1
|
Dahan J, Orellana GE, Wald KB, Wenninger EJ, Cooper WR, Karasev AV. Bactericera cockerelli Picorna-like Virus and Three New Viruses Found Circulating in Populations of Potato/Tomato Psyllids ( Bactericera cockerelli). Viruses 2024; 16:415. [PMID: 38543780 PMCID: PMC10975263 DOI: 10.3390/v16030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 04/01/2024] Open
Abstract
An investigation of viruses circulating in populations of field and laboratory potato/tomato psyllids (Bactericera cockerelli) was conducted using high-throughput sequencing (HTS) technology and conventional RT-PCR. Three new viruses were discovered: one from the family Tymoviridae and two from the family Solemoviridae. A tymo-like virus sequence represented a nearly complete 6843 nt genome of a virus named Bactericera cockerelli tymo-like virus (BcTLV) that spanned five open reading frames (ORFs) which encoded RNA-dependent RNA polymerase (RdRP), helicase, protease, methyltransferase, and a capsid protein. Phylogenetic analyses placed the RdRP of BcTLV inside a divergent lineage of the viruses from the family Tymoviridae found in insect and plant hosts in a sister clade to the genera Tymovirus, Marafivirus, and Maculavirus. Four solemo-like virus sequences were identified in the HTS outputs, representing two new viruses. One virus found only in field-collected psyllids and named Bactericera cockerelli solemo-like virus 1 (BcSLV-1) had a 5479 nt genome which spanned four ORFs encoding protease and RdRP. Three solemo-like sequences displayed 87.4-99.7% nucleotide sequence identity among themselves, representing variants or strains of the same virus named Bactericera cockerelli solemo-like virus 2 (BcSLV-2). The genome of BcSLV-2 spanned only two ORFs that encoded a protease and an RdRP. Phylogenetic analysis placed the RdRPs of BcSLV-1 and BcSLV-2 in two separate lineages as sister clades to viruses from the genus Sobemovirus found in plant hosts. All three new psyllid viruses were found circulating in psyllids collected from potato fields in southern Idaho along with a previously identified Bactericera cockerelli picorna-like virus. Any possible role of the three viruses in controlling populations of the field psyllids remains to be elucidated.
Collapse
Affiliation(s)
- Jennifer Dahan
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, 875 Perimeter Drive, MS 2329, Moscow, ID 83844-2329, USA; (J.D.); (G.E.O.); (K.B.W.)
| | - Gardenia E. Orellana
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, 875 Perimeter Drive, MS 2329, Moscow, ID 83844-2329, USA; (J.D.); (G.E.O.); (K.B.W.)
| | - Kaleigh B. Wald
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, 875 Perimeter Drive, MS 2329, Moscow, ID 83844-2329, USA; (J.D.); (G.E.O.); (K.B.W.)
| | - Erik J. Wenninger
- Department of Entomology, Plant Pathology, and Nematology, and Kimberly Research and Extension Center, University of Idaho, Kimberly, ID 83341-5082, USA;
| | - W. Rodney Cooper
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA 98951, USA;
| | - Alexander V. Karasev
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, 875 Perimeter Drive, MS 2329, Moscow, ID 83844-2329, USA; (J.D.); (G.E.O.); (K.B.W.)
| |
Collapse
|
2
|
Wenninger EJ, Rashed A. Biology, Ecology, and Management of the Potato Psyllid, Bactericera cockerelli (Hemiptera: Triozidae), and Zebra Chip Disease in Potato. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:139-157. [PMID: 37616600 DOI: 10.1146/annurev-ento-020123-014734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), transmits the pathogen "Candidatus liberibacter solanacearum" (Lso), the putative causal agent of zebra chip disease (ZC). ZC is a disease of potato that reduces yield and quality and has disrupted integrated pest management programs in parts of the Americas and New Zealand. Advances in our understanding of the ecological factors that influence ZC epidemiology have been accelerated by the relatively recent identification of Lso and motivated by the steady increase in ZC distribution and the potential for devastating economic losses on a global scale. Management of ZC remains heavily reliant upon insecticides, which is not sustainable from the standpoint of insecticide resistance, nontarget effects on natural enemies, and regulations that may limit such tools. This review synthesizes the literature on potato psyllids and ZC, outlining recent progress, identifying knowledge gaps, and proposing avenues for further research on this important pathosystem of potatoes.
