1
|
Li S, Guan X, Yu W, Zhao Z, Sun Y, Bai Y. Effect of human periodontal ligament stem cell-derived exosomes on cementoblast activity. Oral Dis 2024; 30:2511-2522. [PMID: 37448205 DOI: 10.1111/odi.14671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVES Exosomes derived from stem cells are a potential cell-free tool for tissue regeneration with therapeutic potential. However, its application in cementum repair is unclear. This study aimed to investigate the effect of human periodontal ligament stem cell-derived exosomes on the biological activity of cementoblasts, the main effector cells in cementum synthesis. MATERIALS AND METHODS OCCM-30 cementoblasts were cultured with various human periodontal ligament stem cell-derived exosome concentrations. OCCM-30 cells proliferation, migration, and cementogenic mineralization were examined, along with the gene and protein expression of factors associated with cementoblastic mineralization. RESULTS Exosomal promoted the migration, proliferation, and mineralization of OCCM-30 cells. The exosome-treated group significantly increased the expression of cementogenic-related genes and proteins. Furthermore, the expression of p-PI3K and p-AKT was enhanced by exosome administration. Treatment with a PI3K/AKT inhibitor markedly attenuated the gene and protein expression of cementoblastic factors, and this effect was partially reversed by exosome administration. CONCLUSIONS Human periodontal ligament stem cell-derived exosomes can promote the activity of cementoblasts via the PI3K/AKT signaling pathway, providing a scientific basis for promoting the repair process in orthodontically induced inflammatory root resorption.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiuchen Guan
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wenting Yu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zeqing Zhao
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yaxi Sun
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Li B, Xu J, Ai R, Zhang H, Wei M, Zhang R, Bao C, Wu W. Safe and Durable Treatment of Dentin Hypersensitivity via Nourishing and Remineralizing Dentin Based on β-Chitooligosaccharide Graft Derivative. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300359. [PMID: 37292051 DOI: 10.1002/smll.202300359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/06/2023] [Indexed: 06/10/2023]
Abstract
Dentin hypersensitivity (DH) is a common symptom of various dental diseases that usually produces abnormal pain with external stimuli. Various desensitizers are developed to treat DH by occluding dentine tubules (DTs) or blocking intersynaptic connections of dental sensory nerve cells. However, the main limitations of currently available techniques are the chronic toxic effects of chemically active ingredients and their insufficiently durable efficacy. Herein, a novel DH therapy with remarkable biosafety and durable therapeutic value based on β-chitooligosaccharide graft derivative (CAD) is presented. Particularly, CAD indicates the most energetic results, restoring the amino polysaccharide protective membrane in DTs, significantly promoting calcium and phosphorus ion deposition and bone anabolism, and regulating the levels of immunoglobulin in saliva and cellular inflammatory factors in plasma. Exposed DTs are occluded by remineralized hydroxyapatite with a depth of over 70 µm, as shown in in vitro tests. The bone mineral density of Sprague-Dawley rats' molar dentin increases by 10.96%, and the trabecular thickness of bone improves to about 0.03 µm in 2 weeks in the CAD group compared to the blank group. Overall, the ingenious concept that modified marine biomaterial can be a safe and durable therapy for DH is demonstrated by nourishing and remineralizing dentin.
Collapse
Affiliation(s)
- Bailei Li
- Department of Marine Bio-Pharmacology, Shanghai Ocean University, Shanghai, 201306, China
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314000, China
| | - Jiren Xu
- Department of Marine Bio-Pharmacology, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
| | - Ruixue Ai
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, 1478, Norway
| | - Haixing Zhang
- Department of Marine Bio-Pharmacology, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
| | - Mingjun Wei
- Department of Marine Bio-Pharmacology, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
| | - Rongqing Zhang
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314000, China
| | - Chunling Bao
- Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200235, China
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
3
|
de Farias CS, Garcez AS, Teixeira LN, Suzuki SS. In vitro effects of photobiomodulation on cell migration and gene expression of ALP, COL-1, RUNX-2, and osterix in cementoblasts. Lasers Med Sci 2023; 38:121. [PMID: 37160506 DOI: 10.1007/s10103-023-03775-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
The aim of this study was to evaluate the effects of photobiomodulation (PBM) on cell migration and alkaline phosphatase (ALP), type I collagen (Col-1), runt-related transcription factor 2 (RUNX-2), and Osterix (OSX) gene expression in a cementoblast culture (OCCM-30), in a microenvironment mimicking an injury on the cementoblast layer, such as it occurs during root resorption. For this, OCCM-30 cells were cultured in 6-well plates and the following parameters were assayed: (1) migration by scratch assay and ALP, Col-1, Runx2, and Osx by real-time PCR. PBM was performed in two protocols using a LED device emitting light at 660 nm (± 30 nm). OCCM-30 cementoblasts were grown and divided into four groups: (1) negative control; (2) positive control (scratch); (3) scratch + PBM with a total energy of 36 J and energy density 1.6 J/cm2; and (4) scratch + PBM with a total energy of 72 J and energy density of 3.2 J/cm2. Data were statistically analyzed, with the level of significance set at 5%. Cementoblasts migrated from the edge of the scratch toward the center, and the wound closed after 24 h, with the PBM3.2J/cm2 group showing the higher cell migration compared with the other groups at 2 h, 6 h, 8 h, and 13 h (p < 0.05). The control and PBM1.6J/cm2 groups showed similar levels of cell migration, with no significant differences (p > 0.05). PBM3.2J/cm2 group exhibited greater ALP, Col-1, OSX, and RUNX2 in comparison with the other experimental groups (p < 0.05). Similar levels of all genes evaluated were observed between the PBM1.6J/cm2 group and the positive control group (p > 0.05). In conclusion, our findings support the effectiveness of photobiomodulation on cementoblast migration and gene expression, which may contribute to the formation of a new cementum layer.
