1
|
Ballal A, Apte SK. Cyanobacterial KdpD modulates in vivo and in vitro activities of a membrane-anchored histidine kinase. Biochim Biophys Acta Gen Subj 2025; 1869:130817. [PMID: 40360126 DOI: 10.1016/j.bbagen.2025.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/23/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
The prokaryotic KdpATPAse complex, encoded by the kdpABC operon, is an inducible, high-affinity K+ transporter. In E. coli, the operon is transcriptionally regulated by a two-component sensor-kinase response-regulator system, constituted by the KdpD and KdpE proteins. In contrast, cyanobacteria exhibit a truncated kdpD gene that encodes a KdpD homolog that is similar to the N-terminal domain (NTD) of E. coli KdpD, but lacks the transmitter, histidine kinase-containing, C-terminal domain (CTD). Here we show that the cyanobacterium Anabaena sp. strain L-31 constitutively transcribes the short kdpD gene, but synthesizes KdpATPase only during potassium starvation. However, unlike E. coli., expression of the kdpD gene remains unaffected by K+ limitation in Anabaena. To gain insight into the possible role of Anabaena KdpD, the chimeric Anacoli KdpD protein, wherein the NTD of E. coli KdpD was replaced with Anabaena KdpD, was functionally analyzed. Detailed investigation has revealed that the Anacoli KdpD (a) responds to a much lower threshold of external K+ than the E. coli KdpD (b) exhibits much reduced ability to induce kdp in response to ionic osmolytes than E. coli KdpD, and is therefore unable to sustain optimal growth in the presence of these osmolytes and (c) displays higher in vitro phosphatase activity than the wild type E. coli KdpD. Thus, Anabaena KdpD modulates properties of E. coli KdpD-CTD in a manner that is quite distinct from the E. coli KdpD-NTD. Based on these evidences, a model for kdp regulation by the short KdpD is proposed.
Collapse
Affiliation(s)
- Anand Ballal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, 400094 Mumbai, India.
| | - Shree Kumar Apte
- School of Biosciences, UM-DAE-Centre for Excellence in Basic Sciences, Vidyanagari, Kalina, Mumbai 400098, India
| |
Collapse
|
2
|
Chatterjee A, Rai R, Raj A, Rai LC. Deciphering the early responses for the cross talk between primary and secondary stressor in diazotrophic cyanobacteria Anabaena sp. PCC 7120. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109552. [PMID: 39946906 DOI: 10.1016/j.plaphy.2025.109552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 12/08/2024] [Accepted: 01/23/2025] [Indexed: 03/11/2025]
Abstract
The present study aims to unlock the cross-protection mechanism of the diazotrophic cyanobacterium Anabaena sp. PCC 7120. Heat pre-treatment elicited a beneficial response against subsequent cadmium stress as revealed by integrated morphological, physiological, biochemical, transcript, and proteomics analyses under four sets of experimental conditions: control (C), heat (HS), cadmium (Cd), and heat + cadmium (HS + Cd). Outcomes of the present study suggested a better survival strategy shown by Anabaena sp. PCC 7120 under HS + Cd compared to Cd. According to comparative proteomics, protochlorophyllide reductase, CO2 hydration protein, and NAD(P)H quinone oxidoreductase work in concert to support the light and dark reactions of photosynthesis. Furthermore, in cross protection involvement of enzymes from pentose phosphate pathway and glycolysis for fulfilling cellular energy demand; antioxidants and antioxidant enzymes in scavenging ROS, cellular detoxification, and Cd chelation, chaperons and proteases in proper protein folding and synthesis; signaling and transporters to generate cross talk and Cd efflux were found. Increased accumulation of vegetative to heterocyst connection protein (FraH) in HS + Cd compared to Cd may be envisioned to manage better nitrogen fixation.
Collapse
Affiliation(s)
- Antra Chatterjee
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India; Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Ruchi Rai
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alka Raj
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - L C Rai
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Fink P, Menzel C, Kwon JH, Forchhammer K. A novel recombinant PHB production platform in filamentous cyanobacteria avoiding nitrogen starvation while preserving cell viability. Microb Cell Fact 2025; 24:43. [PMID: 39979956 PMCID: PMC11844001 DOI: 10.1186/s12934-025-02650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
During the past decades, the importance of developing sustainable, carbon dioxide (CO2)-neutral and biodegradable alternatives to conventional plastic has become evident in the context of global pollution issues. Therefore, heterotrophic bacteria such as Cupriavidus sp. have been intensively explored for the synthesis of the biodegradable polymer polyhydroxybutyrate (PHB). PHB is also naturally produced by a variety of phototrophic cyanobacteria, which only need sunlight and CO2, thereby allowing a CO2 negative, eco-friendly synthesis of this polymer. However, a major drawback of the use of cyanobacteria is the need of a two-stage production process, since relevant amount of PHB synthesis only occurs after transferring the cultures to conditions of nitrogen starvation, which hinders continuous, large-scale production.This study aimed at generating, by means of genetic engineering, a cyanobacterium that continuously produces PHB in large amounts. We choose a genetically amenable filamentous cyanobacterium of the genus Nostoc sp., which is a diazotrophic cyanobacterium, capable of atmospheric nitrogen (N2) fixation but naturally does not produce PHB. We transformed this Nostoc strain with various constructs containing the constitutive promotor PpsbA and the PHB synthesis operon phaC1AB from Cupriavidus necator H16. In fact, while the transformants initially produced PHB, the PHB-producing strains rapidly lost cell viability. Therefore, we next attempted further optimization of the biosynthetic gene cluster. The PHB operon was expanded with phasin gene phaP1 from Cupriavidus necator H16 in combination with the native intergenic region of apcBA from Nostoc sp. 7120. Finally, we succeeded in stabilized PHB production, whilst simultaneously avoiding decreasing cell viability. In conclusion, the recombinant Nostoc strain constructed in the present work constitutes the first example of a continuous and stable PHB production platform in cyanobacteria, which has been decoupled from nitrogen starvation and, hence, harbours great potential for sustainable, industrial PHB production.
Collapse
Affiliation(s)
- Phillipp Fink
- Organismic Interactions Department, Tübingen University, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Claudia Menzel
- Organismic Interactions Department, Tübingen University, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Jong-Hee Kwon
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Food Science & Technology, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Karl Forchhammer
- Organismic Interactions Department, Tübingen University, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| |
Collapse
|
4
|
Fink P, Kwon JH, Forchhammer K. Shipment of Cyanobacteria by Agarose Gel Embedding (SCAGE)-A Novel Method for Simple and Robust Delivery of Cyanobacteria. Bio Protoc 2024; 14:e5125. [PMID: 39677020 PMCID: PMC11635438 DOI: 10.21769/bioprotoc.5125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 12/17/2024] Open
Abstract
In modern science, the exchange of scientific material between different institutions and collaborating working groups constitutes an indispensable endeavor. For this purpose, bacterial strains are frequently shipped to collaborators to advance joint research projects. Bacterial strains are usually safely shipped as cultures on solid medium, whereas the shipment of liquid cultures requires specific safety measures due to the risk of leakage. Cyanobacterial cultures are frequently maintained as liquid stock cultures, and this problem typically arises. This protocol describes a new method for the shipment of liquid cyanobacterial stock cultures by agarose gel embedding (SCAGE). More specifically, a cyanobacterial culture is mixed with low-melting agarose and cast into sterile plastic bags, resulting in a thin, solid cyanobacterial agarose gel (cyanogel) that can be easily shipped. After delivery, subsequent regeneration of the cyanogel material in liquid media results in full recovery of the examined bacterial strains. Thus, the packaging method devised in the present study comprises an innovative technique to facilitate the shipment of bacterial strains, whilst eliminating previously encountered issues like cell culture leakage. Key features • New packaging procedure to reduce culture leakage. • Novel technique facilitating improved shipment conditions. • Validated method leading to recovery of tested bacterial strains after 14 days. Graphical overview Schematic representation of steps for gel embedding and recovery of cyanobacteria.
Collapse
Affiliation(s)
- Phillipp Fink
- Organismic Interactions Department, Tübingen University, Auf der Morgenstelle 28, Tübingen, Germany
| | - Jong-Hee Kwon
- Applied Life Sciences (BK21), Gyeongsang National University, Jinju, Korea
- Department of Food Science & Technology and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Korea
| | - Karl Forchhammer
- Organismic Interactions Department, Tübingen University, Auf der Morgenstelle 28, Tübingen, Germany
| |
Collapse
|
5
|
Wang K, Mahbub M, Mastroianni G, Valladares A, Mullineaux CW. mRNA localization and thylakoid protein biogenesis in the filamentous heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. J Bacteriol 2024; 206:e0032824. [PMID: 39329528 PMCID: PMC11500504 DOI: 10.1128/jb.00328-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Heterocyst-forming cyanobacteria such as Anabaena (Nostoc) sp. PCC 7120 exhibit extensive remodeling of their thylakoid membranes during heterocyst differentiation. Here we investigate the sites of translation of thylakoid membrane proteins in Anabaena vegetative cells and developing heterocysts, using mRNA fluorescent in situ hybridization (FISH) to detect the location of specific mRNA species. We probed mRNAs encoding reaction center core components and the heterocyst-specific terminal oxidases Cox2 and Cox3. As in unicellular cyanobacteria, the mRNAs encoding membrane-integral thylakoid proteins are concentrated in patches at the inner face of the thylakoid membrane system, adjacent to the central cytoplasm. These patches mark the putative sites of translation and membrane insertion of these proteins. Oxidase activity in mature heterocysts is concentrated in the specialized "honeycomb" regions of the thylakoid membranes close to the cell poles. However, cox2 and cox3 mRNAs remain evenly distributed over the inner face of the thylakoids, implying that oxidase proteins migrate extensively after translation to reach their destination in the honeycomb membranes. The RNA-binding protein RbpG is the closest Anabaena homolog of Rbp3 in the unicellular cyanobacterium Synechocystis sp. PCC 6803, which we previously showed to be crucial for the correct location of photosynthetic mRNAs. An rbpG null mutant shows decreased cellular levels of photosynthetic mRNAs and photosynthetic complexes, coupled with perturbations to thylakoid membrane organization and lower efficiency of the Photosystem II repair cycle. This suggests that the chaperoning of photosynthetic mRNAs by RbpG is important for the correct coordination of thylakoid protein translation and assembly.IMPORTANCECyanobacteria have a complex thylakoid membrane system which is the site of the photosynthetic light reactions as well as most of the respiratory activity in the cell. Protein targeting to the thylakoids and the spatial organization of thylakoid protein biogenesis remain poorly understood. Further complexity is found in some filamentous cyanobacteria that produce heterocysts, specialized nitrogen-fixing cells in which the thylakoid membranes undergo extensive remodeling. Here we probe mRNA locations to reveal thylakoid translation sites in a heterocyst-forming cyanobacterium. We identify an RNA-binding protein important for the correct co-ordination of thylakoid protein translation and assembly, and we demonstrate the effectiveness of mRNA fluorescent in situ hybridization (FISH) as a way to probe cell-specific gene expression in multicellular cyanobacteria.
