1
|
Mutation-oriented profiling of autoinhibitory kinase conformations predicts RAF inhibitor efficacies. Proc Natl Acad Sci U S A 2020; 117:31105-31113. [PMID: 33229534 PMCID: PMC7733820 DOI: 10.1073/pnas.2012150117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kinase-targeted therapies have the potential to improve the survival of patients with cancer. However, the cancer-specific spectrum of kinase alterations exhibits distinct functional properties and requires mutation-oriented drug treatments. Besides post-translational modifications and diverse intermolecular interactions of kinases, it is the distinct disease mutation which reshapes full-length kinase conformations, affecting their activity. Oncokinase mutation profiles differ between cancer types, as it was shown for BRAF in melanoma and non-small-cell lung cancers. Here, we present the target-oriented application of a kinase conformation (KinCon) reporter platform for live-cell measurements of autoinhibitory kinase activity states. The bioluminescence-based KinCon biosensor allows the tracking of conformation dynamics of full-length kinases in intact cells and real time. We show that the most frequent BRAF cancer mutations affect kinase conformations and thus the engagement and efficacy of V600E-specific BRAF inhibitors (BRAFi). We illustrate that the patient mutation harboring KinCon reporters display differences in the effectiveness of the three clinically approved BRAFi vemurafenib, encorafenib, and dabrafenib and the preclinical paradox breaker PLX8394. We confirmed KinCon-based drug efficacy predictions for BRAF mutations other than V600E in proliferation assays using patient-derived lung cancer cell lines and by analyzing downstream kinase signaling. The systematic implementation of such conformation reporters will allow to accelerate the decision process for the mutation-oriented RAF-kinase cancer therapy. Moreover, we illustrate that the presented kinase reporter concept can be extended to other kinases which harbor patient mutations. Overall, KinCon profiling provides additional mechanistic insights into full-length kinase functions by reporting protein-protein interaction (PPI)-dependent, mutation-specific, and drug-driven changes of kinase activity conformations.
Collapse
|
2
|
Tang X, Chen Z, Deng M, Wang L, Nie Q, Xiang JW, Xiao Y, Yang L, Liu Y, Li DWC. The Sumoylation Modulated Tumor Suppressor p53 Regulates Cell Cycle Checking Genes to Mediate Lens Differentiation. Curr Mol Med 2019; 18:556-565. [PMID: 30636605 DOI: 10.2174/1566524019666190111154450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The tumor suppressor p53 is a master regulator of apoptosis and also plays a key role in cell cycle checking. In our previous studies, we demonstrated that p53 directly regulates Bak in mouse JB6 cells and that p53-Bak signaling axis plays an important role in mediating EGCG-induced apoptosis. Furthermore, we have recently demonstrated that the same p53-Bak apoptotic signaling axis executes an essential role in regulating lens cell differentiation. In addition, we have also shown that p53 controls both transcription factors, C-Maf and Prox-1 as well as lens crystallin genes, αA, β- and γ-crystallins. Here, we have examined whether p53 also regulates other known target genes during its modulation of lens differentiation. The human and mouse lens epithelial cells, FHL124 and αTN4-1 were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (FBS) and 1% Penicillin-Streptomycin. METHODS Mice used in this study were handled in compliance with the "Protocol for the Care and Use of Laboratory Animals" (Sun Yat-sen University). Adult mice were used for the collection of lens cells. These samples were used for extraction of total proteins. A total of 32 embryonic mice {8 at 14.5 ED, 8 at 17.5 ED and 8 newborns for wild type} were used for immunohistochemistry, which were used for co-localization study. The mRNA levels were analysed with qRT-PCR. The protein levels were determined with western blot analysis and quantitated with Image J. RESULTS Immunohistochemistry revealed that both the cell cycle checking genes, p21 and Gadd45α and the apoptotic genes, Bcl-2 and PUMA, display developmental changes associated with p53 during mouse lens development. Knockdown of p53 in the mouse lens epithelial cells caused inhibition of lens differentiation. Associated with this inhibition, the cell cycle genes displayed significant downreglation, the apoptotic genes was also attenuated but to a much less degree. In addition, we found that bFGF can induce dose-dependent upregulation of the upstream kinases, CHK1/2 and ERK1/2, both known to phosphorylate p53 and activate the later. Furthermore, We showed that in both developing lens and human lens epithelial cells, p53 can be co-localized with the catalytic subunit of the protein phoshphatase-1 (PP-1), suggesting that PP-1 regulates p53 phosphorylation status both in vivo and in vitro. CONCLUSION Taken together, our results suggest that during mouse lens development, p53 activity is regulated by ERK and CHK kinases-mediated activation, and by PP-1-mediated inactivation. p53 can regulate multiple groups of genes to mediate lens differentiation.
Collapse
Affiliation(s)
- Xiangcheng Tang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhigang Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Mi Deng
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yizhi Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| |
Collapse
|
3
|
Ingley E. Integrating novel signaling pathways involved in erythropoiesis. IUBMB Life 2012; 64:402-10. [PMID: 22431075 DOI: 10.1002/iub.1024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 02/14/2012] [Indexed: 12/17/2022]
Abstract
Many extrinsic and intrinsic factors control the development of red blood cells from committed progenitors, with the Erythropoietin-receptor (Epo-R) signaling network being the primary controlling molecular hub. Although much is understood about erythroid signaling pathways, new and intriguing factors that influence different aspects of erythroid cell development are still being uncovered. New extrinsic effectors include hypoxia and polymeric IgA1 (pIgA1), and new Epo-R signaling pathway components include Lyn/Cbp and Lyn/Liar. Hypoxia directly activates committed erythroid progenitors to expand, whereas pIgA1 activates the Akt and MAP-Kinase (MAPK) pathways through transferrin receptors on more mature erythroid cells. The Lyn/Cbp pathway controls the activity and protein levels of Lyn through recruitment of Csk and SOCS1, as well as feeding into the control of other pathways mediated by recruitment of ras-GAP, PI3-kinase, PLCγ, Fes, and EBP50. Nuclear/cytoplasmic shuttling of Lyn and other signaling molecules is influenced by Liar and results in regulation of their intersecting signaling pathways. The challenge of future research is to flesh out the details of these new signaling regulators/networks and integrate their influences during the different stages of erythropoiesis.
Collapse
Affiliation(s)
- Evan Ingley
- Cell Signalling Group, Western Australian Institute for Medical Research, Centre for Medical Research and The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
4
|
Kustikova O, Brugman M, Baum C. The genomic risk of somatic gene therapy. Semin Cancer Biol 2010; 20:269-78. [DOI: 10.1016/j.semcancer.2010.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 06/02/2010] [Accepted: 06/24/2010] [Indexed: 01/08/2023]
|
5
|
Spi-1 and Fli-1 directly activate common target genes involved in ribosome biogenesis in Friend erythroleukemic cells. Mol Cell Biol 2009; 29:2852-64. [PMID: 19289502 DOI: 10.1128/mcb.01435-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Spi-1 and Fli-1 are ETS transcription factors recurrently deregulated in mouse erythroleukemia induced by Friend viruses. Since they share the same core DNA binding site, we investigated whether they may contribute to erythroleukemia by common mechanisms. Using inducible knockdown, we demonstrated that Fli-1 contributes to proliferation, survival, and differentiation arrest of erythroleukemic cells harboring an activated fli-1 locus. Similarly, we used inducible Fli-1 knockdown and either hexamethylenebisacetamide (HMBA)- or small interfering RNA-mediated Spi-1 knockdown to investigate their respective contributions in erythroleukemic cells harboring an activated spi-1 locus. In these cells, simple or double knockdown of both Spi-1 and Fli-1 additively contributed to induce proliferation arrest and differentiation. Transcriptome profiling revealed that virtually all transcripts affected by both Fli-1 knockdown and HMBA are affected in an additive manner. Among these additively downregulated transcripts, more than 20% encode proteins involved in ribosome biogenesis, and conserved ETS binding sites are present in their gene promoters. Through chromatin immunoprecipitation, we demonstrated the association of Spi-1 and Fli-1 on these promoters in Friend erythroleukemic cells. These data lead us to propose that the oncogenicity of Spi-1, Fli-1, and possibly other ETS transcription factors may involve their ability to stimulate ribosome biogenesis.
Collapse
|
6
|
Moreau-Gachelin F. Multi-stage Friend murine erythroleukemia: molecular insights into oncogenic cooperation. Retrovirology 2008; 5:99. [PMID: 18983647 PMCID: PMC2585586 DOI: 10.1186/1742-4690-5-99] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/04/2008] [Indexed: 12/21/2022] Open
Abstract
The Friend virus SFFV (Spleen Focus Forming Virus) provokes an acute erythroblastosis in susceptible strains of mice that progresses to overt erythroleukemia by a multi-step process. For virologists, the Friend virus-induced disease has provided deep insights into the host mechanisms influencing susceptibility to retroviral infection and viremia. These insights have contributed to the understanding of HIV and other human retroviral infections. For cell biologists and oncologists, this leukemia has been a powerful experimental model to identify critical oncogenes involved in a multi-stage process, to understand the contribution of host genes to cancer development, and to investigate the mechanisms leading to cell growth autonomy. This model also provided an example of oncogenic reversion since Friend tumor cells can reinitiate their erythroid differentiation program when exposed in vitro to some chemical inducers. This review highlights recent findings demonstrating that the leukemic progression depends on the cooperation of at least two oncogenic events, one interfering with differentiation and one conferring a proliferative advantage. The Friend model of leukemia progression recapitulates the two phases of human acute myeloid leukemia (AML). Coupling of insights from studies on the Friend erythroleukemia with knowledge on AML might allow a better understanding of the molecular mechanisms involved in the evolution of leukemia in mice and men.
Collapse
|
7
|
Fernández-Nestosa MJ, Hernández P, Schvartzman JB, Krimer DB. PU.1 is dispensable to block erythroid differentiation in Friend erythroleukemia cells. Leuk Res 2007; 32:121-30. [PMID: 17586044 DOI: 10.1016/j.leukres.2007.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 01/29/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Friend murine erythroleukemia cell lines derive from erythroblasts transformed with the Friend complex where the spleen-focus forming virus integrated in the vicinity of the Sfpi-1 locus. Erythroleukemia cells do not differentiate and grow indefinitely in the absence of erythropoietin. Activation of the transcription factor PU.1, encoded by the Sfpi-1 gene, is thought to be responsible for the transformed phenotype. These cells can overcome the blockage and reinitiate their differentiation program when exposed to some chemical inducers such as hexamethylene bisacetamide. In this study, we established cell cultures that were capable to proliferate unconstrained in the presence of the inducer. Resistant cell lines restart erythroid differentiation, though, if forced to exit the cell cycle or by overexpressing the transcription factor GATA-1. Unexpectedly, expression of PU.1 was suppressed in the resistant clones albeit the spleen-focus forming virus was still integrated in the proximity of the Sfpi-1 locus. Exposure to 5-Aza-2'-deoxycytidine activates PU.1 expression suggesting that the PU.1 coding gene is highly methylated in the resistant cells. Altogether these results suggest that PU.1 is dispensable to block erythroid differentiation.