Collapse
Affiliation(s)
| | - Aguinaldo Silva Garcez
- Department of Oral Microbiology, Division of Oral Medicine, Faculdade São Leopoldo Mandic, Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
4
|
Hsu C, He Z, Le Henaff C, Partridge NC. Differential effects of parathyroid hormone, parathyroid hormone-related protein, and abaloparatide on collagen 1 expression by mouse cementoblasts and mouse tooth root density. Am J Orthod Dentofacial Orthop 2023; 163:378-388.e1. [PMID: 36543659 PMCID: PMC9991996 DOI: 10.1016/j.ajodo.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Parathyroid hormone (PTH) plays an important role in maintaining mineral homeostasis by regulating calcium and phosphate levels. Clinical trials have shown that peptides of PTH (1-34), PTH-related protein (PTHrP 1-36), and the new peptide modeled on PTHrP, abaloparatide, can have different anabolic effects on osteoporotic subjects, but the underlying mechanisms are still unclear. The prevalence of moderate and major gingival recession has been shown to be higher in postmenopausal women with osteoporosis. In addition, there is a significant association between osteoporosis and tooth loss. METHODS We investigated the actions of these peptides on the cementoblasts and teeth of mice. The murine cementoblast line, OCCM-30, known to express collagen I (Col1a1), was treated with intermittent PTH (1-34), PTHrP (1-36), or abaloparatide for 6 h/d for 3 days. Microcomputed tomography was performed on the teeth of mice receiving daily injections of phosphate-buffered saline, PTH (1-34), or abaloparatide. Statistical differences were analyzed by a 2-way or 1-way analysis of variance followed by a Tukey's post-hoc test. Results are expressed as mean ± standard deviation, and P <0.05 was considered significant. RESULTS Gene expression showed regulation of Bsp, Col1a1, Opg, Rankl, and Mmp13 by the 3 peptides in these cells. Western blots revealed that after intermittent treatment for 3 days, PTH (1-34) caused an increase in COL1A1 protein immediately after treatment. In contrast, abaloparatide showed a latent effect in increasing COL1A1 protein 18 hours after treatment. PTHrP had no effect on COL1A1 expression. Immunofluorescence confirmed the same result as the Western blots. Microcomputed tomography of teeth showed PTH (1-34) injections increased molar root mineral density in mice, whereas abaloparatide increased density in roots of incisors and molars. CONCLUSIONS This study reveals the differential anabolic effects of intermittent PTH (1-34), PTHrP (1-36), and abaloparatide on cementoblasts, as revealed by COL1A1 expression and root mineral density. Abaloparatide may be a potential therapeutic approach for achieving improved cementogenesis.
Collapse
Affiliation(s)
- Chingyun Hsu
- Formerly, Departments of Molecular Pathobiology and Orthodontics, New York University College of Dentistry, New York, NY; currently, Department of Orthodontics, Oregon Health Sciences University, Portland, OR
| | - Zhiming He
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY
| | - Carole Le Henaff
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY
| | - Nicola C Partridge
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY.
| |
Collapse
|
5
|
Yong J, Gröger S, von Bremen J, Meyle J, Ruf S. PD-L1, a Potential Immunomodulator Linking Immunology and Orthodontically Induced Inflammatory Root Resorption (OIIRR): Friend or Foe? Int J Mol Sci 2022; 23:ijms231911405. [PMID: 36232704 PMCID: PMC9570182 DOI: 10.3390/ijms231911405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Orthodontically induced inflammatory root resorption (OIIRR) is considered an undesired and inevitable complication induced by orthodontic forces. This inflammatory mechanism is regulated by immune cells that precede orthodontic tooth movement (OTM) and can influence the severity of OIIRR. The process of OIIRR is based on an immune response. On some occasions, the immune system attacks the dentition by inflammatory processes during orthodontic treatment. Studies on the involvement of the PD-1/PD-L1 immune checkpoint have demonstrated its role in evading immune responses, aiming to identify possible novel therapeutic approaches for periodontitis. In the field of orthodontics, the important question arises of whether PD-L1 has a role in the development of OIIRR to amplify the amount of resorption. We hypothesize that blocking of the PD-L1 immune checkpoint could be a suitable procedure to reduce the process of OIIRR during orthodontic tooth movement. This review attempts to shed light on the regulation of immune mechanisms and inflammatory responses that could influence the pathogenesis of OIIRR and to acquire knowledge about the role of PD-L1 in the immunomodulation involved in OIIRR. Possible clinical outcomes will be discussed in relation to PD-L1 expression and immunologic changes throughout the resorption process.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Correspondence: or ; Tel.: +49-641-99-46131
| | - Sabine Gröger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Julia von Bremen
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
6
|
Qu T, Lai Y, Luo Y, Pan W, Liu C, Cao Y, Hua C. Prognosis of second molars with external root resorption caused by adjacent embedded third molars. J Endod 2022; 48:1113-1120. [DOI: 10.1016/j.joen.2022.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022]
|
7
|
Modulated cementogenic genes upregulation in human buccal fat pad-derived stem cells by strontium-ranelate. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ye Y, Fang L, Li J, Wu H, Tan X, Luo H, Li X, Huang L. Chemerin/ChemR23 regulates cementoblast function and tooth resorption in mice via inflammatory factors. J Periodontol 2020; 92:1470-1482. [PMID: 33289084 DOI: 10.1002/jper.20-0675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/14/2020] [Accepted: 11/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Periodontitis and orthodontic treatment can lead to inflammatory root resorption (IRR) through an unclear mechanism. Chemerin, a novel chemoattractant protein, is closely associated with inflammation, affects osteoblast and osteoclast differentiation, and may play a role in IRR. We aimed to explore possible roles of the chemerin/ChemR23 interaction in cementoblast function and IRR and reveal a new IRR therapeutic target. METHODS Cementoblast function-related gene and protein expression in the immortalized murine cementoblast cell line OCCM-30 after treatment with chemerin and siChemR23 was examined by qRT-PCR and Western blotting.The roles of the MAPK and PI3K-Akt signaling pathways were studied using specific inhibitors. Cementoblast cytokine production under different treatment conditions was measured by ELISA and qRT-PCR. Additionally, we modeled IRR in wild-type and chemerin-overexpressing mice and injected transgenic mice with anti-ChemR23 antibody to block ChemR23. We then calculated the root resorption volume and examined periodontal tissue cathepsin K, Runx2, TNF-α, and IL-6 expression. RESULT Chemerin suppressed cementoblast differentiation and mineralization and exerted a proinflammatory effect on cementoblasts. These effects were partially reversed by siChemR23 and reversed to different extents by p38, Erk1/2 and PI3K-Akt pathway inhibition, suggesting p38, Erk1/2 and PI3K-Akt pathways as signaling pathways downstream of chemerin/ChemR23. In vivo, chemerin overexpression worsened IRR. Moreover, chemerin expression was positively correlated with TNF-α, IL-6, and cathepsin K expression and negatively correlated with Runx2 expression. ChemR23 downregulation reversed these effects. CONCLUSION Chemerin/ChemR23 induced TNF-α and IL-6 expression dependent on Erk1/2, p38 MAPK and PI3K-Akt signaling pathway activation, thereby regulating cementoblast function and affecting IRR. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yusi Ye
- College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
| | - Lingli Fang
- College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
| | - Jun Li
- Institute of Life Sciences, Chongqing Medical University
| | - Hongyan Wu
- College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
| | - Xi Tan
- College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
| | - Hong Luo
- College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University
| | - Lan Huang
- College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
| |
Collapse
|
9
|
Kim MG, Park CH. Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules 2020; 25:molecules25204802. [PMID: 33086674 PMCID: PMC7587995 DOI: 10.3390/molecules25204802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The mineralized tissues (alveolar bone and cementum) are the major components of periodontal tissues and play a critical role to anchor periodontal ligament (PDL) to tooth-root surfaces. The integrated multiple tissues could generate biological or physiological responses to transmitted biomechanical forces by mastication or occlusion. However, due to periodontitis or traumatic injuries, affect destruction or progressive damage of periodontal hard tissues including PDL could be affected and consequently lead to tooth loss. Conventional tissue engineering approaches have been developed to regenerate or repair periodontium but, engineered periodontal tissue formation is still challenging because there are still limitations to control spatial compartmentalization for individual tissues and provide optimal 3D constructs for tooth-supporting tissue regeneration and maturation. Here, we present the recently developed strategies to induce osteogenesis and cementogenesis by the fabrication of 3D architectures or the chemical modifications of biopolymeric materials. These techniques in tooth-supporting hard tissue engineering are highly promising to promote the periodontal regeneration and advance the interfacial tissue formation for tissue integrations of PDL fibrous connective tissue bundles (alveolar bone-to-PDL or PDL-to-cementum) for functioning restorations of the periodontal complex.
