis
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
- * E-mail: (MM); (EESN)
| |
Collapse
|
30
|
Trypsteen W, Mohammadi P, Van Hecke C, Mestdagh P, Lefever S, Saeys Y, De Bleser P, Vandesompele J, Ciuffi A, Vandekerckhove L, De Spiegelaere W. Differential expression of lncRNAs during the HIV replication cycle: an underestimated layer in the HIV-host interplay. Sci Rep 2016; 6:36111. [PMID: 27782208 PMCID: PMC5080576 DOI: 10.1038/srep36111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
Studying the effects of HIV infection on the host transcriptome has typically focused on protein-coding genes. However, recent advances in the field of RNA sequencing revealed that long non-coding RNAs (lncRNAs) add an extensive additional layer to the cell’s molecular network. Here, we performed transcriptome profiling throughout a primary HIV infection in vitro to investigate lncRNA expression at the different HIV replication cycle processes (reverse transcription, integration and particle production). Subsequently, guilt-by-association, transcription factor and co-expression analysis were performed to infer biological roles for the lncRNAs identified in the HIV-host interplay. Many lncRNAs were suggested to play a role in mechanisms relying on proteasomal and ubiquitination pathways, apoptosis, DNA damage responses and cell cycle regulation. Through transcription factor binding analysis, we found that lncRNAs display a distinct transcriptional regulation profile as compared to protein coding mRNAs, suggesting that mRNAs and lncRNAs are independently modulated. In addition, we identified five differentially expressed lncRNA-mRNA pairs with mRNA involvement in HIV pathogenesis with possible cis regulatory lncRNAs that control nearby mRNA expression and function. Altogether, the present study demonstrates that lncRNAs add a new dimension to the HIV-host interplay and should be further investigated as they may represent targets for controlling HIV replication.
Collapse
Affiliation(s)
- Wim Trypsteen
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium
| | - Pejman Mohammadi
- Institute of Microbiology (IMUL), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Clarissa Van Hecke
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium
| | | | | | - Yvan Saeys
- Inflammation Research Center, Flanders Institute of Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology Ghent University, Ghent, Belgium
| | - Pieter De Bleser
- Inflammation Research Center, Flanders Institute of Biotechnology (VIB), Ghent, Belgium.,Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | | | - Angela Ciuffi
- Institute of Microbiology (IMUL), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Linos Vandekerckhove
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium
| | - Ward De Spiegelaere
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium.,Department of Morphology, Ghent University, Belgium
| |
Collapse
|
31
|
Keel BN, Keele JW, Snelling WM. Genome-wide copy number variation in the bovine genome detected using low coverage sequence of popular beef breeds,. Anim Genet 2016; 48:141-150. [DOI: 10.1111/age.12519] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2016] [Indexed: 12/19/2022]
Affiliation(s)
- B. N. Keel
- USDA; ARS; U.S. Meat Animal Research Center; Clay Center NE 68933 USA
| | - J. W. Keele
- USDA; ARS; U.S. Meat Animal Research Center; Clay Center NE 68933 USA
| | - W. M. Snelling
- USDA; ARS; U.S. Meat Animal Research Center; Clay Center NE 68933 USA
| |
Collapse
|
32
|
Teufel A, Itzel T, Erhart W, Brosch M, Wang XY, Kim YO, von Schönfels W, Herrmann A, Brückner S, Stickel F, Dufour JF, Chavakis T, Hellerbrand C, Spang R, Maass T, Becker T, Schreiber S, Schafmayer C, Schuppan D, Hampe J. Comparison of Gene Expression Patterns Between Mouse Models of Nonalcoholic Fatty Liver Disease and Liver Tissues From Patients. Gastroenterology 2016; 151:513-525.e0. [PMID: 27318147 DOI: 10.1053/j.gastro.2016.05.051] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries. Mouse models of NAFLD have been used in studies of pathogenesis and treatment, and have certain features of the human disease. We performed a systematic transcriptome-wide analysis of liver tissues from patients at different stages of NAFLD progression (ranging from healthy obese individuals to those with steatosis), as well as rodent models of NAFLD, to identify those that most closely resemble human disease progression in terms of gene expression patterns. METHODS We performed a systematic evaluation of genome-wide messenger RNA expression using liver tissues collected from mice fed a standard chow diet (controls) and 9 mouse models of NAFLD: mice on a high-fat diet (with or without fructose), mice on a Western-type diet, mice on a methionine- and choline-deficient diet, mice on a high-fat diet given streptozotocin, and mice with disruption of Pten in hepatocytes. We compared gene expression patterns with those of liver tissues from 25 patients with nonalcoholic steatohepatitis (NASH), 27 patients with NAFLD, 15 healthy obese individuals, and 39 healthy nonobese individuals (controls). Liver samples were obtained from patients undergoing liver biopsy for suspected NAFLD or NASH, or during liver or bariatric surgeries. Data sets were analyzed using the limma R-package. Overlap of functional profiles was analyzed by gene set enrichment analysis profiles. RESULTS We found differences between human and mouse transcriptomes to be significantly larger than differences between disease stages or models. Of the 65 genes with significantly altered expression in patients with NASH and 177 genes with significantly altered expression in patients with NAFLD, compared with controls, only 1-18 of these genes also differed significantly in expression between mouse models of NAFLD and control mice. However, expression of genes that regulate pathways associated with the development of NAFLD were altered in some mouse models (such as pathways associated with lipid metabolism). On a pathway level, gene expression patterns in livers of mice on the high-fat diet were associated more closely with human fatty liver disease than other models. CONCLUSIONS In comparing gene expression profiles between liver tissues from different mouse models of NAFLD and patients with different stages of NAFLD, we found very little overlap. Our data set is available for studies of pathways that contribute to the development of NASH and NAFLD and selection of the most applicable mouse models (http://www.nash-profiler.com).