Collapse
Affiliation(s)
- Kexin Wang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Moontaha Mahbub
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Giulia Mastroianni
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Conrad W. Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
6
|
Yang G, Li J, Hu J, Shi JY. Recognition of cyanobacteria promoters via Siamese network-based contrastive learning under novel non-promoter generation. Brief Bioinform 2024; 25:bbae193. [PMID: 38701419 PMCID: PMC11066903 DOI: 10.1093/bib/bbae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
It is a vital step to recognize cyanobacteria promoters on a genome-wide scale. Computational methods are promising to assist in difficult biological identification. When building recognition models, these methods rely on non-promoter generation to cope with the lack of real non-promoters. Nevertheless, the factitious significant difference between promoters and non-promoters causes over-optimistic prediction. Moreover, designed for E. coli or B. subtilis, existing methods cannot uncover novel, distinct motifs among cyanobacterial promoters. To address these issues, this work first proposes a novel non-promoter generation strategy called phantom sampling, which can eliminate the factitious difference between promoters and generated non-promoters. Furthermore, it elaborates a novel promoter prediction model based on the Siamese network (SiamProm), which can amplify the hidden difference between promoters and non-promoters through a joint characterization of global associations, upstream and downstream contexts, and neighboring associations w.r.t. k-mer tokens. The comparison with state-of-the-art methods demonstrates the superiority of our phantom sampling and SiamProm. Both comprehensive ablation studies and feature space illustrations also validate the effectiveness of the Siamese network and its components. More importantly, SiamProm, upon our phantom sampling, finds a novel cyanobacterial promoter motif ('GCGATCGC'), which is palindrome-patterned, content-conserved, but position-shifted.
Collapse
Affiliation(s)
- Guang Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
| | - Jianing Li
- School of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
| | - Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
| | - Jian-Yu Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
| |
Collapse
|
7
|
Sriwastaw S, Rai R, Raj A, Kesari V, Rai LC. All3048, a DnaJ III homolog of Anabaena sp. PCC7120 mediates heat shock response in E. coli and its N-terminus J-domain stimulates DnaK ATPase activity. Int J Biol Macromol 2023; 233:123563. [PMID: 36746302 DOI: 10.1016/j.ijbiomac.2023.123563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Cyanobacterial DnaJ offers thermo-tolerance and effectively prevents aggregation of denatured protein in coordination with DnaK. The hypothetical protein All3048 of Anabaena sp. PCC7120 was found to be a 24 kDa DnaJ III protein with a putative J-domain at the extreme N-terminus. This paper decodes the role of All3048 in thermo-tolerance and as a co-chaperon of DnaK. Semi-quantitative and RT-PCR results showed up-accumulation of all3048 in heat, UV-B, cadmium, arsenic and salt. BL21/pET-28a-all3048, all3048(1-95) and all3048(31-128) reduced the heat stress-induced ROS generation by 40 %, 21 % and 24 % as compared to BL21/pET-28-a. Conformational properties of All3048 and its truncated variants were assessed using bis ANS, guanidine hydrochloride and acrylamide quenching. All3048(1-95), All3048 and All3048(31-128) increased DnaK ATPase activity by 8.6, 8.2, and 2.5 fold, respectively. The thermostability investigated using DSC and DSF methods affirmed the relative stability of All3048 and All3048 (31-128), whereas All3048 (1-95) was the least stable. All3048 is a novel cyanobacterial DnaJ III that imparts heat stress tolerance in E. coli; however, only the J-domain present at N-terminus was sufficient for stimulating DnaK's ATPase activity.
Collapse
Affiliation(s)
- Sonam Sriwastaw
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ruchi Rai
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Alka Raj
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vigya Kesari
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - L C Rai
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
8
|
Koksharova OA, Safronova NA. Non-Proteinogenic Amino Acid β-N-Methylamino-L-Alanine (BMAA): Bioactivity and Ecological Significance. Toxins (Basel) 2022; 14:539. [PMID: 36006201 PMCID: PMC9414260 DOI: 10.3390/toxins14080539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Research interest in a non-protein amino acid β-N-methylamino-L-alanine (BMAA) arose due to the discovery of a connection between exposure to BMAA and the occurrence of neurodegenerative diseases. Previous reviews on this topic either considered BMAA as a risk factor for neurodegenerative diseases or focused on the problems of detecting BMAA in various environmental samples. Our review is devoted to a wide range of fundamental biological problems related to BMAA, including the molecular mechanisms of biological activity of BMAA and the complex relationships between producers of BMAA and the environment in various natural ecosystems. At the beginning, we briefly recall the most important facts about the producers of BMAA (cyanobacteria, microalgae, and bacteria), the pathways of BMAA biosynthesis, and reliable methods of identification of BMAA. The main distinctive feature of our review is a detailed examination of the molecular mechanisms underlying the toxicity of BMAA to living cells. A brand new aspect, not previously discussed in any reviews, is the effect of BMAA on cyanobacterial cells. These recent studies, conducted using transcriptomics and proteomics, revealed potent regulatory effects of BMAA on the basic metabolism and cell development of these ancient photoautotrophic prokaryotes. Exogenous BMAA strongly influences cell differentiation and primary metabolic processes in cyanobacteria, such as nitrogen fixation, photosynthesis, carbon fixation, and various biosynthetic processes involving 2-oxoglutarate and glutamate. Cyanobacteria were found to be more sensitive to exogenous BMAA under nitrogen-limited growth conditions. We suggest a hypothesis that this toxic diaminoacid can be used by phytoplankton organisms as a possible allelopathic tool for controlling the population of cyanobacterial cells during a period of intense competition for nitrogen and other resources in various ecosystems.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Nina A. Safronova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
9
|
Mukherjee M, Geeta A, Ghosh S, Prusty A, Dutta S, Sarangi AN, Behera S, Adhikary SP, Tripathy S. Genome Analysis Coupled With Transcriptomics Reveals the Reduced Fitness of a Hot Spring Cyanobacterium Mastigocladus laminosus UU774 Under Exogenous Nitrogen Supplement. Front Microbiol 2022; 13:909289. [PMID: 35847102 PMCID: PMC9284123 DOI: 10.3389/fmicb.2022.909289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The present study focuses on the stress response of a filamentous, AT-rich, heterocystous cyanobacterium Mastigocladus laminosus UU774, isolated from a hot spring, Taptapani, located in the eastern part of India. The genome of UU774 contains an indispensable fragment, scaffold_38, of unknown origin that is implicated during severe nitrogen and nutrition stress. Prolonged exposure to nitrogen compounds during starvation has profound adverse effects on UU774, leading to loss of mobility, loss of ability to fight pathogens, reduced cell division, decreased nitrogen-fixing ability, reduced ability to form biofilms, reduced photosynthetic and light-sensing ability, and reduced production of secreted effectors and chromosomal toxin genes, among others. Among genes showing extreme downregulation when grown in a medium supplemented with nitrogen with the fold change > 5 are transcriptional regulator gene WalR, carbonic anhydrases, RNA Polymerase Sigma F factor, fimbrial protein, and twitching mobility protein. The reduced expression of key enzymes involved in the uptake of phosphate and enzymes protecting oxygen-sensitive nitrogenases is significant during the presence of nitrogen. UU774 is presumed to withstand heat by overexpressing peptidases that may be degrading abnormally folded proteins produced during heat. The absence of a key gene responsible for heterocyst pattern formation, patS, and an aberrant hetN without a functional motif probably lead to the formation of a chaotic heterocyst pattern in UU774. We suggest that UU774 has diverged from Fischerella sp. PCC 9339, another hot spring species isolated in the United States.
Collapse
Affiliation(s)
- Mayuri Mukherjee
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aribam Geeta
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samrat Ghosh
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Asharani Prusty
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subhajeet Dutta
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditya Narayan Sarangi
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
| | - Smrutisanjita Behera
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
| | | | - Sucheta Tripathy
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Gisdon FJ, Feiler CG, Kempf O, Foerster JM, Haiss J, Blankenfeldt W, Ullmann GM, Bombarda E. Structural and Biophysical Analysis of the Phytochelatin-Synthase-Like Enzyme from Nostoc sp. Shows That Its Protease Activity is Sensitive to the Redox State of the Substrate. ACS Chem Biol 2022; 17:883-897. [PMID: 35377603 DOI: 10.1021/acschembio.1c00941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phytochelatins (PCs) are nonribosomal thiol-rich oligopeptides synthetized from glutathione (GSH) in a γ-glutamylcysteinyl transpeptidation reaction catalyzed by PC synthases (PCSs). Ubiquitous in plant and present in some invertebrates, PCSs are involved in metal detoxification and homeostasis. The PCS-like enzyme from the cyanobacterium Nostoc sp. (NsPCS) is considered to be an evolutionary precursor enzyme of genuine PCSs because it shows sufficient sequence similarity for homology to the catalytic domain of the eukaryotic PCSs and shares the peptidase activity consisting in the deglycination of GSH. In this work, we investigate the catalytic mechanism of NsPCS by combining structural, spectroscopic, thermodynamic, and theoretical techniques. We report several crystal structures of NsPCS capturing different states of the catalyzed chemical reaction: (i) the structure of the wild-type enzyme (wt-NsPCS); (ii) the high-resolution structure of the γ-glutamyl-cysteine acyl-enzyme intermediate (acyl-NsPCS); and (iii) the structure of an inactive variant of NsPCS, with the catalytic cysteine mutated into serine (C70S-NsPCS). We characterize NsPCS as a relatively slow enzyme whose activity is sensitive to the redox state of the substrate. Namely, NsPCS is active with reduced glutathione (GSH), but is inhibited by oxidized glutathione (GSSG) because the cleavage product is not released from the enzyme. Our biophysical analysis led us to suggest that the biological function of NsPCS is being a part of a redox sensing system. In addition, we propose a mechanism how PCS-like enzymes may have evolved toward genuine PCS enzymes.
Collapse
Affiliation(s)
- Florian J. Gisdon
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Computational Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Christian G. Feiler
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Oxana Kempf
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Johannes M. Foerster
- Computational Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Jonathan Haiss
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - G. Matthias Ullmann
- Computational Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Elisa Bombarda
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
11
|
Cui N, Yang F, Zhang JT, Sun H, Chen Y, Yu RC, Chen ZP, Jiang YL, Han SJ, Xu X, Li Q, Zhou CZ. Capsid Structure of Anabaena Cyanophage A-1(L). J Virol 2021; 95:e0135621. [PMID: 34549983 PMCID: PMC8610606 DOI: 10.1128/jvi.01356-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/19/2021] [Indexed: 01/09/2023] Open
Abstract
A-1(L) is a freshwater cyanophage with a contractile tail that specifically infects Anabaena sp. PCC 7120, one of the model strains for molecular studies of cyanobacteria. Although isolated for half a century, its structure remains unknown, which limits our understanding on the interplay between A-1(L) and its host. Here we report the 3.35 Å cryo-EM structure of A-1(L) capsid, representing the first near-atomic resolution structure of a phage capsid with a T number of 9. The major capsid gp4 proteins assemble into 91 capsomers, including 80 hexons: 20 at the center of the facet and 60 at the facet edge, in addition to 11 identical pentons. These capsomers further assemble into the icosahedral capsid, via gradually increasing curvatures. Different from the previously reported capsids of known-structure, A-1(L) adopts a noncovalent chainmail structure of capsid stabilized by two kinds of mortise-and-tenon inter-capsomer interactions: a three-layered interface at the pseudo 3-fold axis combined with the complementarity in shape and electrostatic potential around the 2-fold axis. This unique capsomer construction enables A-1(L) to possess a rigid capsid, which is solely composed of the major capsid proteins with an HK97 fold. IMPORTANCE Cyanobacteria are the most abundant photosynthetic bacteria, contributing significantly to the biomass production, O2 generation, and CO2 consumption on our planet. Their community structure and homeostasis in natural aquatic ecosystems are largely regulated by the corresponding cyanophages. In this study, we solved the structure of cyanophage A-1(L) capsid at near-atomic resolution and revealed a unique capsid construction. This capsid structure provides the molecular details for better understanding the assembly of A-1(L), and a structural platform for future investigation and application of A-1(L) in combination with its host Anabaena sp. PCC 7120. As the first isolated freshwater cyanophage that infects the genetically tractable model cyanobacterium, A-1(L) should become an ideal template for the genetic engineering and synthetic biology studies.
