1
|
Shukla HG, Chakraborty M, Emerson J. Genetic variation in recalcitrant repetitive regions of the Drosophila melanogaster genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598575. [PMID: 38915508 PMCID: PMC11195212 DOI: 10.1101/2024.06.11.598575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Many essential functions of organisms are encoded in highly repetitive genomic regions, including histones involved in DNA packaging, centromeres that are core components of chromosome segregation, ribosomal RNA comprising the protein translation machinery, telomeres that ensure chromosome integrity, piRNA clusters encoding host defenses against selfish elements, and virtually the entire Y chromosome. These regions, formed by highly similar tandem arrays, pose significant challenges for experimental and informatic study, impeding sequence-level descriptions essential for understanding genetic variation. Here, we report the assembly and variation analysis of such repetitive regions in Drosophila melanogaster, offering significant improvements to the existing community reference assembly. Our work successfully recovers previously elusive segments, including complete reconstructions of the histone locus and the pericentric heterochromatin of the X chromosome, spanning the Stellate locus to the distal flank of the rDNA cluster. To infer structural changes in these regions where alignments are often not practicable, we introduce landmark anchors based on unique variants that are putatively orthologous. These regions display considerable structural variation between different D. melanogaster strains, exhibiting differences in copy number and organization of homologous repeat units between haplotypes. In the histone cluster, although we observe minimal genetic exchange indicative of crossing over, the variation patterns suggest mechanisms such as unequal sister chromatid exchange. We also examine the prevalence and scale of concerted evolution in the histone and Stellate clusters and discuss the mechanisms underlying these observed patterns.
Collapse
Affiliation(s)
- Harsh G. Shukla
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
- Graduate Program in Mathematical, Computational and Systems Biology, University of California Irvine, Irvine, California 92697, USA
| | - Mahul Chakraborty
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - J.J. Emerson
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
2
|
Yurchenko A, Pšenička T, Mora P, Ortega JAM, Baca AS, Rovatsos M. Cytogenetic Analysis of Satellitome of Madagascar Leaf-Tailed Geckos. Genes (Basel) 2024; 15:429. [PMID: 38674364 PMCID: PMC11049218 DOI: 10.3390/genes15040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Satellite DNA (satDNA) consists of sequences of DNA that form tandem repetitions across the genome, and it is notorious for its diversity and fast evolutionary rate. Despite its importance, satDNA has been only sporadically studied in reptile lineages. Here, we sequenced genomic DNA and PCR-amplified microdissected W chromosomes on the Illumina platform in order to characterize the monomers of satDNA from the Henkel's leaf-tailed gecko U. henkeli and to compare their topology by in situ hybridization in the karyotypes of the closely related Günther's flat-tail gecko U. guentheri and gold dust day gecko P. laticauda. We identified seventeen different satDNAs; twelve of them seem to accumulate in centromeres, telomeres and/or the W chromosome. Notably, centromeric and telomeric regions seem to share similar types of satDNAs, and we found two that seem to accumulate at both edges of all chromosomes in all three species. We speculate that the long-term stability of all-acrocentric karyotypes in geckos might be explained from the presence of specific satDNAs at the centromeric regions that are strong meiotic drivers, a hypothesis that should be further tested.
Collapse
Affiliation(s)
- Alona Yurchenko
- Department of Ecology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; (A.Y.); (T.P.)
| | - Tomáš Pšenička
- Department of Ecology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; (A.Y.); (T.P.)
| | - Pablo Mora
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaen, Spain; (P.M.); (J.A.M.O.); (A.S.B.)
| | - Juan Alberto Marchal Ortega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaen, Spain; (P.M.); (J.A.M.O.); (A.S.B.)
| | - Antonio Sánchez Baca
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaen, Spain; (P.M.); (J.A.M.O.); (A.S.B.)