Collapse
Affiliation(s)
- Erik J Wenninger
- Department of Entomology, Plant Pathology and Nematology, Kimberly Research & Extension Center, University of Idaho, Kimberly, Idaho, USA;
| | - Arash Rashed
- Department of Entomology, Southern Piedmont Agricultural Research & Extension Center, Virginia Tech, Blackstone, Virginia, USA;
| |
Collapse
|
3
|
Identification of three new 'Candidatus Liberibacter solanacearum' haplotypes in four psyllid species (Hemiptera: Psylloidea). Sci Rep 2022; 12:20618. [PMID: 36450781 PMCID: PMC9712394 DOI: 10.1038/s41598-022-24032-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Eleven haplotypes of the bacterium, 'Candidatus Liberibacter solanacearum', have been identified worldwide, several of which infect important agricultural crops. In the United States, haplotypes A and B are associated with yield and quality losses in potato, tomato, and other crops of the Solanaceae. Both haplotypes are vectored by potato psyllid, Bactericera cockerelli. Recently, a third haplotype, designated F, was identified in southern Oregon potato fields. To identify the vector of this haplotype, psyllids of multiple species were collected from yellow sticky cards placed near potato fields during two growing seasons. Over 2700 specimens were tested for 'Ca. L. solanacearum' by polymerase chain reaction. Forty-seven psyllids harbored the bacterium. The infected specimens comprised four psyllid species in two families, Aphalaridae and Triozidae (Hemiptera: Psylloidea). Nucleic acid and/or amino acid sequence analysis of the 'Ca. L. solanacearum' 16S ribosomal RNA, 50S ribosomal proteins L10/L12, and outer membrane protein identified three new haplotypes of the bacterium, designated as Aph1, Aph2 and Aph3, including two variants of Aph2 (Aph2a and Aph2b). The impact of these new haplotypes on solanaceous or other crops is not known. The vector of 'Ca. L. solanacearum' haplotype F was not detected in this study.
Collapse
|
4
|
Prager SM, Cohen A, Cooper WR, Novy R, Rashed A, Wenninger EJ, Wallis C. A comprehensive review of zebra chip disease in potato and its management through breeding for resistance/tolerance to 'Candidatus Liberibacter solanacearum' and its insect vector. PEST MANAGEMENT SCIENCE 2022; 78:3731-3745. [PMID: 35415948 DOI: 10.1002/ps.6913] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Zebra chip disease (ZC), associated with the plant pathogenic bacterium 'Candidatus Liberibacter solanacearum' (psyllaurous) (CLso), is a major threat to global potato production. In addition to yield loss, CLso infection causes discoloration in the tubers, rendering them unmarketable. CLso is transmitted by the potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae). ZC is managed by prophylactic insecticide applications to control the vector, which is costly and carries environmental and human health risks. Given the expense, difficulty, and unsustainability of managing vector-borne diseases with insecticides, identifying sources of resistance to CLso and developing varieties that are resistant or tolerant to CLso and/or potato psyllids has become a major goal of breeding efforts. These efforts include field and laboratory evaluations of noncultivated germplasm and cultivars, studies of tubers in cold storage, detailed quantifications of biochemical responses to infection with CLso, possible mechanisms underlying insect resistance, and traditional examination of potato quality following infections. This review provides a brief history of ZC and potato psyllid, a summary of currently available tools to manage ZC, and a comprehensive review of breeding efforts for ZC and potato psyllid management within the greater context of Integrated Pest Management (IPM) strategies. © 2022 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Sean M Prager
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Abigail Cohen
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - W Rodney Cooper
- US Department of Agricultural, Agricultural Research Service, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA, USA
| | - Richard Novy
- US Department of Agricultural, Agricultural Research Service, Small Grains and Potato Germplasm Research, Aberdeen, ID, USA
| | - Arash Rashed
- Department of Entomology, Plant Pathology & Nematology, University of Idaho, Moscow, ID, USA
| | - Erik J Wenninger
- Department of Entomology, Plant Pathology & Nematology, Kimberly Research & Extension Center, University of Idaho, Kimberly, ID, USA
| | - Christopher Wallis
- US Department of Agricultural, Agricultural Research Service, San Joaquin Agricultural Sciences Center, Crop Diseases, Pests and Genetics Research Unit, Parlier, CA, USA
| |
Collapse
|
5
|
Eigenbrode SD, Gomulkiewicz R. Manipulation of Vector Host Preference by Pathogens: Implications for Virus Spread and Disease Management. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:387-400. [PMID: 35137164 DOI: 10.1093/jee/toab261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Indexed: 06/14/2023]
Abstract
Some plant pathogens manipulate the behavior and performance of their vectors, potentially enhancing pathogen spread. The implications are evolutionary and epidemiological but also economic for pathogens that cause disease in crops. Here we explore with models the effects of vector manipulation on crop yield loss to disease and on the economic returns for vector suppression. We use two frameworks, one that simulates the proportional occurrence of the pathogen in the vector population with the option to eliminate vectors by a single insecticidal treatment, and one that includes vector population dynamics and the potential for multiple insecticidal sprays in a season to suppress vectors. We parameterize the models with published data on vector manipulation, crop yields as affected by the age of the plant at infection, commodity prices and costs of vector control for three pathosystems. Using the first framework, maximum returns for treating vectors are greater with vector manipulation than without it by approximately US$10 per acre (US$24.7/ha) in peas infected by Pea enation mosaic virus and Bean leaf roll virus, and approximately US$50 per acre (US$124/ha) for potatoes infected by Potato leaf roll virus. Using the second framework, maximum returns for controlling the psyllid vectors of Candidatus Liberibacter solanacearum are 50% greater (approximately US$400/acre, US$988/ha) but additional returns for multiple weekly sprays diminish more with vector manipulation than without it. These results suggest that the economics of vector manipulation can be substantial and provide a framework that can inform management decisions.
