1
|
Christian R, Labbancz J, Usadel B, Dhingra A. Understanding protein import in diverse non-green plastids. Front Genet 2023; 14:969931. [PMID: 37007964 PMCID: PMC10063809 DOI: 10.3389/fgene.2023.969931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
The spectacular diversity of plastids in non-green organs such as flowers, fruits, roots, tubers, and senescing leaves represents a Universe of metabolic processes in higher plants that remain to be completely characterized. The endosymbiosis of the plastid and the subsequent export of the ancestral cyanobacterial genome to the nuclear genome, and adaptation of the plants to all types of environments has resulted in the emergence of diverse and a highly orchestrated metabolism across the plant kingdom that is entirely reliant on a complex protein import and translocation system. The TOC and TIC translocons, critical for importing nuclear-encoded proteins into the plastid stroma, remain poorly resolved, especially in the case of TIC. From the stroma, three core pathways (cpTat, cpSec, and cpSRP) may localize imported proteins to the thylakoid. Non-canonical routes only utilizing TOC also exist for the insertion of many inner and outer membrane proteins, or in the case of some modified proteins, a vesicular import route. Understanding this complex protein import system is further compounded by the highly heterogeneous nature of transit peptides, and the varying transit peptide specificity of plastids depending on species and the developmental and trophic stage of the plant organs. Computational tools provide an increasingly sophisticated means of predicting protein import into highly diverse non-green plastids across higher plants, which need to be validated using proteomics and metabolic approaches. The myriad plastid functions enable higher plants to interact and respond to all kinds of environments. Unraveling the diversity of non-green plastid functions across the higher plants has the potential to provide knowledge that will help in developing climate resilient crops.
Collapse
Affiliation(s)
- Ryan Christian
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - June Labbancz
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Amit Dhingra,
| |
Collapse
|
2
|
Chloroplast Protein Tic55 Involved in Dark-Induced Senescence through AtbHLH/AtWRKY-ANAC003 Controlling Pathway of Arabidopsis thaliana. Genes (Basel) 2022; 13:genes13020308. [PMID: 35205352 PMCID: PMC8872272 DOI: 10.3390/genes13020308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
The chloroplast comprises the outer and inner membranes that are composed of the translocon protein complexes Toc and Tic (translocon at the outer/inner envelope membrane of chloroplasts), respectively. Tic55, a chloroplast Tic protein member, was shown to be not vital for functional protein import in Arabidopsis from previous studies. Instead, Tic55 was revealed to be a dark-induced senescence-related protein in our earlier study. To explore whether Tic55 elicits other biological functions, a tic55-II knockout mutant (SALK_086048) was characterized under different stress treatments. Abiotic stress conditions, such as cold, heat, and high osmotic pressure, did not cause visible effects on tic55-II mutant plant, when compared to the wild type (WT). In contrast, senescence was induced in the individually darkened leaves (IDLs), resulting in the differential expression of the senescence-related genes PEROXISOME DEFECTIVE 1 (PED1), BLUE COPPER-BINDING PROTEIN (BCB), SENESCENCE 1 (SEN1), and RUBISCO SMALL SUBUNIT GENE 2B (RBCS2B). The absence of Tic55 in tic55-II knockout mutant inhibited expression of the senescence-related genes PED1, BCB, and SEN1 at different stages of dark adaptation, while causing stimulation of RBCS2B gene expression at an early stage of dark response. Finally, yeast one-hybrid assays located the ANAC003 promoter region with cis-acting elements are responsible for binding to the different AtbHLH proteins, thereby causing the transactivation of an HIS3 reporter gene. ANAC003 was shown previously as a senescence-related protein and its activation would lead to expression of senescence-associated genes (SAGs), resulting in plant senescence. Thus, we propose a hypothetical model in which three signaling pathways may be involved in controlling the expression of ANAC003, followed by expression of SAGs that in turn leads to leaf senescence in Arabidopsis by this study and previous data.
Collapse
|
3
|
Yuan H, Pawlowski EG, Yang Y, Sun T, Thannhauser TW, Mazourek M, Schnell D, Li L. Arabidopsis ORANGE protein regulates plastid pre-protein import through interacting with Tic proteins. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1059-1072. [PMID: 33165598 DOI: 10.1093/jxb/eraa528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/30/2020] [Indexed: 05/19/2023]
Abstract
Chloroplast-targeted proteins are actively imported into chloroplasts via the machinery spanning the double-layered membranes of chloroplasts. While the key translocons at the outer (TOC) and inner (TIC) membranes of chloroplasts are defined, proteins that interact with the core components to facilitate pre-protein import are continuously being discovered. A DnaJ-like chaperone ORANGE (OR) protein is known to regulate carotenoid biosynthesis as well as plastid biogenesis and development. In this study, we found that OR physically interacts with several Tic proteins including Tic20, Tic40, and Tic110 in the classic TIC core complex of the chloroplast import machinery. Knocking out or and its homolog or-like greatly affects the import efficiency of some photosynthetic and non-photosynthetic pre-proteins. Consistent with the direct interactions of OR with Tic proteins, the binding efficiency assay revealed that the effect of OR occurs at translocation at the inner envelope membrane (i.e. at the TIC complex). OR is able to reduce the Tic40 protein turnover rate through its chaperone activity. Moreover, OR was found to interfere with the interaction between Tic40 and Tic110, and reduces the binding of pre-proteins to Tic110 in aiding their release for translocation and processing. Our findings suggest that OR plays a new and regulatory role in stabilizing key translocons and in facilitating the late stage of plastid pre-protein translocation to regulate plastid pre-protein import.
Collapse
Affiliation(s)
- Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Emily G Pawlowski
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Danny Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Ramundo S, Asakura Y, Salomé PA, Strenkert D, Boone M, Mackinder LCM, Takafuji K, Dinc E, Rahire M, Crèvecoeur M, Magneschi L, Schaad O, Hippler M, Jonikas MC, Merchant S, Nakai M, Rochaix JD, Walter P. Coexpressed subunits of dual genetic origin define a conserved supercomplex mediating essential protein import into chloroplasts. Proc Natl Acad Sci U S A 2020; 117:32739-32749. [PMID: 33273113 PMCID: PMC7768757 DOI: 10.1073/pnas.2014294117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In photosynthetic eukaryotes, thousands of proteins are translated in the cytosol and imported into the chloroplast through the concerted action of two translocons-termed TOC and TIC-located in the outer and inner membranes of the chloroplast envelope, respectively. The degree to which the molecular composition of the TOC and TIC complexes is conserved over phylogenetic distances has remained controversial. Here, we combine transcriptomic, biochemical, and genetic tools in the green alga Chlamydomonas (Chlamydomonas reinhardtii) to demonstrate that, despite a lack of evident sequence conservation for some of its components, the algal TIC complex mirrors the molecular composition of a TIC complex from Arabidopsis thaliana. The Chlamydomonas TIC complex contains three nuclear-encoded subunits, Tic20, Tic56, and Tic100, and one chloroplast-encoded subunit, Tic214, and interacts with the TOC complex, as well as with several uncharacterized proteins to form a stable supercomplex (TIC-TOC), indicating that protein import across both envelope membranes is mechanistically coupled. Expression of the nuclear and chloroplast genes encoding both known and uncharacterized TIC-TOC components is highly coordinated, suggesting that a mechanism for regulating its biogenesis across compartmental boundaries must exist. Conditional repression of Tic214, the only chloroplast-encoded subunit in the TIC-TOC complex, impairs the import of chloroplast proteins with essential roles in chloroplast ribosome biogenesis and protein folding and induces a pleiotropic stress response, including several proteins involved in the chloroplast unfolded protein response. These findings underscore the functional importance of the TIC-TOC supercomplex in maintaining chloroplast proteostasis.
Collapse
Affiliation(s)
- Silvia Ramundo
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Yukari Asakura
- Laboratory of Organelle Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Patrice A Salomé
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Daniela Strenkert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Morgane Boone
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Luke C M Mackinder
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Kazuaki Takafuji
- Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Emine Dinc
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Michèle Rahire
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Michèle Crèvecoeur
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Leonardo Magneschi
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Olivier Schaad
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Sabeeha Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Masato Nakai
- Laboratory of Organelle Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan;
| | - Jean-David Rochaix
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland;
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143;
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
5
|
Bölter B, Mitterreiter MJ, Schwenkert S, Finkemeier I, Kunz HH. The topology of plastid inner envelope potassium cation efflux antiporter KEA1 provides new insights into its regulatory features. PHOTOSYNTHESIS RESEARCH 2020; 145:43-54. [PMID: 31865509 DOI: 10.1007/s11120-019-00700-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/11/2019] [Indexed: 05/25/2023]
Abstract
The plastid potassium cation efflux antiporters (KEAs) are important for chloroplast function, development, and photosynthesis. To understand their regulation at the protein level is therefore of fundamental importance. Prior studies have focused on the regulatory K+ transport and NAD-binding (KTN) domain in the C-terminus of the thylakoid carrier KEA3 but the localization of this domain remains unclear. While all three plastid KEA members are highly conserved in their transmembrane region and the C-terminal KTN domain, only the inner envelope KEA family members KEA1 and KEA2 carry a long soluble N-terminus. Interestingly, this region is acetylated at lysine 168 by the stromal acetyltransferase enzyme NSI. If an odd number of transmembrane domains existed for inner envelope KEAs, as it was suggested for all three plastid KEA carriers, regulatory domains and consequently protein regulation would occur on opposing sides of the inner envelope. In this study we therefore set out to investigate the topology of inner envelope KEA proteins. Using a newly designed antibody specific to the envelope KEA1 N-terminus and transgenic Arabidopsis plants expressing a C-terminal KEA1-YFP fusion protein, we show that both, the N-terminal and C-terminal, regulatory domains of KEA1 reside in the chloroplast stroma and not in the intermembrane space. Considering the high homology between KEA1 and KEA2, we therefore reason that envelope KEAs must consist of an even number of transmembrane domains.