Collapse
Affiliation(s)
- Andreas Teufel
- Department of Medicine I, University Hospital, Regensburg, Germany.
| | - Timo Itzel
- Department of Medicine I, University Hospital, Regensburg, Germany
| | - Wiebke Erhart
- Department of Internal Medicine I, University Hospital, Kiel, Germany
| | - Mario Brosch
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden, Germany
| | - Xiao Yu Wang
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Mainz, Germany
| | - Yong Ook Kim
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Mainz, Germany
| | | | | | - Stefan Brückner
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden, Germany
| | - Felix Stickel
- Department of Clinical Research, Division of Hepatology, University of Berne, Berne, Switzerland
| | - Jean-François Dufour
- Department of Clinical Research, Division of Hepatology, University of Berne, Berne, Switzerland
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Technical University Dresden, Dresden, Germany
| | | | - Rainer Spang
- Statistical Bioinfomatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Thorsten Maass
- Department of Medicine I, University Hospital, Regensburg, Germany
| | - Thomas Becker
- Department of Visceral and Thoracic Surgery, University Hospital, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, University Hospital, Kiel, Germany
| | - Clemens Schafmayer
- Department of Visceral and Thoracic Surgery, University Hospital, Kiel, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
33
|
da Silva VH, Regitano LCDA, Geistlinger L, Pértille F, Giachetto PF, Brassaloti RA, Morosini NS, Zimmer R, Coutinho LL. Genome-Wide Detection of CNVs and Their Association with Meat Tenderness in Nelore Cattle. PLoS One 2016; 11:e0157711. [PMID: 27348523 PMCID: PMC4922624 DOI: 10.1371/journal.pone.0157711] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/03/2016] [Indexed: 12/20/2022] Open
Abstract
Brazil is one of the largest beef producers and exporters in the world with the Nelore breed representing the vast majority of Brazilian cattle (Bos taurus indicus). Despite the great adaptability of the Nelore breed to tropical climate, meat tenderness (MT) remains to be improved. Several factors including genetic composition can influence MT. In this article, we report a genome-wide analysis of copy number variation (CNV) inferred from Illumina® High Density SNP-chip data for a Nelore population of 723 males. We detected >2,600 CNV regions (CNVRs) representing ≈6.5% of the genome. Comparing our results with previous studies revealed an overlap in ≈1400 CNVRs (>50%). A total of 1,155 CNVRs (43.6%) overlapped 2,750 genes. They were enriched for processes involving guanosine triphosphate (GTP), previously reported to influence skeletal muscle physiology and morphology. Nelore CNVRs also overlapped QTLs for MT reported in other breeds (8.9%, 236 CNVRs) and from a previous study with this population (4.1%, 109 CNVRs). Two CNVRs were also proximal to glutathione metabolism genes that were previously associated with MT. Genome-wide association study of CN state with estimated breeding values derived from meat shear force identified 6 regions, including a region on BTA3 that contains genes of the cAMP and cGMP pathway. Ten CNVRs that overlapped regions associated with MT were successfully validated by qPCR. Our results represent the first comprehensive CNV study in Bos taurus indicus cattle and identify regions in which copy number changes are potentially of importance for the MT phenotype.
Collapse
Affiliation(s)
- Vinicius Henrique da Silva
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
- * E-mail: (LLC); (VHS)
| | | | - Ludwig Geistlinger
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München (LMU), Amalienstrasse 17, 80333, München, Germany
| | - Fábio Pértille
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | | | - Ricardo Augusto Brassaloti
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Natália Silva Morosini
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Ralf Zimmer
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München (LMU), Amalienstrasse 17, 80333, München, Germany
| | - Luiz Lehmann Coutinho
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
- * E-mail: (LLC); (VHS)
| |
Collapse
|
34
|
Katsila T, Spyroulias GA, Patrinos GP, Matsoukas MT. Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 2016; 14:177-84. [PMID: 27293534 PMCID: PMC4887558 DOI: 10.1016/j.csbj.2016.04.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
In the big data era, voluminous datasets are routinely acquired, stored and analyzed with the aim to inform biomedical discoveries and validate hypotheses. No doubt, data volume and diversity have dramatically increased by the advent of new technologies and open data initiatives. Big data are used across the whole drug discovery pipeline from target identification and mechanism of action to identification of novel leads and drug candidates. Such methods are depicted and discussed, with the aim to provide a general view of computational tools and databases available. We feel that big data leveraging needs to be cost-effective and focus on personalized medicine. For this, we propose the interplay of information technologies and (chemo)informatic tools on the basis of their synergy.
