1
|
Kaur N, Nayakoti S, Brock N, Halford NG. Uncovering plant epigenetics: new insights into cytosine methylation in rye genomes. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3395-3398. [PMID: 37369102 DOI: 10.1093/jxb/erad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
This article comments on:
Kalinka A, Starczak M, Gackowski D, Stępień E, Achrem M. 2023. Global DNA 5-hydroxymethylcytosine level and its chromosomal distribution in four rye species. Journal of Experimental Botany 74, 3488–3502.
Collapse
Affiliation(s)
- Navneet Kaur
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | | - Natasha Brock
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | |
Collapse
|
2
|
Schaffner SL, Kobor MS. DNA methylation as a mediator of genetic and environmental influences on Parkinson's disease susceptibility: Impacts of alpha-Synuclein, physical activity, and pesticide exposure on the epigenome. Front Genet 2022; 13:971298. [PMID: 36061205 PMCID: PMC9437223 DOI: 10.3389/fgene.2022.971298] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with a complex etiology and increasing prevalence worldwide. As PD is influenced by a combination of genetic and environment/lifestyle factors in approximately 90% of cases, there is increasing interest in identification of the interindividual mechanisms underlying the development of PD as well as actionable lifestyle factors that can influence risk. This narrative review presents an outline of the genetic and environmental factors contributing to PD risk and explores the possible roles of cytosine methylation and hydroxymethylation in the etiology and/or as early-stage biomarkers of PD, with an emphasis on epigenome-wide association studies (EWAS) of PD conducted over the past decade. Specifically, we focused on variants in the SNCA gene, exposure to pesticides, and physical activity as key contributors to PD risk. Current research indicates that these factors individually impact the epigenome, particularly at the level of CpG methylation. There is also emerging evidence for interaction effects between genetic and environmental contributions to PD risk, possibly acting across multiple omics layers. We speculated that this may be one reason for the poor replicability of the results of EWAS for PD reported to date. Our goal is to provide direction for future epigenetics studies of PD to build upon existing foundations and leverage large datasets, new technologies, and relevant statistical approaches to further elucidate the etiology of this disease.
Collapse
Affiliation(s)
- Samantha L. Schaffner
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Michael S. Kobor
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Mourtzi N, Sertedaki A, Charmandari E. Glucocorticoid Signaling and Epigenetic Alterations in Stress-Related Disorders. Int J Mol Sci 2021; 22:5964. [PMID: 34073101 PMCID: PMC8198182 DOI: 10.3390/ijms22115964] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/31/2022] Open
Abstract
Stress is defined as a state of threatened or perceived as threatened homeostasis. The well-tuned coordination of the stress response system is necessary for an organism to respond to external or internal stressors and re-establish homeostasis. Glucocorticoid hormones are the main effectors of stress response and aberrant glucocorticoid signaling has been associated with an increased risk for psychiatric and mood disorders, including schizophrenia, post-traumatic stress disorder and depression. Emerging evidence suggests that life-stress experiences can alter the epigenetic landscape and impact the function of genes involved in the regulation of stress response. More importantly, epigenetic changes induced by stressors persist over time, leading to increased susceptibility for a number of stress-related disorders. In this review, we discuss the role of glucocorticoids in the regulation of stress response, the mechanism through which stressful experiences can become biologically embedded through epigenetic alterations, and we underline potential associations between epigenetic changes and the development of stress-related disorders.
Collapse
Affiliation(s)
- Niki Mourtzi
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (N.M.); (A.S.)
| | - Amalia Sertedaki
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (N.M.); (A.S.)
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (N.M.); (A.S.)
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Xu T, Gao H. Hydroxymethylation and tumors: can 5-hydroxymethylation be used as a marker for tumor diagnosis and treatment? Hum Genomics 2020; 14:15. [PMID: 32375881 PMCID: PMC7201531 DOI: 10.1186/s40246-020-00265-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023] Open
Abstract
5-Methylcytosine (5mC) is considered as a common epigenetic modification that plays an important role in the regulation of gene expression. At the same time, 5-hydroxymethylcytosine (5hmC) has been found as an emerging modification of cytosine bases of recent years. Unlike 5mC, global 5hmC levels vary from tissues that have differential distribution both in mammalian tissues and in the genome. DNA hydroxymethylation is the process that 5mC oxidates into 5hmC with the catalysis of TET (ten-eleven translocation) enzymes. It is an essential option of DNA demethylation, which modulates gene expression by adjusting the DNA methylation level. Various factors can regulate the demethylation of DNA, such as environmental toxins and mental stress. In this review, we summarize the progress in the formation of 5hmC, and obtaining 5hmC in a cell-free DNA sample presents multiple advantages and challenges for the subject. Furthermore, the clinical potential for 5hmC modification in dealing with cancer early diagnosis, prognostic evaluation, and prediction of therapeutic effect is also mentioned.