Collapse
Affiliation(s)
- Bettina Bölter
- Dept. I, Plant Biochemistry, Ludwig Maximilians University Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Melanie J Mitterreiter
- Dept. I, Plant Biochemistry, Ludwig Maximilians University Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Dept. I, Plant Biochemistry, Ludwig Maximilians University Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Biology and Biotechnology of Plants, University of Muenster, Schlossplatz 7, 48149, Muenster, Germany
| | - Hans-Henning Kunz
- Plant Physiology, School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
6
|
Pollmann S, Springer A, Rustgi S, von Wettstein D, Kang C, Reinbothe C, Reinbothe S. Substrate channeling in oxylipin biosynthesis through a protein complex in the plastid envelope of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1483-1495. [PMID: 30690555 PMCID: PMC6411374 DOI: 10.1093/jxb/erz015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/06/2019] [Indexed: 05/20/2023]
Abstract
Oxygenated membrane fatty acid derivatives termed oxylipins play important roles in plant defense against biotic and abiotic cues. Plants challenged by insect pests, for example, synthesize a blend of different defense compounds that include volatile aldehydes and jasmonic acid (JA), among others. Because all oxylipins are derived from the same pathway, we investigated how their synthesis might be regulated, focusing on two closely related atypical cytochrome P450 enzymes designated CYP74A and CYP74B, respectively, allene oxide synthase (AOS) and hydroperoxide lyase (HPL). These enzymes compete for the same substrate but give rise to different products: the final product of the AOS branch of the oxylipin pathway is JA, while those of the HPL branch comprise volatile aldehydes and alcohols. AOS and HPL are plastid envelope enzymes in Arabidopsis thaliana but accumulate at different locations. Biochemical experiments identified AOS as a constituent of complexes also containing lipoxygenase 2 (LOX2) and allene oxide cyclase (AOC), which catalyze consecutive steps in JA precursor biosynthesis, while excluding the concurrent HPL reaction. Based on published X-ray data, the structure of this complex was modelled and amino acids involved in catalysis and subunit interactions predicted. Genetic studies identified the microRNA 319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes and CORONATINE INSENSITIVE 1 (COI1) as controlling JA production through the LOX2-AOS-AOC2 complex. Together, our results define a molecular branch point in oxylipin biosynthesis that allows fine-tuning of the plant's defense machinery in response to biotic and abiotic stimuli.
Collapse
Affiliation(s)
- Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
- Correspondence: or
| | - Armin Springer
- Medizinische Biologie und Elektronenmikroskopisches Zentrum (EMZ), Universitätsmedizin Rostock, Rostock, Germany
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
- Biomolecular Crystallography Center, Washington State University, Pullman, WA, USA
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble Alpes, CEDEX, France
| | - Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble Alpes, CEDEX, France
- Correspondence: or
| |
Collapse
|
7
|
Reinbothe S, Bartsch S, Rossig C, Davis MY, Yuan S, Reinbothe C, Gray J. A Protochlorophyllide (Pchlide) a Oxygenase for Plant Viability. FRONTIERS IN PLANT SCIENCE 2019; 10:593. [PMID: 31156665 PMCID: PMC6530659 DOI: 10.3389/fpls.2019.00593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/24/2019] [Indexed: 05/19/2023]
Abstract
Higher plants contain a small, 5-member family of Rieske non-heme oxygenases that comprise the inner plastid envelope protein TIC55, phaeophorbide a oxygenasee (PAO), chlorophyllide a oxygenase (CAO), choline monooxygenase, and a 52 kDa protein (PTC52) associated with the precursor NADPH:protochlorophyllide (Pchlide) oxidoreductase A (pPORA) A translocon (PTC). Some of these chloroplast proteins have documented roles in chlorophyll biosynthesis (CAO) and degradation (PAO and TIC55), whereas the function of PTC52 remains unresolved. Biochemical evidence provided here identifies PTC52 as Pchlide a oxygenase of the inner plastid envelope linking Pchlide b synthesis to pPORA import. Protochlorophyllide b is the preferred substrate of PORA and its lack no longer allows pPORA import. The Pchlide b-dependent import pathway of pPORA thus operates in etiolated seedlings and is switched off during greening. Using dexamethasone-induced RNA interference (RNAi) we tested if PTC52 is involved in controlling both, pPORA import and Pchlide homeostasis in planta. As shown here, RNAi plants deprived of PTC52 transcript and PTC52 protein were unable to import pPORA and died as a result of excess Pchlide a accumulation causing singlet oxygen formation during greening. In genetic studies, no homozygous ptc52 knock-out mutants could be obtained presumably as a result of embryo lethality, suggesting a role for PTC52 in the initial greening of plant embryos. Phylogenetic studies identified PTC52-like genes amongst unicellular photosynthetic bacteria and higher plants, suggesting that the biochemical function associated with PTC52 may have an ancient evolutionary origin. PTC52 also harbors conserved motifs with bacterial oxygenases such as the terminal oxygenase component of 3-ketosteroid 9-alpha-hydroxylase (KshA) from Rhodococcus rhodochrous. 3D-modeling of PTC52 structure permitted the prediction of amino acid residues that contribute to the substrate specificity of this enzyme. In vitro-mutagenesis was used to test the predicted PTC52 model and provide insights into the reaction mechanism of this Rieske non-heme oxygenase.
Collapse
Affiliation(s)
- Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
- *Correspondence: Steffen Reinbothe, John Gray,
| | - Sandra Bartsch
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Claudia Rossig
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | | | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - John Gray
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
- *Correspondence: Steffen Reinbothe, John Gray,
| |
Collapse
|
8
|
Bölter B. En route into chloroplasts: preproteins' way home. PHOTOSYNTHESIS RESEARCH 2018; 138:263-275. [PMID: 29943212 DOI: 10.1007/s11120-018-0542-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Chloroplasts are the characteristic endosymbiotic organelles of plant cells which during the course of evolution lost most of their genetic information to the nucleus. Thus, they critically depend on the host cell for allocation of nearly their complete protein supply. This includes gene expression, translation, protein targeting, and transport-all of which need to be tightly regulated and perfectly coordinated to accommodate the cells' needs. To this end, multiple signaling pathways have been implemented that interchange information between the different cellular compartments. One of the most complex and energy consuming processes is the translocation of chloroplast-destined proteins into their target organelle. It is a concerted effort from chaperones, receptor proteins, channels, and regulatory elements to ensure correct targeting, efficient transport, and subsequent folding. Although we have discovered and learned a lot about protein import into chloroplasts in the last decades, there are still many open questions and debates about the roles of individual proteins as well as the mechanistic details. In this review, I will summarize and discuss the published data with a focus on the translocation complex in the chloroplast inner envelope membrane.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany.
| |
Collapse
|
9
|
The Direct Involvement of Dark-Induced Tic55 Protein in Chlorophyll Catabolism and Its Indirect Role in the MYB108-NAC Signaling Pathway during Leaf Senescence in Arabidopsis thaliana. Int J Mol Sci 2018; 19:ijms19071854. [PMID: 29937503 PMCID: PMC6073118 DOI: 10.3390/ijms19071854] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022] Open
Abstract
The chloroplast relies on proteins encoded in the nucleus, synthesized in the cytosol and subsequently transported into chloroplast through the protein complexes Toc and Tic (Translocon at the outer/inner membrane of chloroplasts). A Tic complex member, Tic55, contains a redox-related motif essential for protein import into chloroplasts in peas. However, Tic55 is not crucial for protein import in Arabidopsis. Here, a tic55-II-knockout mutant of Arabidopsis thaliana was characterized for Tic55 localization, its relationship with other translocon proteins, and its association with plant leaf senescence when compared to the wild type. Individually darkened leaves (IDLs) obtained through dark-induced leaf senescence were used to demonstrate chlorophyll breakdown and its relationship with plant senescence in the tic55-II-knockout mutant. The IDLs of the tic55-II-knockout mutant contained higher chlorophyll concentrations than those of the wild type. Our microarray analysis of IDLs during leaf senescence identified seven senescence-associated genes (SAGs) that were downregulated in the tic55-II-knockout mutant: ASP3, APG7, DIN2, DIN11, SAG12, SAG13, and YLS9. Real-time quantitative PCR confirmed the reliability of microarray analysis by showing the same expression patterns with those of the microarray data. Thus, Tic55 functions in dark-induced aging in A. thaliana by indirectly regulating downstream SAGs expression. In addition, the expression of four NAC genes, including ANAC003, ANAC010, ANAC042, and ANAC075 of IDL treated tic55-II-knockout mutant appeared to be downregulated. Yeast one hybrid assay revealed that only ANAC003 promoter region can be bound by MYB108, suggesting that a MYB-NAC regulatory network is involved in dark-stressed senescence.