Collapse
Affiliation(s)
- Min Guk Kim
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Chan Ho Park
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Institute for Biomaterials Research and Development, Kyungpook National University, Daegu 41940, Korea
- Correspondence: ; Tel.: +82-53-660-6890
| |
Collapse
|
10
|
Turkkahraman H, Yuan X, Salmon B, Chen CH, Brunski JB, Helms JA. Root resorption and ensuing cementum repair by Wnt/β-catenin dependent mechanism. Am J Orthod Dentofacial Orthop 2020; 158:16-27. [DOI: 10.1016/j.ajodo.2019.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 06/01/2019] [Accepted: 06/01/2019] [Indexed: 02/02/2023]
|
11
|
Effect of interleukin-33 on cementoblast-mediated cementum repair during orthodontic tooth movement. Arch Oral Biol 2020; 112:104663. [PMID: 31986333 DOI: 10.1016/j.archoralbio.2020.104663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/04/2020] [Accepted: 01/09/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study aims to uncover the role of interleukin-33 on cementoblast-mediated cementum repair. METHODS 6-8-week-old C57BL/6 mice were used to establish the model of orthodontic tooth movement. Interleukin-33 and suppression of tumorigenicity2 (ST2) expressions were immunohistochemically detected in the periodontal tissue. In vitro, cementoblast-like (OCCM-30) cells were cultured in the presence of recombinant mouse interleukin-33 protein (rmIL-33) at a 1-14 d time frame. ST2 expressions were immunofluorescently labeled and quantitatively examined. The effects of interleukin-33 on cementoblast differentiation, mineralization and proliferation were examined by alkaline phosphatase, alizarin red staining and cell counting kit-8, respectively. To further clarify the effect of interleukin-33 on cementogenesis-related protein expressions, runt-related transcription factor 2 (RUNX2), osterix, osteopontin, bone sialoprotein(BSP), osteocalcin, osteoprotegerin (OPG) and receptor activator of NF-КB ligand (RANKL) expressions were examined by western blot. RESULTS Orthodontic load of high magnitude induces external apical root resorption, and increases interleukin-33 expression in the periodontal tissue of mice. Cells in the cementum express ST2. Interleukin-33 initially down-regulates but later recovers ST2 mRNA and protein levels in OCCM-30 cells. Interleukin-33 abates cementoblast differentiation and mineralization, and suppresses RUNX2, osterix, BSP and osteopontin expressions in OCCM-30 cells at the later stage of the culture period. Interleukin-33 enhances RANKL expression, and reduces the ratio of OPG/RANKL in OCCM-30 cells. CONCLUSION Orthodontic load of high magnitude induces interleukin-33 expression in the periodontal tissue. Interleukin-33 has a negative effect on cementogenesis via suppressing cementoblast differentiation, mineralization and cementogenesis-related protein expressions.
Collapse
|
12
|
Yang F, Wang XX, Ma D, Cui Q, Zheng DH, Liu XC, Zhang J. Effects Of Triptolide On Tooth Movement And Root Resorption In Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3963-3975. [PMID: 31819370 PMCID: PMC6883940 DOI: 10.2147/dddt.s217936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022]
Abstract
Purpose The aim of this study was to investigate the effects of triptolide on the tooth movement and root resorption in rats during orthodontic treatment. Material and methods A total of 48 male Wistar rats were divided into three groups of 16 each. The right maxillary first molars of rats were drawn mesially by closed coil nickel-titanium spring with a force of 50 g. The two experimental groups received intraperitoneal injections of triptolide for 14 days at a dose of 15 µg/kg/day and 30 µg/kg/day, respectively. The control group received vehicle injections. After 14 days, the rats were humanely killed. The amount of tooth movement was measured. Eight rats from each group were randomly chosen for analysis of the percentage of root resorption area by scanning electron microscopy. For the remaining eight rats in each group, the H&E staining, tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemistry analysis were performed. Results The amount of tooth movement and the ratio of root resorption area were significantly decreased in the triptolide-treated rats. The number of TRAP-positive cells was significantly lower in triptolide-treated groups. Moreover, the expression of nuclear factor kappa B ligand (RANKL) was reduced. In contrast, the expression of osteoprotegerin was significantly up-regulated. In the tension side, the expressions of runt-related transcription factor 2 and osteocalcin were significantly enhanced by triptolide injection. Conclusion Triptolide injection could arrest orthodontic tooth movement and reduce root resorption in rats via inhibition of osteoclastogenesis. In addition, triptolide may exert a positive effect on osteoblastogenesis.