Collapse
Affiliation(s)
- Sanford D Eigenbrode
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, 875 Perimeter Drive MS 2329, Moscow, ID 83844, USA
| | - Richard Gomulkiewicz
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| |
Collapse
|
6
|
Reyes Corral CA, Cooper WR, Horton D, Miliczky E, Riebe J, Waters T, Wildung M, Karasev AV. Association of Bactericera cockerelli (Hemiptera: Triozidae) With the Perennial Weed Physalis longifolia (Solanales: Solanaceae) in the Potato-Growing Regions of Western Idaho. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1416-1424. [PMID: 34392334 DOI: 10.1093/ee/nvab076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 06/13/2023]
Abstract
The potato psyllid, Bactericera cockerelli (Šulc), is a major pest of potato (Solanales: Solanaceae) as a vector of 'Candidatus Liberibacter solanacearum' (Lso). Bactericera cockerelli colonizes potato from noncrop host plants, yet we do not yet know which noncrop species are the primary sources of Lso-infected psyllids. The perennial weed, Physalis longifolia Nutt., is a high-quality host for B. cockerelli and Lso under laboratory conditions but has been overlooked in recent field studies as a source of Lso-infected psyllids. Our current study had four objectives: 1) determine whether P. longifolia is abundant in potato-growing regions of Washington and Idaho, 2) determine whether stands of P. longifolia harbor B. cockerelli and Lso, 3) identify the psyllid haplotypes occurring on P. longifolia, and 4) use molecular gut content analysis to infer which plant species the psyllids had previously fed upon prior to their capture from P. longifolia. Online herbaria and field searches revealed that P. longifolia is abundant in western Idaho and is present at low densities in the Columbia Basin of Washington. Over 200 psyllids were collected from P. longifolia stands in 2018 and 2019, confirming that B. cockerelli colonizes stands of this plant. Gut content analysis indicated that a proportion of B. cockerelli collected from P. longifolia had arrived there from potato. Confirmation that P. longifolia is abundant in certain potato-growing regions of the Pacific Northwest, and that B. cockerelli readily uses this plant, could improve models to predict the risk of future psyllid and Lso outbreaks.
Collapse
Affiliation(s)
- Cesar A Reyes Corral
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA
- Tree Fruit Research and Extension Center, Washington State University, 110 N. Western Avenue, Wenatchee, WA 98801, USA
| | - W Rodney Cooper
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - David Horton
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Eugene Miliczky
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | | | - Timothy Waters
- Washington State University Extension, Pasco, WA 99301, USA
| | - Mark Wildung
- Laboratory of Biotechnology and Bioanalysis, Washington State University, Pullman, WA 99164, USA
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
7
|
Oeller EC, Clark RE, Hinojosa L, Murphy KM, Crowder DW. Effects of Agronomic Practices on Lygus spp. (Hemiptera: Miridae) Population Dynamics in Quinoa. ENVIRONMENTAL ENTOMOLOGY 2021; 50:852-859. [PMID: 33960388 DOI: 10.1093/ee/nvab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 06/12/2023]
Abstract
Crop diversification often promotes farm sustainability. However, proper management of newly introduced crops is difficult when pests are unknown. Characterizing herbivore dynamics on new crops, and how they respond to agronomic factors, is crucial for integrated pest management. Here we explored factors affecting Lygus spp. (Hemiptera: Miridae) herbivores in quinoa crops of Washington State. Quinoa is a newly introduced crop for North America that has multiple varieties and a range of agronomic practices used for cultivation. Through arthropod surveys and discussions with growers, we determined that Lygus spp. was the most abundant insect herbivore and likely contributed to low quinoa yields in previous seasons. We assessed how different varieties (Pison and QQ74), irrigation regimes (present and not), and planting methods (direct-seeded and transplanted) affected Lygus population dynamics. Lygus phenology was correlated with timing of quinoa seed-set in July and August, corresponding to a period when quinoa is most susceptible to Lygus. Both irrigation and planting manipulations had significant effects on Lygus abundance. Irrigation reduced Lygus abundance compared with nonirrigated plots in 2018. Planting method had a significant effect on Lygus populations in both 2017 and 2018, but effects differed among years. Variety had a significant effect on Lygus abundance, but only in nonirrigated plots. Overall, our study shows that Lygus is a common insect herbivore in quinoa, and careful selection of variety, planting method, and irrigation regime may be key components of effective control in seasons where Lygus abundance is high.