Collapse
|
10
|
Kuai B, Chen J, Hörtensteiner S. The biochemistry and molecular biology of chlorophyll breakdown. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:751-767. [PMID: 28992212 DOI: 10.1093/jxb/erx322] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chlorophyll breakdown is one of the most obvious signs of leaf senescence and fruit ripening. The resulting yellowing of leaves can be observed every autumn, and the color change of fruits indicates their ripening state. During these processes, chlorophyll is broken down in a multistep pathway, now termed the 'PAO/phyllobilin' pathway, acknowledging the core enzymatic breakdown step catalysed by pheophorbide a oxygenase, which determines the basic linear tetrapyrrole structure of the products of breakdown that are now called 'phyllobilins'. This review provides an update on the PAO/phyllobilin pathway, and focuses on recent biochemical and molecular progress in understanding phyllobilin-modifying reactions as the basis for phyllobilin diversity, on the evolutionary diversity of the pathway, and on the transcriptional regulation of the pathway genes.
Collapse
Affiliation(s)
- Benke Kuai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Junyi Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Stefan Hörtensteiner
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse, Zurich, Switzerland
| |
Collapse
|
11
|
Chakraborty J, Suzuki-Minakuchi C, Okada K, Nojiri H. Thermophilic bacteria are potential sources of novel Rieske non-heme iron oxygenases. AMB Express 2017; 7:17. [PMID: 28050858 PMCID: PMC5209329 DOI: 10.1186/s13568-016-0318-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/23/2016] [Indexed: 11/10/2022] Open
Abstract
Rieske non-heme iron oxygenases, which have a Rieske-type [2Fe-2S] cluster and a non-heme catalytic iron center, are an important family of oxidoreductases involved mainly in regio- and stereoselective transformation of a wide array of aromatic hydrocarbons. Though present in all domains of life, the most widely studied Rieske non-heme iron oxygenases are found in mesophilic bacteria. The present study explores the potential for isolating novel Rieske non-heme iron oxygenases from thermophilic sources. Browsing the entire bacterial genome database led to the identification of 45 homologs from thermophilic bacteria distributed mainly among Chloroflexi, Deinococcus-Thermus and Firmicutes. Thermostability, measured according to the aliphatic index, showed higher values for certain homologs compared with their mesophilic relatives. Prediction of substrate preferences indicated that a wide array of aromatic hydrocarbons could be transformed by most of the identified oxygenase homologs. Further identification of putative genes encoding components of a functional oxygenase system opens up the possibility of reconstituting functional thermophilic Rieske non-heme iron oxygenase systems with novel properties.
Collapse
|
12
|
|
13
|
Veit S, Takeda K, Tsunoyama Y, Baymann F, Nevo R, Reich Z, Rögner M, Miki K, Rexroth S. Structural and functional characterisation of the cyanobacterial PetC3 Rieske protein family. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1879-1891. [DOI: 10.1016/j.bbabio.2016.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/12/2016] [Accepted: 09/17/2016] [Indexed: 11/30/2022]
|
14
|
Hauenstein M, Christ B, Das A, Aubry S, Hörtensteiner S. A Role for TIC55 as a Hydroxylase of Phyllobilins, the Products of Chlorophyll Breakdown during Plant Senescence. THE PLANT CELL 2016; 28:2510-2527. [PMID: 27655840 PMCID: PMC5134989 DOI: 10.1105/tpc.16.00630] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/08/2016] [Accepted: 09/19/2016] [Indexed: 05/04/2023]
Abstract
Chlorophyll degradation is the most obvious hallmark of leaf senescence. Phyllobilins, linear tetrapyrroles that are derived from opening of the chlorin macrocycle by the Rieske-type oxygenase PHEOPHORBIDE a OXYGENASE (PAO), are the end products of chlorophyll degradation. Phyllobilins carry defined modifications at several peripheral positions within the tetrapyrrole backbone. While most of these modifications are species-specific, hydroxylation at the C32 position is commonly found in all species analyzed to date. We demonstrate that this hydroxylation occurs in senescent chloroplasts of Arabidopsis thaliana. Using bell pepper (Capsicum annuum) chromoplasts, we establish that phyllobilin hydroxylation is catalyzed by a membrane-bound, molecular oxygen-dependent, and ferredoxin-dependent activity. As these features resemble the requirements of PAO, we considered membrane-bound Rieske-type oxygenases as potential candidates. Analysis of mutants of the two Arabidopsis Rieske-type oxygenases (besides PAO) uncovered that phyllobilin hydroxylation depends on TRANSLOCON AT THE INNER CHLOROPLAST ENVELOPE55 (TIC55). Our work demonstrates a catalytic activity for TIC55, which in the past has been considered as a redox sensor of protein import into plastids. Given the wide evolutionary distribution of both PAO and TIC55, we consider that chlorophyll degradation likely coevolved with land plants.
Collapse
Affiliation(s)
- Mareike Hauenstein
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Bastien Christ
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Aditi Das
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Sylvain Aubry
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | | |
Collapse
|
15
|
Bölter B, Soll J. Once upon a Time - Chloroplast Protein Import Research from Infancy to Future Challenges. MOLECULAR PLANT 2016; 9:798-812. [PMID: 27142186 DOI: 10.1016/j.molp.2016.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 05/08/2023]
Abstract
Protein import into chloroplasts has been a focus of research for several decades. The first publications dealing with this fascinating topic appeared in the 1970s. From the initial realization that many plastid proteins are being encoded for in the nucleus and require transport into their target organelle to the identification of import components in the cytosol, chloroplast envelopes, and stroma, as well as elucidation of some mechanistic details, more fascinating aspects are still being unraveled. With this overview, we present a survey of the beginnings of chloroplast protein import research, the first steps on this winding road, and end with a glimpse into the future.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
16
|
The TIC complex uncovered: The alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:957-67. [PMID: 25689609 DOI: 10.1016/j.bbabio.2015.02.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/19/2015] [Accepted: 02/07/2015] [Indexed: 12/29/2022]
Abstract
Chloroplasts must import thousands of nuclear-encoded preproteins synthesized in the cytosol through two successive protein translocons at the outer and inner envelope membranes, termed TOC and TIC, respectively, to fulfill their complex physiological roles. The molecular identity of the TIC translocon had long remained controversial; two proteins, namely Tic20 and Tic110, had been proposed to be central to protein translocation across the inner envelope membrane. Tic40 also had long been considered to be another central player in this process. However, recently, a novel 1-megadalton complex consisting of Tic20, Tic56, Tic100, and Tic214 was identified at the chloroplast inner membrane of Arabidopsis and was demonstrated to constitute a general TIC translocon which functions in concert with the well-characterized TOC translocon. On the other hand, direct interaction between this novel TIC transport system and Tic110 or Tic40 was hardly observed. Consequently, the molecular model for protein translocation across the inner envelope membrane of chloroplasts might need to be extensively revised. In this review article, I intend to propose such alternative view regarding the TIC transport system in contradistinction to the classical view. I also would emphasize importance of reevaluation of previous works in terms of with what methods these classical Tic proteins such as Tic110 or Tic40 were picked up as TIC constituents at the very beginning as well as what actual evidence there were to support their direct and specific involvement in chloroplast protein import. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
17
|
Bölter B, Soll J, Schwenkert S. Redox meets protein trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:949-56. [PMID: 25626173 DOI: 10.1016/j.bbabio.2015.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 11/15/2022]
Abstract
After the engulfment of two prokaryotic organisms, the thus emerged eukaryotic cell needed to establish means of communication and signaling to properly integrate the acquired organelles into its metabolism. Regulatory mechanisms had to evolve to ensure that chloroplasts and mitochondria smoothly function in accordance with all other cellular processes. One essential process is the post-translational import of nuclear encoded organellar proteins, which needs to be adapted according to the requirements of the plant. The demand for protein import is constantly changing depending on varying environmental conditions, as well as external and internal stimuli or different developmental stages. Apart from long-term regulatory mechanisms such as transcriptional/translation control, possibilities for short-term acclimation are mandatory. To this end, protein import is integrated into the cellular redox network, utilizing the recognition of signals from within the organelles and modifying the efficiency of the translocon complexes. Thereby, cellular requirements can be communicated throughout the whole organism. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany.