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; (A.Y.); (T.P.)
| |
Collapse
|
3
|
Naish M, Henderson IR. The structure, function, and evolution of plant centromeres. Genome Res 2024; 34:161-178. [PMID: 38485193 PMCID: PMC10984392 DOI: 10.1101/gr.278409.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Centromeres are essential regions of eukaryotic chromosomes responsible for the formation of kinetochore complexes, which connect to spindle microtubules during cell division. Notably, although centromeres maintain a conserved function in chromosome segregation, the underlying DNA sequences are diverse both within and between species and are predominantly repetitive in nature. The repeat content of centromeres includes high-copy tandem repeats (satellites), and/or specific families of transposons. The functional region of the centromere is defined by loading of a specific histone 3 variant (CENH3), which nucleates the kinetochore and shows dynamic regulation. In many plants, the centromeres are composed of satellite repeat arrays that are densely DNA methylated and invaded by centrophilic retrotransposons. In some cases, the retrotransposons become the sites of CENH3 loading. We review the structure of plant centromeres, including monocentric, holocentric, and metapolycentric architectures, which vary in the number and distribution of kinetochore attachment sites along chromosomes. We discuss how variation in CENH3 loading can drive genome elimination during early cell divisions of plant embryogenesis. We review how epigenetic state may influence centromere identity and discuss evolutionary models that seek to explain the paradoxically rapid change of centromere sequences observed across species, including the potential roles of recombination. We outline putative modes of selection that could act within the centromeres, as well as the role of repeats in driving cycles of centromere evolution. Although our primary focus is on plant genomes, we draw comparisons with animal and fungal centromeres to derive a eukaryote-wide perspective of centromere structure and function.
Collapse
Affiliation(s)
- Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
4
|
Wlodzimierz P, Rabanal FA, Burns R, Naish M, Primetis E, Scott A, Mandáková T, Gorringe N, Tock AJ, Holland D, Fritschi K, Habring A, Lanz C, Patel C, Schlegel T, Collenberg M, Mielke M, Nordborg M, Roux F, Shirsekar G, Alonso-Blanco C, Lysak MA, Novikova PY, Bousios A, Weigel D, Henderson IR. Cycles of satellite and transposon evolution in Arabidopsis centromeres. Nature 2023:10.1038/s41586-023-06062-z. [PMID: 37198485 DOI: 10.1038/s41586-023-06062-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023]
Abstract
Centromeres are critical for cell division, loading CENH3 or CENPA histone variant nucleosomes, directing kinetochore formation and allowing chromosome segregation1,2. Despite their conserved function, centromere size and structure are diverse across species. To understand this centromere paradox3,4, it is necessary to know how centromeric diversity is generated and whether it reflects ancient trans-species variation or, instead, rapid post-speciation divergence. To address these questions, we assembled 346 centromeres from 66 Arabidopsis thaliana and 2 Arabidopsis lyrata accessions, which exhibited a remarkable degree of intra- and inter-species diversity. A. thaliana centromere repeat arrays are embedded in linkage blocks, despite ongoing internal satellite turnover, consistent with roles for unidirectional gene conversion or unequal crossover between sister chromatids in sequence diversification. Additionally, centrophilic ATHILA transposons have recently invaded the satellite arrays. To counter ATHILA invasion, chromosome-specific bursts of satellite homogenization generate higher-order repeats and purge transposons, in line with cycles of repeat evolution. Centromeric sequence changes are even more extreme in comparison between A. thaliana and A. lyrata. Together, our findings identify rapid cycles of transposon invasion and purging through satellite homogenization, which drive centromere evolution and ultimately contribute to speciation.