Collapse
Affiliation(s)
- María José Fernández-Nestosa
- Department of Cell and Developmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040-Madrid, Spain
| | | | | | | |
Collapse
|
8
|
Rimmelé P, Kosmider O, Mayeux P, Moreau-Gachelin F, Guillouf C. Spi-1/PU.1 participates in erythroleukemogenesis by inhibiting apoptosis in cooperation with Epo signaling and by blocking erythroid differentiation. Blood 2007; 109:3007-14. [PMID: 17132716 DOI: 10.1182/blood-2006-03-006718] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of the transcription factor Spi-1/PU.1 in mice leads to acute erythroleukemia characterized by a differentiation block at the proerythroblastic stage. In this study, we made use of a new cellular system allowing us to reach graded expression of Spi-1 in preleukemic cells to dissect mechanisms of Spi-1/ PU-1 in erythroleukemogenesis. This system is based on conditional production of 1 or 2 spi-1-interfering RNAs stably inserted into spi-1 transgenic proerythroblasts. We show that Spi-1 knock-down was sufficient to reinstate the erythroid differentiation program. This differentiation process was associated with an exit from the cell cycle. Evidence is provided that in the presence of erythropoietin (Epo), Spi-1 displays an antiapoptotic role that is independent of its function in blocking erythroid differentiation. Apoptosis inhibited by Spi-1 did not involve activation of the Fas/FasL signaling pathway nor a failure to activate Epo receptor (EpoR). Furthermore, we found that reducing the Spi-1 level yields to ERK dephosphorylation and increased phosphorylation of AKT and STAT5, suggesting that Spi-1 may affect major signaling pathways downstream of the EpoR in erythroid cells. These findings reveal 2 distinct roles for Spi-1 during erythroleukemogenesis: Spi-1 blocks the erythroid differentiation program and acts to impair apoptotic death in cooperation with an Epo signaling.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Base Sequence
- Cell Cycle/physiology
- Cell Differentiation
- Erythroblasts/pathology
- Erythroblasts/physiology
- Erythropoiesis/physiology
- Erythropoietin/physiology
- Humans
- Leukemia, Erythroblastic, Acute/etiology
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/physiopathology
- Mice
- Mice, Transgenic
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- RNA, Small Interfering/genetics
- Receptors, Erythropoietin/physiology
- Signal Transduction/physiology
- Trans-Activators/antagonists & inhibitors
- Trans-Activators/genetics
- Trans-Activators/physiology
Collapse
Affiliation(s)
- Pauline Rimmelé
- Institut Curie, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite 528, Paris, France
| | | | | | | | | |
Collapse
|
9
|
Subramanian A, Hegde S, Correll PH, Paulson RF. Mutation of the Lyn tyrosine kinase delays the progression of Friend virus induced erythroleukemia without affecting susceptibility. Leuk Res 2006; 30:1141-9. [PMID: 16527351 DOI: 10.1016/j.leukres.2006.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 01/24/2006] [Accepted: 02/03/2006] [Indexed: 11/29/2022]
Abstract
During the initial phase of Friend virus (FV) induced erythroleukemia, the interaction between the viral envelope glycoprotein gp55, the Erythropoietin receptor (EpoR) and the naturally occurring truncated version of the Mst1r receptor tyrosine kinase, called Sf-Stk, drives the polyclonal expansion of infected progenitors in an erythropoietin independent manner. Sf-Stk provides signals that cooperate with EpoR signals to effect expansion of erythroid progenitors. The latter phase of disease is characterized by a clonal expansion of transformed leukemic cells causing an acute erythroleukemia in mice. Signaling by Sf-Stk and EpoR mediated by gp55 renders erythroid progenitors Epo independent through the activation of the EpoR downstream pathways such as PI3K, MAPK and JAK/STAT. Previous work has shown that Src family kinases also play an important role in erythropoiesis. In particular, mutation of Src and Lyn can affect erythropoiesis. In this report we analyze the role of the Lyn tyrosine kinase in the pathogenesis of Friend virus. We demonstrate that during FV infection of primary erythroblasts, Lyn is not required for expansion of viral targets. Lyn deficient bone marrow and spleen cells are able to form Epo independent FV colonies in vitro. In vivo infection of Lyn deficient animals also results in a massive splenomegaly characteristic of the virus. However, we observe differences in the pathogenesis of Friend erythroleukemia in Lyn-/- mice. Lyn-/- mice infected with the polycythemia inducing strain of FV, FVP, do not develop polycythemia suggesting that Lyn-/- infected erythroblasts have a defect in terminal differentiation. Furthermore, the expansion of transformed cells in the spleen is reduced in Lyn-/- mice. Our data show that Lyn signals are not required for susceptibility to Friend erythroleukemia, but Lyn plays a role in later events, the terminal differentiation of infected cells and the expansion of transformed cells.
Collapse
MESH Headings
- Animals
- Bone Marrow/enzymology
- Bone Marrow/virology
- Cell Differentiation/genetics
- Cell Transformation, Viral/genetics
- Erythroid Precursor Cells/metabolism
- Erythroid Precursor Cells/virology
- Friend murine leukemia virus
- Leukemia, Erythroblastic, Acute/enzymology
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/virology
- Leukemia, Experimental/enzymology
- Leukemia, Experimental/genetics
- MAP Kinase Signaling System/genetics
- Mice
- Mice, Knockout
- Mutation
- Phosphotransferases/genetics
- Phosphotransferases/metabolism
- Receptors, Erythropoietin/metabolism
- Retroviridae Infections/enzymology
- Retroviridae Infections/genetics
- Spleen/enzymology
- Spleen/virology
- Tumor Virus Infections/enzymology
- Tumor Virus Infections/genetics
- Viral Envelope Proteins/metabolism
- src-Family Kinases/genetics
Collapse
Affiliation(s)
- Aparna Subramanian
- Graduate Program in Biochemistry, Microbiology and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
10
|
Subramanian A, Teal HE, Correll PH, Paulson RF. Resistance to friend virus-induced erythroleukemia in W/W(v) mice is caused by a spleen-specific defect which results in a severe reduction in target cells and a lack of Sf-Stk expression. J Virol 2006; 79:14586-94. [PMID: 16282458 PMCID: PMC1287579 DOI: 10.1128/jvi.79.23.14586-14594.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The characteristic progression and specificity of Friend virus for the erythroid lineage have allowed for the identification of a number of host-encoded loci that are required for disease progression. Several of these loci, including the Friend virus susceptibility gene 2 (Fv2), dominant white spotting gene (W), and Steel gene (Sl), regulate the initial polyclonal expansion of infected erythroid progenitor cells. W and Sl encode the Kit receptor tyrosine kinase and its ligand, stem cell factor, respectively. W mutant mice are severely anemic, and earlier work suggested that this defect in erythroid differentiation is the cause for the resistance to Friend virus-induced erythroleukemia. Here we show that in bone marrow, W/W(v) mice have near normal numbers of target cells and the initial infection of bone marrow occurs normally in vivo. In contrast, spleen cells from W/W(v) mice infected both in vitro and in vivo with Friend virus failed to give rise to erythropoietin-independent colonies at any time following Friend virus infection, suggesting that mutation of the Kit receptor specifically affects target cells in the spleen, rendering the mutant mice resistant to the development of Friend virus-induced erythroleukemia. In addition, we show that the Kit+ pathogenic targets of Friend virus in the spleen are distinct from the pathogenic targets in bone marrow and this population of spleen target cells is markedly decreased in W/W(v) mice and these cells fail to express Sf-Stk. These results also underscore the unique nature of the spleen microenvironment in its role in supporting the progression of acute leukemia in Friend virus-infected mice.
Collapse
Affiliation(s)
- Aparna Subramanian
- Graduate Program in Biochemistry, Microbiology and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
11
|
Le Scolan E, Pchejetski D, Banno Y, Denis N, Mayeux P, Vainchenker W, Levade T, Moreau-Gachelin F. Overexpression of sphingosine kinase 1 is an oncogenic event in erythroleukemic progression. Blood 2005; 106:1808-16. [PMID: 15890687 DOI: 10.1182/blood-2004-12-4832] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The erythroleukemia developed by spi-1/PU.1-transgenic mice is a model of multistage oncogenic process. Isolation of tumor cells representing discrete stages of leukemic progression enables the dissection of some of the critical events required for malignant transformation. To elucidate the molecular mechanisms of multistage leukemogenesis, we developed a microarray transcriptome analysis of nontumorigenic (HS1) and tumorigenic (HS2) proerythroblasts from spi-1-transgenic mice. The data show that transcriptional up-regulation of the sphingosine kinase gene (SPHK1) is a recurrent event associated with the tumorigenic phenotype of these transgenic proerythroblasts. SPHK1 is an enzyme of the metabolism of sphingolipids, which are essential in several biologic processes, including cell proliferation and apoptosis. HS1 erythroleukemic cells engineered to overexpress the SPHK1 protein exhibited growth proliferative advantage, increased clonogenicity, and resistance to apoptosis in reduced serum level by a mechanism involving activation of the extracellular signal-related kinases 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways. In addition, SPHK1-overexpressing HS1 cells acquired tumorigenicity when engrafted in vivo. Finally, enforced expression of a dominant-negative mutant of SPHK1 in HS2 tumorigenic cells or treatment with a pharmacologic inhibitor reduced both cell growth and apoptosis resistance. Altogether, these data suggest that overexpression of the sphingosine kinase may represent an oncogenic event during the multistep progression of an erythroleukemia. (Blood. 2005;106:1808-1816)
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Proliferation
- Cell Survival/genetics
- Cell Survival/physiology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cloning, Molecular
- Disease Progression
- Erythroblasts/cytology
- Erythroblasts/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Genes, Dominant
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/metabolism
- Mice
- Mice, Transgenic
- Neoplasm Transplantation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Erwan Le Scolan
- Inserm U528, Institut Curie, 26, rue d'Ulm, 75248 Paris cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yamaguchi S, Hasegawa M, Aizawa S, Tanaka K, Yoshida K, Noda Y, Tatsumi K, Hirokawa K, Kitagawa M. DNA-dependent protein kinase enhances DNA damage-induced apoptosis in association with Friend gp70. Leuk Res 2005; 29:307-16. [PMID: 15661267 DOI: 10.1016/j.leukres.2004.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 07/24/2004] [Indexed: 01/01/2023]
Abstract
Friend leukemia virus (FLV) infection strongly enhances gamma-irradiation-induced apoptosis of hematopoietic cells of C3H hosts leading to a lethal anemia. Experiments using p53 knockout mice with the C3H background have clarified that the apoptosis is p53-dependent and would not be associated with changes of cell populations caused by the infection with FLV. In bone marrow cells of FLV + total body irradiation (TBI)-treated C3H mice, the p53 protein was prominently activated to overexpress p21 and bax suggesting that apoptosis-enhancing mechanisms lay upstream of p53 protein in the signaling pathway. Neither of DNA-dependent protein kinase (DNA-PK)-deficient SCID mice nor ataxia telangiectasia mutated (ATM) gene knockout mice with the C3H background exhibited a remarkable enhancement of apoptosis or p53 activation on FLV + TBI-treatment indicating that DNA-PK and ATM were both essential. ATM appeared necessary for introducing DNA damage-induced apoptosis, while DNA-PK enhanced p53-dependent apoptosis under FLV-infection. Surprisingly, viral envelope protein, gp70, was co-precipitated with DNA-PK but not with ATM in FLV + TBI-treated C3H mice. These results indicated that FLV-infection enhances DNA damage-induced apoptosis via p53 activation and that DNA-PK, in association with gp70, might play critical roles in modulating the signaling pathway.