Collapse
Affiliation(s)
| | - Robert E Clark
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Leonardo Hinojosa
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Kevin M Murphy
- Department of Crop and Soil Science, Washington State University, Pullman, WA, USA
| | - David W Crowder
- Department of Entomology, Washington State University, Pullman, WA, USA
| |
Collapse
|
8
|
Dahan J, Wenninger EJ, Thornton M, Corral CAR, Olsen N, Karasev AV. Haplotyping the Potato Psyllid (Hemiptera: Triozidae) and the Associated Pathogenic Bacterium 'Candidatus Liberibacter solanacearum' in Non-crop Alternative Hosts in Southern Idaho. ENVIRONMENTAL ENTOMOLOGY 2021; 50:382-389. [PMID: 33439964 DOI: 10.1093/ee/nvaa179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 06/12/2023]
Abstract
Zebra chip, is a potato disease associated with the bacterium 'Candidatus Liberibacter solanacearum' (Lso) and vectored by the potato psyllid, Bactericera cockerelli Šulc. Potato psyllids are native to North America, where four haplotypes have been described. They are able to colonize a wide range of solanaceous species, crops, and weeds. The epidemiology of zebra chip disease is still poorly understood and might involve the different haplotypes of psyllids as well as two haplotypes of Lso. As several perennial weeds have been recognized as potential host for potato psyllids and Lso, a yearly monitoring of several patches of bittersweet nightshade (Solanum dulcamara) and field bindweed (Convolvulus arvensis) located in the potato-growing region of southern Idaho was conducted from 2013 to 2017, to gain insight into psyllid dynamics in non-potato hosts and Lso presence in the fields. Potato psyllids caught on each host were individually tested for Lso, and a subset were haplotyped based on the CO1 gene, along with the haplotyping of Lso in positive samples. On bittersweet nightshade, the Northwestern haplotype was numerically dominant, with around 2.7% of psyllids found to be carrying either Lso haplotype A or B, suggesting a limited role in zebra chip persistence, which has infected Idaho fields at a low occurrence since the 2012 outbreak. Field bindweed was found to be a transient, non-overwintering host for potato psyllid of Northwestern, Western and Central haplotypes late in the season, suggesting minor, if any, role in persistence of Lso and field infestation by potato psyllids.
Collapse
Affiliation(s)
- Jennifer Dahan
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID
| | - Erik J Wenninger
- Department of Entomology, Plant Pathology, and Nematology, and Kimberly Research and Extension Center, University of Idaho, Kimberly, ID
| | - Michael Thornton
- Department of Plant Sciences and Parma Research and Extension Center, University of Idaho, Parma, ID
| | - César A Reyes Corral
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID
| | - Nora Olsen
- Department of Plant Sciences and Kimberly Research and Extension Center, University of Idaho, Kimberly, ID
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID
| |
Collapse
|
9
|
Cruzado-Gutiérrez RK, Sadeghi R, Prager SM, Casteel CL, Parker J, Wenninger EJ, Price WJ, Bosque-Pérez NA, Karasev AV, Rashed A. Interspecific interactions within a vector-borne complex are influenced by a co-occurring pathosystem. Sci Rep 2021; 11:2242. [PMID: 33500488 PMCID: PMC7838419 DOI: 10.1038/s41598-021-81710-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 11/25/2022] Open
Abstract
Potato virus Y (PVY) and zebra chip (ZC) disease are major threats to solanaceous crop production in North America. PVY can be spread by aphid vectors and through vegetative propagation in potatoes. ZC is associated with "Candidatus Liberibacter solanacearum" (Lso), which is transmitted by the tomato/potato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae). As these two pathosystems may co-occur, we studied whether the presence of one virus strain, PVY°, affected the host preference, oviposition, and egg hatch rate of Lso-free or Lso-carrying psyllids in tomato plants. We also examined whether PVY infection influenced Lso transmission success by psyllids, Lso titer and plant chemistry (amino acids, sugars, and phytohormones). Lso-carrying psyllids showed a preference toward healthy hosts, whereas the Lso-free psyllids preferentially settled on the PVY-infected tomatoes. Oviposition of the Lso-carrying psyllids was lower on PVY-infected than healthy tomatoes, but Lso transmission, titer, and psyllid egg hatch were not significantly affected by PVY. The induction of salicylic acid and its related responses, and not nutritional losses, may explain the reduced attractiveness of the PVY-infected host to the Lso-carrying psyllids. Although our study demonstrated that pre-existing PVY infection can reduce oviposition by the Lso-carrying vector, the preference of the Lso-carrying psyllids to settle on healthy hosts could contribute to Lso spread to healthy plants in the presence of PVY infection in a field.