Collapse
Affiliation(s)
- Theodora Katsila
- University of Patras, School of Health Sciences, Department of Pharmacy, University Campus, Rion, Patras, Greece
| | - Georgios A. Spyroulias
- University of Patras, School of Health Sciences, Department of Pharmacy, University Campus, Rion, Patras, Greece
| | - George P. Patrinos
- University of Patras, School of Health Sciences, Department of Pharmacy, University Campus, Rion, Patras, Greece
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Minos-Timotheos Matsoukas
- University of Patras, School of Health Sciences, Department of Pharmacy, University Campus, Rion, Patras, Greece
| |
Collapse
|
35
|
Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med 2016; 22:672-8. [PMID: 27135740 PMCID: PMC4899191 DOI: 10.1038/nm.4097] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/06/2016] [Indexed: 12/15/2022]
Abstract
Mutations in spliceosomal genes are commonly found in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML)1–3. These mutations occur at highly recurrent amino acid residues and perturb normal splice site and exon recognition4–6. Spliceosomal mutations are always heterozygous and rarely co-occur with one another, suggesting that cells may only tolerate a partial deviation from normal splicing activity. To test this hypothesis, we engineered mice that express the SRSF2P95H mutation, which commonly occurs in MDS and AML, in an inducible hemizygous manner in hematopoietic cells. These mice developed lethal bone marrow failure, demonstrating that Srsf2-mutant cells depend on the wildtype Srsf2 allele for survival. In the context of leukemia, treatment with the spliceosome inhibitor E71077,8 resulted in significant reductions in leukemic burden specifically in isogenic mouse leukemias and patient-derived xenograft (PDX) AMLs carrying spliceosomal mutations. While in vivo E7107 exposure resulted in widespread intron retention and cassette exon skipping regardless of Srsf2 genotype, the magnitude of splicing inhibition following E7107 treatment was greater in Srsf2-mutant versus wildtype leukemias, consistent with its differential effect on survival in these two genotypes. Collectively, these data provide genetic and pharmacologic evidence that leukemias with spliceosomal mutations are preferentially susceptible to additional splicing perturbations in vivo compared with wildtype counterparts. Modulation of spliceosome function may provide a novel therapeutic avenue in genetically defined subsets of MDS and AML patients.
Collapse
|
36
|
Packialakshmi B, Liyanage R, Lay JO, Makkar SK, Rath NC. Proteomic Changes in Chicken Plasma Induced by Salmonella typhimurium Lipopolysaccharides. PROTEOMICS INSIGHTS 2016; 7:1-9. [PMID: 27053921 PMCID: PMC4818023 DOI: 10.4137/pri.s31609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 12/25/2022]
Abstract
Lipopolysaccharides (LPS) are cell wall components of Gram-negative bacteria that produce inflammation and sickness in higher animals. The objective was to identify plasma proteomic changes in an avian model of inflammation. Chickens were treated with either saline or LPS, and blood was collected at 24 hours postinjection. The pooled plasma samples were depleted of high-abundant proteins and analyzed by matrix-assisted laser desorption ionization (MALDI)-time-of-flight mass spectrometry and liquid chromatography–tandem mass spectrometry (LC–MS/MS). MALDI analyses showed an increase in fibrinogen beta-derived peptide and a decrease in apolipoprotein-AII-derived peptide in LPS samples. Label-free quantitation of LC–MS/MS spectra revealed an increase in the levels of α1-acid glycoprotein, a chemokine CCLI10, and cathelicidin-2, but a decrease in an interferon-stimulated gene-12-2 protein in the LPS group. These differentially expressed proteins are associated with immunomodulation, cytokine changes, and defense mechanisms, which may be useful as candidate biomarkers of infection and inflammation.
Collapse
Affiliation(s)
- Balamurugan Packialakshmi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.; Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.; Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Jackson O Lay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Sarbjeet K Makkar
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.; Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| | - Narayan C Rath
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
37
|
Katsila T, Konstantinou E, Lavda I, Malakis H, Papantoni I, Skondra L, Patrinos GP. Pharmacometabolomics-aided Pharmacogenomics in Autoimmune Disease. EBioMedicine 2016; 5:40-5. [PMID: 27077110 PMCID: PMC4816847 DOI: 10.1016/j.ebiom.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/11/2022] Open
Abstract
Inter-individual variability has been a major hurdle to optimize disease management. Precision medicine holds promise for improving health and healthcare via tailor-made therapeutic strategies. Herein, we outline the paradigm of "pharmacometabolomics-aided pharmacogenomics" in autoimmune diseases. We envisage merging pharmacometabolomic and pharmacogenomic data (to address the interplay of genomic and environmental influences) with information technologies to facilitate data analysis as well as sense- and decision-making on the basis of synergy between artificial and human intelligence. Humans can detect patterns, which computer algorithms may fail to do so, whereas data-intensive and cognitively complex settings and processes limit human ability. We propose that better-informed, rapid and cost-effective omics studies need the implementation of holistic and multidisciplinary approaches.