Collapse
Affiliation(s)
- Shuichi Yamaguchi
- Department of Comprehensive Pathology, Aging and Developmental Sciences, Tokyo Medical and Dental University, Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Erythroblast renewal: new roles for RON and Gab1 in EpoR signaling. Blood 2004. [DOI: 10.1182/blood-2004-04-1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Back J, Dierich A, Bronn C, Kastner P, Chan S. PU.1 determines the self-renewal capacity of erythroid progenitor cells. Blood 2004; 103:3615-23. [PMID: 14739214 DOI: 10.1182/blood-2003-11-4089] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractPU.1 is a hematopoietic-specific transcriptional activator that is absolutely required for the differentiation of B lymphocytes and myeloid-lineage cells. Although PU.1 is also expressed by early erythroid progenitor cells, its role in erythropoiesis, if any, is unknown. To investigate the relevance of PU.1 in erythropoiesis, we produced a line of PU.1-deficient mice carrying a green fluorescent protein reporter at this locus. We report here that PU.1 is tightly regulated during differentiation—it is expressed at low levels in erythroid progenitor cells and down-regulated upon terminal differentiation. Strikingly, PU.1-deficient fetal erythroid progenitors lose their self-renewal capacity and undergo proliferation arrest, premature differentiation, and apoptosis. In adult mice lacking one PU.1 allele, similar defects are detected following stress-induced erythropoiesis. These studies identify PU.1 as a novel and critical regulator of erythropoiesis and highlight the versatility of this transcription factor in promoting or preventing differentiation depending on the hematopoietic lineage.
Collapse
Affiliation(s)
- Jonathan Back
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CEDEX, France
| | | | | | | | | |
Collapse
|
15
|
Abstract
BACKGROUND In leukemia, the clonal population is characterized by a hierarchical organization. Although the majority of the leukemic population is generated after post-determinic divisions, a subset of cells retain undifferentiated "blast" morphology. In addition, leukemic cells often have numerical or structural chromosomal abnormalities, aberrant gene expression patterns, and abnormal cell surface marker profiles. Despite these differences when compared to normal bone marrow and blood cells, leukemic cell survival and proliferation, just like that of normal progenitor cells, is influenced by hematopoietic growth factors. A major issue is whether differential regulation of normal and leukemic hematopoietic cells by cytokines can be exploited in antileukemic treatment or, in contrast, whether in vivo cytokine therapy may even be harmful to the patients. PROCEDURE Here we review the results of recent experimental and clinical observations that investigated the influence of cytokines on leukemic cell growth and differentiation in vitro and in vivo. RESULTS The majority of studies indicate that hematopoietic growth factors are involved in the regulation of proliferation and terminal differentiation of leukemic blast cells. Genetic aberrations involving cytokines or their receptors may contribute to leukemogenesis. Abundant interactions, cross-lineage stimulation, and aberrant response patterns seem to transform the complex cytokine network regulation of normal hematopoiesis into an even more interlaced "patchwork" that controls leukemic hematopoiesis. CONCLUSIONS Since hematopoietic growth factors are present in high serum concentrations in patients with acute leukemia and myelodysplastic syndromes, consequences of possible interactions should be kept in mind even when well-defined human recombinant factors in single application are to be involved in antileukemic protocols.
Collapse
Affiliation(s)
- Csongor Kiss
- Department of Pediatrics, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.
| | | | | |
Collapse
|
16
|
Dazy S, Damiola F, Parisey N, Beug H, Gandrillon O. The MEK-1/ERKs signalling pathway is differentially involved in the self-renewal of early and late avian erythroid progenitor cells. Oncogene 2003; 22:9205-16. [PMID: 14681680 DOI: 10.1038/sj.onc.1207049] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Making decisions between self-renewal and differentiation is a central ability of stem cells. Elucidation of molecular networks governing this decision is therefore of prime importance. A model of choice to explore this question is represented by chicken erythroid progenitors, in which self-renewal versus differentiation as well as progenitor maturation are regulated by external factor combinations. We used this system to study whether similar or different signalling pathways were involved in the self-renewal of early, immature or more mature erythroid progenitors. We show that a transforming growth factor (TGF)-alpha-activated Ras/MEK-1/ERK1/2 pathway is strictly required for immature self-renewing cells but becomes fully dispensable when those cells are induced to differentiate. Consequently, pharmacological inhibition of this pathway led to spontaneous differentiation, only dependent on the presence of survival signals. Conversely, ectopic expression of a constitutive form of MEK-1 stimulates renewal and arrests differentiation process. Finally, we demonstrate that the ERK/MAPK signalling pathway is required in early but not in late primary erythroid progenitors, which can be turned into each other by different growth factor combinations specifically driving their renewal. To the best of our knowledge, this is the first description of a central role of ERK/MAPK signalling in regulating progenitor plasticity in the same cell type under different environmental conditions.
Collapse
Affiliation(s)
- Sébastien Dazy
- Laboratoire Signalisations et identités cellulaires, Centre de Génétique Moléculaire et Cellulaire CNRS UMR 5534, Université Claude Bernard Lyon 1, bât Grégoire Mendel, 16 rue Dubois, 69622 Villeurbanne, France
| | | | | | | | | |
Collapse
|
17
|
Lebigot I, Gardellin P, Lefebvre L, Beug H, Ghysdael J, Quang CT. Up-regulation of SLAP in FLI-1-transformed erythroblasts interferes with EpoR signaling. Blood 2003; 102:4555-62. [PMID: 12946994 DOI: 10.1182/blood-2003-06-2077] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rearrangement of the FLI-1 locus and ensuing overexpression of FLI-1 protein is an early event in Friend murine leukemia virus (F-MuLV)-induced erythroleukemia. When overexpressed in primary erythroblasts, FLI-1 converts erythropoietin (Epo)-induced terminal differentiation into a proliferative response. We found that SLAP, a gene encoding a recently described negative regulator of T-cell antigen receptor function during thymocyte development, is up-regulated both at the RNA and protein levels in FLI-1-transformed erythroblasts. Src-like adaptor protein (SLAP) was found in a specific complex with erythropoietin receptor (EpoR), a cytokine receptor essential to erythroid differentiation. Constitutive expression of SLAP severely impairs hemoglobinization and late survival during Epo-induced terminal differentiation of erythroblasts. This impairment is associated with the specific inhibition of several critical Epo-dependent signaling events, including signal transducer and activator of transcription 5 (STAT5) activation and up-regulation of the expression of the antiapoptotic BCL-X gene. Our data support a model by which FLI-1 inhibits normal erythroid differentiation through the deregulation of genes encoding adaptors/effectors that modify the signaling output of cytokine receptors normally required for terminal differentiation.
Collapse
Affiliation(s)
- Ingrid Lebigot
- Institut Curie, Bat 110, Centre Universitaire, 91405 Orsay, France
| | | | | | | | | | | |
Collapse
|
18
|
Ano S, Pereira R, Pironin M, Lesault I, Milley C, Lebigot I, Quang CT, Ghysdael J. Erythroblast transformation by FLI-1 depends upon its specific DNA binding and transcriptional activation properties. J Biol Chem 2003; 279:2993-3002. [PMID: 14570912 DOI: 10.1074/jbc.m303816200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
FLI-1 is a transcriptional regulator of the ETS family of proteins. Insertional activation at the FLI-1 locus is an early event in F-murine leukemia virus-induced erythroleukemia. Consistent with its essential role in erythroid transformation, enforced expression of FLI-1 in primary erythroblasts strongly impairs the response of these cells to erythropoietin (Epo), a cytokine essential to erythropoiesis. We show here that point mutations in the ETS domain that abolished FLI-1 binding to specific DNA elements (ETS-binding sites) suppressed the ability of FLI-1 to transform erythroblasts. The exchange of the entire ETS domain (DNA binding domain) of FLI-1 for that of PU.1 changed the DNA binding specificity of FLI-1 for that of PU.1 and impaired FLI-1 transforming properties. In contrast, ETS domain swapping mutants that maintained the DNA binding specificity of FLI-1 did not affect the ability of FLI-1 to transform erythroblasts. Deletion and swapping mutants that failed to inhibit the DNA binding activity of FLI-1 but impaired its transcriptional activation properties were also transformation-defective. Taken together, these results show that both the ability of FLI-1 to inhibit Epo-induced differentiation of erythroblasts and to confer enhanced cell survival in the absence of Epo critically depend upon FLI-1 ETS-binding site-dependent transcriptional activation properties.