Collapse
Affiliation(s)
- Regina K Cruzado-Gutiérrez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Aberdeen R&E Center, Aberdeen, ID, 83210, USA
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - Rohollah Sadeghi
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - Sean M Prager
- Department of Plant Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Clare L Casteel
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jessica Parker
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - Erik J Wenninger
- Department of Entomology, Plant Pathology and Nematology, Kimberly Research & Extension Center, University of Idaho, Kimberly, ID, 83341, USA
| | - William J Price
- College of Agricultural and Life Sciences, Statistical Programs, University of Idaho, Moscow, ID, 83844, USA
| | - Nilsa A Bosque-Pérez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - Arash Rashed
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Aberdeen R&E Center, Aberdeen, ID, 83210, USA.
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
10
|
Reyes Corral CA, Cooper WR, Horton DR, Karasev AV. Susceptibility of Physalis longifolia (Solanales: Solanaceae) to Bactericera cockerelli (Hemiptera: Triozidae) and 'Candidatus Liberibacter solanacearum'. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2595-2603. [PMID: 32990743 DOI: 10.1093/jee/toaa210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 06/11/2023]
Abstract
The potato psyllid, Bactericera cockerelli (Šulc), is a major pest of potato (Solanum tuberosum L.; Solanales: Solanaceae) as a vector of 'Candidatus Liberibacter solanacearum', the pathogen that causes zebra chip. Management of zebra chip is challenging in part because the noncrop sources of Liberibacter-infected psyllids arriving in potato remain unknown. Adding to this challenge is the occurrence of distinct genetic haplotypes of both potato psyllid and Liberibacter that differ in host range. Longleaf groundcherry (Physalis longifolia Nutt.) has been substantially overlooked in prior research as a potential noncrop source of Liberibacter-infected B. cockerelli colonizing fields of potato. The objective of this study was to assess the suitability of P. longifolia to the three common haplotypes of B. cockerelli (central, western, and northwestern haplotypes), and to two haplotypes of 'Ca. L. solanacearum' (Liberibacter A and B haplotypes). Greenhouse bioassays indicated that B. cockerelli of all three haplotypes produced more offspring on P. longifolia than on potato and preferred P. longifolia over potato during settling and egg-laying activities. Greenhouse and field trials showed that P. longifolia was also highly susceptible to Liberibacter. Additionally, we discovered that infected rhizomes survived winter and produced infected plants in late spring that could then be available for psyllid colonization and pathogen acquisition. Results show that P. longifolia is susceptible to both B. cockerelli and 'Ca. L. solanacearum' and must be considered as a potentially important source of infective B. cockerelli colonizing potato fields in the western United States.
Collapse
Affiliation(s)
- Cesar A Reyes Corral
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA
| | - W Rodney Cooper
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA
| | - David R Horton
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID
| |
Collapse
|
11
|
Cohen AL, Wohleb CH, Rondon SI, Swisher Grimm KD, Cueva I, Munyaneza JE, Jones VP, Crowder DW. Seasonal Population Dynamics of Potato Psyllid (Hemiptera: Triozidae) in the Columbia River Basin. ENVIRONMENTAL ENTOMOLOGY 2020; 49:974-982. [PMID: 32533139 DOI: 10.1093/ee/nvaa068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 06/11/2023]
Abstract
Understanding factors that affect the population dynamics of insect pest species is key for developing integrated pest management strategies in agroecosystems. Most insect pest populations are strongly regulated by abiotic factors such as temperature and precipitation, and assessing relationships between abiotic conditions and pest dynamics can aid decision-making. However, many pests are also managed with insecticides, which can confound relationships between abiotic factors and pest dynamics. Here we used data from a regional monitoring network in the Pacific Northwest United States to explore effects of abiotic factors on populations of an intensively managed potato pest, the potato psyllid (Bactericera cockerelli Šulc), which can vector Candidatus Liberibacter psyllaurus, a bacterial pathogen of potatoes. We assessed effects of temperature on psyllid populations, and show psyllid population growth followed predictable patterns within each year, but there was considerable variation across years in psyllid abundance. Examination of seasonal weather patterns suggested that in 2017, when psyllid populations were less abundant by several orders of magnitude than other years, a particularly long and cold period of winter weather may have harmed overwintering populations and limited population growth. The rate of degree-day accumulation over time, as well as total degree-day accumulation also affected trap catch abundance, likely by mediating the number of psyllid generations per season. Our findings indicate that growers can reliably infer the potential magnitude of risk from potato psyllids using monitoring data, date of first detection, seasonal weather patterns, and population size early in the growing season.