Collapse
Affiliation(s)
- Fan Yang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Xu Xia Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Dan Ma
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Qun Cui
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - De Hua Zheng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Xiao Can Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Jun Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
13
|
Conti C, Suzuki H, Garcez AS, Suzuki SS. Effects of Photobiomodulation on Root Resorption Induced by Orthodontic Tooth Movement and RANKL/OPG Expression in Rats. Photochem Photobiol 2019; 95:1249-1257. [DOI: 10.1111/php.13107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/03/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Carolina Conti
- Department of Post‐graduate in Orthodontics São Leopoldo Mandic Institute and Research Center Campinas SP Brazil
| | - Hideo Suzuki
- Department of Post‐graduate in Orthodontics São Leopoldo Mandic Institute and Research Center Campinas SP Brazil
| | - Aguinaldo Silva Garcez
- Department of Microbiology São Leopoldo Mandic Institute and Research Center Campinas SP Brazil
| | - Selly Sayuri Suzuki
- Department of Post‐graduate in Orthodontics São Leopoldo Mandic Institute and Research Center Campinas SP Brazil
| |
Collapse
|
14
|
Hu Q, Zhou J, Xu X, Dai H. Effect of EMD on the orthodontically induced root resorption repair process in rats. J Orofac Orthop 2018; 79:83-95. [PMID: 29396597 DOI: 10.1007/s00056-017-0119-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND While different levels of root resorption may occur in orthodontic treatment, several preventive approaches have been reported. Nevertheless, little is known about the effect of enamel matrix derivative (EMD) on root repair during orthodontic tooth movement. OBJECTIVE To evaluate the effect of EMD on root resorption repair following the application of orthodontic force. MATERIALS AND METHODS A force of 100 g was exerted for 14 days on the left maxillary first molars of twenty 10-week-old Sprague-Dawley rats divided into the EMD and control groups (n = 10 per group). In the EMD group, repeatedly injection of Emdogain® was administered after the appliance was removed, while phosphate-buffered saline was administered in the control group. In vivo microcomputed tomography (CT), haematoxylin and eosin (H&E) staining, and immunohistochemistry were then used to evaluate the effect of EMD on the process of root repair. RESULTS In the EMD group, the observed decrease in root resorption crater volume and increase in both the bone volume fraction and trabecular thickness were significantly greater than those in the control group. H&E staining showed that the periodontal fibres were relatively regular in arrangement and that the surface of the cementum was smooth in the EMD group. Immunohistochemical analysis showed higher bone morphogenetic protein 2 (BMP-2) and bone sialoprotein (BSP) expression levels in the EMD group than in the control group. In addition, the osteoprotegerin (OPG) and receptor activator of NF-κB ligand (RANKL) expression levels were similar in both groups. CONCLUSION EMD enhanced the repair process following orthodontically induced root resorption in rats.
Collapse
Affiliation(s)
- Qin Hu
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Jianping Zhou
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Xiaolin Xu
- Department of Dentistry, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hongwei Dai
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
15
|
Konermann A, Jäger A, Held SAE, Brossart P, Schmöle A. In vivo and In vitro Identification of Endocannabinoid Signaling in Periodontal Tissues and Their Potential Role in Local Pathophysiology. Cell Mol Neurobiol 2017; 37:1511-1520. [PMID: 28289947 DOI: 10.1007/s10571-017-0482-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/10/2017] [Indexed: 12/22/2022]
Abstract
The endocannabinoid system (ECS) with its binding receptors CB1 and CB2 impacts multiple pathophysiologies not only limited to neuronal psychoactivity. CB1 is assigned to cerebral neuron action, whereas CB2 is mainly expressed in different non-neuronal tissues and associated with immunosuppressive effects. Based on these tissue-selective CB receptor roles, it was the aim of this study to analyze potential expression in periodontal tissues under physiological conditions and inflammatory states. In vivo, CB receptor expression was investigated on human periodontal biopsies with or without bacterial inflammation and on rat maxillae with or without sterile inflammation. In vitro analyses were performed on human periodontal ligament (PDL) cells at rest or under mechanical strain via qRT-PCR, Western blot, and immunocytochemistry. P < 0.05 was set statistical significant. In vivo, CB1 expression was significantly higher in healthy PDL structures compared to CB2 (13.5% ± 1.3 of PDL tissues positively stained; 7.1% ± 0.9). Bacterial inflammation effected decrease in CB1 (9.7% ± 2.4), but increase in CB2 (14.7% ± 2.5). In contrast, sterile inflammation caused extensive CB1 (40% ± 1.9) and CB2 (41.7% ± 2.2) accumulations evenly distributed in the tooth surrounding PDL. In vitro, CB2 was ubiquitously expressed on gene and protein level. CB1 was constitutively expressed on transcriptional level (0.41% ± 0.09), even higher than CB2 (0.29% ± 0.06), but undetectable on protein level. Analyses further revealed expression changes of both receptors in mechanically loaded PDL cells. CB1 and CB2 are varyingly expressed in periodontal tissues, both adjusted by different entities of periodontal inflammation and by mechanical stress. This indicates potential ECS function as regulatory tool in controlling of periodontal pathophysiology.
Collapse
Affiliation(s)
- Anna Konermann
- Department of Orthodontics, Medical Faculty, University of Bonn, Bonn, Germany.
| | - Andreas Jäger
- Department of Orthodontics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Stefanie A E Held
- Department of Oncology and Hematology, University of Bonn, Bonn, Germany
| | - P Brossart
- Department of Oncology and Hematology, University of Bonn, Bonn, Germany
| | - Anne Schmöle
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Konermann A, Kantarci A, Wilbert S, Van Dyke T, Jäger A. Verification of γ-Amino-Butyric Acid (GABA) Signaling System Components in Periodontal Ligament Cells In Vivo and In Vitro. Cell Mol Neurobiol 2016; 36:1353-1363. [PMID: 26865191 DOI: 10.1007/s10571-016-0335-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/25/2016] [Indexed: 12/16/2022]
Abstract
CNS key neurotransmitter γ-amino-butyric acid (GABA) and its signaling components are likewise detectable in non-neuronal tissues displaying inter alia immunomodulatory functions. This study aimed at identifying potential glutamate decarboxylase (GAD)65 and GABA receptor expression in periodontal ligament (PDL) cells in vivo and in vitro, with particular regard to inflammation and mechanical loading. Gene expression was analyzed in human PDL cells at rest or in response to IL-1ß (5 ng/ml) or TNFα (5 ng/ml) challenge via qRT-PCR. Western blot determined constitutive receptor expression, and confocal laser scanning fluorescence microscopy visualized expression changes induced by inflammation. ELISA quantified GAD65 release. Immunocytochemistry was performed for GABA component detection in vitro on mechanically loaded PDL cells, and in vivo on rat upper jaw biopsies with mechanically induced root resorptions. Statistical significance was set at p < 0.05. GABAB1, GABAB2, GABAA1, and GABAA3 were ubiquitously expressed both on gene and protein level. GABAA2 and GAD65 were undetectable in resting cells, but induced by inflammation. GABAB1 exhibited the highest basal gene expression (6.97 % ± 0.16). IL-1ß markedly increased GABAB2 on a transcriptional (57.28-fold ± 12.40) and protein level seen via fluorescence microscopy. TNFα-stimulated PDL cells released GAD65 (3.68 pg/ml ± 0.17 after 24 h, 5.77 pg/ml ± 0.65 after 48 h). Immunocytochemistry revealed GAD65 expression in mechanically loaded PDL cells. In vivo, GABA components were varyingly expressed in an inflammatory periodontal environment. PDL cells differentially express GABA signaling components and secrete GAD65. Inflammation and mechanical loading regulate these neurotransmitter molecules, which are also detectable in vivo and are potentially involved in periodontal pathophysiology.