Collapse
Affiliation(s)
- Sabine Ano
- CNRS UMR 146, Institut Curie, Centre Universitaire, Bâatiment 110, 91405 Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Starck J, Cohet N, Gonnet C, Sarrazin S, Doubeikovskaia Z, Doubeikovski A, Verger A, Duterque-Coquillaud M, Morle F. Functional cross-antagonism between transcription factors FLI-1 and EKLF. Mol Cell Biol 2003; 23:1390-402. [PMID: 12556498 PMCID: PMC141137 DOI: 10.1128/mcb.23.4.1390-1402.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
FLI-1 is an ETS family transcription factor which is overexpressed in Friend erythroleukemia and contributes to the blockage of differentiation of erythroleukemic cells. We show here that FLI-1 represses the transcriptional activity of the beta-globin gene promoter in MEL cells and interacts with two of its critical transactivators, GATA-1 and EKLF. Unexpectedly, FLI-1 enhances the stimulating activity of GATA-1 on a GATA-1-responsive promoter but represses that of EKLF on beta-globin and an EKLF-responsive artificial promoters. This repressive effect of FLI-1 requires the ETS DNA binding domain and its association with either the N- or C-terminal domain, which themselves interact with EKLF but not with GATA-1. Furthermore, the FLI-1 ETS domain alone behaves as an autonomous repression domain when linked to the Gal4 DNA binding domain. Taken together, these data indicate that FLI-1 represses EKLF-dependent transcription due to the repression activity of its ETS domain and its indirect recruitment to erythroid promoters by protein-protein interaction with EKLF. Reciprocally, we also show that EKLF itself represses the FLI-1-dependent megakaryocytic GPIX gene promoter, thus further suggesting that functional cross-antagonism between FLI-1 and EKLF might be involved in the control of the erythrocytic versus megakaryocytic differentiation of bipotential progenitors.
Collapse
Affiliation(s)
- Joëlle Starck
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, 69622 Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schulte CE, von Lindern M, Steinlein P, Beug H, Wiedemann LM. MLL-ENL cooperates with SCF to transform primary avian multipotent cells. EMBO J 2002; 21:4297-306. [PMID: 12169632 PMCID: PMC125405 DOI: 10.1093/emboj/cdf429] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2002] [Revised: 05/16/2002] [Accepted: 07/01/2002] [Indexed: 11/14/2022] Open
Abstract
The MLL gene is targeted by chromosomal translocations, which give rise to heterologous MLL fusion proteins and are associated with distinct types of acute lymphoid and myeloid leukaemia. To determine how MLL fusion proteins alter the proliferation and/or differentiation of primary haematopoietic progenitors, we introduced the MLL-AF9 and MLL-ENL fusion proteins into primary chicken bone marrow cells. Both fusion proteins caused the sustained outgrowth of immature haematopoietic cells, which was strictly dependent on stem cell factor (SCF). The renewing cells have a long in vitro lifespan exceeding the Hayflick limit of avian cells. Analysis of clonal cultures identified the renewing cells as immature, multipotent progenitors, expressing erythroid, myeloid, lymphoid and stem cell surface markers. Employing a two-step commitment/differentiation protocol involving the controlled withdrawal of SCF, the MLL-ENL-transformed progenitors could be induced to terminal erythroid or myeloid differentiation. Finally, in cooperation with the weakly leukaemogenic receptor tyrosine kinase v-Sea, the MLL-ENL fusion protein gave rise to multilineage leukaemia in chicks, suggesting that other activated, receptor tyrosine kinases can substitute for ligand-activated c-Kit in vivo.
Collapse
Affiliation(s)
- Cathleen E. Schulte
- Leukaemia Research Fund Centre at the Institute of Cancer Research, London, UK, Institute of Molecular Pathology, Vienna, Austria, Institute of Hematology, Erasmus University, Rotterdam, The Netherlands and Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA Corresponding author at: Institute of Molecular Pathology, Dr Bohr Gasse 7, 1030 Vienna, Austria e-mail: H.Beug and L.M.Wiedemann contributed equally to this work
| | - Marieke von Lindern
- Leukaemia Research Fund Centre at the Institute of Cancer Research, London, UK, Institute of Molecular Pathology, Vienna, Austria, Institute of Hematology, Erasmus University, Rotterdam, The Netherlands and Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA Corresponding author at: Institute of Molecular Pathology, Dr Bohr Gasse 7, 1030 Vienna, Austria e-mail: H.Beug and L.M.Wiedemann contributed equally to this work
| | - Peter Steinlein
- Leukaemia Research Fund Centre at the Institute of Cancer Research, London, UK, Institute of Molecular Pathology, Vienna, Austria, Institute of Hematology, Erasmus University, Rotterdam, The Netherlands and Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA Corresponding author at: Institute of Molecular Pathology, Dr Bohr Gasse 7, 1030 Vienna, Austria e-mail: H.Beug and L.M.Wiedemann contributed equally to this work
| | - Hartmut Beug
- Leukaemia Research Fund Centre at the Institute of Cancer Research, London, UK, Institute of Molecular Pathology, Vienna, Austria, Institute of Hematology, Erasmus University, Rotterdam, The Netherlands and Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA Corresponding author at: Institute of Molecular Pathology, Dr Bohr Gasse 7, 1030 Vienna, Austria e-mail: H.Beug and L.M.Wiedemann contributed equally to this work
| | - Leanne M. Wiedemann
- Leukaemia Research Fund Centre at the Institute of Cancer Research, London, UK, Institute of Molecular Pathology, Vienna, Austria, Institute of Hematology, Erasmus University, Rotterdam, The Netherlands and Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA Corresponding author at: Institute of Molecular Pathology, Dr Bohr Gasse 7, 1030 Vienna, Austria e-mail: H.Beug and L.M.Wiedemann contributed equally to this work
| |
Collapse
|
21
|
Kitagawa M, Yamaguchi S, Hasegawa M, Tanaka K, Sado T, Hirokawa K, Aizawa S. Friend leukemia virus infection enhances DNA damage-induced apoptosis of hematopoietic cells, causing lethal anemia in C3H hosts. J Virol 2002; 76:7790-8. [PMID: 12097591 PMCID: PMC136359 DOI: 10.1128/jvi.76.15.7790-7798.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exposure of hematopoietic progenitors to gamma irradiation induces p53-dependent apoptosis. However, host responses to DNA damage are not uniform and can be modified by various factors. Here, we report that a split low-dose total-body irradiation (TBI) (1.5 Gy twice) to the host causes prominent apoptosis in bone marrow cells of Friend leukemia virus (FLV)-infected C3H mice but not in those of FLV-infected DBA mice. In C3H mice, the apoptosis occurs rapidly and progressively in erythroid cells, leading to lethal host anemia, although treatment with FLV alone or TBI alone induced minimal apoptosis in bone marrow cells. A marked accumulation of P53 protein was demonstrated in bone marrow cells from FLV-infected C3H mice 12 h after treatment with TBI. Although a similar accumulation of P53 was also observed in bone marrow cells from FLV-infected DBA mice treated with TBI, the amount appeared to be parallel to that of mice treated with TBI alone and was much lower than that of FLV- plus TBI-treated C3H mice. To determine the association of p53 with the prominent enhancement of apoptosis in FLV- plus TBI-treated C3H mice, p53 knockout mice of the C3H background (C3H p53(-/-)) were infected with FLV and treated with TBI. As expected, p53 knockout mice exhibited a very low frequency of apoptosis in the bone marrow after treatment with FLV plus TBI. Further, C3H p53(-/-) --> C3H p53(+/+) bone marrow chimeric mice treated with FLV plus TBI survived even longer than the chimeras treated with FLV alone. These findings indicate that infection with FLV strongly enhances radiation-induced apoptotic cell death of hematopoietic cells in host animals and that the apoptosis occurs through a p53-associated signaling pathway, although the response was not uniform in different host strains.
Collapse
Affiliation(s)
- Masanobu Kitagawa
- Department of Pathology and Immunology, Aging and Developmental Sciences, Division of Gerontology and Gerodontology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Lobmayr L, Sauer T, Killisch I, Schranzhofer M, Wilson RB, Ponka P, Beug H, Müllner EW. Transferrin receptor hyperexpression in primary erythroblasts is lost on transformation by avian erythroblastosis virus. Blood 2002; 100:289-98. [PMID: 12070039 DOI: 10.1182/blood.v100.1.289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In primary chicken erythroblasts (stem cell factor [SCF] erythroblasts), transferrin receptor (TfR) messenger RNA (mRNA) and protein were hyperexpressed as compared to nonerythroid chicken cell types. This erythroid-specific hyperexpression was abolished in transformed erythroblasts (HD3E22 cells) expressing the v-ErbA and v-ErbB oncogenes of avian erythroblastosis virus. TfR expression in HD3E22 cells could be modulated by changes in exogenous iron supply, whereas expression in SCF erythroblasts was not subject to iron regulation. Measurements of TfR mRNA half-life indicated that hyperexpression in SCF erythroblasts was due to a massive stabilization of transcripts even in the presence of high iron levels. Changes in mRNA binding activity of iron regulatory protein 1 (IRP1), the primary regulator of TfR mRNA stability in these cells, correlated well with TfR mRNA expression; IRP1 activity in HD3E22 cells and other nonerythroid cell types tested was iron dependent, whereas IRP1 activity in primary SCF erythroblasts could not be modulated by iron administration. Analysis of avian erythroblasts expressing v-ErbA alone indicated that v-ErbA was responsible for these transformation-specific alterations in the regulation of iron metabolism. In SCF erythroblasts high amounts of TfR were detected on the plasma membrane, but a large fraction was also located in early and late endosomal compartments, potentially concealing temporary iron stores from the IRP regulatory system. In contrast, TfR was almost exclusively located to the plasma membrane in HD3E22 cells. In summary, stabilization of TfR mRNA and redistribution of Fe-Tf/TfR complexes to late endosomal compartments may contribute to TfR hyperexpression in primary erythroblasts, effects that are lost on leukemic transformation.