Collapse
Affiliation(s)
- Tianmin Xu
- The Second HospitaI of Jilin University, Changchun, Jilin, China.
| | - Haoyue Gao
- The Second HospitaI of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Jiang S, Postovit L, Cattaneo A, Binder EB, Aitchison KJ. Epigenetic Modifications in Stress Response Genes Associated With Childhood Trauma. Front Psychiatry 2019; 10:808. [PMID: 31780969 PMCID: PMC6857662 DOI: 10.3389/fpsyt.2019.00808] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Adverse childhood experiences (ACEs) may be referred to by other terms (e.g., early life adversity or stress and childhood trauma) and have a lifelong impact on mental and physical health. For example, childhood trauma has been associated with posttraumatic stress disorder (PTSD), anxiety, depression, bipolar disorder, diabetes, and cardiovascular disease. The heritability of ACE-related phenotypes such as PTSD, depression, and resilience is low to moderate, and, moreover, is very variable for a given phenotype, which implies that gene by environment interactions (such as through epigenetic modifications) may be involved in the onset of these phenotypes. Currently, there is increasing interest in the investigation of epigenetic contributions to ACE-induced differential health outcomes. Although there are a number of studies in this field, there are still research gaps. In this review, the basic concepts of epigenetic modifications (such as methylation) and the function of the hypothalamic-pituitary-adrenal (HPA) axis in the stress response are outlined. Examples of specific genes undergoing methylation in association with ACE-induced differential health outcomes are provided. Limitations in this field, e.g., uncertain clinical diagnosis, conceptual inconsistencies, and technical drawbacks, are reviewed, with suggestions for advances using new technologies and novel research directions. We thereby provide a platform on which the field of ACE-induced phenotypes in mental health may build.
Collapse
Affiliation(s)
- Shui Jiang
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Lynne Postovit
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Elisabeth B. Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine J. Aitchison
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Hack LM, Fries GR, Eyre HA, Bousman CA, Singh AB, Quevedo J, John VP, Baune BT, Dunlop BW. Moving pharmacoepigenetics tools for depression toward clinical use. J Affect Disord 2019; 249:336-346. [PMID: 30802699 PMCID: PMC6763314 DOI: 10.1016/j.jad.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of disability worldwide, and over half of patients do not achieve symptom remission following an initial antidepressant course. Despite evidence implicating a strong genetic basis for the pathophysiology of MDD, there are no adequately validated biomarkers of treatment response routinely used in clinical practice. Pharmacoepigenetics is an emerging field that has the potential to combine both genetic and environmental information into treatment selection and further the goal of precision psychiatry. However, this field is in its infancy compared to the more established pharmacogenetics approaches. METHODS We prepared a narrative review using literature searches of studies in English pertaining to pharmacoepigenetics and treatment of depressive disorders conducted in PubMed, Google Scholar, PsychINFO, and Ovid Medicine from inception through January 2019. We reviewed studies of DNA methylation and histone modifications in both humans and animal models of depression. RESULTS Emerging evidence from human and animal work suggests a key role for epigenetic marks, including DNA methylation and histone modifications, in the prediction of antidepressant response. The challenges of heterogeneity of patient characteristics and loci studied as well as lack of replication that have impacted the field of pharmacogenetics also pose challenges to the development of pharmacoepigenetic tools. Additionally, given the tissue specific nature of epigenetic marks as well as their susceptibility to change in response to environmental factors and aging, pharmacoepigenetic tools face additional challenges to their development. LIMITATIONS This is a narrative and not systematic review of the literature on the pharmacoepigenetics of antidepressant response. We highlight key studies pertaining to pharmacoepigenetics and treatment of depressive disorders in humans and depressive-like behaviors in animal models, regardless of sample size or methodology. While we discuss DNA methylation and histone modifications, we do not cover microRNAs, which have been reviewed elsewhere recently. CONCLUSIONS Utilization of genome-wide approaches and reproducible epigenetic assays, careful selection of the tissue assessed, and integration of genetic and clinical information into pharmacoepigenetic tools will improve the likelihood of developing clinically useful tests.