| | - Serena Schwenkert
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| |
Collapse
|
18
|
Berim A, Park JJ, Gang DR. Unexpected roles for ancient proteins: flavone 8-hydroxylase in sweet basil trichomes is a Rieske-type, PAO-family oxygenase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:385-395. [PMID: 25139498 DOI: 10.1111/tpj.12642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/27/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
Most elucidated hydroxylations in plant secondary metabolism are catalyzed by oxoglutarate- or cytochrome P450-dependent oxygenases. Numerous hydroxylations still evade clarification, suggesting that they might be performed by alternative enzyme types. Here, we report the identification of the flavone 8-hydroxylase (F8H) in sweet basil (Ocimum basilicum L.) trichomes as a Rieske-type oxygenase. Several features of the F8H activity in trichome protein extracts helped to differentiate it from a cytochrome P450-catalyzed reaction and identify candidate genes in the basil trichome EST database. The encoded ObF8H proteins share approximately 50% identity with Rieske-type protochlorophyllide a oxygenases (PTC52) from higher plants. Homology cloning and DNA blotting revealed the presence of several PTC52-like genes in the basil genome. The transcripts of the candidate gene designated ObF8H-1 are strongly enriched in trichomes compared to whole young leaves, indicating trichome-specific expression. The full-length ObF8H-1 protein possesses a predicted N-terminal transit peptide, which directs green fluorescent protein at least in part to chloroplasts. The F8H activity in crude trichome protein extracts correlates well with the abundance of ObF8H peptides. The purified recombinant ObF8H-1 displays high affinity for salvigenin and is inactive with other tested flavones except cirsimaritin, which is 8-hydroxylated with less than 0.2% relative activity. The efficiency of in vivo 8-hydroxylation by engineered yeast was improved by manipulation of protein subcellular targeting. blast searches showed that occurrence of several PTC52-like genes is rather common in sequenced plant genomes. The discovery of ObF8H suggests that Rieske-type oxygenases may represent overlooked candidate catalysts for oxygenations in specialized plant metabolism.
Collapse
Affiliation(s)
- Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | | | | |
Collapse
|
19
|
Dutta S, Teresinski HJ, Smith MD. A split-ubiquitin yeast two-hybrid screen to examine the substrate specificity of atToc159 and atToc132, two Arabidopsis chloroplast preprotein import receptors. PLoS One 2014; 9:e95026. [PMID: 24736607 PMCID: PMC3988174 DOI: 10.1371/journal.pone.0095026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/22/2014] [Indexed: 11/18/2022] Open
Abstract
Post-translational import of nucleus-encoded chloroplast pre-proteins is critical for chloroplast biogenesis, and the Toc159 family of proteins serve as receptors for the process. Toc159 shares with other members of the family (e.g. Toc132), homologous GTPase (G−) and Membrane (M−) domains, but a highly dissimilar N-terminal acidic (A−) domain. Although there is good evidence that atToc159 and atToc132 from Arabidopsis mediate the initial sorting step, preferentially recognizing photosynthetic and non-photosynthetic preproteins, respectively, relatively few chloroplast preproteins have been assigned as substrates for particular members of the Toc159 family, which has limited the proof for the hypothesis. The current study expands the number of known preprotein substrates for members of the Arabidopsis Toc159 receptor family using a split-ubiquitin membrane-based yeast two-hybrid system using the atToc159 G-domain (Toc159G), atToc132 G-domain (Toc132G) and atToc132 A- plus G-domains (Toc132AG) as baits. cDNA library screening with all three baits followed by pairwise interaction assays involving the 81 chloroplast preproteins identified show that although G-domains of the Toc159 family are sufficient for preprotein recognition, they alone do not confer specificity for preprotein subclasses. The presence of the A-domain fused to atToc132G (Toc132AG) not only positively influences its specificity for non-photosynthetic preproteins, but also negatively regulates the ability of this receptor to interact with a subset of photosynthetic preproteins. Our study not only substantiates the fact that atToc132 can serve as a receptor by directly binding to chloroplast preproteins but also proposes the existence of subsets of preproteins with different but overlapping affinities for more than one member of the Toc159 receptor family.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Howard J Teresinski
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
20
|
Rossig C, Reinbothe C, Gray J, Valdes O, von Wettstein D, Reinbothe S. New functions of the chloroplast Preprotein and Amino acid Transporter (PRAT) family members in protein import. PLANT SIGNALING & BEHAVIOR 2014; 9:e27693. [PMID: 24476934 PMCID: PMC4092311 DOI: 10.4161/psb.27693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/31/2013] [Accepted: 12/31/2013] [Indexed: 05/29/2023]
Abstract
Plant cells contain distinct compartments such as the nucleus, the endomembrane system comprising the endoplasmic reticulum and Golgi apparatus, peroxisomes, vacuoles, as well as mitochondria and chloroplasts. All of these compartments are surrounded by 1 or 2 limiting membranes and need to import proteins from the cytosol. Previous work led to the conclusion that mitochondria and chloroplasts use structurally different protein import machineries in their outer and inner membranes for the uptake of cytosolic precursor proteins. Our most recent data show that there is some unexpected overlap. Three members of the family of preprotein and amino acid transporters, PRAT, were identified in chloroplasts that mediate the uptake of transit sequence-less proteins into the inner plastid envelope membrane. By analogy, mitochondria contain with TIM22 a related PRAT protein that is involved in the import of transit sequence-less proteins into the inner mitochondrial membrane. Both mitochondria and chloroplasts thus make use of similar import mechanisms to deliver some of their proteins to their final place. Because single homologs of HP20- and HP30-like proteins are present in algae such as Chlamydomonas, Ostreococcus, and Volvox, which diverged from land plants approximately 1 billion years ago, it is likely that the discovered PRAT-mediated mechanism of protein translocation evolved concomitantly with the secondary endosymbiotic event that gave rise to green plants.
Collapse
Affiliation(s)
- Claudia Rossig
- Biologie Environnementale et Systémique (BEeSy); Université Joseph Fourier; LBFA; BP53F; Grenoble, France
| | - Christiane Reinbothe
- Biologie Environnementale et Systémique (BEeSy); Université Joseph Fourier; LBFA; BP53F; Grenoble, France
| | - John Gray
- Department of Biological Sciences; University of Toledo; Toledo, OH USA
| | - Oscar Valdes
- Biologie Environnementale et Systémique (BEeSy); Université Joseph Fourier; LBFA; BP53F; Grenoble, France
| | - Diter von Wettstein
- Department of Crop and Soil Sciences; School of Molecular Biosciences; Center for Reproductive Biology; Washington State University; Pullman, WA USA
| | - Steffen Reinbothe
- Biologie Environnementale et Systémique (BEeSy); Université Joseph Fourier; LBFA; BP53F; Grenoble, France
| |
Collapse
|
21
|
Three proteins mediate import of transit sequence-less precursors into the inner envelope of chloroplasts in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2013; 110:19962-7. [PMID: 24248378 DOI: 10.1073/pnas.1319648110] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A family of 17 putative preprotein and amino acid transporters designated PRAT has been identified in Arabidopsis thaliana, comprising PRAT proteins in mitochondria and chloroplasts. Although some PRAT proteins, such as the translocon of the mitochondrial inner membrane (TIM) proteins TIM22 and TIM23, play decisive roles for the translocation and import of mitochondrial inner membrane proteins, little is known about the role of the different PRAT members in chloroplasts. Here we report the identification of three distinct PRAT proteins as part of a unique protein import site. One of the identified PRAT proteins is identical with a previously characterized hypothetical protein (HP) of 20 kDa designated HP20 of the outer plastid envelope membrane. The second PRAT component is represented by HP30, and the third is identical to HP30-2, a close relative of HP30. Both HP30 and HP30-2 are inner plastid envelope membrane proteins of chloroplasts. Using biochemical, cell biological, and genetic approaches we demonstrate that all three PRAT proteins cooperate during import of transit sequence-less proteins, such as the quinone oxidoreductase homolog ceQORH used as model, into the inner chloroplast envelope membrane. Our data are reminiscent of findings reported for the TIM22 translocase, which is involved in the import of carrier proteins and other, hydrophobic membrane proteins lacking cleavable transit sequences into the inner mitochondrial membrane. Together our results establish the PRAT family as a widely used system of protein translocases in different membranes of endosymbiotic origin.