Collapse
Affiliation(s)
- Lioba Lobmayr
- Institute of Medical Biochemistry, Division of Molecular Biology, Vienna Biocenter, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Rothenberg EV, Anderson MK. Elements of transcription factor network design for T-lineage specification. Dev Biol 2002; 246:29-44. [PMID: 12027432 DOI: 10.1006/dbio.2002.0667] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The complex spectrum of cell types produced in mammalian hematopoiesis can be understood as the output of highly combinatorial transcription factor action. The generation of multiple diverse combinations of transcription factors from the common starting state of the hematopoietic stem cell must be explained through the cross-regulatory interactions of these transcription factors at several levels. Here, the operation of such a network is addressed through a focus on murine T cell development, where we have recently established regulatory linkages between GATA-3 and PU.1 and multiple other factors essential to this differentiation pathway. The action of both essential/rate-limiting factors and factors with effects that shift qualitatively with dose and time of action can be traced through the regulatory interaction network. Hypothetical models are proposed to indicate the network nodes that are differentially activated in normal T cell lineage progression and in cells diverted to other potential fates.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena 91125, USA.
| | | |
Collapse
|
24
|
Lesault I, Tran Quang C, Frampton J, Ghysdael J. Direct regulation of BCL-2 by FLI-1 is involved in the survival of FLI-1-transformed erythroblasts. EMBO J 2002; 21:694-703. [PMID: 11847117 PMCID: PMC125347 DOI: 10.1093/emboj/21.4.694] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Rearrangement of the FLI-1 locus with ensuing overexpression of FLI-1 is an early event in Friend murine leukemia virus-induced disease. When overexpressed in primary erythroblasts, FLI-1 blocks erythropoeitin (Epo)-induced terminal differentiation and inhibits apoptosis normally induced in response to Epo withdrawal. We show here that the survival-inducing property of FLI-1 is associated with increased transcription of BCL-2. We further show that FLI-1 binds BCL-2 promoter sequences in transformed erythroblasts, and in vitro studies identify specific FLI-1-binding sites essential for the transactivation of the BCL-2 promoter by FLI-1. Analysis of FLI-1 mutants showed a correlation between the ability of FLI-1 to transactivate BCL-2 promoter sequences and their ability to inhibit apoptosis in the absence of Epo. Moreover, inhibitor studies confirmed the essential role of BCL-2 for FLI-1-transformed erythroblast survival. Finally, enforced expression of BCL-2 was sufficient to promote survival and terminal differentiation of erythroblasts in the absence of Epo. These results show that BCL-2 is an in vivo target of FLI-1 in FLI-1-transformed erythroblasts and that its deregulated expression is instrumental in the survival of these cells.
Collapse
Affiliation(s)
| | | | - Jon Frampton
- CNRS UMR146, Institut Curie-Section de Recherche, Centre Universitaire, Bat. 110, 91405 Orsay, France and
Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK Corresponding author e-mail: I.Lesault and C.Tran Quang contributed equally to this work
| | - Jacques Ghysdael
- CNRS UMR146, Institut Curie-Section de Recherche, Centre Universitaire, Bat. 110, 91405 Orsay, France and
Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK Corresponding author e-mail: I.Lesault and C.Tran Quang contributed equally to this work
| |
Collapse
|
25
|
Afrikanova I, Yeh E, Bartos D, Watowich SS, Longmore GD. Oncogene cooperativity in Friend erythroleukemia: erythropoietin receptor activation by the env gene of SFFV leads to transcriptional upregulation of PU.1, independent of SFFV proviral insertion. Oncogene 2002; 21:1272-84. [PMID: 11850847 PMCID: PMC2388250 DOI: 10.1038/sj.onc.1205183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2001] [Revised: 10/30/2001] [Accepted: 11/13/2001] [Indexed: 11/08/2022]
Abstract
Cancer is a multi-step, multi-genetic event. Whether oncogenic mutations cooperate with one another to transform cells and how is not well understood. The Friend murine retroviral erythroleukemia model involves mitogenic activation of the erythropoietin receptor (EpoR) by the virus env gene (F-gp55), aberrant over-expression of the transcription factor PU.1, and inactivating mutations in p53. In this report we demonstrate that concurrent expression of F-gp55 and PU.1 in erythroid target cells, in vivo, cooperate to accelerate erythroleukemia induction. Early in the disease, prior to the detection of clonal leukemic cells, activation of the EpoR by F-gp55, but not erythropoietin, resulted in transcriptional upregulation of PU.1 through a trans regulatory mechanism. This could occur in the absence of an integrated provirus within the PU.1 gene locus. The regulation of PU.1 transcription in established erythroleukemia cell lines differed depending upon the level of PU.1 protein present. Our results suggest that the action of F-gp55 contributes to both early and late stages of Friend erythroleukemia and that persistence of F-gp55 expression may be required not only to initiate erythroleukemia but to also maintain erythroleukemia following Friend virus infection.
Collapse
MESH Headings
- Animals
- Erythroid Precursor Cells/drug effects
- Erythroid Precursor Cells/metabolism
- Erythroid Precursor Cells/pathology
- Erythroid Precursor Cells/virology
- Erythropoietin/metabolism
- Erythropoietin/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Interleukin-3/pharmacology
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/virology
- Mice
- Oncogenes/genetics
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Erythropoietin/metabolism
- Signal Transduction/drug effects
- Spleen Focus-Forming Viruses/genetics
- Spleen Focus-Forming Viruses/physiology
- Time Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
- Up-Regulation
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
- Virus Integration
Collapse
Affiliation(s)
- Iva Afrikanova
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, MO 63110, USA
| | - Ellen Yeh
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, MO 63110, USA
| | - David Bartos
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, TX 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, TX 77030, USA
| | - Gregory D Longmore
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, MO 63110, USA
- Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri, MO 63110, USA
- *Correspondence: GD Longmore, Division of Hematology, Washington University School of Medicine, Campus Box 8125, 660 South Euclid Ave., St. Louis MO 63110, USA; E-mail:
| |
Collapse
|
26
|
Scolan EL, Wendling F, Barnache S, Denis N, Tulliez M, Vainchenker W, Moreau-Gachelin F. Germ-line deletion of p53 reveals a multistage tumor progression in spi-1/PU.1 transgenic proerythroblasts. Oncogene 2001; 20:5484-92. [PMID: 11571646 DOI: 10.1038/sj.onc.1204708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2001] [Revised: 05/29/2001] [Accepted: 06/08/2001] [Indexed: 11/09/2022]
Abstract
Activation of the spi-1/PU.1 proto-oncogene and loss of p53 function are genetic alterations associated with the emergence of Friend malignant erythroleukemic cells. To address the role of p53 during erythroleukemogenesis, spi-1 transgenic mice (spi-1-Tg) which develop erythroleukemia were bred with p53-deficient mice. Three classes of spi-1 transgenic mice differing in their p53 functional status (p53(+/+), p53(+/-) and p53(-/-)) were generated. These mice developed a unique pattern of erythroleukemia. In wild-type p53 spi-1-Tg mice, none of the primary erythroleukemic spleen cells displayed autonomous growth in vitro and in vivo. In contrast, in p53(+/-) spi-1-Tg mice, erythroleukemic cells gave rise to growth factor-independent cell lines and generated tumors in vivo. Malignancy was associated with loss of the wild-type p53 allele. The p53(-/-) spi-1-Tg mice developed erythroleukemia with a total incidence and a reduced latency compared to the two other genotypes. Unexpectedly, 50% of p53(-/-) spi-1-Tg erythroleukemic spleens generated cell lines that were strictly dependent upon erythropoietin (Epo) for proliferation, whereas the remainder proliferated independently of cytokines. Moreover, only 70% of these spleen cells were tumorigenic. These findings indicate that p53 germ-line deletion did not confer malignancy to spi-1-transgenic proerythroblasts. Moreover Epo independence and tumorigenicity appear as separable phenotypic characteristics revealing that the spi-1-Tg proerythroblasts progress towards malignancy through multiple oncogenic events.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blood Cells/cytology
- Cyclin-Dependent Kinase Inhibitor p21
- Cyclins/biosynthesis
- Cyclins/genetics
- Disease Progression
- Erythroid Precursor Cells/metabolism
- Erythroid Precursor Cells/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Genes, p53
- Germ-Line Mutation
- Leukemia, Erythroblastic, Acute/etiology
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Proto-Oncogene Proteins/genetics
- RNA, Neoplasm/biosynthesis
- Spleen/cytology
- Spleen/metabolism
- Survival Rate
- Trans-Activators/genetics
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/physiology
Collapse
Affiliation(s)
- E L Scolan
- Inserm U528, Institut Curie, 26 rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Prasher JM, Elenitoba-Johnson KS, Kelley LL. Loss of p53 tumor suppressor function is required for in vivo progression of Friend erythroleukemia. Oncogene 2001; 20:2946-55. [PMID: 11420707 DOI: 10.1038/sj.onc.1204395] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2000] [Revised: 02/07/2001] [Accepted: 02/13/2001] [Indexed: 11/09/2022]
Abstract
A role for p53 in the in vivo progression of Friend virus-induced erythroleukemia has been suggested but not clearly defined. We developed a Friend virus-sensitive, p53-deficient mouse model to directly address the role of p53 in Friend erythroleukemia. When infected with the polycythemia-inducing strain of Friend virus (FVP), p53 null mice exhibited accelerated progression to erythroleukemia and accelerated death following diagnosis when compared to wild type mice. Confirmation that p53 mutations were required for disease progression was provided by sequence analysis of p53 transcripts in leukemic wild type and heterozygous mice. All transcripts evaluated had point mutations, deletions or insertions in the p53 gene. The ability to grow tumor colonies in vitro and derive cell lines was enhanced in FVP-infected p53 null animals. Although PU.1 oncogene overexpression is a common mutation observed in cell lines derived from Friend virus-infected p53 wild type mice, it was not a universal finding in cell lines derived from p53 null animals. Our data conclusively demonstrate that loss of p53 function is a requirement for progression of Friend erythroleukemia in vivo. Further, the data demonstrate that erythroleukemias arising in Friend virus-infected p53 null mice are biologically and genetically distinct from those that occur in wild type animals, suggesting that the temporal order of PU.1 and p53 mutations is an important parameter in the pathogenesis of leukemic development.
Collapse
Affiliation(s)
- J M Prasher
- Department of Pathology, University of Utah School of Medicine and the Huntsman Cancer Institute, Salt Lake City, Utah, UT 84132, USA
| | | | | |
Collapse
|
28
|
Pereira R, Raingeaud J, Pironin M, Ghysdael J, Quang CT. SPI-1 transforming properties depend upon specifically activated forms of the EPOR. Oncogene 2000; 19:5106-10. [PMID: 11042699 DOI: 10.1038/sj.onc.1203886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Friend erythroleukemia induced in mice by the spleen focus forming virus (SFFV) is a multi-step process. The pre-leukemic phase of the disease results from the abnormal activation of the Erythropoietin (Epo) receptor by the gp55 env gene product of SFFV. Later in disease progression, the emergence of leukemic clones is associated with recurrent genetic events, in particular the activation of the expression of SPI-1, an ETS family transcriptional regulator. We show here that the expression of either SPI-1 or GP55 with the mouse EPOR in avian primary erythroblasts only marginally affects their normal Epo-induced terminal differentiation. In contrast, the co-expression of GP55 and SPI-1 resulted in inhibition of Epo-induced differentiation of EPOR-expressing erythroblasts, promoting instead their proliferation. Co-expression of SPI-1 and GP55 also inhibited the apoptotic cell death program normally induced in response to Epo withdrawal. This cooperation between SPI-1 and GP55 to induce primary erythroblast transformation suggests that progression of Friend erythroleukemia critically depends upon inter-dependent interactions between the molecular events specific of the early and late phase of the disease.