Collapse
Affiliation(s)
- Ning Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Feng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun-Tao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Sun
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Rong-Cheng Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi-Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Shu-Jing Han
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xudong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
12
|
Proteogenomic Analysis Provides Novel Insight into Genome Annotation and Nitrogen Metabolism in Nostoc sp. PCC 7120. Microbiol Spectr 2021; 9:e0049021. [PMID: 34523988 PMCID: PMC8557916 DOI: 10.1128/spectrum.00490-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cyanobacteria, capable of oxygenic photosynthesis, play a vital role in nitrogen and carbon cycles. Nostoc sp. PCC 7120 (Nostoc 7120) is a model cyanobacterium commonly used to study cell differentiation and nitrogen metabolism. Although its genome was released in 2002, a high-quality genome annotation remains unavailable for this model cyanobacterium. Therefore, in this study, we performed an in-depth proteogenomic analysis based on high-resolution mass spectrometry (MS) data to refine the genome annotation of Nostoc 7120. We unambiguously identified 5,519 predicted protein-coding genes and revealed 26 novel genes, 75 revised genes, and 27 different kinds of posttranslational modifications in Nostoc 7120. A subset of these novel proteins were further validated at both the mRNA and peptide levels. Functional analysis suggested that many newly annotated proteins may participate in nitrogen or cadmium/mercury metabolism in Nostoc 7120. Moreover, we constructed an updated Nostoc 7120 database based on our proteogenomic results and presented examples of how the updated database could be used to improve the annotation of proteomic data. Our study provides the most comprehensive annotation of the Nostoc 7120 genome thus far and will serve as a valuable resource for the study of nitrogen metabolism in Nostoc 7120. IMPORTANCE Cyanobacteria are a large group of prokaryotes capable of oxygenic photosynthesis and play a vital role in nitrogen and carbon cycles on Earth. Nostoc 7120 is a commonly used model cyanobacterium for studying cell differentiation and nitrogen metabolism. In this study, we presented the first comprehensive draft map of the Nostoc 7120 proteome and a wide range of posttranslational modifications. In addition, we constructed an updated database of Nostoc 7120 based on our proteogenomic results and presented examples of how the updated database could be used for system-level studies of Nostoc 7120. Our study provides the most comprehensive annotation of Nostoc 7120 genome and a valuable resource for the study of nitrogen metabolism in this model cyanobacterium.
Collapse
|
13
|
Santamaría-Gómez J, Rubio MÁ, López-Igual R, Romero-Losada AB, Delgado-Chaves FM, Bru-Martínez R, Romero-Campero FJ, Herrero A, Ibba M, Ochoa de Alda JAG, Luque I. Role of a cryptic tRNA gene operon in survival under translational stress. Nucleic Acids Res 2021; 49:8757-8776. [PMID: 34379789 PMCID: PMC8421152 DOI: 10.1093/nar/gkab661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 01/08/2023] Open
Abstract
As compared to eukaryotes, bacteria have a reduced tRNA gene set encoding between 30 and 220 tRNAs. Although in most bacterial phyla tRNA genes are dispersed in the genome, many species from distinct phyla also show genes forming arrays. Here, we show that two types of arrays with distinct evolutionary origins exist. This work focuses on long tRNA gene arrays (L-arrays) that encompass up to 43 genes, which disseminate by horizontal gene transfer and contribute supernumerary tRNA genes to the host. Although in the few cases previously studied these arrays were reported to be poorly transcribed, here we show that the L-array of the model cyanobacterium Anabaena sp. PCC 7120, encoding 23 functional tRNAs, is largely induced upon impairment of the translation machinery. The cellular response to this challenge involves a global reprogramming of the transcriptome in two phases. tRNAs encoded in the array are induced in the second phase of the response, directly contributing to cell survival. Results presented here show that in some bacteria the tRNA gene set may be partitioned between a housekeeping subset, which constantly sustains translation, and an inducible subset that is generally silent but can provide functionality under particular conditions.
Collapse
Affiliation(s)
- Javier Santamaría-Gómez
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Miguel Ángel Rubio
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain.,Center for RNA Biology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Rocío López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Ana B Romero-Losada
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain.,Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville E-41012, Spain
| | - Fernando M Delgado-Chaves
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Roque Bru-Martínez
- Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante E- 03690, Spain
| | - Francisco J Romero-Campero
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain.,Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville E-41012, Spain
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Michael Ibba
- Center for RNA Biology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA.,Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Jesús A G Ochoa de Alda
- Didáctica de las Ciencias Experimentales, Facultad de Formación del Profesorado, Universidad de Extremadura, Cáceres E-10003, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| |
Collapse
|
14
|
Norena-Caro DA, Zuniga C, Pete AJ, Saemundsson SA, Donaldson MR, Adams AJ, Dooley KM, Zengler K, Benton MG. Analysis of the cyanobacterial amino acid metabolism with a precise genome-scale metabolic reconstruction of Anabaena sp. UTEX 2576. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Hirakawa Y, Senda M, Fukuda K, Yu HY, Ishida M, Taira M, Kinbara K, Senda T. Characterization of a novel type of carbonic anhydrase that acts without metal cofactors. BMC Biol 2021; 19:105. [PMID: 34006275 PMCID: PMC8132391 DOI: 10.1186/s12915-021-01039-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Background Carbonic anhydrases (CAs) are universal metalloenzymes that catalyze the reversible conversion of carbon dioxide (CO2) and bicarbonate (HCO3-). They are involved in various biological processes, including pH control, respiration, and photosynthesis. To date, eight evolutionarily unrelated classes of CA families (α, β, γ, δ, ζ, η, θ, and ι) have been identified. All are characterized by an active site accommodating the binding of a metal cofactor, which is assumed to play a central role in catalysis. This feature is thought to be the result of convergent evolution. Results Here, we report that a previously uncharacterized protein group, named “COG4337,” constitutes metal-independent CAs from the newly discovered ι-class. Genes coding for COG4337 proteins are found in various bacteria and photosynthetic eukaryotic algae. Biochemical assays demonstrated that recombinant COG4337 proteins from a cyanobacterium (Anabaena sp. PCC7120) and a chlorarachniophyte alga (Bigelowiella natans) accelerated CO2 hydration. Unexpectedly, these proteins exhibited their activity under metal-free conditions. Based on X-ray crystallography and point mutation analysis, we identified a metal-free active site within the cone-shaped α+β barrel structure. Furthermore, subcellular localization experiments revealed that COG4337 proteins are targeted into plastids and mitochondria of B. natans, implicating their involvement in CO2 metabolism in these organelles. Conclusions COG4337 proteins shared a short sequence motif and overall structure with ι-class CAs, whereas they were characterized by metal independence, unlike any known CAs. Therefore, COG4337 proteins could be treated as a variant type of ι-class CAs. Our findings suggested that this novel type of ι-CAs can function even in metal-poor environments (e.g., the open ocean) without competition with other metalloproteins for trace metals. Considering the widespread prevalence of ι-CAs across microalgae, this class of CAs may play a role in the global carbon cycle. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01039-8.
Collapse
Affiliation(s)
- Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Miki Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kodai Fukuda
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hong Yang Yu
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,School of High Energy Accelerator Science, SOKENDAI, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Masaki Ishida
- Applied Research Laboratory, Radiation Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Masafumi Taira
- Support Center for Accelerator Science and Technology, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan. .,School of High Energy Accelerator Science, SOKENDAI, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan. .,Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
16
|
Koksharova OA, Butenko IO, Pobeguts OV, Safronova NA, Govorun VM. β-N-Methylamino-L-Alanine (BMAA) Causes Severe Stress in Nostoc sp. PCC 7120 Cells under Diazotrophic Conditions: A Proteomic Study. Toxins (Basel) 2021; 13:325. [PMID: 33946501 PMCID: PMC8147232 DOI: 10.3390/toxins13050325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Non-proteinogenic neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) is synthesized by cyanobacteria, diatoms, and dinoflagellates, and is known to be a causative agent of human neurodegenerative diseases. Different phytoplankton organisms' ability to synthesize BMAA could indicate the importance of this molecule in the interactions between microalgae in nature. We were interested in the following: what kinds of mechanisms underline BMAA's action on cyanobacterial cells in different nitrogen supply conditions. Herein, we present a proteomic analysis of filamentous cyanobacteria Nostoc sp. PCC 7120 cells that underwent BMAA treatment in diazotrophic conditions. In diazotrophic growth conditions, to survive, cyanobacteria can use only biological nitrogen fixation to obtain nitrogen for life. Note that nitrogen fixation is an energy-consuming process. In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by using LC-MS/MS spectrometry. Among them, 123 proteins belonging to different functional categories were selected-due to their notable expression differences-for further functional analysis and discussion. The presented proteomic data evidences that BMAA treatment leads to very strong (up to 80%) downregulation of α (NifD) and β (NifK) subunits of molybdenum-iron protein, which is known to be a part of nitrogenase. This enzyme is responsible for catalyzing nitrogen fixation. The genes nifD and nifK are under transcriptional control of a global nitrogen regulator NtcA. In this study, we have found that BMAA impacts in a total of 22 proteins that are under the control of NtcA. Moreover, BMAA downregulates 18 proteins that belong to photosystems I or II and light-harvesting complexes; BMAA treatment under diazotrophic conditions also downregulates five subunits of ATP synthase and enzyme NAD(P)H-quinone oxidoreductase. Therefore, we can conclude that the disbalance in energy and metabolite amounts leads to severe intracellular stress that induces the upregulation of stress-activated proteins, such as starvation-inducible DNA-binding protein, four SOS-response enzymes, and DNA repair enzymes, nine stress-response enzymes, and four proteases. The presented data provide new leads into the ecological impact of BMAA on microalgal communities that can be used in future investigations.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 1-40, 119991 Moscow, Russia;
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Ivan O. Butenko
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Olga V. Pobeguts
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Nina A. Safronova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 1-40, 119991 Moscow, Russia;
| | - Vadim M. Govorun
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| |
Collapse
|
17
|
Ahad RIA, Syiem MB. Analyzing dose dependency of antioxidant defense system in the cyanobacterium Nostoc muscorum Meg 1 chronically exposed to Cd 2. Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108950. [PMID: 33310062 DOI: 10.1016/j.cbpc.2020.108950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/20/2022]
Abstract
The aim of the present study was to analyze the dose dependency of oxidant-antioxidant homeostasis in Cd2+ exposed Nostoc muscorum Meg 1 cells. Quantification of percent DNA loss, protein oxidation and lipid peroxidation was carried out to assess Cd2+ induced ROS mediated damages to the organism. The countermeasures adopted by the cyanobacterium were also evaluated by computing various components of both enzymatic and non-enzymatic antioxidants. Exposure to different Cd2+ (0.1, 0.2, 0.3, 0.5, 1, 1.5, 2, 2.5, 3 ppm) doses showed substantial increase in ROS content in the ranges of 20-181% and 116-323% at the end of first and seventh day. The DNA damage, protein oxidation and lipid peroxidation were increased by 11-62%, 7-143% and 13-183% with increasing Cd2+ concentrations at the end of seven days. TEM images clearly showed damages to the cell wall, cell membrane and thylakoid organization at higher Cd2+ (0.5-3 ppm) concentrations. Cd2+ exposure up to 0.5 ppm registered increase in contents of antioxidative enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)) and in non-enzymatic antioxidants (glutathione, total thiol, phytochelatin and proline) indicating stimulation of ROS mitigating machinery. However, toxicity of Cd2+ was evident as at higher concentrations the cellular morphology and ultra-structures were negatively affected and the capacities of the cells to generate various antioxidant measures were highly compromised. The organism registered 96-98% sorption ability from a solution supplemented with 0.3 ppm Cd2+ and thus show realistic potential as Cd2+ bioremediator in wastewater treatment.