Collapse
|
22
|
Shi LX, Theg SM. The chloroplast protein import system: from algae to trees. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:314-31. [PMID: 23063942 DOI: 10.1016/j.bbamcr.2012.10.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/07/2012] [Accepted: 10/01/2012] [Indexed: 01/15/2023]
Abstract
Chloroplasts are essential organelles in the cells of plants and algae. The functions of these specialized plastids are largely dependent on the ~3000 proteins residing in the organelle. Although chloroplasts are capable of a limited amount of semiautonomous protein synthesis - their genomes encode ~100 proteins - they must import more than 95% of their proteins after synthesis in the cytosol. Imported proteins generally possess an N-terminal extension termed a transit peptide. The importing translocons are made up of two complexes in the outer and inner envelope membranes, the so-called Toc and Tic machineries, respectively. The Toc complex contains two precursor receptors, Toc159 and Toc34, a protein channel, Toc75, and a peripheral component, Toc64/OEP64. The Tic complex consists of as many as eight components, namely Tic22, Tic110, Tic40, Tic20, Tic21 Tic62, Tic55 and Tic32. This general Toc/Tic import pathway, worked out largely in pea chloroplasts, appears to operate in chloroplasts in all green plants, albeit with significant modifications. Sub-complexes of the Toc and Tic machineries are proposed to exist to satisfy different substrate-, tissue-, cell- and developmental requirements. In this review, we summarize our understanding of the functions of Toc and Tic components, comparing these components of the import machinery in green algae through trees. We emphasize recent findings that point to growing complexities of chloroplast protein import process, and use the evolutionary relationships between proteins of different species in an attempt to define the essential core translocon components and those more likely to be responsible for regulation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Lan-Xin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
23
|
Chakraborty J, Ghosal D, Dutta A, Dutta TK. An insight into the origin and functional evolution of bacterial aromatic ring-hydroxylating oxygenases. J Biomol Struct Dyn 2012; 30:419-36. [PMID: 22694139 DOI: 10.1080/07391102.2012.682208] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Bacterial aromatic ring-hydroxylating oxygenases (RHOs) are multicomponent enzyme systems which have potential utility in bioremediation of aromatic compounds in the environment. To cope with the enormous diversity of aromatic compounds in the environment, this enzyme family has evolved remarkably exhibiting broad substrate specificity. RHOs are multicomponent enzymes comprising of a homo- or hetero-multimeric terminal oxygenase and one or more electron transport (ET) protein(s). The present study attempts in depicting the evolutionary scenarios that might have occurred during the evolution of RHOs, by analyzing a set of available sequences including those obtained from complete genomes. A modified classification scheme identifying four new RHO types has been suggested on the basis of their evolutionary and functional behaviours, in relation to structural configuration of substrates and preferred oxygenation site(s). The present scheme emphasizes on the fact that the phylogenetic affiliation of RHOs is distributed among four distinct 'Similarity classes', independent of the constituent ET components. Similar combination of RHO components that was previously considered to be equivalent and classified together [Kweon et al., BMC Biochemistry 9, 11 (2008)] were found here in distinct similarity classes indicating the role of substrate-binding terminal oxygenase in guiding the evolution of RHOs irrespective of the nature of constituent ET components. Finally, a model for evolution of the multicomponent RHO enzyme system has been proposed, beginning from genesis of the terminal oxygenase components followed by recruitment of constituent ET components, finally evolving into various 'extant' RHO types.
Collapse
|
24
|
Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga. EUKARYOTIC CELL 2012; 11:324-33. [PMID: 22267775 DOI: 10.1128/ec.05264-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Most plastid proteins are encoded by their nuclear genomes and need to be targeted across multiple envelope membranes. In vascular plants, the translocons at the outer and inner envelope membranes of chloroplasts (TOC and TIC, respectively) facilitate transport across the two plastid membranes. In contrast, several algal groups harbor more complex plastids, the so-called secondary plastids, which are surrounded by three or four membranes, but the plastid protein import machinery (in particular, how proteins cross the membrane corresponding to the secondary endosymbiont plasma membrane) remains unexplored in many of these algae. To reconstruct the putative protein import machinery of a secondary plastid, we used the chlorarachniophyte alga Bigelowiella natans, whose plastid is bounded by four membranes and still possesses a relict nucleus of a green algal endosymbiont (the nucleomorph) in the intermembrane space. We identified nine homologs of plant-like TOC/TIC components in the recently sequenced B. natans nuclear genome, adding to the two that remain in the nucleomorph genome (B. natans TOC75 [BnTOC75] and BnTIC20). All of these proteins were predicted to be localized to the plastid and might function in the inner two membranes. We also show that the homologs of a protein, Der1, that is known to mediate transport across the second membrane in the several lineages with secondary plastids of red algal origin is not associated with plastid protein targeting in B. natans. How plastid proteins cross this membrane remains a mystery, but it is clear that the protein transport machinery of chlorarachniophyte plastids differs from that of red algal secondary plastids.
Collapse
|
25
|
Ladig R, Sommer MS, Hahn A, Leisegang MS, Papasotiriou DG, Ibrahim M, Elkehal R, Karas M, Zickermann V, Gutensohn M, Brandt U, Klösgen RB, Schleiff E. A high-definition native polyacrylamide gel electrophoresis system for the analysis of membrane complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:181-94. [PMID: 21418111 DOI: 10.1111/j.1365-313x.2011.04577.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Native polyacrylamide gel electrophoresis (PAGE) is an important technique for the analysis of membrane protein complexes. A major breakthrough was the development of blue native (BN-) and high resolution clear native (hrCN-) PAGE techniques. Although these techniques are very powerful, they could not be applied to all systems with the same resolution. We have developed an alternative protocol for the analysis of membrane protein complexes of plant chloroplasts and cyanobacteria, which we termed histidine- and deoxycholate-based native (HDN-) PAGE. We compared the capacity of HDN-, BN- and hrCN-PAGE to resolve the well-studied respiratory chain complexes in mitochondria of bovine heart muscle and Yarrowia lipolytica, as well as thylakoid localized complexes of Medicago sativa, Pisum sativum and Anabaena sp. PCC7120. Moreover, we determined the assembly/composition of the Anabaena sp. PCC7120 thylakoids and envelope membranes by HDN-PAGE. The analysis of isolated chloroplast envelope complexes by HDN-PAGE permitted us to resolve complexes such as the translocon of the outer envelope migrating at approximately 700 kDa or of the inner envelope of about 230 and 400 kDa with high resolution. By immunodecoration and mass spectrometry of these complexes we present new insights into the assembly/composition of these translocation machineries. The HDN-PAGE technique thus provides an important tool for future analyses of membrane complexes such as protein translocons.
Collapse
Affiliation(s)
- Roman Ladig
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle/Saale, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Schwenkert S, Soll J, Bölter B. Protein import into chloroplasts--how chaperones feature into the game. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:901-11. [PMID: 20682282 DOI: 10.1016/j.bbamem.2010.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/15/2022]
Abstract
Chloroplasts originated from an endosymbiotic event, in which an ancestral photosynthetic cyanobacterium was engulfed by a mitochondriate eukaryotic host cell. During evolution, the endosymbiont lost its autonomy by means of a massive transfer of genetic information from the prokaryotic genome to the host nucleus. Consequently, the development of protein import machineries became necessary for the relocation of proteins that are now nuclear-encoded and synthesized in the cytosol but destined for the chloroplast. Organelle biogenesis and maintenance requires a tight coordination of transcription, translation and protein import between the host cell and the organelle. This review focuses on the translocation complexes in the outer and inner envelope membrane with a special emphasis on the role of molecular chaperones. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Serena Schwenkert
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
27
|
Solymosi K, Schoefs B. Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. PHOTOSYNTHESIS RESEARCH 2010; 105:143-66. [PMID: 20582474 DOI: 10.1007/s11120-010-9568-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 05/30/2010] [Indexed: 05/03/2023]
Abstract
Chloroplast development is usually regarded as proceeding from proplastids. However, direct or indirect conversion pathways have been described in the literature, the latter involving the etioplast or the etio-chloroplast stages. Etioplasts are characterized by the absence of chlorophylls (Chl-s) and the presence of a unique inner membrane network, the prolamellar body (PLB), whereas etio-chloroplasts contain Chl-s and small PLBs interconnected with chloroplast thylakoids. As etioplast development requires growth in darkness for several days, this stage is generally regarded as a nonnatural pathway of chloroplast development occurring only under laboratory conditions. In this article, we have reviewed the data in favor of the involvement of etioplasts and etio-chloroplasts as intermediary stage(s) in chloroplast formation under natural conditions, the molecular aspects of PLB formation and we propose a dynamic model for its regulation.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Eötvös University, Pázmány P. s. 1/C, 1117 Budapest, Hungary.
| | | |
Collapse
|
28
|
Protein import into chloroplasts: the Tic complex and its regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:740-7. [PMID: 20100520 DOI: 10.1016/j.bbamcr.2010.01.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/11/2010] [Accepted: 01/13/2010] [Indexed: 11/24/2022]
Abstract
Chloroplasts like mitochondria were derived from an endosymbiontic event. Due to the massive gene transfer to the nucleus during endosymbiosis, only a limited number of chloroplastic proteins are still encoded for in the plastid genome. Most of the nuclear-encoded plastidic proteins are post-translationally translocated back to the chloroplast via the general import pathway through distinct outer and inner envelope membrane protein complexes, the Toc and Tic translocons (Translocon at the outer/inner envelope membrane of chloroplasts). Eight Tic subunits have been described so far, including two potential channel proteins (Tic110 and Tic20), the "motor complex" (Tic40 associated with the stromal chaperone Hsp93) and the "redox regulon" (Tic62, Tic55, and Tic32) involved in regulation of protein import via the metabolic redox status of the chloroplast. Regulation can additionally occur via thioredoxins (Tic110 and Tic55) or via the calcium/calmodulin network (Tic110 and Tic32). In this review we present the current knowledge about the Tic complex focusing on its regulation and addressing some still open questions.