Collapse
Affiliation(s)
- Theodora Katsila
- University of Patras, School of Health Sciences, Department of Pharmacy, University Campus, Rion, Patras, Greece
| | | | | | | | | | | | | |
Collapse
|
38
|
Mantsoki A, Devailly G, Joshi A. Gene expression variability in mammalian embryonic stem cells using single cell RNA-seq data. Comput Biol Chem 2016; 63:52-61. [PMID: 26951854 PMCID: PMC5012374 DOI: 10.1016/j.compbiolchem.2016.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/01/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Gene expression heterogeneity contributes to development as well as disease progression. Due to technological limitations, most studies to date have focused on differences in mean expression across experimental conditions, rather than differences in gene expression variance. The advent of single cell RNA sequencing has now made it feasible to study gene expression heterogeneity and to characterise genes based on their coefficient of variation. METHODS We collected single cell gene expression profiles for 32 human and 39 mouse embryonic stem cells and studied correlation between diverse characteristics such as network connectivity and coefficient of variation (CV) across single cells. We further systematically characterised properties unique to High CV genes. RESULTS Highly expressed genes tended to have a low CV and were enriched for cell cycle genes. In contrast, High CV genes were co-expressed with other High CV genes, were enriched for bivalent (H3K4me3 and H3K27me3) marked promoters and showed enrichment for response to DNA damage and DNA repair. CONCLUSIONS Taken together, this analysis demonstrates the divergent characteristics of genes based on their CV. High CV genes tend to form co-expression clusters and they explain bivalency at least in part.
Collapse
Affiliation(s)
- Anna Mantsoki
- The Roslin institute, University of Edinburgh, Easter bush campus, Midlothian EH25 9RG, UK.
| | - Guillaume Devailly
- The Roslin institute, University of Edinburgh, Easter bush campus, Midlothian EH25 9RG, UK.
| | - Anagha Joshi
- The Roslin institute, University of Edinburgh, Easter bush campus, Midlothian EH25 9RG, UK.
| |
Collapse
|
39
|
Piechota M, Korostynski M, Ficek J, Tomski A, Przewlocki R. Seqinspector: position-based navigation through the ChIP-seq data landscape to identify gene expression regulators. BMC Bioinformatics 2016; 17:85. [PMID: 26868127 PMCID: PMC4751710 DOI: 10.1186/s12859-016-0938-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 02/05/2016] [Indexed: 12/27/2022] Open
Abstract
Background The regulation of gene expression in eukaryotic cells is a complex process that involves epigenetic modifications and the interaction of DNA with multiple transcription factors. This process can be studied with unprecedented sensitivity using a combination of chromatin immunoprecipitation and next-generation DNA sequencing (ChIP-seq). Available ChIP-seq data can be further utilized to interpret new gene expression profiling experiments. Results Here, we describe seqinspector, a tool that accepts any set of genomic coordinates from ChIP-seq or RNA-seq studies to identify shared transcriptional regulators. The presented web resource includes a large collection of publicly available ChIP-seq and RNA-seq experiments (>1300 tracks) performed on transcription factors, histone modifications, RNA polymerases, enhancers and insulators in humans and mice. Over-representation is calculated based on the coverage computed directly from indexed files storing ChIP-seq data (bigwig). Therefore, seqinspector is not limited to pre-computed sets of gene promoters. Conclusion The tool can be used to identify common gene expression regulators for sets of co-expressed transcripts (including miRNAs, lncRNAs or any novel unannotated RNAs) or for sets of ChIP-seq peaks to identify putative protein-protein interactions or transcriptional co-factors. The tool is available at http://seqinspector.cremag.org. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-0938-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcin Piechota
- Department of Molecular Neuropharmacology, Institute of Pharmacology Polish Academy of Sciences, Krakow, 31-344, Poland.