Collapse
Affiliation(s)
- Abigail L Cohen
- Department of Entomology, Washington State University, Pullman, WA
| | | | - Silvia I Rondon
- Oregon State University, Hermiston Agricultural Research and Extension Center, Hermiston, OR
| | - Kylie D Swisher Grimm
- United States Department of Agriculture-Agricultural Research Service, Temperate Tree Fruit and Vegetable Research Unit, Prosser, WA
| | - Isabel Cueva
- United States Department of Agriculture-Agricultural Research Service, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA
| | - Joseph E Munyaneza
- United States Department of Agriculture-Agricultural Research Service, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA
| | - Vincent P Jones
- Department of Entomology, Washington State University, Pullman, WA
- Tree Fruit Research & Extension Center, Wenatchee, WA
| | - David W Crowder
- Department of Entomology, Washington State University, Pullman, WA
| |
Collapse
|
12
|
Gutiérrez Illán J, Bloom EH, Wohleb CH, Wenninger EJ, Rondon SI, Jensen AS, Snyder WE, Crowder DW. Landscape structure and climate drive population dynamics of an insect vector within intensely managed agroecosystems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02109. [PMID: 32108396 DOI: 10.1002/eap.2109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Characterizing factors affecting insect pest populations across variable landscapes is a major challenge for agriculture. In natural ecosystems, insect populations are strongly mediated by landscape and climatic factors. However, it has proven difficult to evaluate if similar factors predict pest dynamics in agroecosystems because control tactics exert strong confounding effects. We addressed this by assessing whether species distribution models could effectively characterize dynamics of an insect pest in intensely managed agroecosystems. Our study used a regional multi-year data set to assess landscape and climatic drivers of potato psyllid (Bactericera cockerelli) populations, which are often subjected to calendar-based insecticide treatments because they transmit pathogens to crops. Despite this, we show that psyllid populations were strongly affected by landscape and climatic factors. Psyllids were more abundant in landscapes with high connectivity, low crop diversity, and large natural areas. Psyllid population dynamics were also mediated by climatic factors, particularly precipitation and humidity. Our results show that many of the same factors that drive insect population dynamics in natural ecosystems can have similar effects in an intensive agroecosystem. More broadly, our study shows that models incorporating landscape and climatic factors can describe pest populations in agroecosystems and may thus promote more sustainable pest management.
Collapse
Affiliation(s)
| | - Elias H Bloom
- Department of Entomology, Washington State University, Pullman, Washington, 99164, USA
| | - Carrie H Wohleb
- Washington State University Extension, Ephrata, Washington, 99823, USA
| | - Erik J Wenninger
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Kimberly, Idaho, 83844, USA
| | - Silvia I Rondon
- Department of Crop and Soil Science, Oregon State University, Hermiston, Oregon, 97838, USA
| | - Andrew S Jensen
- Northwest Potato Research Consortium, Lakeview, Oregon, 97630, USA
| | - William E Snyder
- Department of Entomology, Washington State University, Pullman, Washington, 99164, USA
| | - David W Crowder
- Department of Entomology, Washington State University, Pullman, Washington, 99164, USA
| |
Collapse
|
13
|
Cruzado RK, Rashidi M, Olsen N, Novy RG, Wenninger EJ, Bosque-Pérez NA, Karasev AV, Price WJ, Rashed A. Effect of the level of "Candidatus Liberibacter solanacearum" infection on the development of zebra chip disease in different potato genotypes at harvest and post storage. PLoS One 2020; 15:e0231973. [PMID: 32343710 PMCID: PMC7188252 DOI: 10.1371/journal.pone.0231973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/03/2020] [Indexed: 11/23/2022] Open
Abstract
Potato psyllid (Bactericera cockerelli Sulc)-transmitted “Candidatus Liberibacter solanacearum” (Lso) has been negatively impacting the potato industry in the United States as well as other potato-producing countries. Lso has been linked to a condition known as zebra chip (ZC) that affects yield and quality of potato tubers. Efforts to find sources of resistance to ZC have primarily focused on greenhouse evaluations based on a single inoculation time prior to harvest. Plant response to infection, however, could be influenced by the developmental stage of the host plant, and ZC may continue to develop after harvest. The objectives of this study were to quantify Lso inoculation success, Lso titer, ZC severity and Lso development during storage in eight potato genotypes. These evaluations were conducted on plants infested with Lso-positive psyllids at 77, 12, and 4 days before vine removal (DBVR). The evaluated genotypes were categorized according to their relative resistance to Lso and tolerance to ZC symptoms. Lso inoculation success in the genotype family A07781, derived from Solanum chacoense, was lower than that of the susceptible control (‘Russet Burbank’). A07781-4LB and A07781-3LB genotypes were characterized relatively resistant to the pathogen and highly tolerant to ZC symptoms, while A07781-10LB was categorized as susceptible to Lso but relatively tolerant to symptom expression. In stored potatoes, increase in Lso concentrations was observed for all infestation times. However, significantly higher Lso titer was detected in tubers infested 12 DBVR and the effect was similar across genotypes. Overall, the A07781 family can be considered as a promising source of resistance or tolerance to ZC.