Collapse
Affiliation(s)
- Rabbul Ibne A Ahad
- Department of Biochemistry, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Mayashree B Syiem
- Department of Biochemistry, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
18
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
19
|
Inactivation of Three RG(S/T)GR Pentapeptide-Containing Negative Regulators of HetR Results in Lethal Differentiation of Anabaena PCC 7120. Life (Basel) 2020; 10:life10120326. [PMID: 33291589 PMCID: PMC7761841 DOI: 10.3390/life10120326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
The filamentous cyanobacterium Anabaena sp. PCC 7120 produces, during the differentiation of heterocysts, a short peptide PatS and a protein HetN, both containing an RGSGR pentapeptide essential for activity. Both act on the master regulator HetR to guide heterocyst pattern formation by controlling the binding of HetR to DNA and its turnover. A third small protein, PatX, with an RG(S/T)GR motif is present in all HetR-containing cyanobacteria. In a nitrogen-depleted medium, inactivation of patX does not produce a discernible change in phenotype, but its overexpression blocks heterocyst formation. Mutational analysis revealed that PatX is not required for normal intercellular signaling, but it nonetheless is required when PatS is absent to prevent rapid ectopic differentiation. Deprivation of all three negative regulators—PatS, PatX, and HetN—resulted in synchronous differentiation. However, in a nitrogen-containing medium, such deprivation leads to extensive fragmentation, cell lysis, and aberrant differentiation, while either PatX or PatS as the sole HetR regulator can establish and maintain a semiregular heterocyst pattern. These results suggest that tight control over HetR by PatS and PatX is needed to sustain vegetative growth and regulated development. The mutational analysis has been interpreted in light of the opposing roles of negative regulators of HetR and the positive regulator HetL.
Collapse
|
20
|
Rapid Transcriptional Reprogramming Triggered by Alteration of the Carbon/Nitrogen Balance Has an Impact on Energy Metabolism in Nostoc sp. PCC 7120. Life (Basel) 2020; 10:life10110297. [PMID: 33233741 PMCID: PMC7699953 DOI: 10.3390/life10110297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Nostoc (Anabaena) sp. PCC 7120 is a filamentous cyanobacterial species that fixes N2 to nitrogenous compounds using specialised heterocyst cells. Changes in the intracellular ratio of carbon to nitrogen (C/N balance) is known to trigger major transcriptional reprogramming of the cell, including initiating the differentiation of vegetative cells to heterocysts. Substantial transcriptional analysis has been performed on Nostoc sp. PCC 7120 during N stepdown (low to high C/N), but not during C stepdown (high to low C/N). In the current study, we shifted the metabolic balance of Nostoc sp. PCC 7120 cultures grown at 3% CO2 by introducing them to atmospheric conditions containing 0.04% CO2 for 1 h, after which the changes in gene expression were measured using RNAseq transcriptomics. This analysis revealed strong upregulation of carbon uptake, while nitrogen uptake and metabolism and early stages of heterocyst development were downregulated in response to the shift to low CO2. Furthermore, gene expression changes revealed a decrease in photosynthetic electron transport and increased photoprotection and reactive oxygen metabolism, as well a decrease in iron uptake and metabolism. Differential gene expression was largely attributed to change in the abundances of the metabolites 2-phosphoglycolate and 2-oxoglutarate, which signal a rapid shift from fluent photoassimilation to glycolytic metabolism of carbon after transition to low CO2. This work shows that the C/N balance in Nostoc sp. PCC 7120 rapidly adjusts the metabolic strategy through transcriptional reprogramming, enabling survival in the fluctuating environment.
Collapse
|
21
|
Solovchenko A, Gorelova O, Karpova O, Selyakh I, Semenova L, Chivkunova O, Baulina O, Vinogradova E, Pugacheva T, Scherbakov P, Vasilieva S, Lukyanov A, Lobakova E. Phosphorus Feast and Famine in Cyanobacteria: Is Luxury Uptake of the Nutrient Just a Consequence of Acclimation to Its Shortage? Cells 2020; 9:E1933. [PMID: 32825634 PMCID: PMC7564538 DOI: 10.3390/cells9091933] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 01/02/2023] Open
Abstract
To cope with fluctuating phosphorus (P) availability, cyanobacteria developed diverse acclimations, including luxury P uptake (LPU)-taking up P in excess of the current metabolic demand. LPU is underexplored, despite its importance for nutrient-driven rearrangements in aquatic ecosystems. We studied the LPU after the refeeding of P-deprived cyanobacterium Nostoc sp. PCC 7118 with inorganic phosphate (Pi), including the kinetics of Pi uptake, turnover of polyphosphate, cell ultrastructure, and gene expression. The P-deprived cells deployed acclimations to P shortage (reduction of photosynthetic apparatus and mobilization of cell P reserves). The P-starved cells capable of LPU exhibited a biphasic kinetic of the Pi uptake and polyphosphate formation. The first (fast) phase (1-2 h after Pi refeeding) occurred independently of light and temperature. It was accompanied by a transient accumulation of polyphosphate, still upregulated genes encoding high-affinity Pi transporters, and an ATP-dependent polyphosphate kinase. During the second (slow) phase, recovery from P starvation was accompanied by the downregulation of these genes. Our study revealed no specific acclimation to ample P conditions in Nostoc sp. PCC 7118. We conclude that the observed LPU phenomenon does not likely result from the activation of a mechanism specific for ample P conditions. On the contrary, it stems from slow disengagement of the low-P responses after the abrupt transition from low-P to ample P conditions.
Collapse
Affiliation(s)
- Alexei Solovchenko
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
- Ecology Research Laboratory, Pskov State University, 180000 Pskov, Russia
- Institute of Natural Sciences, Derzhavin Tambov State University, 392000 Tambov, Russia
| | - Olga Gorelova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Olga Karpova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Irina Selyakh
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Larisa Semenova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Olga Chivkunova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Olga Baulina
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Elizaveta Vinogradova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Tatiana Pugacheva
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Pavel Scherbakov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Svetlana Vasilieva
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Alexandr Lukyanov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Elena Lobakova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| |
Collapse
|
22
|
Chen R, Wong HL, Kindler GS, MacLeod FI, Benaud N, Ferrari BC, Burns BP. Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats. Front Microbiol 2020; 11:1950. [PMID: 32973707 PMCID: PMC7472256 DOI: 10.3389/fmicb.2020.01950] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/24/2020] [Indexed: 01/27/2023] Open
Abstract
Microbial mats are geobiological multilayered ecosystems that have significant evolutionary value in understanding the evolution of early life on Earth. Shark Bay, Australia has some of the best examples of modern microbial mats thriving under harsh conditions of high temperatures, salinity, desiccation, and ultraviolet (UV) radiation. Microorganisms living in extreme ecosystems are thought to potentially encode for secondary metabolites as a survival strategy. Many secondary metabolites are natural products encoded by a grouping of genes known as biosynthetic gene clusters (BGCs). Natural products have diverse chemical structures and functions which provide competitive advantages for microorganisms and can also have biotechnology applications. In the present study, the diversity of BGC were described in detail for the first time from Shark Bay microbial mats. A total of 1477 BGCs were detected in metagenomic data over a 20 mm mat depth horizon, with the surface layer possessing over 200 BGCs and containing the highest relative abundance of BGCs of all mat layers. Terpene and bacteriocin BGCs were highly represented and their natural products are proposed to have important roles in ecosystem function in these mat systems. Interestingly, potentially novel BGCs were detected from Heimdallarchaeota and Lokiarchaeota, two evolutionarily significant archaeal phyla not previously known to possess BGCs. This study provides new insights into how secondary metabolites from BGCs may enable diverse microbial mat communities to adapt to extreme environments.
Collapse
Affiliation(s)
- Ray Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Gareth S Kindler
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Fraser Iain MacLeod
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
23
|
Elbahloul Y, Steinbüchel A. Characterization of an efficient extracellular cyanophycinase and its encoding cphE Strept. gene from Streptomyces pratensis strain YSM. J Biotechnol 2020; 319:15-24. [PMID: 32473189 DOI: 10.1016/j.jbiotec.2020.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022]
Abstract
Until now, no enzymes were described that hydrolyze cyanophycin granular protein (CGP) from a species of the genus Streptomyces. An isolate able to hydrolyze CGP was identified as Streptomyces pratensis strain YSM. The CGPase from S. pratensis strain YSM had an optimum activity at 42 °C and pH 8.5, and was able to degrade CGP at a rate of 12 ± 0.3 μg/mL min. Additionally, this CGPase hydrolyzes water-soluble CGP significantly faster than water-insoluble CGP. The molecular mass of CGPase subunits from S. pratensis strain YSM as determined by SDS-PAGE was about 43 kDa, and the enzyme was entirely inhibited by serine-protease inhibitors. The CGPase coding gene (cphEStrept.) was amplified from genomic DNA using primers designed form consensus sequence of putative CGPase sequences. The cphEStrept. was 1427 bp encoding a CGPase of 420 amino acids that showed about 44% and 22% similarities to CGPase from Pseudomonas anguilliseptica BI and Synechocystis sp. PCC 6803, respectively. The catalytic triad and serine-protease residues (GXSXG) were identified in the CphEStrept. sequence. Dipeptides and tetrapeptides were identified as hydrolysis products. Biotechnological exploitation of S. pratensis strain YSM for CGPase production might have an advantage due to the reduction of separation costs and its ability to degrade CGP in phosphate buffer saline using actively growing or resting cells.