Collapse
Affiliation(s)
- Anna Konermann
- Department of Orthodontics, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| | | | - Steven Wilbert
- Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA
| | | | - Andreas Jäger
- Department of Orthodontics, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| |
Collapse
|
17
|
Mincik J, Urban D, Timkova S. Clinical Management of Two Root Resorption Cases in Endodontic Practice. Case Rep Dent 2016; 2016:9075363. [PMID: 27648314 PMCID: PMC5018316 DOI: 10.1155/2016/9075363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/31/2016] [Accepted: 08/11/2016] [Indexed: 11/18/2022] Open
Abstract
Root resorption is a pathological process involving loss of hard dental tissues. It may occur as a consequence of dental trauma, orthodontic treatment, and bleaching, and occasionally it accompanies periodontal disease. Although the mechanism of resorption process is examined in detail, its etiology is not fully understood. Wide open apical foramen is more difficult to manage and the root canal may often overfill. In this report we present two cases of root resorption and describe means for its clinical management. We conclude that useful measure of a success or failure in managing root resorption is the persistence of the resorption process. It is a clear sign of an active ongoing inflammatory process and shows the clinical need for retreatment.
Collapse
Affiliation(s)
- Jozef Mincik
- Private Dental Practice, Vystavby 3, 040 11 Kosice, Slovakia
| | - Daniel Urban
- Mint Dental, Private Dental Practice, Ostravska 8, 040 11 Kosice, Slovakia
| | - Silvia Timkova
- Faculty of Medicine, Department of Dentistry and Maxillofacial Surgery, Pavol Jozef Safarik University, Rastislavova 43, 040 01 Kosice, Slovakia
| |
Collapse
|
18
|
Seifi M, Lotfi A, Badiee MR, Abdolazimi Z, Amdjadi P, Bargrizan M. The Effect of An Angiogenic Cytokine on Orthodontically Induced Inflammatory Root Resorption. CELL JOURNAL 2016; 18:271-80. [PMID: 27551674 PMCID: PMC4992183 DOI: 10.22074/cellj.2016.4323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/30/2015] [Indexed: 12/02/2022]
Abstract
Objective Orthodontically induced inflammatory root resorption (OIIRR) is an undesirable sequel of tooth movement after sterile necrosis that takes place in periodontal ligament due to blockage of blood vessels following exertion of orthodontic force. This study
sought to assess the effect of an angiogenic cytokine on OIIRR in rat model. Materials and Methods In this experimental animal study, 50 rats were randomly divided into 5 groups of 10 each: E10, E100 and E1000 receiving an injection of 10, 100
and 1000 ng of basic fibroblast growth factor (bFGF), respectively, positive control group
(CP) receiving an orthodontic appliance and injection of phosphate buffered saline (PBS)
and the negative control group (CN) receiving only the anesthetic agent. A nickel titanium
coil spring was placed between the first molar and the incisor on the right side of maxilla.
Twenty-one days later, the rats were sacrificed. Histopathological sections were made to
assess the number and area of resorption lacunae, number of blood vessels, osteoclasts
and Howship’s lacunae. Data were statistically analyzed using ANOVA and Tukey’s honest significant difference (HSD) test. Results Number of resorption lacunae and area of resorption lacunae in E1000 (0.97 ± 0.80 and 1. 27 ± 0.01×10-3, respectively) were significantly lower than in CP (4.17 ± 0.90
and 2.77 ± 0.01×10-3, respectively, P=0.000). Number of blood vessels, osteoclasts and
Howship’s lacunae were significantly higher in E1000 compared to CP (P<0.05). Conclusion Tooth movement as the outcome of bone remodeling is concomitant with
the formation of sterile necrosis in the periodontal ligament following blocked blood supply. Thus, bFGF can significantly decrease the risk of root resorption by providing more
oxygen and angiogenesis.
Collapse
Affiliation(s)
- Massoud Seifi
- Department of Orthodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Lotfi
- Department of Oral and Maxillofacial Pathology, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Badiee
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Zahra Abdolazimi
- Department of Pedodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Amdjadi
- Department of Dental Materials, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Bargrizan
- Department of Pedodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4864195. [PMID: 27119080 PMCID: PMC4828521 DOI: 10.1155/2016/4864195] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022]
Abstract
Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resorption. Following root resorption there is repair by cellular cementum, but factors mediating the transition from resorption to repair are not clear. In this paper we review some of the biological events associated with orthodontically induced external root resorption.
Collapse
|
20
|
Xu X, Zhou J, Yang F, Wei S, Dai H. Using Micro-Computed Tomography to Evaluate the Dynamics of Orthodontically Induced Root Resorption Repair in a Rat Model. PLoS One 2016; 11:e0150135. [PMID: 26930605 PMCID: PMC4773112 DOI: 10.1371/journal.pone.0150135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 02/09/2016] [Indexed: 01/16/2023] Open
Abstract
Objective To observe dynamic changes in root resorption repair, tooth movement relapse and alveolar bone microstructure following the application of orthodontic force. Materials and Methods Forces of 20 g, 50 g or 100 g were delivered to the left maxillary first molars of fifteen 10-week-old rats for 14 days. Each rat was subjected to micro-computed tomography scanning at 0, 3, 7, 10, 14, 28 and 42 days after force removal. The root resorption crater volume, tooth movement relapse and alveolar bone microarchitecture were measured at each time point. Results From day 3 to day 14, the root resorption volume decreased significantly in each group. In the 20-g force group, the root resorption volume gradually stabilized after 14 days, whereas in the 50-g and 100-g force groups, it stabilized after 28 days. In all groups, tooth movement relapsed significantly from day 0 to day 14 and then remained stable. From day 3 to day 10, the 20-g group exhibited faster relapse than the 50-g and 100-g groups. In all groups, the structure model index and trabecular separation decreased slowly from day 0 to day 10 and eventually stabilized. Trabecular number increased slowly from day 0 to day 7 and then stabilized. Conclusions The initial stage of root resorption repair did not change significantly and was followed by a dramatic repair period before stabilizing. The most serious tooth movement relapse occurred immediately after the appliance was removed, and then the tooth completely returned to the original position.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Jianping Zhou
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Fengxue Yang
- Department of Pediatric Dentistry, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Shicheng Wei