Collapse
Affiliation(s)
- R Pereira
- CNRS UMR146 Institut Curie, Centre Universitaire, Bat. 110, 91405 Orsay, France
| | | | | | | | | |
Collapse
|
29
|
Selzer E, Wacheck V, Kodym R, Schlagbauer-Wadl H, Schlegel W, Pehamberger H, Jansen B. Erythropoietin receptor expression in human melanoma cells. Melanoma Res 2000; 10:421-6. [PMID: 11095402 DOI: 10.1097/00008390-200010000-00003] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Erythropoietin is well known for its role in the control of erythropoiesis, where it acts by binding to its cognate receptor (EpoR) on the surface of erythroid progenitor cells. Here we present the novel finding that the EpoR is also expressed in cells of the melanocytic lineage. It is expressed in transformed cell lines established from normal melanocytes and also in established human melanoma cell lines derived from melanoma metastases, but not in normal primary human melanocytes. The analysis of individual subclones isolated from spontaneously transformed melanocytes revealed that approximately 50% of all the clones examined expressed the EpoR. Further analysis of the individual growth characteristics of EpoR-positive and EpoR-negative clones indicated that, under standard cell culture conditions, expression of the receptor did not affect cell growth. Expression of this receptor is consequently most likely driven by an event that is associated with, but not absolutely required for, the transformed phenotype. While the definite function of this receptor in melanoma cells is still unknown and additional studies are required, our findings support the hypothesis that the EpoR may serve as a progression marker for human melanoma. This observation might be useful in the early diagnosis of melanoma.
Collapse
Affiliation(s)
- E Selzer
- Department of Radiotherapy and Radiobiology, University Hospital, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
30
|
Mikulits W, Schranzhofer M, Deiner EM, Beug H, Müllner EW. Regulation of ferritin mRNA translation in primary erythroblasts: exogenous c-Kit plus EpoR signaling mimics v-ErbA oncoprotein activity. Biochem Biophys Res Commun 2000; 275:292-4. [PMID: 10964660 DOI: 10.1006/bbrc.2000.3300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In general, translation efficiency of ferritin mRNAs is modulated by variations in iron supply. In primary avian erythroblasts undergoing short-term proliferation, however, ferritin heavy chain (ferH) mRNA is repressed at all iron levels. Yet, expression of v-ErbA oncoprotein is sufficient to reinduce ferH mRNA utilization at physiological iron concentrations. Since overexpression of the receptor tyrosine kinase c-Kit and erythropoietin receptor (EpoR) stimulates long-term proliferation of primary erythroblasts like v-ErbA, we analyzed the impact of cooperation between c-Kit and EpoR on the regulation of iron storage. Whereas endogenous c-Kit in combination with exogenous EpoR had no significant effect, ectopic overexpression of both receptors abolished translational repression of ferH mRNA upon iron administration. Thus, high-intensity signaling through c-Kit plus EpoR pathways mimics the v-ErbA-mediated regulatory phenotype.
Collapse
Affiliation(s)
- W Mikulits
- Institute of Cancer Research, University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | | | | | | | | |
Collapse
|
31
|
Kieslinger M, Woldman I, Moriggl R, Hofmann J, Marine JC, Ihle JN, Beug H, Decker T. Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation. Genes Dev 2000; 14:232-44. [PMID: 10652277 PMCID: PMC316353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Stat5 is activated by multiple receptors of hematopoietic cytokines. To study its role during hematopoiesis, we have generated primary chicken myeloblasts expressing different dominant-negative (dn) alleles of Stat5. This caused a striking inability to generate mature cells, due to massive apoptosis during differentiation. Bcl-2 was able to rescue differentiating cells expressing dnStat5 from apoptosis, suggesting that during cytokine-dependent differentiation the main function of the protein is to ensure cell survival. Our findings with dnStat5-expressing chicken myeloblasts were confirmed with primary hematopoietic cells from Stat5a/Stat5b-deficient mice. Bone marrow cells from these animals displayed a strong increase in apoptotic cell death during GM-CSF-dependent functional maturation in vitro. The antiapoptotic protein Bcl-x was induced by GM-CSF and IL-3 in a Stat5-dependent fashion. Ectopic expression of Bcl-x rescued Stat5-deficient bone marrow cells from apoptosis, indicating that Stat5 promotes the survival of myeloid progenitor cells through its ability to induce transcription of the bcl-x gene. Finally, the recruitment of myeloid cells to inflammatory sites was found strongly impeded in Stat5-deficient mice. Taken together, our findings suggest that Stat5 may promote cytokine-dependent survival and proliferation of differentiating myeloid progenitor cells in stress or pathological situations, such as inflammation.
Collapse
Affiliation(s)
- M Kieslinger
- Institute of Molecular Pathology, Vienna Biocenter, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kieslinger M, Woldman I, Moriggl R, Hofmann J, Marine JC, Ihle JN, Beug H, Decker T. Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation. Genes Dev 2000. [DOI: 10.1101/gad.14.2.232] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Stat5 is activated by multiple receptors of hematopoietic cytokines. To study its role during hematopoiesis, we have generated primary chicken myeloblasts expressing different dominant-negative (dn) alleles of Stat5. This caused a striking inability to generate mature cells, due to massive apoptosis during differentiation. Bcl-2 was able to rescue differentiating cells expressing dnStat5 from apoptosis, suggesting that during cytokine-dependent differentiation the main function of the protein is to ensure cell survival. Our findings with dnStat5-expressing chicken myeloblasts were confirmed with primary hematopoietic cells from Stat5a/Stat5b-deficient mice. Bone marrow cells from these animals displayed a strong increase in apoptotic cell death during GM-CSF-dependent functional maturation in vitro. The antiapoptotic protein Bcl-x was induced by GM-CSF and IL-3 in a Stat5-dependent fashion. Ectopic expression of Bcl-x rescued Stat5-deficient bone marrow cells from apoptosis, indicating that Stat5 promotes the survival of myeloid progenitor cells through its ability to induce transcription of the bcl-x gene. Finally, the recruitment of myeloid cells to inflammatory sites was found strongly impeded in Stat5-deficient mice. Taken together, our findings suggest that Stat5 may promote cytokine-dependent survival and proliferation of differentiating myeloid progenitor cells in stress or pathological situations, such as inflammation.
Collapse
|
33
|
Impaired Ferritin mRNA Translation in Primary Erythroid Progenitors: Shift to Iron-Dependent Regulation by the v-ErbA Oncoprotein. Blood 1999. [DOI: 10.1182/blood.v94.12.4321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AbstractIn immortalized cells of the erythroid lineage, the iron-regulatory protein (IRP) has been suggested to coregulate biosynthesis of the iron storage protein ferritin and the erythroid delta-aminolevulinate synthase (eALAS), a key enzyme in heme production. Under iron scarcity, IRP binds to an iron-responsive element (IRE) located in ferritin and eALAS mRNA leaders, causing a block of translation. In contrast, IRP-IRE interaction is reduced under high iron conditions, allowing efficient translation. We show here that primary chicken erythroblasts (ebls) proliferating or differentiating in culture use a drastically different regulation of iron metabolism. Independently of iron administration, ferritin H (ferH) chain mRNA translation was massively decreased, whereas eALAS transcripts remained constitutively associated with polyribosomes, indicating efficient translation. Variations in iron supply had minor but significant effects on eALAS mRNA polysome recruitment but failed to modulate IRP-affinity to the ferH-IRE in vitro. However, leukemic ebls transformed by the v-ErbA/v-ErbB–expressing avian erythroblastosis virus showed an iron-dependent reduction of IRP mRNA-binding activity, resulting in mobilization of ferH mRNA into polysomes. Hence, we analyzed a panel of ebls overexpressing v-ErbA and/or v-ErbB oncoproteins as well as the respective normal cellular homologues (c-ErbA/TR, c-ErbB/EGFR). It turned out that v-ErbA, a mutated class II nuclear hormone receptor that arrests erythroid differentiation, caused the change in ferH mRNA translation. Accordingly, inhibition of v-ErbA function in these leukemic ebls led to a switch from iron-responsive to iron-independent ferH expression.
Collapse
|
34
|
Impaired Ferritin mRNA Translation in Primary Erythroid Progenitors: Shift to Iron-Dependent Regulation by the v-ErbA Oncoprotein. Blood 1999. [DOI: 10.1182/blood.v94.12.4321.424k15_4321_4332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In immortalized cells of the erythroid lineage, the iron-regulatory protein (IRP) has been suggested to coregulate biosynthesis of the iron storage protein ferritin and the erythroid delta-aminolevulinate synthase (eALAS), a key enzyme in heme production. Under iron scarcity, IRP binds to an iron-responsive element (IRE) located in ferritin and eALAS mRNA leaders, causing a block of translation. In contrast, IRP-IRE interaction is reduced under high iron conditions, allowing efficient translation. We show here that primary chicken erythroblasts (ebls) proliferating or differentiating in culture use a drastically different regulation of iron metabolism. Independently of iron administration, ferritin H (ferH) chain mRNA translation was massively decreased, whereas eALAS transcripts remained constitutively associated with polyribosomes, indicating efficient translation. Variations in iron supply had minor but significant effects on eALAS mRNA polysome recruitment but failed to modulate IRP-affinity to the ferH-IRE in vitro. However, leukemic ebls transformed by the v-ErbA/v-ErbB–expressing avian erythroblastosis virus showed an iron-dependent reduction of IRP mRNA-binding activity, resulting in mobilization of ferH mRNA into polysomes. Hence, we analyzed a panel of ebls overexpressing v-ErbA and/or v-ErbB oncoproteins as well as the respective normal cellular homologues (c-ErbA/TR, c-ErbB/EGFR). It turned out that v-ErbA, a mutated class II nuclear hormone receptor that arrests erythroid differentiation, caused the change in ferH mRNA translation. Accordingly, inhibition of v-ErbA function in these leukemic ebls led to a switch from iron-responsive to iron-independent ferH expression.