Collapse
Affiliation(s)
- Regina K. Cruzado
- Department of Entomology, Plant Pathology and Nematology, Aberdeen R&E Center, University of Idaho, Aberdeen, Idaho, United States of America
| | - Mahnaz Rashidi
- Department of Entomology, Plant Pathology and Nematology, Aberdeen R&E Center, University of Idaho, Aberdeen, Idaho, United States of America
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Nora Olsen
- Department of Plant Sciences, Kimberly Research & Extension Center, University of Idaho, Kimberly, Idaho, United States of America
| | - Richard G. Novy
- Small Grains and Potato Germplasm Research Unit, United States Department of Agriculture, Agricultural Research Service, Aberdeen, Idaho, United States of America
| | - Erik J. Wenninger
- Department of Entomology, Plant Pathology and Nematology, Kimberly Research & Extension Center, University of Idaho, Kimberly, Idaho, United States of America
| | - Nilsa A. Bosque-Pérez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Alexander V. Karasev
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - William J. Price
- Statistical Programs, College of Agricultural and Life Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Arash Rashed
- Department of Entomology, Plant Pathology and Nematology, Aberdeen R&E Center, University of Idaho, Aberdeen, Idaho, United States of America
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
14
|
Fife AN, Cruzado K, Rashed A, Novy RG, Wenninger EJ. Potato Psyllid (Hemiptera: Triozidae) Behavior on Three Potato Genotypes With Tolerance to 'Candidatus Liberibacter solanacearum'. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5820424. [PMID: 32294181 PMCID: PMC7159035 DOI: 10.1093/jisesa/ieaa020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 06/11/2023]
Abstract
The potato/tomato psyllid Bactericera cockerelli (Šulc) transmits 'Candidatus Liberibacter solanacearum' (Lso) (also known as 'Candidatus Liberibacter psyllaurous'), the bacterium associated with zebra chip disease (ZC) in potato. When disease incidence is high, ZC causes large economic losses through reductions in potato yield and tuber quality. No commercial potato variety has been found totally resistant to the pathogen. We evaluated host acceptance behaviors using no-choice assays on three breeding clones derived from Solanum chacoense Bitter with putative tolerance to Lso and/or ZC as part of an effort to determine whether the disease tolerance observed in those breeding clones was related to effects on psyllid settling behavior. We also counted the number of eggs laid and nymphs hatched on the different genotypes to observe any differences in reproduction. The potato variety 'Russet Burbank' was used as a susceptible control. Probing frequency and female walking duration were greater on Russet Burbank than the other genotypes. Oviposition did not differ among genotypes. However, female psyllids on two of the Lso-tolerant genotypes displayed reduced fertility 18-24 d after confinement with a male, relative to females on Russet Burbank. These results suggest that although the germplasms display minor abiotic activity on psyllid fertility, tolerance to Lso may be more strongly linked with plant tolerance to the pathogen rather than effects on host acceptance behaviors.
Collapse
Affiliation(s)
- Austin N Fife
- Kimberly Research and Extension Center, University of Idaho, Kimberly, ID
| | - Karin Cruzado
- Aberdeen Research and Extension Center, University of Idaho, Aberdeen, ID
| | | | - Richard G Novy
- Agricultural Research Service, United States Department of Agriculture, Aberdeen, ID
| | - Erik J Wenninger
- Kimberly Research and Extension Center, University of Idaho, Kimberly, ID
| |
Collapse
|
15
|
Seasonal Occurrence of Potato Psyllid ( Bactericera Cockerelli) and Risk of Zebra Chip Pathogen ( Candidatus Liberibacter Solanacearum) in Northwestern New Mexico. INSECTS 2019; 11:insects11010003. [PMID: 31861592 PMCID: PMC7022697 DOI: 10.3390/insects11010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022]
Abstract
Potato psyllid (Bactericera cockerelli) is one of the most important pests in potatoes (Solanum tuberosum L.) due to its feeding behavior and the transmission of a bacterium (Candidatus Liberibacter solanacearum) that causes zebra chip disease, altering the quality of the potato tuber and the fried potato chip or french fry. This pest is thus a threat to the chip potato industry and often requires preventive measures including the use of costly insecticides. The objectives of this research were to monitor the variation in B. cockerelli adult abundance and to evaluate the risk of zebra chip disease in northwestern New Mexico, USA. Yellow sticky traps were used to collect the pest at the Agricultural Experiment Station at Farmington, NM and in nearby commercial fields at the Navajo Agricultural Products Industry (NAPI) and Navajo Mesa Farms during the 2017–2019 period. The collected adult pests were analyzed at Texas A & M University for the presence of Candidatus L. solanacearum (Lso). The results showed field infestation by B. cockerelli in early June and that the population peaked during the second half of July and decreased as the potato growing season progressed. However, a second less important peak of the pest was revealed around mid- to late-August, depending on the growing season and field. While the B. cockerelli population increased linearly with average air temperature, it showed strong third order polynomial relationships with the accumulated thermal units and the Julian days. The test of B. cockerelli for the Lso infection revealed a low incidence of the pathogen varying from 0.22% to 6.25% and the infected adult B. cockerelli were collected during the population peak period. The results of this study may be helpful to potato growers in pest management decision-making and control. However, more study is needed to evaluate zebra chip disease in terms of its prevention and economic impact, and to develop economic thresholds and pest management programs for northwestern New Mexico and neighboring regions.