Collapse
Affiliation(s)
- Yasser Elbahloul
- Biology Department, College of Science, Taibah University, Almadinah Almunawarah, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Alexandria University, 21511, Alexandria, Egypt; Institut Für Molekulare Mikrobiologie Und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Corrensstraße 3, 48149, Münster, Germany.
| | - Alexander Steinbüchel
- Institut Für Molekulare Mikrobiologie Und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Corrensstraße 3, 48149, Münster, Germany; Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Cai K, Xu BY, Jiang YL, Wang Y, Chen Y, Zhou CZ, Li Q. The model cyanobacteria Anabaena sp. PCC 7120 possess an intact but partially degenerated gene cluster encoding gas vesicles. BMC Microbiol 2020; 20:110. [PMID: 32375647 PMCID: PMC7204071 DOI: 10.1186/s12866-020-01805-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/27/2020] [Indexed: 11/23/2022] Open
Abstract
Background Bacterial gas vesicles, composed of two major gas vesicle proteins and filled with gas, are a unique class of intracellular bubble-like nanostructures. They provide buoyancy for cells, and thus play an essential role in the growth and survival of aquatic and soil microbes. Moreover, the gas vesicle could be applied to multimodal and noninvasive biological imaging as a potential nanoscale contrast agent. To date, cylinder-shaped gas vesicles have been found in several strains of cyanobacteria. However, whether the functional gas vesicles could be produced in the model filamentous cyanobacteria Anabaena sp. PCC 7120 remains controversial. Results In this study, we found that an intact gvp gene cluster indeed exists in the model filamentous cyanobacteria Anabaena sp. PCC 7120. Real-time PCR assays showed that the gvpA gene is constitutively transcribed in vivo, and its expression level is upregulated at low light intensity and/or high growth temperature. Functional expression of this intact gvp gene cluster enables the recombinant Escherichia coli to gain the capability of floatation in the liquid medium, thanks to the assembly of irregular gas vesicles. Furthermore, crystal structure of GvpF in combination with enzymatic activity assays of GvpN suggested that these two auxiliary proteins of gas vesicle are structurally and enzymatically conserved, respectively. Conclusions Our findings show that the laboratory strain of model filamentous cyanobacteria Anabaena sp. PCC 7120 possesses an intact but partially degenerated gas vesicle gene cluster, indicating that the natural isolate might be able to produce gas vesicles under some given environmental stimuli for better floatation.
Collapse
Affiliation(s)
- Kun Cai
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Bo-Ying Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Ying Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Qiong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
25
|
Khetkorn W, Lindblad P, Incharoensakdi A. Enhanced H2 production with efficient N2-fixation by fructose mixotrophically grown Anabaena sp. PCC 7120 strain disrupted in uptake hydrogenase. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Stosiek N, Talma M, Klimek-Ochab M. Carbon-Phosphorus Lyase-the State of the Art. Appl Biochem Biotechnol 2020; 190:1525-1552. [PMID: 31792787 DOI: 10.1007/s12010-019-03161-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/23/2019] [Indexed: 11/27/2022]
Abstract
Organophosphonates are molecules that contain a very chemically stable carbon-phosphorus (C-P) bond. Microorganisms can utilize phosphonates as potential source of crucial elements for their growth, as developed several pathways to metabolize these compounds. One among these pathways is catalyzed by C-P lyase complex, which has a broad substrate specifity; therefore, it has a wide application in degradation of herbicides deposited in the environment, such as glyphosate. This multi-enzyme system accurately recognized in Escherichia coli and genetic studies have demonstrated that it is encoded by phn operon containing 14 genes (phnC-phnP). The phn operon is a member of the Pho regulon induced by phosphate starvation. Ability to degradation of phosphonates is also found in other microorganisms, especially soil and marine bacteria, that have homologous genes to those in E. coli. Despite the existence of differences in structure and composition of phn gene cluster, each of these strains contains phnGHIJKLM genes necessary in the C-P bond cleavage mechanism. The review provides a detailed description and summary of achievements on the C-P lyase enzymatic pathway over the last 50 years.
Collapse
Affiliation(s)
- Natalia Stosiek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Michał Talma
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Magdalena Klimek-Ochab
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
27
|
Walter J, Leganés F, Aro EM, Gollan PJ. The small Ca 2+-binding protein CSE links Ca 2+ signalling with nitrogen metabolism and filament integrity in Anabaena sp. PCC 7120. BMC Microbiol 2020; 20:57. [PMID: 32160863 PMCID: PMC7065334 DOI: 10.1186/s12866-020-01735-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/24/2020] [Indexed: 02/02/2023] Open
Abstract
Background Filamentous cyanobacteria represent model organisms for investigating multicellularity. For many species, nitrogen-fixing heterocysts are formed from photosynthetic vegetative cells under nitrogen limitation. Intracellular Ca2+ has been implicated in the highly regulated process of heterocyst differentiation but its role remains unclear. Ca2+ is known to operate more broadly in metabolic signalling in cyanobacteria, although the signalling mechanisms are virtually unknown. A Ca2+-binding protein called the Ca2+ Sensor EF-hand (CSE) is found almost exclusively in filamentous cyanobacteria. Expression of asr1131 encoding the CSE protein in Anabaena sp. PCC 7120 was strongly induced by low CO2 conditions, and rapidly downregulated during nitrogen step-down. A previous study suggests a role for CSE and Ca2+ in regulation of photosynthetic activity in response to changes in carbon and nitrogen availability. Results In the current study, a mutant Anabaena sp. PCC 7120 strain lacking asr1131 (Δcse) was highly prone to filament fragmentation, leading to a striking phenotype of very short filaments and poor growth under nitrogen-depleted conditions. Transcriptomics analysis under nitrogen-replete conditions revealed that genes involved in heterocyst differentiation and function were downregulated in Δcse, while heterocyst inhibitors were upregulated, compared to the wild-type. Conclusions These results indicate that CSE is required for filament integrity and for proper differentiation and function of heterocysts upon changes in the cellular carbon/nitrogen balance. A role for CSE in transmitting Ca2+ signals during the first response to changes in metabolic homeostasis is discussed.
Collapse
Affiliation(s)
- Julia Walter
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Tykistökatu 6A, 6. krs, 20520, Turku, Finland.,Present address: Department of Plant Sciences, Environmental Plant Physiology, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Francisco Leganés
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Darwin 2, 28049, Madrid, Spain
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Tykistökatu 6A, 6. krs, 20520, Turku, Finland
| | - Peter J Gollan
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Tykistökatu 6A, 6. krs, 20520, Turku, Finland.
| |
Collapse
|
28
|
Klonowska A, Moulin L, Ardley JK, Braun F, Gollagher MM, Zandberg JD, Marinova DV, Huntemann M, Reddy TBK, Varghese NJ, Woyke T, Ivanova N, Seshadri R, Kyrpides N, Reeve WG. Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil. BMC Genomics 2020; 21:214. [PMID: 32143559 PMCID: PMC7060636 DOI: 10.1186/s12864-020-6623-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cupriavidus strain STM 6070 was isolated from nickel-rich soil collected near Koniambo massif, New Caledonia, using the invasive legume trap host Mimosa pudica. STM 6070 is a heavy metal-tolerant strain that is highly effective at fixing nitrogen with M. pudica. Here we have provided an updated taxonomy for STM 6070 and described salient features of the annotated genome, focusing on heavy metal resistance (HMR) loci and heavy metal efflux (HME) systems. RESULTS The 6,771,773 bp high-quality-draft genome consists of 107 scaffolds containing 6118 protein-coding genes. ANI values show that STM 6070 is a new species of Cupriavidus. The STM 6070 symbiotic region was syntenic with that of the M. pudica-nodulating Cupriavidus taiwanensis LMG 19424T. In contrast to the nickel and zinc sensitivity of C. taiwanensis strains, STM 6070 grew at high Ni2+ and Zn2+ concentrations. The STM 6070 genome contains 55 genes, located in 12 clusters, that encode HMR structural proteins belonging to the RND, MFS, CHR, ARC3, CDF and P-ATPase protein superfamilies. These HMR molecular determinants are putatively involved in arsenic (ars), chromium (chr), cobalt-zinc-cadmium (czc), copper (cop, cup), nickel (nie and nre), and silver and/or copper (sil) resistance. Seven of these HMR clusters were common to symbiotic and non-symbiotic Cupriavidus species, while four clusters were specific to STM 6070, with three of these being associated with insertion sequences. Within the specific STM 6070 HMR clusters, three novel HME-RND systems (nieIC cep nieBA, czcC2B2A2, and hmxB zneAC zneR hmxS) were identified, which constitute new candidate genes for nickel and zinc resistance. CONCLUSIONS STM 6070 belongs to a new Cupriavidus species, for which we have proposed the name Cupriavidus neocaledonicus sp. nov.. STM6070 harbours a pSym with a high degree of gene conservation to the pSyms of M. pudica-nodulating C. taiwanensis strains, probably as a result of recent horizontal transfer. The presence of specific HMR clusters, associated with transposase genes, suggests that the selection pressure of the New Caledonian ultramafic soils has driven the specific adaptation of STM 6070 to heavy-metal-rich soils via horizontal gene transfer.
Collapse
Affiliation(s)
- Agnieszka Klonowska
- IRD, Cirad, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394 Montpellier, France
| | - Lionel Moulin
- IRD, Cirad, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394 Montpellier, France
| | - Julie Kaye Ardley
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| | - Florence Braun
- IRD, UMR LSTM-Laboratoire des Symbioses Tropicales et Méditerranéennes, 34398 Montpellier cedex 5, France
| | | | - Jaco Daniel Zandberg
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| | - Dora Vasileva Marinova
- Curtin University Sustainability Policy Institute, Curtin University, Bentley, Australia
| | | | | | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, USA
| | | | | | | | - Wayne Gerald Reeve
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| |
Collapse
|
29
|
Ng I, Keskin BB, Tan S. A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria. Biotechnol J 2020; 15:e1900228. [DOI: 10.1002/biot.201900228] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Batuhan Birol Keskin
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|
30
|
Cheng YI, Chou L, Chiu YF, Hsueh HT, Kuo CH, Chu HA. Comparative Genomic Analysis of a Novel Strain of Taiwan Hot-Spring Cyanobacterium Thermosynechococcus sp. CL-1. Front Microbiol 2020; 11:82. [PMID: 32082292 PMCID: PMC7005997 DOI: 10.3389/fmicb.2020.00082] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/15/2020] [Indexed: 11/22/2022] Open
Abstract
Thermosynechococcus is a genus of thermophilic unicellular cyanobacteria that are dominant in microbial mats at about 50–65°C in alkaline hot springs of eastern Asia. We used PacBio SMRT Sequencing to sequence the complete genome of a novel strain of thermophilic cyanobacterium, Thermosynechococcus sp. CL-1, isolated from the Chin-Lun hot spring (pH 9.3, 62°C) in Taiwan. Genome-scale phylogenetic analysis and average nucleotide identity (ANI) results suggested that CL-1 is a new species in the genus Thermosynechococcus. Comparative genome analysis revealed divergent genome structures of Thermosynechococcus strains. In addition, the distinct genetic differences between CL-1 and the other Thermosynechococcus strains are related to photosynthesis, transporters, signal transduction, the chaperone/usher system, nitric oxide protection, antibiotic resistance, prokaryotic immunity systems, and other physiological processes. This study suggests that Thermosynechococcus strains have actively acquired many putative horizontally transferred genes from other bacteria that enabled them to adapt to different ecological niches and stressful conditions in hot springs.