| | - Michal Korostynski
- Department of Molecular Neuropharmacology, Institute of Pharmacology Polish Academy of Sciences, Krakow, 31-344, Poland
| | - Joanna Ficek
- Department of Molecular Neuropharmacology, Institute of Pharmacology Polish Academy of Sciences, Krakow, 31-344, Poland
| | - Andrzej Tomski
- Department of Molecular Neuropharmacology, Institute of Pharmacology Polish Academy of Sciences, Krakow, 31-344, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Institute of Pharmacology Polish Academy of Sciences, Krakow, 31-344, Poland
| |
Collapse
|
40
|
Hörmann K, Stukalov A, Müller AC, Heinz LX, Superti-Furga G, Colinge J, Bennett KL. A Surface Biotinylation Strategy for Reproducible Plasma Membrane Protein Purification and Tracking of Genetic and Drug-Induced Alterations. J Proteome Res 2016; 15:647-58. [PMID: 26699813 DOI: 10.1021/acs.jproteome.5b01066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasma membrane (PM) proteins contribute to the identity of a cell, mediate contact and communication, and account for more than two-thirds of known drug targets.1-8 In the past years, several protocols for the proteomic profiling of PM proteins have been described. Nevertheless, comparative analyses have mainly focused on different variations of one approach.9-11 We compared sulfo-NHS-SS-biotinylation, aminooxy-biotinylation, and surface coating with silica beads to isolate PM proteins for subsequent analysis by one-dimensional gel-free liquid chromatography mass spectrometry. Absolute and relative numbers of PM proteins and reproducibility parameters on a qualitative and quantitative level were assessed. Sulfo-NHS-SS-biotinylation outperformed aminooxy-biotinylation and surface coating using silica beads for most of the monitored criteria. We further simplified this procedure by a competitive biotin elution strategy achieving an average PM annotated protein fraction of 54% (347 proteins). Computational analysis using additional databases and prediction tools revealed that in total over 90% of the purified proteins were associated with the PM, mostly as interactors. The modified sulfo-NHS-SS-biotinylation protocol was validated by tracking changes in the plasma membrane proteome composition induced by genetic alteration and drug treatment. Glycosylphosphatidylinositol (GPI)-anchored proteins were depleted in PM purifications from cells deficient in the GPI transamidase component PIGS, and treatment of cells with tunicamycin significantly reduced the abundance of N-glycoproteins in surface purifications.
Collapse
Affiliation(s)
- Katrin Hörmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090 Vienna, Austria
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090 Vienna, Austria
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090 Vienna, Austria
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090 Vienna, Austria.,Center for Physiology and Pharmacology, Medical University of Vienna , 1090 Vienna, Austria
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090 Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090 Vienna, Austria
| |
Collapse
|
41
|
Barah P, B N MN, Jayavelu ND, Sowdhamini R, Shameer K, Bones AM. Transcriptional regulatory networks in Arabidopsis thaliana during single and combined stresses. Nucleic Acids Res 2015; 44:3147-64. [PMID: 26681689 PMCID: PMC4838348 DOI: 10.1093/nar/gkv1463] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 11/28/2015] [Indexed: 11/25/2022] Open
Abstract
Differentially evolved responses to various stress conditions in plants are controlled by complex regulatory circuits of transcriptional activators, and repressors, such as transcription factors (TFs). To understand the general and condition-specific activities of the TFs and their regulatory relationships with the target genes (TGs), we have used a homogeneous stress gene expression dataset generated on ten natural ecotypes of the model plant Arabidopsis thaliana, during five single and six combined stress conditions. Knowledge-based profiles of binding sites for 25 stress-responsive TF families (187 TFs) were generated and tested for their enrichment in the regulatory regions of the associated TGs. Condition-dependent regulatory sub-networks have shed light on the differential utilization of the underlying network topology, by stress-specific regulators and multifunctional regulators. The multifunctional regulators maintain the core stress response processes while the transient regulators confer the specificity to certain conditions. Clustering patterns of transcription factor binding sites (TFBS) have reflected the combinatorial nature of transcriptional regulation, and suggested the putative role of the homotypic clusters of TFBS towards maintaining transcriptional robustness against cis-regulatory mutations to facilitate the preservation of stress response processes. The Gene Ontology enrichment analysis of the TGs reflected sequential regulation of stress response mechanisms in plants.
Collapse
Affiliation(s)
- Pankaj Barah
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Mahantesha Naika B N
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bangalore 560 065, India
| | - Naresh Doni Jayavelu
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bangalore 560 065, India
| | - Khader Shameer
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bangalore 560 065, India
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| |
Collapse
|
42
|
Chen FS, Jiang ZR. Prediction of drug’s Anatomical Therapeutic Chemical (ATC) code by integrating drug–domain network. J Biomed Inform 2015; 58:80-88. [DOI: 10.1016/j.jbi.2015.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
|
43
|
George P, Jensen S, Pogorelcnik R, Lee J, Xing Y, Brasset E, Vaury C, Sharakhov IV. Increased production of piRNAs from euchromatic clusters and genes in Anopheles gambiae compared with Drosophila melanogaster. Epigenetics Chromatin 2015; 8:50. [PMID: 26617674 PMCID: PMC4662822 DOI: 10.1186/s13072-015-0041-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Specific genomic loci, termed Piwi-interacting RNA (piRNA) clusters, manufacture piRNAs that serve as guides for the inactivation of complementary transposable elements (TEs). The piRNA pathway has been accurately detailed in Drosophila melanogaster, while it remains poorly examined in other insects. This pathway is increasingly recognized as critical for germline development and reproduction. Understanding of the piRNA functions in mosquitoes could offer an opportunity for disease vector control by the reduction of their reproductive potential. RESULTS To analyze the similarities and differences in this pathway between Drosophila and mosquito, we performed an in-depth analysis of the genomic loci producing piRNAs and their targets in the African malaria vector Anopheles gambiae. We identified 187 piRNA clusters in the An. gambiae genome and 155 piRNA clusters in the D. melanogaster genome. We demonstrate that many more piRNA clusters in the mosquito compared with the fruit fly are uni-directionally transcribed and are located outside pericentromeric heterochromatin. About 11 % of the An. gambiae piRNA population map to gene transcripts. This is a noticeable increase compared with the ~6 % of the piRNA population mapped to genes in D. melanogaster. A subset of the piRNA-enriched genes in An. gambiae has functions related to reproduction and development. At least 24 and 65 % of the mapped piRNAs correspond to genomic TE sequences in An. gambiae and D. melanogaster, respectively. DNA transposons and non-LTR retrotransposons are more abundant in An. gambiae, while LTR retrotransposons are more abundant in D. melanogaster. Yet, piRNAs predominantly target LTR retrotransposons in both species, which may point to a distinct feature of these elements compared to the other classes of TEs concerning their silencing by the piRNA pathway. CONCLUSIONS Here, we demonstrate that piRNA-producing loci have more ubiquitous distribution in the An. gambiae genome than in the genome of D. melanogaster. Also, protein-coding genes have an increased role in production of piRNAs in the germline of this mosquito. Genes involved in germline and embryonic development of An. gambiae generate a substantial portion of piRNAs, suggesting a role of the piRNA pathway in the epigenetic regulation of the reproductive processes in the African malaria vector.