Collapse
|
29
|
Abstract
Plastids are a heterogeneous family of organelles found ubiquitously in plants and algal cells. Most prominent are the chloroplasts, which carry out such essential processes as photosynthesis and the biosynthesis of fatty acids as well as of amino acids. As mitochondria, chloroplasts are derived from a single endosymbiotic event. They are believed to have evolved from an ancient cyanobacterium, which was engulfed by an early eukaryotic ancestor. During evolution the plastid genome has been greatly reduced and most of the genes have been transferred to the host nucleus. Consequently, more than 98% of all plastid proteins are translated on cytosolic ribosomes. They have to be posttranslationally targeted to and imported into the organelle. Targeting is assisted by cytosolic proteins which interact with proteins destined for plastids and thereby keep them in an import competent state. After reaching the target organelle, many proteins have to conquer the barrier of the chloroplast outer and inner envelope. This process is mediated by complex molecular machines in the outer (Toc complex) and inner (Tic complex) envelope of chloroplasts, respectively. Most proteins destined for the compartments inside the chloroplast contain a cleavable N-terminal transit peptide, whereas most of the outer envelope components insert into the membrane without such a targeting peptide.
Collapse
Affiliation(s)
- Penelope Strittmatter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried and Munich Center for Integrated Protein Science, CiPSM, Ludwig-Maximilians- Universität, Munich, Germany
| | | | | |
Collapse
|
30
|
Abstract
Most proteins in chloroplasts are encoded by the nuclear genome and synthesized as precursors with N-terminal targeting signals called transit peptides. Novel machinery has evolved to specifically import these proteins from the cytosol into chloroplasts. This machinery consists of more than a dozen components located in and around the chloroplast envelope, including a pair of GTPase receptors, a beta-barrel-type channel across the outer membrane, and an AAA(+)-type motor in the stroma. How individual components assemble into functional subcomplexes and the sequential steps of the translocation process are being mapped out. An increasing number of noncanonical import pathways, including a pathway with initial transport through the endomembrane system, is being revealed. Multiple levels of control on protein transport into chloroplasts have evolved, including the development of two receptor subfamilies, one for photosynthetic proteins and one for housekeeping proteins. The functions or expression levels of some translocon components are further adjusted according to plastid type, developmental stage, and metabolic conditions.
Collapse
Affiliation(s)
- Hsou-min Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| | | |
Collapse
|
31
|
Boij P, Patel R, Garcia C, Jarvis P, Aronsson H. In vivo studies on the roles of Tic55-related proteins in chloroplast protein import in Arabidopsis thaliana. MOLECULAR PLANT 2009; 2:1397-1409. [PMID: 19995737 DOI: 10.1093/mp/ssp079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The Tic55 (Translocon at the inner envelope membrane of chloroplasts, 55 kDa) protein was identified in pea as a putative regulator, possibly linking chloroplast protein import to the redox state of the photosynthetic machinery. Two Tic55 homologs have been proposed to exist in Arabidopsis: atTic55-II and AtPTC52 (Protochlorophyllide-dependent Translocon Component, 52 kDa; has also been called atTic55-IV). Our phylogenetic analysis shows that atTic55-II is an ortholog of psTic55 from pea (Pisum sativum), and that AtPTC52 is a more distant homolog of the two. AtPTC52 was included in this study to rule out possible functional links between the proteins in Arabidopsis. No detectable mutant phenotypes were found in two independent T-DNA knockout mutant plant lines for each Arabidopsis protein, when compared with wild-type: visible appearance, chlorophyll content, photosynthetic performance, and chloroplast protein import, for example, were all normal. Both wild-type and tic55-II mutant chloroplasts exhibited deficient protein import when treated with diethylpyrocarbonate, indicating that Tic55 is not the sole target of this reagent in relation to protein import. Furthermore, ptc52 mutant chloroplasts were not defective with respect to pPORA import, which was previously reported to involve PTC52 in barley. Thus, we conclude that atTic55-II and AtPTC52 are not strictly required for functional protein import in Arabidopsis.
Collapse
Affiliation(s)
- Patrik Boij
- Department of Plant and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
32
|
Stengel A, Benz JP, Buchanan BB, Soll J, Bölter B. Preprotein import into chloroplasts via the Toc and Tic complexes is regulated by redox signals in Pisum sativum. MOLECULAR PLANT 2009; 2:1181-97. [PMID: 19995724 DOI: 10.1093/mp/ssp043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The import of nuclear-encoded preproteins is necessary to maintain chloroplast function. The recognition and transfer of most precursor proteins across the chloroplast envelopes are facilitated by two membrane-inserted protein complexes, the translocons of the chloroplast outer and inner envelope (Toc and Tic complexes, respectively). Several signals have been invoked to regulate the import of preproteins. In our study, we were interested in redox-based import regulation mediated by two signals: regulation based on thiols and on the metabolic NADP+/NADPH ratio. We sought to identify the proteins participating in the regulation of these transport pathways and to characterize the preprotein subgroups whose import is redox-dependent. Our results provide evidence that the formation and reduction of disulfide bridges in the Toc receptors and Toc translocation channel have a strong influence on import yield of all tested preproteins that depend on the Toc complex for translocation. Furthermore, the metabolic NADP+/NADPH ratio influences not only the composition of the Tic complex, but also the import efficiency of most, but not all, preproteins tested. Thus, several Tic subcomplexes appear to participate in the translocation of different preprotein subgroups, and the redox-active components of these complexes likely play a role in regulating transport.
Collapse
Affiliation(s)
- Anna Stengel
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
33
|
Kikuchi S, Oishi M, Hirabayashi Y, Lee DW, Hwang I, Nakai M. A 1-megadalton translocation complex containing Tic20 and Tic21 mediates chloroplast protein import at the inner envelope membrane. THE PLANT CELL 2009; 21:1781-97. [PMID: 19531596 PMCID: PMC2714928 DOI: 10.1105/tpc.108.063552] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 05/22/2009] [Accepted: 06/01/2009] [Indexed: 05/18/2023]
Abstract
Chloroplast protein import is mediated by two hetero-oligomeric protein complexes, the Tic and Toc translocons, which are located in the inner and outer envelope membranes. At the inner membrane, many Tic components have been identified and characterized, but it remains unclear how these Tic proteins are organized to form a protein-conducting channel or whether a stable Tic core complex that binds translocating preproteins exists. Here, we report the identification of a 1-megadalton (MD) translocation complex as an intermediate during protein translocation across the inner membrane in Arabidopsis thaliana and pea (Pisum sativum). This complex can be detected by blue native PAGE using the mild detergent digitonin without any chemical cross-linkers. The preprotein arrested in the 1-MD complex can be chased into its fully translocated form after a subsequent incubation. While Tic20 and Tic21 appear to be involved in the 1-MD complex, Tic110, a well-characterized Tic component, exists as a distinct entity from the complex. Several lines of evidence suggest that the 1-MD complex functions in between the Toc and Tic110-containing complexes, most likely as a protein-conducting channel at the inner envelope.
Collapse
Affiliation(s)
- Shingo Kikuchi
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Dutta S, Mohanty S, Tripathy BC. Role of temperature stress on chloroplast biogenesis and protein import in pea. PLANT PHYSIOLOGY 2009; 150:1050-61. [PMID: 19403728 PMCID: PMC2689951 DOI: 10.1104/pp.109.137265] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 04/23/2009] [Indexed: 05/18/2023]
Abstract
Modulation of photosynthesis and chloroplast biogenesis, by low and high temperatures, was studied in 12-d-old pea (Pisum sativum) plants grown at 25 degrees C and subsequently exposed to 7 degrees C or 40 degrees C up to 48 h. The decline in variable chlorophyll a fluorescence/maximum chlorophyll a fluorescence and estimated electron transport rate in temperature-stressed plants was substantially restored when they were transferred to room temperature. The ATP-driven import of precursor of small subunit of Rubisco (pRSS) into plastids was down-regulated by 67% and 49% in heat-stressed and chill-stressed plants, respectively. Reduction in binding of the pRSS to the chloroplast envelope membranes in heat-stressed plants could be due to the down-regulation of Toc159 gene/protein expression. In addition to impaired binding, reduced protein import into chloroplast in heat-stressed plants was likely due to decreased gene/protein expression of certain components of the TOC complex (Toc75), the TIC complex (Tic20, Tic32, Tic55, and Tic62), stromal Hsp93, and stromal processing peptidase. In chill-stressed plants, the gene/protein expression of most of the components of protein import apparatus other than Tic110 and Tic40 were not affected, suggesting the central role of Tic110 and Tic40 in inhibition of protein import at low temperature. Heating of intact chloroplasts at 35 degrees C for 10 min inhibited protein import, implying a low thermal stability of the protein import apparatus. Results demonstrate that in addition to decreased gene and protein expression, down-regulation of photosynthesis in temperature-stressed plants is caused by reduced posttranslational import of plastidic proteins required for the replacement of impaired proteins coded by nuclear genome.