Collapse
|
16
|
Dahan J, Wenninger EJ, Thompson BD, Eid S, Olsen N, Karasev AV. Prevalence of ' Candidatus Liberibacter solanacearum' Haplotypes in Potato Tubers and Psyllid Vectors in Idaho From 2012 to 2018. PLANT DISEASE 2019; 103:2587-2591. [PMID: 31432751 DOI: 10.1094/pdis-11-18-2113-re] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
'Candidatus Liberibacter solanacearum' (Lso) is an uncultured, phloem-associated bacterium causing a severe tuber disease in potato called zebra chip (ZC). Seven haplotypes of Lso have been described in different hosts, with haplotypes A and B found associated with infections in potato and tomato. In the field, Lso is transmitted by the potato psyllid (Bactericera cockerelli), and between 2011 and 2015, a significant change in Lso haplotype prevalence was previously reported in Idaho: from exclusively A haplotype found in tested psyllids in 2012 to mainly B haplotype found in collected psyllids in 2015. However, prevalence of Lso haplotypes in Idaho was not analyzed in potato tubers exhibiting symptoms of ZC. To fill in this knowledge gap, prevalence of Lso haplotypes was investigated in potato tubers harvested in southern Idaho between 2012 and 2018, and it was found to change from exclusively A haplotype in the 2012 season to an almost equal A and B haplotype distribution during the 2016 season. During the same period, haplotype distribution of Lso in psyllid vectors collected using yellow sticky traps also changed, but in psyllids, the shift from A haplotype of Lso to B haplotype was complete, with no A haplotype detected in 2016 to 2018. The changes in the haplotype prevalence of the Lso circulating in potato fields in southern Idaho may be, among other factors, responsible for a decrease in the ZC incidence in Idaho potato fields between an outbreak of the disease in 2012 and a very low level of ZC afterward.
Collapse
Affiliation(s)
- Jennifer Dahan
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Erik J Wenninger
- Department of Entomology, Plant Pathology and Nematology, Kimberly Research and Extension Center, University of Idaho, Kimberly, ID
| | - Brandon D Thompson
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Sahar Eid
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Nora Olsen
- Department of Plant Sciences, Kimberly Research and Extension Center, University of Idaho, Kimberly, ID
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| |
Collapse
|
17
|
Wenninger EJ, Dahan J, Thornton M, Karasev AV. Associations of the Potato Psyllid and "Candidatus Liberibacter solanacearum" in Idaho with the Noncrop Host Plants Bittersweet Nightshade and Field Bindweed. ENVIRONMENTAL ENTOMOLOGY 2019; 48:747-754. [PMID: 30958875 DOI: 10.1093/ee/nvz033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Zebra chip disease (ZC) in potato (Solanum tuberosum L. [Polemoniales: Solanaceae]) can produce unmarketable tubers with striped necrotic patterns. ZC is associated with the bacterium "Candidatus Liberibacter solanacearum" (Lso), which is transmitted by the potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae). Potato psyllids are associated with numerous noncrop host plants, especially from the Solanaceae and Convolvulaceae; however, the contribution and importance of these hosts to ZC epidemiology in potato is poorly understood. To clarify seasonal phenologies on two such hosts, we sampled potato psyllids from bittersweet nightshade, Solanum dulcamara L. (Polemoniales: Solanaceae), and field bindweed, Convolvulus arvensis L. (Polemoniales: Convolvulaceae), over 2013-2017 and 2014-2016, respectively. Adult psyllids were sampled using yellow sticky traps, vacuum samples, and beat sheets. Each psyllid was tested for the presence of Lso by polymerase chain reaction. Psyllids often were abundant on bittersweet nightshade during May to November, with low numbers observed over each winter. Vacuum samples often captured more psyllids than other methods. Lso incidence was low except during 2016 when vacuum samples showed 23% incidence. Potato psyllids regularly overwinter on bittersweet nightshade in Idaho; however, differences in psyllid populations and Lso incidence from those found on potato suggest that this host plant may only partly contribute to infestations in potato. Observations of psyllids on field bindweed suggest only transient visits to this plant around potato harvest, with no evidence of overwintering and no Lso detected. Further work is needed to clarify how potato psyllid use of other noncrop hosts is related to their abundance in Idaho potato fields.
Collapse
Affiliation(s)
- Erik J Wenninger
- Department of Entomology, Plant Pathology, and Nematology, Kimberly Research and Extension Center, University of Idaho, Kimberly, ID
| | - Jennifer Dahan
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID
| | - Michael Thornton
- Department of Plant Sciences, Parma Research and Extension Center, University of Idaho, Parma, ID
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID
| |
Collapse
|