Collapse
|
35
|
Abstract
The proliferation and differentiation of erythroid cells is a highly regulated process that is controlled primarily at the level of interaction of erythropoietin (Epo) with its specific cell surface receptor (EpoR). However, this process is deregulated in mice infected with the Friend spleen focus-forming virus (SFFV). Unlike normal erythroid cells, erythroid cells from SFFV-infected mice are able to proliferate and differentiate in the absence of Epo, resulting in erythroid hyperplasia and leukemia. Over the past 20 years, studies have been carried out to identify the viral genes responsible for the pathogenicity of SFFV and to understand how expression of these genes leads to the deregulation of erythropoiesis in infected animals. The studies have revealed that SFFV encodes a unique envelope glycoprotein which interacts specifically with the EpoR at the cell surface, resulting in activation of the receptor and subsequent activation of erythroid signal transduction pathways. This leads to the proliferation and differentiation of erythroid precursor cells in the absence of Epo. Although the precise mechanism by which the viral protein activates the EpoR is not yet known, it has been proposed that it causes dimerization of the receptor, resulting in constitutive activation of Epo signal transduction pathways. While interaction of the SFFV envelope glycoprotein with the EpoR leads to Epo-independent erythroid hyperplasia, this is not sufficient to transform these cells. Transformation requires the viral activation of the cellular gene Sfpi-1, whose product is thought to block erythroid cell differentiation. By understanding how SFFV can deregulate erythropoiesis, we may gain insights into the causes and treatment of related diseases in man.
Collapse
Affiliation(s)
- S K Ruscetti
- National Cancer Institute, Frederick Cancer Research and Development Center, MD 21702-1201, USA.
| |
Collapse
|
36
|
Abstract
The development of T cells and B cells from pluripotent hematopoietic precursors occurs through a stepwise narrowing of developmental potential that ends in lineage commitment. During this process, lineage-specific genes are activated asynchronously, and lineage-inappropriate genes, although initially expressed, are asynchronously turned off. These complex gene expression events are the outcome of the changes in expression of multiple transcription factors with partially overlapping roles in early lymphocyte and myeloid cell development. Key transcription factors promoting B-cell development and candidates for this role in T-cell development are discussed in terms of their possible modes of action in fate determination. We discuss how a robust, stable, cell-type-specific gene expression pattern may be established in part by the interplay between endogenous transcription factors and signals transduced by cytokine receptors, and in part by the network of effects of particular transcription factors on each other.
Collapse
Affiliation(s)
- E V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
37
|
Constantinescu SN, Liu X, Beyer W, Fallon A, Shekar S, Henis YI, Smith SO, Lodish HF. Activation of the erythropoietin receptor by the gp55-P viral envelope protein is determined by a single amino acid in its transmembrane domain. EMBO J 1999; 18:3334-47. [PMID: 10369674 PMCID: PMC1171414 DOI: 10.1093/emboj/18.12.3334] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The spleen focus forming virus (SFFV) gp55-P envelope glycoprotein specifically binds to and activates murine erythropoietin receptors (EpoRs) coexpressed in the same cell, triggering proliferation of erythroid progenitors and inducing erythroleukemia. Here we demonstrate specific interactions between the single transmembrane domains of the two proteins that are essential for receptor activation. The human EpoR is not activated by gp55-P but by mutation of a single amino acid, L238, in its transmembrane sequence to its murine counterpart serine, resulting in its ability to be activated. The converse mutation in the murine EpoR (S238L) abolishes activation by gp55-P. Computational searches of interactions between the membrane-spanning segments of murine EpoR and gp55-P provide a possible explanation: the face of the EpoR transmembrane domain containing S238 is predicted to interact specifically with gp55-P but not gp55-A, a variant which is much less effective in activating the murine EpoR. Mutational studies on gp55-P M390, which is predicted to interact with S238, provide additional support for this model. Mutation of M390 to isoleucine, the corresponding residue in gp55-A, abolishes activation, but the gp55-P M390L mutation is fully functional. gp55-P is thought to activate signaling by the EpoR by inducing receptor oligomerization through interactions involving specific transmembrane residues.
Collapse
Affiliation(s)
- S N Constantinescu
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tamir A, Howard J, Higgins RR, Li YJ, Berger L, Zacksenhaus E, Reis M, Ben-David Y. Fli-1, an Ets-related transcription factor, regulates erythropoietin-induced erythroid proliferation and differentiation: evidence for direct transcriptional repression of the Rb gene during differentiation. Mol Cell Biol 1999; 19:4452-64. [PMID: 10330185 PMCID: PMC104404 DOI: 10.1128/mcb.19.6.4452] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1998] [Accepted: 03/11/1999] [Indexed: 11/20/2022] Open
Abstract
Erythropoietin (Epo) is a major regulator of erythropoiesis that alters the survival, proliferation, and differentiation of erythroid progenitor cells. The mechanism by which these events are regulated has not yet been determined. Using HB60, a newly established erythroblastic cell line, we show here that Epo-induced terminal erythroid differentiation is associated with a transient downregulation in the expression of the Ets-related transcription factor Fli-1. Constitutive expression of Fli-1 in HB60 cells, similar to retroviral insertional activation of Fli-1 observed in Friend murine leukemia virus (F-MuLV)-induced erythroleukemia, blocks Epo-induced differentiation while promoting Epo-induced proliferation. These results suggest that Fli-1 modulates the response of erythroid cells to Epo. To understand the mechanism by which Fli-1 regulates erythropoiesis, we searched for downstream target genes whose expression is regulated by this transcription factor. Here we show that the retinoblastoma (Rb) gene, which was previously shown to be involved in the development of mature erythrocytes, contains a Fli-1 consensus binding site within its promoter. Fli-1 binds to this cryptic Ets consensus site within the Rb promoter and transcriptionally represses Rb expression. Both the expression level and the phosphorylation status of Rb are consistent with the response of HB60 cells to Epo-induced terminal differentiation. We suggest that the negative regulation of Rb by Fli-1 could be one of the critical determinants in erythroid progenitor cell differentiation that is specifically deregulated during F-MuLV-induced erythroleukemia.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cell Cycle
- Cell Differentiation
- Cell Division
- Chromatin/metabolism
- DNA-Binding Proteins/physiology
- Electrophoresis, Polyacrylamide Gel
- Erythroid Precursor Cells/physiology
- Erythropoietin/physiology
- Genes, Retinoblastoma/genetics
- Immunoblotting
- Mice
- Mice, Inbred BALB C
- Models, Genetic
- Neoplasms, Experimental
- Oligonucleotides, Antisense
- Precipitin Tests
- Promoter Regions, Genetic
- Proto-Oncogene Protein c-fli-1
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-kit/physiology
- Recombinant Fusion Proteins
- Stem Cell Factor/physiology
- Time Factors
- Trans-Activators/physiology
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Tamir
- Department of Medical Biophysics, Cancer Biology Research, Sunnybrook and Women's College Health Science Centre, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sevilla L, Aperlo C, Dulic V, Chambard JC, Boutonnet C, Pasquier O, Pognonec P, Boulukos KE. The Ets2 transcription factor inhibits apoptosis induced by colony-stimulating factor 1 deprivation of macrophages through a Bcl-xL-dependent mechanism. Mol Cell Biol 1999; 19:2624-34. [PMID: 10082528 PMCID: PMC84055 DOI: 10.1128/mcb.19.4.2624] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bcl-xL, a member of the Bcl-2 family, inhibits apoptosis, and its expression is regulated at the transcriptional level, yet nothing is known about the transcription factors specifically activating this promoter. The bcl-x promoter contains potential Ets binding sites, and we show that the transcription factor, Ets2, first identified by its sequence identity to v-ets of the E26 retrovirus, can transactivate the bcl-x promoter. Transient expression of Ets2 results in the upregulation of Bcl-xL but not of Bcl-xS, an alternatively spliced gene product which induces apoptosis. Ets2 is ubiquitously expressed at low levels in a variety of cell types and tissues but is specifically induced to abundant levels during macrophage differentiation. Since Bcl-xL is also upregulated during macrophage differentiation, we asked whether the bcl-x could be a direct downstream target gene of Ets2 in macrophages. BAC1.2F5 macrophages, which are dependent on macrophage colony-stimulating factor 1 (CSF-1) for their growth and survival, were used in these studies. We show that CSF-1 stimulation of BAC1.2F5 macrophages results in the upregulation of expression of ets2 and bcl-xL with similar kinetics of induction. In the absence of CSF-1, these macrophages undergo cell death by apoptosis, whereas constitutive expression of Ets2 rescues these cells from cell death, and bcl-xL is upregulated. These results strongly suggest a novel role of Ets2 in affecting apoptosis through its regulation of Bcl-xL transcription.
Collapse
Affiliation(s)
- L Sevilla
- Centre de Biochimie, Université de Nice, Faculté des Sciences, 06108 Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Pereira R, Quang CT, Lesault I, Dolznig H, Beug H, Ghysdael J. FLI-1 inhibits differentiation and induces proliferation of primary erythroblasts. Oncogene 1999; 18:1597-608. [PMID: 10102630 DOI: 10.1038/sj.onc.1202534] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Friend virus-induced erythroleukemia involves two members of the ETS family of transcriptional regulators, both activated via proviral insertion in the corresponding loci. Spi-1/PU.1 is expressed in the disease induced by the original Friend virus SFFV(F-MuLV) complex in adult mice. In contrast, FLI-1 is overexpressed in about 75% of the erythroleukemias induced by the F-MuLV helper virus in newborn mice. To analyse the consequences of the enforced expression of FLI-1 on erythroblast differentiation and proliferation and to compare its activity to that of PU.1/Spi-1, we used a heterologous system of avian primary erythroblasts previously described to study the cooperation between Spi-1/PU.1 and the other molecular alterations observed in SFFV-induced disease. FLI-1 was found: (i) to inhibit the apoptotic cell death program normally activated in erythroblasts following Epo deprivation; (ii) to inhibit the terminal differentiation program induced in these cells in response to Epo and; (iii) to induce their proliferation. However, in contrast to Spi-1/PU.1, the effects of FLI-1 on erythroblast, differentiation and proliferation did not require its cooperation with an abnormally activated form of the EpoR. Enhanced survival of FLI-1 expressing erythroblasts correlated with the upregulation of bcl2 expression. FLI-1 also prevented the rapid downregulation of cyclin D2 and D3 expression normally observed during Epo-induced differentiation and delayed the downregulation of several other genes involved in cell cycle or cell proliferation control. Our results show that overexpression of FLI-1 profoundly deregulates the normal balance between differentiation and proliferation in primary erythroblasts. Thus, the activation of FLI-1 expression observed at the onset of F-MuLV-induced erythroleukemia may provide a proliferative advantage to virus infected cells that would otherwise undergo terminal differentiation or cell death.