Collapse
Affiliation(s)
- Yen-I Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Lin Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Fang Chiu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Ta Hsueh
- Sustainable Environment Research Laboratories, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hsiu-An Chu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
31
|
Khumalo MJ, Nzuza N, Padayachee T, Chen W, Yu JH, Nelson DR, Syed K. Comprehensive Analyses of Cytochrome P450 Monooxygenases and Secondary Metabolite Biosynthetic Gene Clusters in Cyanobacteria. Int J Mol Sci 2020; 21:ijms21020656. [PMID: 31963856 PMCID: PMC7014017 DOI: 10.3390/ijms21020656] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
The prokaryotic phylum Cyanobacteria are some of the oldest known photosynthetic organisms responsible for the oxygenation of the earth. Cyanobacterial species have been recognised as a prosperous source of bioactive secondary metabolites with antibacterial, antiviral, antifungal and/or anticancer activities. Cytochrome P450 monooxygenases (CYPs/P450s) contribute to the production and diversity of various secondary metabolites. To better understand the metabolic potential of cyanobacterial species, we have carried out comprehensive analyses of P450s, predicted secondary metabolite biosynthetic gene clusters (BGCs), and P450s located in secondary metabolite BGCs. Analysis of the genomes of 114 cyanobacterial species identified 341 P450s in 88 species, belonging to 36 families and 79 subfamilies. In total, 770 secondary metabolite BGCs were found in 103 cyanobacterial species. Only 8% of P450s were found to be part of BGCs. Comparative analyses with other bacteria Bacillus, Streptomyces and mycobacterial species have revealed a lower number of P450s and BGCs and a percentage of P450s forming part of BGCs in cyanobacterial species. A mathematical formula presented in this study revealed that cyanobacterial species have the highest gene-cluster diversity percentage compared to Bacillus and mycobacterial species, indicating that these diverse gene clusters are destined to produce different types of secondary metabolites. The study provides fundamental knowledge of P450s and those associated with secondary metabolism in cyanobacterial species, which may illuminate their value for the pharmaceutical and cosmetics industries.
Collapse
Affiliation(s)
- Makhosazana Jabulile Khumalo
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
| | - Nomfundo Nzuza
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, 3155 MSB, 1550 Linden Drive, Madison, WI 53706, USA;
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: (D.R.N.); (K.S.)
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
- Correspondence: (D.R.N.); (K.S.)
| |
Collapse
|
32
|
Videau P, Wells KN, Singh AJ, Eiting J, Proteau PJ, Philmus B. Expanding the Natural Products Heterologous Expression Repertoire in the Model Cyanobacterium Anabaena sp. Strain PCC 7120: Production of Pendolmycin and Teleocidin B-4. ACS Synth Biol 2020; 9:63-75. [PMID: 31846576 DOI: 10.1021/acssynbio.9b00334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cyanobacteria are prolific producers of natural products, and genome mining has shown that many orphan biosynthetic gene clusters can be found in sequenced cyanobacterial genomes. New tools and methodologies are required to investigate these biosynthetic gene clusters, and here we present the use of Anabaena sp. strain PCC 7120 as a host for combinatorial biosynthesis of natural products using the indolactam natural products (lyngbyatoxin A, pendolmycin, and teleocidin B-4) as a test case. We were able to successfully produce all three compounds using codon optimized genes from Actinobacteria. We also introduce a new plasmid backbone based on the native Anabaena 7120 plasmid pCC7120ζ and show that production of teleocidin B-4 can be accomplished using a two-plasmid system, which can be introduced by coconjugation.
Collapse
Affiliation(s)
- Patrick Videau
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kaitlyn N. Wells
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
- Undergraduate Honors College, Oregon State University, Corvallis, Oregon 97331, United States
| | - Arun J. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jessie Eiting
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Philip J. Proteau
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
33
|
Arévalo S, Flores E. Pentapeptide-repeat, cytoplasmic-membrane protein HglK influences the septal junctions in the heterocystous cyanobacterium Anabaena. Mol Microbiol 2020; 113:794-806. [PMID: 31880364 DOI: 10.1111/mmi.14444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/28/2019] [Indexed: 12/01/2022]
Abstract
N2 -fixing heterocystous cyanobacteria grow as chains of cells that are connected by proteinaceous septal junctions, which traverse the septal peptidoglycan through nanopores and mediate intercellular molecular transfer. In the model organism Anabaena sp. strain PCC 7120, proteins SepJ, FraC and FraD, which are localized at the cell poles in the intercellular septa, are needed to produce septal junctions. The pentapeptide-repeat, membrane-spanning protein HglK has been described to be involved in the deposition of the heterocyst-specific glycolipid layer, but the hglK mutant also showed intercellular septa broader than in the wild type. Here we found that hglK mutant of Anabaena is impaired in the expression of heterocyst-related genes coxB2A2C2 (cytochrome c oxidase) and nifHDK (nitrogenase), indicating a defect in heterocyst differentiation. HglK was predominantly localized at the intercellular septa and was required to make long filaments, produce a normal number of nanopores and express full intercellular molecular transfer activity. However, the effects of hglK inactivation were not additive to those of the inactivation of sepJ and/or fraC-fraD. We suggest that HglK contributes to the architecture of the intercellular septa with an impact on the function of septal junctions.
Collapse
Affiliation(s)
- Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
34
|
Dojun N, Muranishi K, Ishimori K, Uchida T. A single mutation converts Alr5027 from cyanobacteria Nostoc sp. PCC 7120 to a heme-binding protein with heme-degrading ability. J Inorg Biochem 2019; 203:110916. [PMID: 31739124 DOI: 10.1016/j.jinorgbio.2019.110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 11/19/2022]
Abstract
HutZ from Vibrio cholerae (VcHutZ) is a dimeric protein that catalyzes oxygen-dependent degradation of heme. The reaction mechanism is the same as that of canonical heme oxygenase (HO), but the structure of HutZ is quite different from that of HO. Thus, we postulate that HutZ has evolved via a different pathway from that of HO. The Alr5027 protein from cyanobacteria possessing proteins potentially related to ancestral proteins utilizing O2 in enzymatic reactions is homologous to HutZ family proteins (67% similarity), but the heme axial ligand of HutZ is not conserved in Alr5027. To investigate whether Alr5027 can bind and degrade heme, we expressed Alr5027 in Escherichia coli and purified it. Although Alr5027 did not bind heme, replacement of Lys164, corresponding to the heme axial ligand of HutZ, with histidine conferred heme-binding capability. The K164H mutant produced verdoheme in the reaction with H2O2, indicating acquisition of heme-degradation ability. Among the mutants, the K164H mutant produced verdoheme most efficiently. Although the K164H mutant did not degrade heme through ascorbic acid, biliverdin, the final product of VcHutZ, was formed by treatment of verdoheme with ascorbic acid. An analysis of Trp103 fluorescence indicated elongation of the distance between protomers in this mutant compared with VcHutZ-the probable cause of the inefficiency of ascorbic acid-supported heme-degradation activity. Collectively, our findings indicate that a single lysine-to-histidine mutation converted Alr5027 to a heme-binding protein that can form verdoheme through H2O2, suggesting that HutZ family proteins have acquired the heme-degradation function through molecular evolution from an ancestor protein of Alr5027.
Collapse
Affiliation(s)
- Nobuhiko Dojun
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kazuyoshi Muranishi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
35
|
Wells KN, Videau P, Nelson D, Eiting JE, Philmus B. The influence of sigma factors and ribosomal recognition elements on heterologous expression of cyanobacterial gene clusters in Escherichia coli. FEMS Microbiol Lett 2019; 365:5047307. [PMID: 29982530 DOI: 10.1093/femsle/fny164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
Cyanobacterial natural products offer new possibilities for drugs and lead compounds but many factors can inhibit the production of sufficient yields for pharmaceutical processes. While Escherichia coli and Streptomyces sp. have been used as heterologous expression hosts to produce cyanobacterial natural products, they have not met with resounding success largely due to their inability to recognize cyanobacterial promoter regions. Recent work has shown that the filamentous freshwater cyanobacterium Anabaena sp. strain PCC 7120 recognizes various cyanobacterial promoter regions and can produce lyngbyatoxin A from the native promoter. Introduction of Anabaena sigma factors into E. coli might allow the native transcriptional machinery to recognize cyanobacterial promoters. Here, all 12 Anabaena sigma factors were expressed in E. coli and subsets were found to initiate transcription from several cyanobacterial promoters based on transcriptional fusions to the chloramphenicol acetyltransferase (CAT) reporter. Expression of individual Anabaena sigma factors in E. coli did not result in lyngbyatoxin A production from its native cyanobacterial gene cluster, possibly hindered by deficiencies in recognition of cyanobacterial ribosomal binding sites by native E. coli translational machinery. This represents an important step toward engineering E. coli into a general heterologous expression host for cyanobacterial biosynthetic gene cluster expression.
Collapse
Affiliation(s)
- Kaitlyn N Wells
- Undergraduate Honors College, 450 Learning Innovation Center, Oregon State University, Corvallis, OR 97331, USA
| | - Patrick Videau
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| | - Dylan Nelson
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| | - Jessie E Eiting
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
36
|
Rai S, Rai R, Singh PK, Rai LC. Alr2321, a multiple stress inducible glyoxalase I of Anabaena sp. PCC7120 detoxifies methylglyoxal and reactive species oxygen. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105238. [PMID: 31301544 DOI: 10.1016/j.aquatox.2019.105238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Abiotic stresses enhance the cellular level of reactive oxygen species (ROS) which consequently leads to toxic methylglyoxal (MG) production. Glyoxalases (GlyI & GlyII) catalyze the conversion of toxic MG into non-toxic lactic acid but their properties and functions have been overlooked in cyanobacteria. This is the first attempt to conduct a genome-wide analysis of GlyI protein (PF00903) from Anabaena sp. PCC7120. Out of total nine GlyI domain possessing proteins, only three (Alr2321, Alr4469, All1022) harbour conserve His/Glu/His/Glu metal binding site at their homologous position and are deficient in conserved region specific for Zn2+ dependent members. Their biochemical, structural and functional characterization revealed that only Alr2321 is a homodimeric Ni2+ dependent active GlyI with catalytic efficiency 11.7 × 106 M-1 s-1. It has also been found that Alr2321 is activated by various divalent metal ions and has maximum GlyI activity with Ni2+ followed by Co2+ > Mn2+ > Cu2+ and no activity with Zn2+. Moreover, the expression of alr2321 was found to be maximally up-regulated under heat (19 fold) followed by cadmium, desiccation, arsenic, salinity and UV-B stresses. BL21/pGEX-5X2-alr2321 showed improved growth under various abiotic stresses as compared to BL21/pGEX-5X2 by increased scavenging of intracellular MG and ROS levels. Taken together, these results suggest noteworthy links between intracellular MG and ROS, its detoxification by Alr2321, a member of GlyI family of Anabaena sp. PCC7120, in relation to abiotic stress.