Collapse
Affiliation(s)
- Phillip George
- />Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Silke Jensen
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Romain Pogorelcnik
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Jiyoung Lee
- />The PhD Program in Genomics Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Yi Xing
- />The PhD Program in Genomics Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Emilie Brasset
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Chantal Vaury
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Igor V. Sharakhov
- />Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
- />The PhD Program in Genomics Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| |
Collapse
|
44
|
CpG island erosion, polycomb occupancy and sequence motif enrichment at bivalent promoters in mammalian embryonic stem cells. Sci Rep 2015; 5:16791. [PMID: 26582124 PMCID: PMC4652170 DOI: 10.1038/srep16791] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/14/2015] [Indexed: 12/24/2022] Open
Abstract
In embryonic stem (ES) cells, developmental regulators have a characteristic bivalent chromatin signature marked by simultaneous presence of both activation (H3K4me3) and repression (H3K27me3) signals and are thought to be in a 'poised' state for subsequent activation or silencing during differentiation. We collected eleven pairs (H3K4me3 and H3K27me3) of ChIP sequencing datasets in human ES cells and eight pairs in murine ES cells, and predicted high-confidence (HC) bivalent promoters. Over 85% of H3K27me3 marked promoters were bivalent in human and mouse ES cells. We found that (i) HC bivalent promoters were enriched for developmental factors and were highly likely to be differentially expressed upon transcription factor perturbation; (ii) murine HC bivalent promoters were occupied by both polycomb repressive component classes (PRC1 and PRC2) and grouped into four distinct clusters with different biological functions; (iii) HC bivalent and active promoters were CpG rich while H3K27me3-only promoters lacked CpG islands. Binding enrichment of distinct sets of regulators distinguished bivalent from active promoters. Moreover, a 'TCCCC' sequence motif was specifically enriched in bivalent promoters. Finally, this analysis will serve as a resource for future studies to further understand transcriptional regulation during embryonic development.
Collapse
|
45
|
Karbhal R, Sawant S, Kulkarni-Kale U. BioDB extractor: customized data extraction system for commonly used bioinformatics databases. BioData Min 2015; 8:31. [PMID: 26516349 PMCID: PMC4624652 DOI: 10.1186/s13040-015-0067-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/20/2015] [Indexed: 12/15/2022] Open
Abstract
Background Diverse types of biological data, primary as well as derived, are available in various formats and are stored in heterogeneous resources. Database-specific as well as integrated search engines are available for carrying out efficient searches of databases. These search engines however, do not support extraction of subsets of data with the same level of granularity that exists in typical database entries. In order to extract fine grained subsets of data, users are required to download complete or partial database entries and write scripts for parsing and extraction. Results BioDBExtractor (BDE) has been developed to provide 26 customized data extraction utilities for some of the commonly used databases such as ENA (EMBL-Bank), UniprotKB, PDB, and KEGG. BDE eliminates the need for downloading entries and writing scripts. BDE has a simple web interface that enables input of query in the form of accession numbers/ID codes, choice of utilities and selection of fields/subfields of data by the users. Conclusions BDE thus provides a common data extraction platform for multiple databases and is useful to both, novice and expert users. BDE, however, is not a substitute to basic keyword-based database searches. Desired subsets of data, compiled using BDE can be subsequently used for downstream processing, analyses and knowledge discovery. Availability BDE can be accessed from http://bioinfo.net.in/BioDB/Home.html.