Collapse
Affiliation(s)
- R Pereira
- CNRS UMR146, Institut Curie-Section de Recherche, Centre Universitaire, Orsay, France
| | | | | | | | | | | |
Collapse
|
41
|
Wessely O, Bauer A, Quang CT, Deiner EM, von Lindern M, Mellitzer G, Steinlein P, Ghysdael J, Beug H. A novel way to induce erythroid progenitor self renewal: cooperation of c-Kit with the erythropoietin receptor. Biol Chem 1999; 380:187-202. [PMID: 10195426 DOI: 10.1515/bc.1999.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Red blood cells are of vital importance for oxygen transport in vertebrates. Thus, their formation during development and homeostasis requires tight control of both progenitor proliferation and terminal red cell differentiation. Self renewal (i.e. long-term proliferation without differentiation) of committed erythroid progenitors has recently been shown to contribute to this regulation. Avian erythroid progenitors expressing the EGF receptor/c-ErbB (SCF/TGFalpha progenitors) can be induced to long-term proliferation by the c-ErbB ligand transforming growth factor alpha and the steroids estradiol and dexamethasone. These progenitors have not yet been described in mammals and their factor requirements are untypical for adult erythroid progenitors. Here we describe a second, distinct type of erythroid progenitor (EpoR progenitors) which can be established from freshly isolated bone marrow and is induced to self renew by ligands relevant for erythropoiesis, i.e. erythropoietin, stem cell factor, the ligand for c-Kit and the glucocorticoid receptor ligand dexamethasone. Limiting dilution cloning indicates that these EpoR progenitors are derived from normal BFU-E/CFU-E. For a detailed study, mEpoR progenitors were generated by retroviral expression of the murine Epo receptor in bone marrow erythroblasts. These progenitors carry out the normal erythroid differentiation program in recombinant differentiation factors only. We show that mEpoR progenitors are more mature than SCF/TGFalpha progenitors and also do no longer respond to transforming growth factor alpha and estradiol. In contrast they are now highly sensitive to low levels of thyroid hormone, facilitating their terminal maturation into erythrocytes.
Collapse
Affiliation(s)
- O Wessely
- Institute of Molecular Pathology, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Starck J, Doubeikovski A, Sarrazin S, Gonnet C, Rao G, Skoultchi A, Godet J, Dusanter-Fourt I, Morle F. Spi-1/PU.1 is a positive regulator of the Fli-1 gene involved in inhibition of erythroid differentiation in friend erythroleukemic cell lines. Mol Cell Biol 1999; 19:121-35. [PMID: 9858537 PMCID: PMC83871 DOI: 10.1128/mcb.19.1.121] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spi-1/PU.1 and Fli-1 are two members of the ETS family of transcription factors whose expression is deregulated by proviral insertion in most erythroleukemic cell lines induced by the spleen focus-forming virus (SFFV) and Friend murine leukemia virus (F-MuLV) components of the Friend viral complex, respectively. In this study, we present evidence that transcription of the Fli-1 gene is positively regulated by Spi-1/PU.1 in SFFV-transformed cell lines: (i) all SFFV-transformed cell lines expressing Spi-1/PU.1 are characterized by a specific pattern of Fli-1 gene transcripts initiated in the -200 region instead of position -400 as reported for F-MuLV-transformed cell lines; (ii) these Fli-1 transcripts initiated in the -200 region are downregulated in parallel with that of Spi-1/PU.1 during hexamethylenebisacetamide (HMBA) induced differentiation; and (iii) Fli-1 transcription is upregulated in SFFV cells lines following stable transfection of a Spi-1/PU.1 expression vector. Furthermore, we found by transient transfection assays that the -270/-41 region of the Fli-1 gene displays promoter activity which is transactivated by Spi-1/PU.1. This promoter is strictly dependent on the integrity of two highly conserved ETS DNA binding sites that bind the Spi-1/PU.1 protein in vitro. Finally, we show that transfection of constitutive or inducible Fli-1 expression vectors in SFFV-transformed cells inhibits their erythroid differentiation induced by HMBA. Overall, these data indicate that Fli-1 is a target gene of the Spi-1/PU.1 transcription factor in SFFV-transformed cell lines. We further suggest that deregulated synthesis of Fli-1 may trigger a common mechanism contributing to erythroleukemia induced by either SFFV or F-MuLV.
Collapse
Affiliation(s)
- J Starck
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, 69622 Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bauer A, Mikulits W, Lagger G, Stengl G, Brosch G, Beug H. The thyroid hormone receptor functions as a ligand-operated developmental switch between proliferation and differentiation of erythroid progenitors. EMBO J 1998; 17:4291-303. [PMID: 9687498 PMCID: PMC1170763 DOI: 10.1093/emboj/17.15.4291] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The avian erythroblastosis virus (AEV) oncoprotein v-ErbA represents a mutated, oncogenic thyroid hormone receptor alpha (c-ErbA/ TRalpha). v-ErbA cooperates with the stem cell factor-activated, endogenous receptor tyrosine kinase c-Kit to induce self-renewal and to arrest differentiation of primary avian erythroblasts, the AEV transformation target cells. In this cooperation, v-ErbA substitutes for endogenous steroid hormone receptor function required for sustained proliferation of non-transformed erythroid progenitors. In this paper, we propose a novel concept of how v-ErbA transforms erythroblasts. Using culture media strictly depleted from thyroid hormone (T3) and retinoids, the ligands for c-ErbA/TRalpha and its co-receptor RXR, we show that overexpressed, unliganded c-ErbA/ TRalpha closely resembles v-ErbA in its activity on primary erythroblasts. In cooperation with ligand-activated c-Kit, c-ErbA/ TRalpha causes steroid-independent, long-term proliferation and tightly blocks differentiation. Activation of c-ErbA/ TRalpha by physiological T3 levels causes the loss of self-renewal capacity and induces synchronous, terminal differentiation under otherwise identical conditions. This T3-induced switch in erythroid progenitor development is correlated with a decrease of c-ErbA-associated histone deacetylase activity. Our results suggest that the crucial role of the mutations activating v-erbA as an oncogene is to 'freeze' c-ErbA/ TRalpha in its non-liganded, repressive conformation and to facilitate its overexpression.
Collapse
Affiliation(s)
- A Bauer
- Institute of Molecular Pathology (I.M.P.), Vienna Biocenter, Austria
| | | | | | | | | | | |
Collapse
|
44
|
Santini V, Scappini B, Gozzini A, Grossi A, Villa P, Ronco G, Douillet O, Pouillart P, Bernabei PA, Rossi Ferrini P. Butyrate-stable monosaccharide derivatives induce maturation and apoptosis in human acute myeloid leukaemia cells. Br J Haematol 1998; 101:529-38. [PMID: 9633898 DOI: 10.1046/j.1365-2141.1998.00727.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rapid degradation and subsequent lack of efficacy of n-butyric acid in vivo has been improved by the synthesis of monosaccharide stable pro-drugs of butyric acid. We studied the effects of D1 (O-n-butanoyl-2,3-O-isopropylidene-alpha-D-mannofuranoside), G1 (1-O-n-butanoyl-D,L-xylitol), and F1 (1-O-n-butanoyl 2,3-O-isopropylidene-D,L-xylitol) on the maturation and proliferation of AML cell lines HL 60 and FLG 29.1 and of purified blast cells from 10 cases of de novo acute myeloid leukaemia (AML). AML cell maturation was measured by surface antigen expression, morphology and cytochemistry. Toxicology in mice was also evaluated (DL50 1000 mg/kg). In HL 60 cells G1 and D1 increased the expression of CD15 and CD11a (presenting 62% of promyelo-metamyelocytes), and in 7/10 cases of primary AMLs that of CD11a, CD11b, CD15, and myeloperoxidase. D1, G1 and F1 induced a dose-dependent inhibition of tritiated thymidine uptake. Apoptosis (evaluated by flow cytometry and agarose gel electrophoresis) was induced in AML blasts by D1 and F1 (79% and 94% respectively for HL 60 cells) and, with less effect, by G1 (27%). The persistence of maturative and apoptotic activity in these new pro-drugs of butyric acid, hydrolysed only inside the tumour cell, suggests a possible use in differentiation therapy of myelodysplastic syndromes and AMLs.
Collapse
Affiliation(s)
- V Santini
- Department of Haematology, University of Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wessely O, Deiner EM, Lim KC, Mellitzer G, Steinlein P, Beug H. Mammalian granulocyte-macrophage colony-stimulating factor receptor expressed in primary avian hematopoietic progenitors: lineage-specific regulation of proliferation and differentiation. J Cell Biol 1998; 141:1041-51. [PMID: 9585421 PMCID: PMC2132768 DOI: 10.1083/jcb.141.4.1041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cytokine Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) regulates proliferation, differentiation, and apoptosis during myelopoiesis and erythropoiesis. Structure-function relationships of GM-CSF interactions with its receptor (GM-R), the biochemistry of GM-R signal transduction, and GM-CSF action in vivo are relatively well understood. Much less is known, however, about GM-R function in primary hematopoietic cells. In this paper we show that expression of the human GM-R in a heterologous cell system (primary avian erythroid and myeloid cells) confirms respective results in murine or human cell lines, but also provides new insights how the GM-R regulates progenitor proliferation and differentiation. As expected, the hGM-CSF stimulated myeloid progenitor proliferation and differentiation and enhanced erythroid progenitor proliferation during terminal differentiation. In the latter cells, however, the hGM-R only partially substituted for the activities of the erythropoietin receptor (EpoR). It failed to replace the EpoR in its cooperation with c-Kit to induce long-term proliferation of erythroid progenitors. Furthermore, the hGM-R alpha chain specifically interfered with EpoR signaling, an activity neither seen for the betac subunit of the receptor complex alone, nor for the alpha chain of the closely related Interleukin-3 receptor. These results point to a novel role of the GM-R alpha chain in defining cell type-specific functions of the GM-R.
Collapse
Affiliation(s)
- O Wessely
- Institute for Molecular Pathology, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|