Collapse
Affiliation(s)
- Shweta Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ruchi Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prashant Kumar Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - L C Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
37
|
Shvarev D, Maldener I. ATP-binding cassette transporters of the multicellular cyanobacterium Anabaena sp. PCC 7120: a wide variety for a complex lifestyle. FEMS Microbiol Lett 2019; 365:4817535. [PMID: 29360977 DOI: 10.1093/femsle/fny012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/18/2018] [Indexed: 01/29/2023] Open
Abstract
Two hundred genes or 3% of the known or putative protein-coding genes of the filamentous freshwater cyanobacterium Anabaena sp. PCC 7120 encode domains of ATP-binding cassette (ABC) transporters. Detailed characterization of some of these transporters (14-15 importers and 5 exporters) has revealed their crucial roles in the complex lifestyle of this multicellular photoautotroph, which is able to differentiate specialized cells for nitrogen fixation. This review summarizes the characteristics of the ABC transporters of Anabaena sp. PCC 7120 known to date.
Collapse
Affiliation(s)
- Dmitry Shvarev
- Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Iris Maldener
- Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
38
|
Type I beta turns make a new twist in pentapeptide repeat proteins: Crystal structure of Alr5209 from Nostoc sp. PCC 7120 determined at 1.7 angström resolution. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 3:100010. [PMID: 32647815 PMCID: PMC7337050 DOI: 10.1016/j.yjsbx.2019.100010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/05/2019] [Accepted: 07/31/2019] [Indexed: 11/22/2022]
Abstract
Pentapeptide repeat proteins (PRPs) are found abundantly in cyanobacteria, numbering in the dozens in some genomes, e.g. in Nostoc sp. PCC 7120. PRPs, comprised of a repeating consensus sequence of five amino acids, adopt a distinctive right-handed quadrilateral β-helical structure, also referred to as a repeat five residue (Rfr) fold, made up of stacks of coils formed by four consecutive pentapeptide repeats. The right-handed quadrilateral β-helical PRP structure is constructed by repeating β turns at each of four corners in a given coil, each causing a 90° change in direction of the polypeptide chain. Until now, all PRP structures have consisted either of type II and IV β turns or exclusively of type II β turns. Here, we report the first structure of a PRP comprised of type I and II β turns, Alr5209 from Nostoc sp. PCC 7120. The alr5209 gene encodes 129 amino acids containing 16 tandem pentapeptide repeats. The Alr5209 structure was analyzed in comparison to all other PRPs to determine how type I β turns can be accommodated in Rfr folds and the consequences of type I β turns on the right-handed quadrilateral β-helical structure. Given that Alr5209 represents the first PRP structure containing type I β turns, the PRP consensus sequence was reevaluated and updated. Despite a growing number of PRP structural investigations, their function remains largely unknown. Genome analysis indicated that alr5209 resides in a five-gene operon (alr5208-alr5212) with Alr5211 annotated to be a NADH dehydrogenase indicating Alr5209 may be involved in oxidative phosphorylation.
Collapse
|
39
|
Teikari JE, Popin RV, Hou S, Wahlsten M, Hess WR, Sivonen K. Insight into the genome and brackish water adaptation strategies of toxic and bloom-forming Baltic Sea Dolichospermum sp. UHCC 0315. Sci Rep 2019; 9:4888. [PMID: 30894564 PMCID: PMC6426976 DOI: 10.1038/s41598-019-40883-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/22/2019] [Indexed: 11/09/2022] Open
Abstract
The Baltic Sea is a shallow basin of brackish water in which the spatial salinity gradient is one of the most important factors contributing to species distribution. The Baltic Sea is infamous for its annual cyanobacterial blooms comprised of Nodularia spumigena, Aphanizomenon spp., and Dolichospermum spp. that cause harm, especially for recreational users. To broaden our knowledge of the cyanobacterial adaptation strategies for brackish water environments, we sequenced the entire genome of Dolichospermum sp. UHCC 0315, a species occurring not only in freshwater environments but also in brackish water. Comparative genomics analyses revealed a close association with Dolichospermum sp. UHCC 0090 isolated from a lake in Finland. The genome closure of Dolichospermum sp. UHCC 0315 unraveled a mixture of two subtypes in the original culture, and subtypes exhibited distinct buoyancy phenotypes. Salinity less than 3 g L-1 NaCl enabled proper growth of Dolichospermum sp. UHCC 0315, whereas growth was arrested at moderate salinity (6 g L-1 NaCl). The concentrations of toxins, microcystins, increased at moderate salinity, whereas RNA sequencing data implied that Dolichospermum remodeled its primary metabolism in unfavorable high salinity. Based on our results, the predicted salinity decrease in the Baltic Sea may favor toxic blooms of Dolichospermum spp.
Collapse
Affiliation(s)
- Jonna E Teikari
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Rafael V Popin
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Shengwei Hou
- Genetics & Experimental Bioinformatics, Institute of Biology III, University Freiburg, Schänzlestraße 1, D-79104, Freiburg, Germany
| | - Matti Wahlsten
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Institute of Biology III, University Freiburg, Schänzlestraße 1, D-79104, Freiburg, Germany
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland.
| |
Collapse
|
40
|
Anaerobic butanol production driven by oxygen-evolving photosynthesis using the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 2019; 103:2441-2447. [DOI: 10.1007/s00253-019-09635-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/25/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
|
41
|
Halsør MJH, Rothweiler U, Altermark B, Raeder ILU. The crystal structure of the N-acetylglucosamine 2-epimerase from Nostoc sp. KVJ10 reveals the true dimer. Acta Crystallogr D Struct Biol 2019; 75:90-100. [PMID: 30644848 PMCID: PMC6333288 DOI: 10.1107/s2059798318017047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/30/2018] [Indexed: 11/12/2022] Open
Abstract
N-Acetylglucosamine 2-epimerases (AGEs) catalyze the interconversion of N-acetylglucosamine and N-acetylmannosamine. They can be used to perform the first step in the synthesis of sialic acid from N-acetylglucosamine, which makes the need for efficient AGEs a priority. This study presents the structure of the AGE from Nostoc sp. KVJ10 collected in northern Norway, referred to as nAGE10. It is the third AGE structure to be published to date, and the first one in space group P42212. The nAGE10 monomer folds as an (α/α)6 barrel in a similar manner to that of the previously published AGEs, but the crystal did not contain the dimers that have previously been reported. The previously proposed `back-to-back' assembly involved the face of the AGE monomer where the barrel helices are connected by small loops. Instead, a `front-to-front' dimer was found in nAGE10 involving the long loops that connect the barrel helices at this end. This assembly is also present in the other AGE structures, but was attributed to crystal packing, even though the `front' interface areas are larger and are more conserved than the `back' interface areas. In addition, the front-to-front association allows a better explanation of the previously reported observations considering surface cysteines. Together, these results indicate that the `front-to-front' dimer is the most probable biological assembly for AGEs.
Collapse
Affiliation(s)
- Marie-Josée Haglund Halsør
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT – The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ulli Rothweiler
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT – The Arctic University of Norway, 9037 Tromsø, Norway
| | - Bjørn Altermark
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT – The Arctic University of Norway, 9037 Tromsø, Norway
| | - Inger Lin Uttakleiv Raeder
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT – The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
42
|
Ramos-León F, Arévalo S, Mariscal V, Flores E. Specific mutations in the permease domain of septal protein SepJ differentially affect functions related to multicellularity in the filamentous cyanobacterium Anabaena. MICROBIAL CELL 2018; 5:555-565. [PMID: 30533420 PMCID: PMC6282017 DOI: 10.15698/mic2018.12.661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Filamentous, heterocyst-forming cyanobacteria are multicellular organisms in which growth requires the activity of two interdependent cell types that exchange nutrients and regulators. Vegetative cells provide heterocysts with reduced carbon, and heterocysts provide vegetative cells with fixed nitrogen. Additionally, heterocyst differentiation from vegetative cells is regulated by inhibitors of differentiation produced by prospective heterocysts and heterocysts. Proteinaceous structures known as septal junctions join the cells in the filament. The SepJ protein is involved in formation of septal junctions in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. SepJ bears extra-membrane and membrane (permease) domains and is located at the cell poles in the intercellular septa of the filament. Here we created Anabaena mutants that produce SepJ proteins altered in the permease domain. Some of these mutant SepJ proteins did not provide functions needed for Anabaena to form long filaments and (in some cases) differentiate heterocysts, identifying amino acids and amino acid stretches that are important for the structure or function of the protein. Some other mutant SepJ proteins fulfilled filamentation and heterocyst differentiation functions but failed to provide normal communication function assessed via the intercellular transfer of the fluorescent marker calcein. These mutant SepJ proteins bore mutations in amino acids located at the cytoplasmic face of the permease, which could affect access of the fluorescent marker to the septal junctions. Overall, the data are consistent with the idea that SepJ carries out multiple roles in the multicellular function of the Anabaena filament.
Collapse
Affiliation(s)
- Félix Ramos-León
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain
| |
Collapse
|
43
|
Herrero A, Flores E. Genetic responses to carbon and nitrogen availability in Anabaena. Environ Microbiol 2018; 21:1-17. [PMID: 30066380 DOI: 10.1111/1462-2920.14370] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 11/27/2022]
Abstract
Heterocyst-forming cyanobacteria are filamentous organisms that perform oxygenic photosynthesis and CO2 fixation in vegetative cells and nitrogen fixation in heterocysts, which are formed under deprivation of combined nitrogen. These organisms can acclimate to use different sources of nitrogen and respond to different levels of CO2 . Following work mainly done with the best studied heterocyst-forming cyanobacterium, Anabaena, here we summarize the mechanisms of assimilation of ammonium, nitrate, urea and N2 , the latter involving heterocyst differentiation, and describe aspects of CO2 assimilation that involves a carbon concentration mechanism. These processes are subjected to regulation establishing a hierarchy in the assimilation of nitrogen sources -with preference for the most reduced nitrogen forms- and a dependence on sufficient carbon. This regulation largely takes place at the level of gene expression and is exerted by a variety of transcription factors, including global and pathway-specific transcriptional regulators. NtcA is a CRP-family protein that adjusts global gene expression in response to the C-to-N balance in the cells, and PacR is a LysR-family transcriptional regulator (LTTR) that extensively acclimates the cells to oxygenic phototrophy. A cyanobacterial-specific transcription factor, HetR, is involved in heterocyst differentiation, and other LTTR factors are specifically involved in nitrate and CO2 assimilation.
Collapse
Affiliation(s)
- Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| |
Collapse
|
44
|
Singh PK, Wang W, Shrivastava AK. Cadmium-mediated morphological, biochemical and physiological tuning in three different Anabaena species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 202:36-45. [PMID: 30007153 DOI: 10.1016/j.aquatox.2018.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria are a natural inhabitant of paddy field and enhance the crop productivity in an eco-friendly manner. Cadmium (Cd) is a perilous trace metal element which not only limits the crop productivity but also inhibits the growth and nitrogen-fixing ability of these diazotrophs as well as the biodiversity of rice field semiaquatic agroecosystems. However, the impact of Cd toxicity in diazotrophic cyanobacteria is yet not adequately addressed. Therefore, in the present study, three diazotrophic cyanobacterial species, i.e., Anabaena sp. PCC7120, Anabaena L31, and Anabaena doliolum were subjected to their LC50 doses of Cd, and their physiological (PSII, Psi, respiration, energy status and nitrogen fixation rate), biochemical variables (such as antioxidant contents and antioxidant enzymes) together with morphological parameters were evaluated. The results of physiological variables suggested that the Cd exposure adversely affects the photosynthesis, respiration, and biological nitrogen fixation ability across three Anabaena species. The results of biochemical variables in terms of accumulation of antioxidants (glutathione, thiol, phytochelatin and proline) content as well as antioxidant enzymes such as glutathione S-transferase (GST), glutathione reductase (GR), catalase-peroxidase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD) revealed that their inter-species stress tolerance behavior may be attributed to the differential accumulation of antioxidants as well as differential antioxidant enzyme activity in three species. Furthermore, the enhanced antioxidant enzymes activity such as GST, GR, CAT, and SOD in Anabaena L31 advocated significantly higher as compared to Anabaena PCC7120 and Anabaena doliolum. In conclusion, Cd-toxicity assessment regarding physiological, biochemical and morphological aspects across three species identified Anabaena L31 as Cd-resistant species than the other two tested species, i.e., Anabaena PCC7120 and Anabaena doliolum.