Collapse
Affiliation(s)
- Siddhartha Dutta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | |
Collapse
|
35
|
Benz JP, Soll J, Bölter B. Protein transport in organelles: The composition, function and regulation of the Tic complex in chloroplast protein import. FEBS J 2009; 276:1166-76. [DOI: 10.1111/j.1742-4658.2009.06874.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Gross J, Bhattacharya D. Revaluating the evolution of the Toc and Tic protein translocons. TRENDS IN PLANT SCIENCE 2009; 14:13-20. [PMID: 19042148 DOI: 10.1016/j.tplants.2008.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/29/2008] [Accepted: 10/03/2008] [Indexed: 05/08/2023]
Abstract
The origin of the plastid from a cyanobacterial endosymbiont necessitated the establishment of specialized molecular machines (translocons) to facilitate the import of nuclear-encoded proteins into the organelle. To improve our understanding of the evolution of the translocons at the outer and inner envelope membrane of chloroplasts (Toc and Tic, respectively), we critically reassess the prevalent notion that their subunits have a function exclusive to protein import. We propose that many translocon components are multifunctional, conserving ancestral pre-endosymbiotic properties that predate their recruitment into the primitive translocon (putatively composed of subunits Toc34, Toc75 and Tic110 and associated chaperones). Multifunctionality seems to be a hallmark of the Tic complex, in which protein import is integrated with a broad array of plastid processes.
Collapse
Affiliation(s)
- Jeferson Gross
- University of Iowa, Department of Biology and the Roy J. Carver Center for Comparative Genomics, 446 Biology Building, Iowa City, IA 52242, USA
| | | |
Collapse
|
37
|
Aronsson H, Jarvis P. The Chloroplast Protein Import Apparatus, Its Components, and Their Roles. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/978-3-540-68696-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Wittig I, Schägger H. Features and applications of blue-native and clear-native electrophoresis. Proteomics 2008; 8:3974-90. [DOI: 10.1002/pmic.200800017] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
The chloroplast protein translocation complexes of Chlamydomonas reinhardtii: a bioinformatic comparison of Toc and Tic components in plants, green algae and red algae. Genetics 2008; 179:95-112. [PMID: 18493043 DOI: 10.1534/genetics.107.085704] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recently completed genome of Chlamydomonas reinhardtii was surveyed for components of the chloroplast protein translocation complexes. Putative components were identified using reciprocal BlastP searches with the protein sequences of Arabidopsis thaliana as queries. As a comparison, we also surveyed the new genomes of the bryophyte Physcomitrella patens, two prasinophyte green algae (Ostreococcus lucimarinus and Ostreococcus tauri), the red alga Cyanidioschizon merolae, and several cyanobacteria. Overall, we found that the components of the import pathway are remarkably well conserved, particularly among the Viridiplantae lineages. Specifically, C. reinhardtii contained almost all the components found in A. thaliana, with two exceptions. Missing from C. reinhardtii are the C-terminal ferredoxin-NADPH-reductase (FNR) binding domain of Tic62 and a full-length, TPR-bearing Toc64. Further, the N-terminal domain of C. reinhardtii Toc34 is highly acidic, whereas the analogous region in C. reinhardtii Toc159 is not. This reversal of the vascular plant model may explain the similarity of C. reinhardtii chloroplast transit peptides to mitochondrial-targeting peptides. Other findings from our genome survey include the absence of Tic22 in both Ostreococcus genomes; the presence of only one Toc75 homolog in C. merolae; and, finally, a distinctive propensity for gene duplication in P. patens.
Collapse
|
40
|
Abstract
Plastids are a diverse group of essential organelles in plants that include chloroplasts. The biogenesis and maintenance of these organelles relies on the import of thousands of nucleus-encoded proteins. The complexity of plastid structure has resulted in the evolution of at least four general import pathways that target proteins into and across the double membrane of the plastid envelope. Several of these pathways can be further divided into specialty pathways that mediate and regulate the import of specific classes of proteins. The co-ordination of import by these specialized pathways with changes in gene expression is critical for plastid and plant development. Moreover, protein import is acutely regulated in response to physiological and metabolic changes within the cell. In the present review we summarize the current knowledge of the mechanism of import via these pathways and highlight the regulatory mechanisms that integrate the plastid protein-trafficking pathways with the developmental and metabolic state of the plant.
Collapse
|
41
|
Abstract
Most chloroplast proteins are encoded in the nucleus and synthesized on free, cytosolic ribosomes in precursor form. Each precursor has an amino-terminal extension called a transit peptide, which directs the protein through a post-translational targeting pathway and is removed upon arrival inside the organelle. This 'protein import' process is mediated by the coordinate action of two multiprotein complexes, one in each of the envelope membranes: the TOC and TIC (Translocon at the Outer/ Inner envelope membrane of Chloroplasts) machines. Many components of these complexes have been identified biochemically in pea; these include transit peptide receptors, channel proteins, and molecular chaperones. Intriguingly, the Arabidopsis genome encodes multiple, homologous genes for receptor components of the TOC complex. Careful analysis indicated that the different receptor isoforms operate in different import pathways with distinct precursor recognition specificities. These 'substrate-specific' import pathways might play a role in the differentiation of different plastid types, and/or act to prevent deleterious competition effects between abundant and nonabundant precursors. Until recently, all proteins destined for internal chloroplast compartments were thought to possess a cleavable transit peptide, and to engage the TOC/TIC machinery. New studies using proteomics and other approaches have revealed that this is far from true. Remarkably, a significant number of chloroplast proteins are transported via a pathway that involves the endoplasmic reticulum and Golgi apparatus. Other recent reports have elucidated an intriguing array of protein targeting routes leading to the envelope membranes themselves.
Collapse
Affiliation(s)
- Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
42
|
Bartsch S, Monnet J, Selbach K, Quigley F, Gray J, von Wettstein D, Reinbothe S, Reinbothe C. Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism. Proc Natl Acad Sci U S A 2008; 105:4933-8. [PMID: 18349143 PMCID: PMC2290756 DOI: 10.1073/pnas.0800378105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Indexed: 01/30/2023] Open
Abstract
Thioredoxins (Trxs) are ubiquitous small proteins with a redox-active disulfide bridge. In their reduced form, they constitute very efficient protein disulfide oxidoreductases. In chloroplasts, two types of Trxs (f and m) coexist and play central roles in the regulation of the Calvin cycle and other processes. Here, we identified a class of Trx targets in the inner plastid envelope membrane of chloroplasts that share a CxxC motif approximately 73 aa from their carboxyl-terminal end. Members of this group belong to a superfamily of Rieske iron-sulfur proteins involved in protein translocation and chlorophyll metabolism. These proteins include the protein translocon protein TIC55, the precursor NADPH:protochlorophyllide oxidoreductase translocon protein PTC52, which operates as protochlorophyllide a-oxygenase, and the lethal leaf spot protein LLS1, which is identical with pheophorbide a oxygenase. The role of these proteins in dark/light regulation and oxidative control by the Trx system is discussed.
Collapse
Affiliation(s)
- Sandra Bartsch
- *Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Julie Monnet
- Unité Mixte de Recherche 5575, Centre d'Etudes et de Recherches sur les Macromolécules Organiques, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| | - Kristina Selbach
- Unité Mixte de Recherche 5575, Centre d'Etudes et de Recherches sur les Macromolécules Organiques, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| | - Françoise Quigley
- Unité Mixte de Recherche 5575, Centre d'Etudes et de Recherches sur les Macromolécules Organiques, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| | - John Gray
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606; and
| | - Diter von Wettstein
- Department of Crop and Soil Sciences and School of Molecular Biosciences, Washington State University, Pullman WA 99164-6420
| | - Steffen Reinbothe
- Unité Mixte de Recherche 5575, Centre d'Etudes et de Recherches sur les Macromolécules Organiques, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| | - Christiane Reinbothe
- *Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
- Unité Mixte de Recherche 5575, Centre d'Etudes et de Recherches sur les Macromolécules Organiques, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| |
Collapse
|
43
|
Stengel A, Benz P, Balsera M, Soll J, Bölter B. TIC62 redox-regulated translocon composition and dynamics. J Biol Chem 2008; 283:6656-67. [PMID: 18180301 DOI: 10.1074/jbc.m706719200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The preprotein translocon at the inner envelope of chloroplasts (Tic complex) facilitates the import of nuclear-encoded preproteins into the organelle. Seven distinct subunits have been identified so far. For each of those, specific functions have been proposed based on structural prediction or experimental evidence. Three of those subunits possess modules that could act as redox-active regulatory components in the import process. To date, however, the mode of redox regulation of the import process remains enigmatic. To investigate how the chloroplast redox state influences translocon behavior and composition, we studied the Tic component and the putative redox sensor Tic62 in more detail. The experimental results provide evidence that Tic62 can act as a bona fide dehydrogenase in vitro, and that it changes its localization in the chloroplast dependent on the NADP+/NADPH ratio in the stroma. Moreover, the redox state influences the interactions of Tic62 with the translocon and the flavoenzyme ferredoxin-NADP+ oxidoreductase. Additionally, we give initial experimental insights into the Tic62 structure using circular dichroism measurements and demonstrate that the protein consists of two structurally different domains. Our results indicate that Tic62 possesses redox-dependent properties that would allow it to fulfill a role as redox sensor protein in the chloroplast.