Collapse
Affiliation(s)
- Laura M Hack
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Palo Alto, CA 94305, USA; Sierra Pacific Mental Illness Research Education and Clinical Centers, VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Gabriel R Fries
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Harris A Eyre
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Palo Alto, CA 94305, USA; Innovation Institute, Texas Medical Center, Houston, TX, USA; IMPACT SRC, School of Medicine, Deakin University, Geelong, Victoria, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Chad A Bousman
- Departments of Medical Genetics, Psychiatry, Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Ajeet B Singh
- IMPACT SRC, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Joao Quevedo
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Vineeth P John
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Bernhard T Baune
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Fuso A, Lucarelli M. CpG and Non-CpG Methylation in the Diet–Epigenetics–Neurodegeneration Connection. Curr Nutr Rep 2019; 8:74-82. [DOI: 10.1007/s13668-019-0266-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Gabrieli T, Sharim H, Nifker G, Jeffet J, Shahal T, Arielly R, Levi-Sakin M, Hoch L, Arbib N, Michaeli Y, Ebenstein Y. Epigenetic Optical Mapping of 5-Hydroxymethylcytosine in Nanochannel Arrays. ACS NANO 2018; 12:7148-7158. [PMID: 29924591 PMCID: PMC6114841 DOI: 10.1021/acsnano.8b03023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/20/2018] [Indexed: 05/25/2023]
Abstract
The epigenetic mark 5-hydroxymethylcytosine (5-hmC) is a distinct product of active DNA demethylation that is linked to gene regulation, development, and disease. In particular, 5-hmC levels dramatically decline in many cancers, potentially serving as an epigenetic biomarker. The noise associated with next-generation 5-hmC sequencing hinders reliable analysis of low 5-hmC containing tissues such as blood and malignant tumors. Additionally, genome-wide 5-hmC profiles generated by short-read sequencing are limited in providing long-range epigenetic information relevant to highly variable genomic regions, such as the 3.7 Mbp disease-related Human Leukocyte Antigen (HLA) region. We present a long-read, highly sensitive single-molecule mapping technology that generates hybrid genetic/epigenetic profiles of native chromosomal DNA. The genome-wide distribution of 5-hmC in human peripheral blood cells correlates well with 5-hmC DNA immunoprecipitation (hMeDIP) sequencing. However, the long single-molecule read-length of 100 kbp to 1 Mbp produces 5-hmC profiles across variable genomic regions that failed to show up in the sequencing data. In addition, optical 5-hmC mapping shows a strong correlation between the 5-hmC density in gene bodies and the corresponding level of gene expression. The single-molecule concept provides information on the distribution and coexistence of 5-hmC signals at multiple genomic loci on the same genomic DNA molecule, revealing long-range correlations and cell-to-cell epigenetic variation.
Collapse
Affiliation(s)
- Tslil Gabrieli
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hila Sharim
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Nifker
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Jeffet
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Shahal
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rani Arielly
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Levi-Sakin
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lily Hoch
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nissim Arbib
- Department
of Obstetrics and Gynecology, Meir Hospital, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Michaeli
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Ebenstein
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Nakamura S, Nakajima R, Fujimoto K. DNA Photocrosslinking Using 3-Vinylcarbazole Derivatives in Two-color Detection of Methylcytosine. CHEM LETT 2018. [DOI: 10.1246/cl.180205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shigetaka Nakamura
- Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Ryo Nakajima
- Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Kenzo Fujimoto
- Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
10
|
Dick A, Provencal N. Central Neuroepigenetic Regulation of the Hypothalamic–Pituitary–Adrenal Axis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:105-127. [DOI: 10.1016/bs.pmbts.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Kader F, Ghai M, Maharaj L. The effects of DNA methylation on human psychology. Behav Brain Res 2017; 346:47-65. [PMID: 29237550 DOI: 10.1016/j.bbr.2017.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/01/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023]
Abstract
DNA methylation is a fundamental epigenetic modification in the human genome; pivotal in development, genomic imprinting, X inactivation, chromosome stability, gene expression and methylation aberrations are involved in an array of human diseases. Methylation at promoters is associated with transcriptional repression, whereas gene body methylation is generally associated with gene expression. Extrinsic factors such as age, diets and lifestyle affect DNA methylation which consequently alters gene expression. Stress, anxiety, depression, life satisfaction, emotion among numerous other psychological factors also modify DNA methylation patterns. This correlation is frequently investigated in four candidate genes; NR3C1, SLC6A4, BDNF and OXTR, since regulation of these genes directly impact responses to social situations, stress, threats, behaviour and neural functions. Such studies underpin the hypothesis that DNA methylation is involved in deviant human behaviour, psychological and psychiatric conditions. These candidate genes may be targeted in future to assess the correlation between methylation, social experiences and long-term behavioural phenotypes in humans; and may potentially serve as biomarkers for therapeutic intervention.
Collapse
Affiliation(s)
- Farzeen Kader
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| | - Meenu Ghai
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| | - Leah Maharaj
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| |
Collapse
|
12
|
Qing Y, Tian Z, Bi Y, Wang Y, Long J, Song CX, Diao J. Quantitation and mapping of the epigenetic marker 5-hydroxymethylcytosine. Bioessays 2017; 39. [DOI: 10.1002/bies.201700010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ying Qing
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH USA
| | - Zhiqi Tian
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH USA
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology Xi'an Jiaotong University; Xi'an China
| | - Ying Bi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine; University of Oxford; Oxford UK
| | - Yongyao Wang
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH USA
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology Xi'an Jiaotong University; Xi'an China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology Xi'an Jiaotong University; Xi'an China
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine; University of Oxford; Oxford UK
- Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Oxford UK
| | - Jiajie Diao
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH USA
| |
Collapse
|
13
|
Heriberto RM. Epigenetics in disease and well-being. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw011. [PMID: 29492291 PMCID: PMC5804525 DOI: 10.1093/eep/dvw011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 06/08/2023]
Abstract
The research education seminar 'Epigenetics in disease and well-being' organized by and held at Linköping University, Linköping, Sweden earlier this year, aimed to discuss the interaction between environmental factors and epigenetic modifications and its consequences for human and animal health. A selection of presented papers is hereby presented which highlighted the mechanisms by which environmental stressors challenge homeostasis to such an extent that the effects can become transgenerational but also proposed the development of epigenomic-based pre-emptive medicine.
Collapse
|