Collapse
Affiliation(s)
- Prashant Kumar Singh
- Molecular Biology Section, Centre for Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India; Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, 7505101, Israel; State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, Henan 475004, PR China
| | - Wenjing Wang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, Henan 475004, PR China; Department of Biology and Food Sciences, Shangqiu Normal University, Shangqiu, Henan, 476000 PR China
| | - Alok Kumar Shrivastava
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India.
| |
Collapse
|
45
|
Shen C, Du Y, Qiao F, Kong T, Yuan L, Zhang D, Wu X, Li D, Wu YD. Biophysical and structural characterization of the thermostable WD40 domain of a prokaryotic protein, Thermomonospora curvata PkwA. Sci Rep 2018; 8:12965. [PMID: 30154510 PMCID: PMC6113231 DOI: 10.1038/s41598-018-31140-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/10/2018] [Indexed: 01/25/2023] Open
Abstract
WD40 proteins belong to a big protein family with members identified in every eukaryotic proteome. However, WD40 proteins were only reported in a few prokaryotic proteomes. Using WDSP (http://wu.scbb.pkusz.edu.cn/wdsp/), a prediction tool, we identified thousands of prokaryotic WD40 proteins, among which few proteins have been biochemically characterized. As shown in our previous bioinformatics study, a large proportion of prokaryotic WD40 proteins have higher intramolecular sequence identity among repeats and more hydrogen networks, which may indicate better stability than eukaryotic WD40s. Here we report our biophysical and structural study on the WD40 domain of PkwA from Thermomonospora curvata (referred as tPkwA-C). We demonstrated that the stability of thermophilic tPkwA-C correlated to ionic strength and tPkwA-C exhibited fully reversible unfolding under different denaturing conditions. Therefore, the folding kinetics was also studied through stopped-flow circular dichroism spectra. The crystal structure of tPkwA-C was further resolved and shed light on the key factors that stabilize its beta-propeller structure. Like other WD40 proteins, DHSW tetrad has a significant impact on the stability of tPkwA-C. Considering its unique features, we proposed that tPkwA-C should be a great structural template for protein engineering to study key residues involved in protein-protein interaction of a WD40 protein.
Collapse
Affiliation(s)
- Chen Shen
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ye Du
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,Medical Research Center, The People's Hospital of Longhua, Shenzhen, 518109, China
| | - Fangfang Qiao
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tian Kong
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Lirong Yuan
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Delin Zhang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xianhui Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Dongyang Li
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,College of Chemistry, Peking University, Beijing, 100871, China.
| |
Collapse
|
46
|
Three Substrains of the Cyanobacterium Anabaena sp. Strain PCC 7120 Display Divergence in Genomic Sequences and hetC Function. J Bacteriol 2018; 200:JB.00076-18. [PMID: 29686139 DOI: 10.1128/jb.00076-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/19/2018] [Indexed: 11/20/2022] Open
Abstract
Anabaena sp. strain PCC 7120 is a model strain for molecular studies of cell differentiation and patterning in heterocyst-forming cyanobacteria. Subtle differences in heterocyst development have been noticed in different laboratories working on the same organism. In this study, 360 mutations, including single nucleotide polymorphisms (SNPs), small insertion/deletions (indels; 1 to 3 bp), fragment deletions, and transpositions, were identified in the genomes of three substrains. Heterogeneous/heterozygous bases were also identified due to the polyploidy nature of the genome and the multicellular morphology but could be completely segregated when plated after filament fragmentation by sonication. hetC is a gene upregulated in developing cells during heterocyst formation in Anabaena sp. strain PCC 7120 and found in approximately half of other heterocyst-forming cyanobacteria. Inactivation of hetC in 3 substrains of Anabaena sp. PCC 7120 led to different phenotypes: the formation of heterocysts, differentiating cells that keep dividing, or the presence of both heterocysts and dividing differentiating cells. The expression of P hetZ -gfp in these hetC mutants also showed different patterns of green fluorescent protein (GFP) fluorescence. Thus, the function of hetC is influenced by the genomic background and epistasis and constitutes an example of evolution under way.IMPORTANCE Our knowledge about the molecular genetics of heterocyst formation, an important cell differentiation process for global N2 fixation, is mostly based on studies with Anabaena sp. strain PCC 7120. Here, we show that rapid microevolution is under way in this strain, leading to phenotypic variations for certain genes related to heterocyst development, such as hetC This study provides an example for ongoing microevolution, marked by multiple heterogeneous/heterozygous single nucleotide polymorphisms (SNPs), in a multicellular multicopy-genome microorganism.
Collapse
|
47
|
Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee ST, Rappé MS, McLellan SL, Lücker S, Eren AM. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol 2018; 3:804-813. [PMID: 29891866 PMCID: PMC6792437 DOI: 10.1038/s41564-018-0176-9] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 05/15/2018] [Indexed: 01/28/2023]
Abstract
Nitrogen fixation in the surface ocean impacts global marine nitrogen bioavailability and thus microbial primary productivity. Until now, cyanobacterial populations have been viewed as the main suppliers of bioavailable nitrogen in this habitat. Although PCR amplicon surveys targeting the nitrogenase reductase gene have revealed the existence of diverse non-cyanobacterial diazotrophic populations, subsequent quantitative PCR surveys suggest that they generally occur in low abundance. Here, we use state-of-the-art metagenomic assembly and binning strategies to recover nearly one thousand non-redundant microbial population genomes from the TARA Oceans metagenomes. Among these, we provide the first genomic evidence for non-cyanobacterial diazotrophs inhabiting surface waters of the open ocean, which correspond to lineages within the Proteobacteria and, most strikingly, the Planctomycetes. Members of the latter phylum are prevalent in aquatic systems, but have never been linked to nitrogen fixation previously. Moreover, using genome-wide quantitative read recruitment, we demonstrate that the discovered diazotrophs were not only widespread but also remarkably abundant (up to 0.3% of metagenomic reads for a single population) in both the Pacific Ocean and the Atlantic Ocean northwest. Our results extend decades of PCR-based gene surveys, and substantiate the importance of heterotrophic bacteria in the fixation of nitrogen in the surface ocean.
Collapse
Affiliation(s)
- Tom O Delmont
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| | | | - Alon Shaiber
- Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Özcan C Esen
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sonny Tm Lee
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Michael S Rappé
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Sebastian Lücker
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, USA. .,Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA. .,Committee on Microbiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
48
|
The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:5901-5910. [DOI: 10.1007/s00253-018-9085-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
|
49
|
Wang S, Xiao J, Wan L, Zhou Z, Wang Z, Song C, Zhou Y, Cao X. Mutual Dependence of Nitrogen and Phosphorus as Key Nutrient Elements: One Facilitates Dolichospermum flos-aquae to Overcome the Limitations of the Other. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5653-5661. [PMID: 29688011 DOI: 10.1021/acs.est.7b04992] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dolichospermum flos-aquae (formerly Anabaena flos-aquae) is a diazotrophic cyanobacterium causing harmful blooms worldwide, which is partly attributed to its capacity to compete for nitrogen (N) and phosphorus (P). Preventing the blooms by reducing P alone or both N and P has caused debate. To test the effects alone and together on the growth of cyanobacteria, we performed culture experiments in different eutrophication scenarios. N2 fixation in terms of heterocyst density, nitrogenase activity and nifH expression increased significantly in P-replete cultures, suggesting that P enrichment facilitates N2 fixation. Correspondingly, the expression of genes involved in P uptake, e.g., those involved in P-transport ( pstS) and the hydrolysis of phosphomonoesters ( phoD), was upregulated in P-deficient cultures. Interestingly, N addition enhanced not only the expression of these genes but also polyphosphate formation and alkaline phosphatase activity in P-deficient cultures relative to the P-replete cultures, as evidenced by qualitative (enzyme-labeled fluorescence) and quantitative (fluorogenic spectrophotometry) measurements. Furthermore, after N addition, cell activity and growth increased in the P-deficient cultures, underscoring the risk of N enrichment in P-limited systems. The eco-physiological responses shown here help further our understanding of the mechanism of N and P colimitation and underscore the importance of dual N and P reduction in controlling cyanobacterial blooms.
Collapse
Affiliation(s)
- Siyang Wang
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| | - Jian Xiao
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| | - Lingling Wan
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| | - Zijun Zhou
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| | - Zhicong Wang
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| | - Chunlei Song
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| | - Yiyong Zhou
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| | - Xiuyun Cao
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| |
Collapse
|
50
|
Swapnil P, Rai AK. Physiological responses to salt stress of salt-adapted and directly salt (NaCl and NaCl+Na 2SO 4 mixture)-stressed cyanobacterium Anabaena fertilissima. PROTOPLASMA 2018; 255:963-976. [PMID: 29352355 DOI: 10.1007/s00709-018-1205-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/10/2018] [Indexed: 05/13/2023]
Abstract
Soil salinity in nature is generally mixed type; however, most of the studies on salt toxicity are performed with NaCl and little is known about sulfur type of salinity (Na2SO4). Present study discerns the physiologic mechanisms responsible for salt tolerance in salt-adapted Anabaena fertilissima, and responses of directly stressed parent cells to NaCl and NaCl+Na2SO4 mixture. NaCl at 500 mM was lethal to the cyanobacterium, whereas salt-adapted cells grew luxuriantly. Salinity impaired gross photosynthesis, electron transport activities, and respiration in parent cells, but not in the salt-adapted cells, except a marginal increase in PSI activity. Despite higher Na+ concentration in the salt mixture, equimolar NaCl appeared more inhibitive to growth. Sucrose and trehalose content and antioxidant activities were maximal in 250 mM NaCl-treated cells, followed by salt mixture and was almost identical in salt-adapted (exposed to 500 mm NaCl) and control cells, except a marginal increase in ascorbate peroxidase activity and an additional fourth superoxide dismutase isoform. Catalase isoform of 63 kDa was induced only in salt-stressed cells. Salinity increased the uptake of intracellular Na+ and Ca2+ and leakage of K+ in parent cells, while cation level in salt-adapted cells was comparable to control. Though there was differential increase in intracellular Ca2+ under different salt treatments, ratio of Ca2+/Na+ remained the same. It is inferred that stepwise increment in the salt concentration enabled the cyanobacterium to undergo priming effect and acquire robust and efficient defense system involving the least energy.
Collapse
Affiliation(s)
- Prashant Swapnil
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Ashwani K Rai
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|