Collapse
Affiliation(s)
- Rajiv Karbhal
- Bioinformatics Centre, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007 Maharashtra India
| | - Sangeeta Sawant
- Bioinformatics Centre, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007 Maharashtra India
| | - Urmila Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007 Maharashtra India
| |
Collapse
|
46
|
Spinelli L, Carpentier S, Montañana Sanchis F, Dalod M, Vu Manh TP. BubbleGUM: automatic extraction of phenotype molecular signatures and comprehensive visualization of multiple Gene Set Enrichment Analyses. BMC Genomics 2015; 16:814. [PMID: 26481321 PMCID: PMC4617899 DOI: 10.1186/s12864-015-2012-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
Background Recent advances in the analysis of high-throughput expression data have led to the development of tools that scaled-up their focus from single-gene to gene set level. For example, the popular Gene Set Enrichment Analysis (GSEA) algorithm can detect moderate but coordinated expression changes of groups of presumably related genes between pairs of experimental conditions. This considerably improves extraction of information from high-throughput gene expression data. However, although many gene sets covering a large panel of biological fields are available in public databases, the ability to generate home-made gene sets relevant to one’s biological question is crucial but remains a substantial challenge to most biologists lacking statistic or bioinformatic expertise. This is all the more the case when attempting to define a gene set specific of one condition compared to many other ones. Thus, there is a crucial need for an easy-to-use software for generation of relevant home-made gene sets from complex datasets, their use in GSEA, and the correction of the results when applied to multiple comparisons of many experimental conditions. Result We developed BubbleGUM (GSEA Unlimited Map), a tool that allows to automatically extract molecular signatures from transcriptomic data and perform exhaustive GSEA with multiple testing correction. One original feature of BubbleGUM notably resides in its capacity to integrate and compare numerous GSEA results into an easy-to-grasp graphical representation. We applied our method to generate transcriptomic fingerprints for murine cell types and to assess their enrichments in human cell types. This analysis allowed us to confirm homologies between mouse and human immunocytes. Conclusions BubbleGUM is an open-source software that allows to automatically generate molecular signatures out of complex expression datasets and to assess directly their enrichment by GSEA on independent datasets. Enrichments are displayed in a graphical output that helps interpreting the results. This innovative methodology has recently been used to answer important questions in functional genomics, such as the degree of similarities between microarray datasets from different laboratories or with different experimental models or clinical cohorts. BubbleGUM is executable through an intuitive interface so that both bioinformaticians and biologists can use it. It is available at http://www.ciml.univ-mrs.fr/applications/BubbleGUM/index.html. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2012-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lionel Spinelli
- Centre d'Immunologie, de Marseille-Luminy, Aix Marseille University UM2, Inserm, U1104, CNRS UMR7280, F-13288, Marseille, Cedex 09, France.
| | | | - Frédéric Montañana Sanchis
- Centre d'Immunologie, de Marseille-Luminy, Aix Marseille University UM2, Inserm, U1104, CNRS UMR7280, F-13288, Marseille, Cedex 09, France.
| | - Marc Dalod
- Centre d'Immunologie, de Marseille-Luminy, Aix Marseille University UM2, Inserm, U1104, CNRS UMR7280, F-13288, Marseille, Cedex 09, France.
| | - Thien-Phong Vu Manh
- Centre d'Immunologie, de Marseille-Luminy, Aix Marseille University UM2, Inserm, U1104, CNRS UMR7280, F-13288, Marseille, Cedex 09, France.
| |
Collapse
|
47
|
Haider S, Lipinszki Z, Przewloka MR, Ladak Y, D’Avino PP, Kimata Y, Lio’ P, Glover DM. DAPPER: a data-mining resource for protein-protein interactions. BioData Min 2015; 8:30. [PMID: 26405458 PMCID: PMC4581157 DOI: 10.1186/s13040-015-0063-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 09/16/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The identification of interaction networks between proteins and complexes holds the promise of offering novel insights into the molecular mechanisms that regulate many biological processes. With increasing volumes of such datasets, especially in model organisms such as Drosophila melanogaster, there exists a pressing need for specialised tools, which can seamlessly collect, integrate and analyse these data. Here we describe a database coupled with a mining tool for protein-protein interactions (DAPPER), developed as a rich resource for studying multi-protein complexes in Drosophila melanogaster. RESULTS This proteomics database is compiled through mass spectrometric analyses of many protein complexes affinity purified from Drosophila tissues and cultured cells. The web access to DAPPER is provided via an accelerated version of BioMart software enabling data-mining through customised querying and output formats. The protein-protein interaction dataset is annotated with FlyBase identifiers, and further linked to the Ensembl database using BioMart's data-federation model, thereby enabling complex multi-dataset queries. DAPPER is open source, with all its contents and source code are freely available. CONCLUSIONS DAPPER offers an easy-to-navigate and extensible platform for real-time integration of diverse resources containing new and existing protein-protein interaction datasets of Drosophila melanogaster.