- Department of Prosthodontics, School and Hospital of 7 Stomatology, Peking University, Beijing, China
| | - Hongwei Dai
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- * E-mail:
| |
Collapse
|
21
|
Korb K, Katsikogianni E, Zingler S, Daum E, Lux CJ, Hohenstein A, Erber R. Inhibition of AXUD1 attenuates compression-dependent apoptosis of cementoblasts. Clin Oral Investig 2016; 20:2333-2341. [DOI: 10.1007/s00784-016-1740-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/26/2016] [Indexed: 01/07/2023]
|
22
|
Gomes Rodrigues H, Šumbera R. Dental peculiarities in the silvery mole-rat: an original model for studying the evolutionary and biological origins of continuous dental generation in mammals. PeerJ 2015; 3:e1233. [PMID: 26401449 PMCID: PMC4579028 DOI: 10.7717/peerj.1233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 08/18/2015] [Indexed: 11/20/2022] Open
Abstract
Unravelling the evolutionary and developmental mechanisms that have impacted the mammalian dentition, since more than 200 Ma, is an intricate issue. Interestingly, a few mammal species, including the silvery mole-rat Heliophobius argenteocinereus, are able to replace their dentition by the addition of supernumerary molars at the back of jaw migrating then toward the front. The aim here was to demonstrate the potential interest of further studying this rodent in order to better understand the origins of continuous dental replacement in mammals, which could also provide interesting data concerning the evolution of limited dental generation occurring in first mammals. In the present study, we described the main stages of the dental eruptive sequence in the silvery mole-rat and the associated characteristics of horizontal replacement using X-ray microtomography. This was coupled to the investigation of other African mole-rats which have no dental replacement. This method permitted to establish evidence that the initial development of the dentition in Heliophobius is comparable to what it is observed in most of African mole-rats. This rodent first has premolars, but then identical additional molars, a mechanism convergent to manatees and the pygmy rock-wallaby. Evidence of continuous replacement and strong dental dynamics were also illustrated in Heliophobius, and stressed the need to deeply investigate these aspects for evolutionary, functional and developmental purposes. We also noticed that two groups of extinct non-mammalian synapsids convergently acquired this dental mechanism, but in a way differing from extant mammals. The discussion on the diverse evolutionary origins of horizontal dental replacement put emphasis on the necessity of focusing on biological parameters potentially involved in both continuous and limited developments of teeth in mammals. In that context, the silvery mole-rat could appear as the most appropriate candidate to do so.
Collapse
Affiliation(s)
- Helder Gomes Rodrigues
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P), UMR CNRS 7207, Museum national d'Histoire naturelle, Université Paris 6 , Paris , France
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia , České Budějovice , Czech Republic
| |
Collapse
|
23
|
The effects of low-level laser therapy on orthodontically induced root resorption. Lasers Med Sci 2015; 30:2067-76. [PMID: 25633918 DOI: 10.1007/s10103-015-1717-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 01/12/2015] [Indexed: 01/13/2023]
Abstract
The aim of this study was to evaluate the preventive and/or reparative effects of low-level laser therapy (LLLT) on orthodontically induced inflammatory root resorption (OIIRR) in rats. Thirty rats were divided into four groups (short-term control (SC), short-term laser (SL), long-term control (LC), long-term laser (LL)). In all groups, the left first molar was moved mesially for 11 days. At the end of this period, the rats in groups SC and SL were killed in order to observe the resorption lacunas and to evaluate whether LLLT had any positive effect on root resorption. The groups LC and LL were remained for a healing period of 14 days in order to observe spontaneous repair of the resorption areas and investigate whether LLLT had reparative effects on root resorption. A Ga-Al-As diode laser (Doris, CTL-1106MX, Warsaw, Poland) with a wavelength of 820 nm was used. In SL group, the first molars were irradiated with the dose of 4.8 J/cm2 (50 mW, 12 s, 0.6 J) on every other day during force application. In LL group, the irradiation period was started on the day of appliance removal and the first molars were irradiated with the dose of 4.8 J/cm2 on every other day for the next 14 days. LLLT significantly increased the number of osteoblasts and fibroblasts, and inflammatory response in SL group in comparison with SC group (P = .001). The amount of resorption did not represent any difference between the two groups (P = .16). In LL group, LLLT significantly increased the number of fibroblasts and decreased the amount of resorption in comparison with LC group (P = .001; P = .02). Both parameters indicating the reparative and the resorptive processes were found to be increased by LLLT applied during orthodontic force load. LLLT applied after termination of the orthodontic force significantly alleyed resorption and enhanced/accelerated the healing of OIIRR. LLLT has significant reparative effects on OIIRR while it is not possible to say that it definitely has a preventive effect.
Collapse
|
24
|
Compression of human primary cementoblasts leads to apoptosis. J Orofac Orthop 2014; 75:430-45. [DOI: 10.1007/s00056-014-0237-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/04/2014] [Indexed: 12/31/2022]
|
25
|
Strontium promotes cementoblasts differentiation through inhibiting sclerostin expression in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:487535. [PMID: 25003114 PMCID: PMC4070504 DOI: 10.1155/2014/487535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/13/2014] [Accepted: 04/12/2014] [Indexed: 11/18/2022]
Abstract
Cementogenesis, performed by cementoblasts, is important for the repair of root resorption caused by orthodontic treatment. Based on recent studies, strontium has been applied for osteoporosis treatment due to its positive effect on osteoblasts. Although promising, the effect of strontium on cementoblasts is still unclear. So the aim of this research was to clarify and investigate the effect of strontium on cementogenesis via employing cementoblasts as model. A series of experiments including MTT, alkaline phosphatase activity, gene analysis, alizarin red staining, and western blot were carried out to evaluate the proliferation and differentiation of cementoblasts. In addition, expression of sclerostin was checked to analyze the possible mechanism. Our results show that strontium inhibits the proliferation of cementoblasts with a dose dependent manner; however, it can promote the differentiation of cementoblasts via downregulating sclerostin expression. Taking together, strontium may facilitate cementogenesis and benefit the treatment of root resorption at a low dose.