Collapse
Affiliation(s)
- Anna Stengel
- Munich Center for Integrated Protein Science CiPS, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
44
|
Reddick LE, Chotewutmontri P, Crenshaw W, Dave A, Vaughn M, Bruce BD. Nano-scale characterization of the dynamics of the chloroplast Toc translocon. Methods Cell Biol 2008; 90:365-98. [PMID: 19195558 DOI: 10.1016/s0091-679x(08)00816-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Translocons are macromolecular nano-scale machines that facilitate the selective translocation of proteins across membranes. Although common in function, different translocons have evolved diverse molecular mechanisms for protein translocation. Subcellular organelles of endosymbiotic origin such as the chloroplast and mitochondria had to evolve/acquire translocons capable of importing proteins whose genes were transferred to the host genome. These gene products are expressed on cytosolic ribosomes as precursor proteins and targeted back to the organelle by an N-terminal extension called the transit peptide or presequence. In chloroplasts the transit peptide is specifically recognized by the Translocon of the Outer Chloroplast membrane (Toc) which is composed of receptor GTPases that potentially function as gate-like switches, where GTP binding and hydrolysis somehow facilitate preprotein binding and translocation. Compared to other translocons, the dynamics of the Toc translocon are probably more complex and certainly less understood. We have developed biochemical/biophysical, imaging, and computational techniques to probe the dynamics of the Toc translocon at the nanoscale. In this chapter we provide detailed protocols for kinetic and binding analysis of precursor interactions in organeller, measurement of the activity and nucleotide binding of the Toc GTPases, native electrophoretic analysis of the assembly/organization of the Toc complex, visualization of the distribution and mobility of Toc apparatus on the surface of chloroplasts, and conclude with the identification and molecular modeling Toc75 POTRA domains. With these new methodologies we discuss future directions of the field.
Collapse
Affiliation(s)
- L Evan Reddick
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
45
|
The Chloroplast Protein Import Apparatus, Its Components, and Their Roles. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/7089_2008_40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Oreb M, Tews I, Schleiff E. Policing Tic 'n' Toc, the doorway to chloroplasts. Trends Cell Biol 2008; 18:19-27. [PMID: 18068366 DOI: 10.1016/j.tcb.2007.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 10/08/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
The organization of eukaryotic cells into different membrane-enclosed compartments requires an ordered and regulated system for targeting and translocating proteins synthesized in the cytosol across organellar membranes. Protein translocation through integral membrane proteinaceous complexes shares common principles in different organelles, whereas molecular mechanisms and energy requirements are diverse. Translocation into mitochondria and plastids requires most proteins to cross two membranes, and translocation must be regulated to accommodate environmental or metabolic changes. In the last decade, the first ideas were formulated about the regulation of protein translocation into chloroplasts, thereby laying the foundation for this field. Here, we describe recent models for the regulation of translocation by precursor protein phosphorylation, receptor dimerization, redox sensing and calcium signaling. We suggest how these mechanisms might fit within the regulatory framework for the entry of proteins into chloroplasts.
Collapse
Affiliation(s)
- Mislav Oreb
- LMU München, Cluster of Excellence CIPS, Department of Biology I, Menziger Str. 67, 80638 München, Germany
| | | | | |
Collapse
|
47
|
Stengel A, Soll J, Bölter B. Protein import into chloroplasts: new aspects of a well-known topic. Biol Chem 2007; 388:765-72. [PMID: 17655494 DOI: 10.1515/bc.2007.099] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Protein import into plant chloroplasts is a fascinating topic that is being investigated by many research groups. Since the majority of chloroplast proteins are synthesised as precursor proteins in the cytosol, they have to be posttranslationally imported into the organelle. For this purpose, most preproteins are synthesised with an N-terminal presequence, which is both necessary and sufficient for organelle recognition and translocation initiation. The import of preproteins is facilitated by two translocation machineries in the outer and inner envelope of chloroplasts, the Toc and Tic complexes, respectively. Translocation of precursor proteins across the envelope membrane has to be highly regulated to react to the metabolic requirements of the organelle. The aim of this review is to summarise the events that take place at the translocation machineries that are known so far. In addition, we focus in particular on alternative import pathways and the aspect of regulation of protein transport at the outer and inner envelope membrane.
Collapse
Affiliation(s)
- Anna Stengel
- Department of Botany, University of Munich, Menzinger Str. 67, D-80638 Munich, Germany
| | | | | |
Collapse
|
48
|
Balsera M, Stengel A, Soll J, Bölter B. Tic62: a protein family from metabolism to protein translocation. BMC Evol Biol 2007; 7:43. [PMID: 17374152 PMCID: PMC1847441 DOI: 10.1186/1471-2148-7-43] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 03/20/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The function and structure of protein translocons at the outer and inner envelope membrane of chloroplasts (Toc and Tic complexes, respectively) are a subject of intensive research. One of the proteins that have been ascribed to the Tic complex is Tic62. This protein was proposed as a redox sensor protein and may possibly act as a regulator during the translocation process. Tic62 is a bimodular protein that comprises an N-terminal module, responsible for binding to pyridine nucleotides, and a C-terminal module which serves as a docking site for ferredoxin-NAD(P)-oxido-reductase (FNR). This work focuses on evolutionary analysis of the Tic62-NAD(P)-related protein family, derived from the comparison of all available sequences, and discusses the structure of Tic62. RESULTS Whereas the N-terminal module of Tic62 is highly conserved among all oxyphototrophs, the C-terminal region (FNR-binding module) is only found in vascular plants. Phylogenetic analyses classify four Tic62-NAD(P)-related protein subfamilies in land plants, closely related to members from cyanobacteria and green sulphur bacteria. Although most of the Tic62-NAD(P)-related eukaryotic proteins are localized in the chloroplast, one subgroup consists of proteins without a predicted transit peptide. The N-terminal module of Tic62 contains the structurally conserved Rossman fold and probably belongs to the extended family of short-chain dehydrogenases-reductases. Key residues involved in NADP-binding and residues that may attach the protein to the inner envelope membrane of chloroplasts or to the Tic complex are proposed. CONCLUSION The Tic62-NAD(P)-related proteins are of ancient origin since they are not only found in cyanobacteria but also in green sulphur bacteria. The FNR-binding module at the C-terminal region of the Tic62 proteins is probably a recent acquisition in vascular plants, with no sequence similarity to any other known motifs. The presence of the FNR-binding domain in vascular plants might be essential for the function of the protein as a Tic component and/or for its regulation.
Collapse
Affiliation(s)
- Mónica Balsera
- Dep Biologie I, Botanisches Institut, LMU München, 80638 München, Germany
| | - Anna Stengel
- Dep Biologie I, Botanisches Institut, LMU München, 80638 München, Germany
| | - Jürgen Soll
- Dep Biologie I, Botanisches Institut, LMU München, 80638 München, Germany
| | - Bettina Bölter
- Dep Biologie I, Botanisches Institut, LMU München, 80638 München, Germany
| |
Collapse
|
49
|
|
50
|
Abstract
The ATP-binding cassette (ABC) protein superfamily is one of the largest known, with over 120 members in both Arabidopsis thaliana and rice (Oryza sativa). Most, but not all, ABC proteins are modularly organized membrane proteins ("ABC transporters") that mediate MgATP-energized transmembrane transport and/or regulate other transporters. The range of processes in which members of the various subclasses of plant ABC transporters have been implicated encompasses polar auxin transport, lipid catabolism, xenobiotic detoxification, disease resistance, and stomatal function. Although it is often possible to predict the likely function of a plant ABC transporter on the basis of its subfamily membership, there are many whose capabilities deviate from what would be predicted from the properties of even their most sequence-related counterparts. When taking account of this and the disparate processes in which the few that have been characterized participate, it is likely that elucidation of the mechanistic basis of any given plant process will necessitate consideration of at least one ABC transporter.
Collapse
Affiliation(s)
- Philip A Rea
- Plant Science Institute, Department of Biology, Carolyn Hoff Lynch Biology Laboratory, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.
| |
Collapse
|