Collapse
Affiliation(s)
- Syed Haider
- Computer Laboratory, University of Cambridge, Cambridge, CB3 0FD UK
| | - Zoltan Lipinszki
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH UK
| | - Marcin R. Przewloka
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH UK
| | - Yaseen Ladak
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH UK
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
| | - Yuu Kimata
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH UK
| | - Pietro Lio’
- Computer Laboratory, University of Cambridge, Cambridge, CB3 0FD UK
| | - David M. Glover
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH UK
| |
Collapse
|
48
|
Abstract
Background Prions diseases are fatal neurodegenerative diseases of mammals. While the molecular responses to prion infection have been extensively characterized in the laboratory mouse, little is known in other rodents. To explore these responses and make comparisons, we generated a prion disease in the laboratory rat by successive passage beginning with mouse RML prions. Results We describe the accumulation of rat prions, associated pathology and the transcriptional impact throughout the disease course. Comparative transcriptional profiling between laboratory mice and rats suggests that similar molecular and cellular processes are unfolding in response to prion infection. At the level of individual transcripts, however, variability exists between mice and rats and many genes deregulated by prion infection in mice are not affected in rats. Conclusion Our findings detail the molecular responses to prion disease in the rat and highlight the usefulness of comparative approaches to understanding neurodegeneration and prion diseases in particular. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1884-7) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Erives AJ. Genes conserved in bilaterians but jointly lost with Myc during nematode evolution are enriched in cell proliferation and cell migration functions. Dev Genes Evol 2015; 225:259-73. [PMID: 26173873 PMCID: PMC4568025 DOI: 10.1007/s00427-015-0508-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022]
Abstract
Animals use a stereotypical set of developmental genes to build body architectures of varying sizes and organizational complexity. Some genes are critical to developmental patterning, while other genes are important to physiological control of growth. However, growth regulator genes may not be as important in small-bodied “micro-metazoans” such as nematodes. Nematodes use a simplified developmental strategy of lineage-based cell fate specifications to produce an adult bilaterian body composed of a few hundreds of cells. Nematodes also lost the MYC proto-oncogenic regulator of cell proliferation. To identify additional regulators of cell proliferation that were lost with MYC, we computationally screened and determined 839 high-confidence genes that are conserved in bilaterians/lost in nematodes (CIBLIN genes). We find that 30 % of all CIBLIN genes encode transcriptional regulators of cell proliferation, epithelial-to-mesenchyme transitions, and other processes. Over 50 % of CIBLIN genes are unnamed genes in Drosophila, suggesting that there are many understudied genes. Interestingly, CIBLIN genes include many Myc synthetic lethal (MycSL) hits from recent screens. CIBLIN genes include key regulators of heparan sulfate proteoglycan (HSPG) sulfation patterns, and lysyl oxidases involved in cross-linking and modification of the extracellular matrix (ECM). These genes and others suggest the CIBLIN repertoire services critical functions in ECM remodeling and cell migration in large-bodied bilaterians. Correspondingly, CIBLIN genes are co-expressed with Myc in cancer transcriptomes, and include a preponderance of known determinants of cancer progression and tumor aggression. We propose that CIBLIN gene research can improve our understanding of regulatory control of cellular growth in metazoans.
Collapse
Affiliation(s)
- Albert J Erives
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA.
| |
Collapse
|
50
|
Wang H, Wang C, Yang K, Liu J, Zhang Y, Wang Y, Xu X, Michal JJ, Jiang Z, Liu B. Genome Wide Distributions and Functional Characterization of Copy Number Variations between Chinese and Western Pigs. PLoS One 2015; 10:e0131522. [PMID: 26154170 PMCID: PMC4496047 DOI: 10.1371/journal.pone.0131522] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/03/2015] [Indexed: 01/02/2023] Open
Abstract
Copy number variations (CNVs) refer to large insertions, deletions and duplications in the genomic structure ranging from one thousand to several million bases in size. Since the development of next generation sequencing technology, several methods have been well built for detection of copy number variations with high credibility and accuracy. Evidence has shown that CNV occurring in gene region could lead to phenotypic changes due to the alteration in gene structure and dosage. However, it still remains unexplored whether CNVs underlie the phenotypic differences between Chinese and Western domestic pigs. Based on the read-depth methods, we investigated copy number variations using 49 individuals derived from both Chinese and Western pig breeds. A total of 3,131 copy number variation regions (CNVRs) were identified with an average size of 13.4 Kb in all individuals during domestication, harboring 1,363 genes. Among them, 129 and 147 CNVRs were Chinese and Western pig specific, respectively. Gene functional enrichments revealed that these CNVRs contribute to strong disease resistance and high prolificacy in Chinese domestic pigs, but strong muscle tissue development in Western domestic pigs. This finding is strongly consistent with the morphologic characteristics of Chinese and Western pigs, indicating that these group-specific CNVRs might have been preserved by artificial selection for the favored phenotypes during independent domestication of Chinese and Western pigs. In this study, we built high-resolution CNV maps in several domestic pig breeds and discovered the group specific CNVs by comparing Chinese and Western pigs, which could provide new insight into genomic variations during pigs’ independent domestication, and facilitate further functional studies of CNV-associated genes.
Collapse
Affiliation(s)
- Hongyang Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Chao Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Kui Yang
- Modern Educational & Technology Centre of Huazhong Agricultural University, Wuhan, PR China
| | - Jing Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Yu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Yanan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Xuewen Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, WA, United States of America
| | - Zhihua Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- Department of Animal Sciences, Washington State University, Pullman, WA, United States of America
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
- * E-mail:
| |
Collapse
|