Collapse
|
26
|
Klemm C, Dommisch H, Göke F, Kreppel M, Jepsen S, Rolf F, Dommisch K, Perner S, Standop J. Expression profiles for 14-3-3 zeta and CCL20 in pancreatic cancer and chronic pancreatitis. Pathol Res Pract 2014; 210:335-41. [DOI: 10.1016/j.prp.2014.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 11/10/2013] [Accepted: 01/13/2014] [Indexed: 12/17/2022]
|
27
|
Konermann A, Götz W, Wohlleber D, Knolle P, Deschner J, Jäger A. Osteoimmunological mechanisms involved in orthodontically and bacterially induced periodontal stress. J Orofac Orthop 2013; 73:430-9. [PMID: 23001185 DOI: 10.1007/s00056-012-0102-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Orthodontic tooth movement is known to cause sterile inflammation of the periodontal ligament (PDL). It may also be accompanied by pathological effects of external apical root resorption, with interindividual differences in the incidence and extent of resorption. An involvement of autoimmunological mechanisms is currently under discussion. This study aimed to improve our understanding of similarities between the inflammatory mechanisms underlying the pathophysiology of periodontitis and root resorption. MATERIALS AND METHODS Human PDL cells were stimulated with interleukin (IL)-1β/IL-17A/IFN-γ, or left non-stimulated. Their potential for phagocytosis was then evaluated by incubation with dextran or E. coli or S. aureus particles, followed by flow cytometric and immunohistochemical analysis. Real-time polymerase chain reaction (PCR) was used to analyze receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) expression in PDL cells. Verification was obtained in vivo by studying IL-17A, RANKL, and OPG expression in biopsies of inflamed periodontal tissues and in biopsies of rat maxillae with mechanically induced root resorption. Statistical analysis included Wilcoxon's rank sum test to analyze gene expression data and one-way ANOVA in conjunction with Tukey's post hoc test to analyze flow cytometric data. RESULTS PDL cells phagocytosed foreign particles under both inflammatory and non-inflammatory conditions. Furthermore, IL-17A significantly downregulated RANKL expression while significantly upregulating OPG expression in PDL cells. These immunomodulatory cytokines were also demonstrable in both inflammatorily altered periodontal tissues and root resorption lacunae, while the incidence of IL-7A was strikingly variable in resorption areas. CONCLUSION PDL cells were demonstrated to effect phagocytosis and to express immunomodulatory molecules, which proves their capability of participating in periodontal osteoimmunological processes. The development of root resorption and periodontitis appears to be governed by similar pathophysiological mechanisms.
Collapse
Affiliation(s)
- A Konermann
- Department of Orthodontics, University of Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Bao X, Liu Y, Han G, Zuo Z, Hu M. The effect on proliferation and differentiation of cementoblast by using sclerostin as inhibitor. Int J Mol Sci 2013; 14:21140-52. [PMID: 24152444 PMCID: PMC3821662 DOI: 10.3390/ijms141021140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022] Open
Abstract
Cementogenesis is of great importance for normal teeth root development and is involved in the repair process of root resorption caused by orthodontic treatment. As highly differentiated mesenchymal cells, cementoblasts are responsible for this process under the regulation of many endogenous agents. Among these molecules, sclerostin has been much investigated recently for its distinct antagonism effect on bone metabolism. Encoded by the sost gene, sclerostin is expressed in osteocytes and cementocytes of cellular cementum. it is still unclear. In the current study, we investigated the effects of sclerostin on the processes of proliferation and differentiation; a series of experiments including MTT, apoptosis examination, alkaline phosphatase (ALP) activity, gene analysis, and alizarin red staining were carried out to evaluate the proliferation and differentiation of cementoblasts. Protein expression including osteoprotegerin (OPG) and receptor activator of nuclear factor kappa B ligand (RANKL) were also checked to analyze changes in osteoclastogenesis. Results show that sclerostin inhibits cementoblasts proliferation and differentiation, and promotes osteoclastogenesis. Interestingly, the monoclonal antibody for sclerostin has shown positive effects on osteoporosis, indicating that it may facilitate cementogenesis and benefit the treatment of cementum related diseases.
Collapse
Affiliation(s)
- Xingfu Bao
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun 130021, China; E-Mail:
| | - Yuyan Liu
- Department of Endodontics, School of Stomatology, Jilin University, Changchun 130021, China; E-Mails: (Y.L.); (G.H.)
| | - Guanghong Han
- Department of Endodontics, School of Stomatology, Jilin University, Changchun 130021, China; E-Mails: (Y.L.); (G.H.)
| | - Zhigang Zuo
- Department of Orthodontics, School of Stomatology, Tianjin Medical University, Tianjin 300014, China; E-Mail:
| | - Min Hu
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun 130021, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-431-88796023; Fax: +86-431-88955228
| |
Collapse
|
29
|
Sonmez AB, Castelnuovo J. Applications of basic fibroblastic growth factor (FGF-2, bFGF) in dentistry. Dent Traumatol 2013; 30:107-11. [PMID: 24118861 DOI: 10.1111/edt.12071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2013] [Indexed: 11/29/2022]
Abstract
Recent developments in research have been based on the maintenance and regeneration of natural organs and tissues; among such developments is the use of growth factors (GFs). The use of basic fibroblastic growth factors (bFGF) may be indicated in different disciplines of dentistry such as periodontics and dental traumatology. These cells' ability to induce proliferation and differentiation of cells may make GFs a useful source for the development of natural structures. This mini-review will discuss how bFGF can be beneficial to dentistry in relation to 1) re-implantation/autotransplantation of avulsed teeth and 2) periodontal regeneration.
Collapse
Affiliation(s)
- Ayse B Sonmez
- Department of Pediatric Dentistry, School of Dentistry, University of Rome - La Sapienza, Rome, Italy; Private Practice, Rome, Italy
| | | |
Collapse
|
30
|
Gomes Rodrigues H, Solé F, Charles C, Tafforeau P, Vianey-Liaud M, Viriot L. Evolutionary and biological implications of dental mesial drift in rodents: the case of the Ctenodactylidae (Rodentia, Mammalia). PLoS One 2012. [PMID: 23185576 PMCID: PMC3503976 DOI: 10.1371/journal.pone.0050197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dental characters are importantly used for reconstructing the evolutionary history of mammals, because teeth represent the most abundant material available for the fossil species. However, the characteristics of dental renewal are presently poorly used, probably because dental formulae are frequently not properly established, whereas they could be of high interest for evolutionary and developmental issues. One of the oldest rodent families, the Ctenodactylidae, is intriguing in having longstanding disputed dental formulae. Here, we investigated 70 skulls among all extant ctenodactylid genera (Ctenodactylus, Felovia, Massoutiera and Pectinator) by using X-ray conventional and synchrotron microtomography in order to solve and discuss these dental issues. Our study clearly indicates that Massoutiera, Felovia and Ctenodactylus differ from Pectinator not only by a more derived dentition, but also by a more derived eruptive sequence. In addition to molars, their dentition only includes the fourth deciduous premolars, and no longer bears permanent premolars, conversely to Pectinator. Moreover, we found that these premolars are lost during adulthood, because of mesial drift of molars. Mesial drift is a striking mechanism involving migration of teeth allowed by both bone remodeling and dental resorption. This dental innovation is to date poorly known in rodents, since it is only the second report described. Interestingly, we noted that dental drift in rodents is always associated with high-crowned teeth favoring molar size enlargement. It can thus represent another adaptation to withstand high wear, inasmuch as these rodents inhabit desert environments where dust is abundant. A more accurate study of mesial drift in rodents would be very promising from evolutionary, biological and orthodontic points of view.
Collapse
Affiliation(s)
- Helder Gomes Rodrigues
- Team “Evo-Devo of Vertebrate Dentition”, Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242 Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- * E-mail: (HGR); (LV)
| | - Floréal Solé
- Team “Evo-Devo of Vertebrate Dentition”, Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242 Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Cyril Charles
- Team “Evo-Devo of Vertebrate Dentition”, Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242 Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Monique Vianey-Liaud
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier, Unité Mixte de Recherche 5554 Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier, France
| | - Laurent Viriot
- Team “Evo-Devo of Vertebrate Dentition”, Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242 Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- * E-mail: (HGR); (LV)
| |
Collapse
|
31
|
Wolf M, Lossdörfer S, Abuduwali N, Jäger A. Potential role of high mobility group box protein 1 and intermittent PTH (1-34) in periodontal tissue repair following orthodontic tooth movement in rats. Clin Oral Investig 2012; 17:989-97. [PMID: 22777389 DOI: 10.1007/s00784-012-0777-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/21/2012] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Recent studies indicate that high mobility group box protein 1 (HMGB1) can be released by necrotic and damaged cells and functions as an alarmin that is recognized by the innate immune system. Little is known about the role of HMGB1 within the periodontal ligament (PDL). Therefore, we examined HMGB1 expression by PDL cells in vitro and compared the findings to an in vivo model of orthodontically induced tooth root resorption. In addition, we addressed the question of whether a potentially anabolic intermittent administration of parathyroid hormone (iPTH) would modulate the expression of HMGB1. MATERIALS AND METHODS In confluent PDL cell cultures, HMGB1 messenger RNA (mRNA) expression was quantified by real-time polymerase chain reaction. In a rat model comprising 25 animals, mechanical loading for 5 days was followed by administration of either iPTH (1-34) systemically or sham injections for up to 56 days. HMGB1 expression was determined by means of immunohistochemistry and histomorphometry. RESULTS The in vitro experiments revealed an inhibitory effect of iPTH on basal HMGB1 mRNA expression in confluent PDL cells. In vivo, the mechanical force-induced enhanced HMGB1 protein expression declined time dependently. Intermittent PTH further inhibited HMGB1 expression. The significantly higher basal HMGB1 protein expression in the former compression side was followed by a more pronounced time- and iPTH-dependent decline in the same area. CONCLUSIONS These data indicate a major role for HMGB1 in the regulation of PDL wound healing following mechanical load-induced tissue injury. CLINICAL RELEVANCE The findings point to the potential benefit of iPTH in the attempt to support these immune-associated reparative processes.
Collapse
Affiliation(s)
- M Wolf
- Department of Orthodontics, Dental Clinic, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | | | | | | |
Collapse
|
32
|
Diercke K, König A, Kohl A, Lux C, Erber R. Human primary cementoblasts respond to combined IL-1β stimulation and compression with an impaired BSP and CEMP-1 expression. Eur J Cell Biol 2012; 91:402-12. [DOI: 10.1016/j.ejcb.2011.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 10/28/2022] Open
|
33
|
Zhao N, Liu Y, Kanzaki H, Liang W, Ni J, Lin J. Effects of local osteoprotegerin gene transfection on orthodontic root resorption during retention: an in vivo micro-CT analysis. Orthod Craniofac Res 2012; 15:10-20. [DOI: 10.1111/j.1601-6343.2011.01532.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Imaging an adapted dentoalveolar complex. ANATOMY RESEARCH INTERNATIONAL 2012; 2012:782571. [PMID: 22567314 PMCID: PMC3335703 DOI: 10.1155/2012/782571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/19/2011] [Indexed: 12/21/2022]
Abstract
Adaptation of a rat dentoalveolar complex was illustrated using various imaging modalities. Micro-X-ray computed tomography for 3D modeling, combined with complementary techniques, including image processing, scanning electron microscopy, fluorochrome labeling, conventional histology (H&E, TRAP), and immunohistochemistry (RANKL, OPN) elucidated the dynamic nature of bone, the periodontal ligament-space, and cementum in the rat periodontium. Tomography and electron microscopy illustrated structural adaptation of calcified tissues at a higher resolution. Ongoing biomineralization was analyzed using fluorochrome labeling, and by evaluating attenuation profiles using virtual sections from 3D tomographies. Osteoclastic distribution as a function of anatomical location was illustrated by combining histology, immunohistochemistry, and tomography. While tomography and SEM provided past resorption-related events, future adaptive changes were deduced by identifying matrix biomolecules using immunohistochemistry. Thus, a dynamic picture of the dentoalveolar complex in rats was illustrated.
Collapse
|
35
|
Noguchi M, Tominaga K, Tanaka A, Ueda M. Hard tissue formation induced by synthetic oligopeptide derived from an enamel matrix derivative. ACTA ACUST UNITED AC 2012. [DOI: 10.3353/omp.16.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Winter BU, Stenvik A, Vandevska-Radunovic V. Dynamics of orthodontic root resorption and repair in human premolars: a light microscopy study. Eur J Orthod 2009; 31:346-51. [DOI: 10.1093/ejo/cjp020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
37
|
Lossdörfer S, Yildiz F, Götz W, Kheralla Y, Jäger A. Anabolic effect of intermittent PTH(1-34) on the local microenvironment during the late phase of periodontal repair in a rat model of tooth root resorption. Clin Oral Investig 2009; 14:89-98. [PMID: 19280233 DOI: 10.1007/s00784-009-0263-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/25/2009] [Indexed: 12/29/2022]
Abstract
This study examined the histological changes and possible effects of intermittent parathyroid hormone (PTH) (1-34) treatment during the early and late phase of periodontal repair in a rat model of tooth root resorption. In a total of 70 animals, which either received intermittent PTH(1-34) systemically or sham injections for up to 70 days after discontinuation of an orthodontic force, histological characteristics were correlated to time-dependent distinct expression patterns of osteoprotegerin and receptor activator of nuclear factor kappaB ligand by PDL cells in the former compression and tension side of tooth movement by means of immunohistochemistry and histomorphometrical analysis. The balance of these key regulators of bone remodeling was demonstrated to be shifted in favor of hard tissue repair by intermittent PTH administration, which was demonstrated to exert anabolic effects in several cell culture and animal experiments as well as in humans, in the late phase of repair. These data indicate a role for PDL cells as potent regulators of periodontal repair by modifying the local microenvironment and point to the anabolic potential of an intermittent PTH administration to support these reparative processes.
Collapse
Affiliation(s)
- S Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Welschnonnenstrasse 17, Bonn, Germany.
| | | | | | | | | |
Collapse
|