Collapse
Affiliation(s)
- Piotr Wlodzimierz
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Fernando A Rabanal
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Robin Burns
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Elias Primetis
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Alison Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Nicola Gorringe
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Daniel Holland
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Katrin Fritschi
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Anette Habring
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Christa Lanz
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Christie Patel
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Theresa Schlegel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Maximilian Collenberg
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Miriam Mielke
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Magnus Nordborg
- Gregor Mendel Institute, Vienna, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Fabrice Roux
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Gautam Shirsekar
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Martin A Lysak
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Polina Y Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Bizarria R, Pietrobon TDC, Ferreira H, Rodrigues A. Polymorphisms of rDNA genes in Cyberlindnera yeast suggest birth-and-death evolution events. FEMS Yeast Res 2023; 23:foad032. [PMID: 37291697 DOI: 10.1093/femsyr/foad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/28/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023] Open
Abstract
In eukaryotes, the ribosome machinery is encoded by repeats of the ribosomal RNA genes: 26/28S, 18S, 5.8S, and 5S, structured in tandem arrays and frequently homogenized within a genome. This homogenization is thought to be driven by concerted evolution, evolving as a unit, which contributes to its target as the species barcode in modern taxonomy. However, high heterogeneity of rDNA genes has been reported, including in Saccharomycotina yeasts. Here, we describe the polymorphisms and heterogeneity of D1/D2 domains (26S rRNA) and the intergenic transcribed spacer of a new yeast species with affinities to the genus Cyberlindnera and their evolution. Both regions are not homogenized, failing the prediction of concerted evolution. Phylogenetic network analysis of cloned sequences revealed that Cyberlindnera sp. rDNAs are diverse and evolved by reticulation rather than by bifurcating tree evolution model. Predicted rRNA secondary structures also confirmed structural differences, except for some conserved hairpin loops. We hypothesize that some rDNA is inactive within this species and evolves by birth-and-death rather than concerted evolution. Our findings propel further investigation into the evolution of rDNA genes in yeasts.
Collapse
Affiliation(s)
- Rodolfo Bizarria
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, SP 13.506-900, Brazil
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP 13.506-900, Brazil
| | - Tatiane de Castro Pietrobon
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, SP 13.506-900, Brazil
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP 13.506-900, Brazil
| | - Henrique Ferreira
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, SP 13.506-900, Brazil
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, SP 13.506-900, Brazil
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP 13.506-900, Brazil
| |
Collapse
|
6
|
Micheli G, Camilloni G. Can Introns Stabilize Gene Duplication? BIOLOGY 2022; 11:941. [PMID: 35741463 PMCID: PMC9220161 DOI: 10.3390/biology11060941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Gene duplication is considered one of the most important events that determine the evolution of genomes. However, the neo-duplication condition of a given gene is particularly unstable due to recombination events. Several mechanisms have been proposed to justify this step. In this "opinion article" we propose a role for intron sequences in stabilizing gene duplication by limiting and reducing the identity of the gene sequence between the two duplicated copies. A review of the topic and a detailed hypothesis are presented.
Collapse
Affiliation(s)
- Gioacchino Micheli
- Istituto di Biologia e Patologia Molecolari CNR, Università Sapienza, P.le A. Moro 5, 00185 Roma, Italy;
| | - Giorgio Camilloni
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Università Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
7
|
Thakur J, Packiaraj J, Henikoff S. Sequence, Chromatin and Evolution of Satellite DNA. Int J Mol Sci 2021; 22:ijms22094309. [PMID: 33919233 PMCID: PMC8122249 DOI: 10.3390/ijms22094309] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Satellite DNA consists of abundant tandem repeats that play important roles in cellular processes, including chromosome segregation, genome organization and chromosome end protection. Most satellite DNA repeat units are either of nucleosomal length or 5–10 bp long and occupy centromeric, pericentromeric or telomeric regions. Due to high repetitiveness, satellite DNA sequences have largely been absent from genome assemblies. Although few conserved satellite-specific sequence motifs have been identified, DNA curvature, dyad symmetries and inverted repeats are features of various satellite DNAs in several organisms. Satellite DNA sequences are either embedded in highly compact gene-poor heterochromatin or specialized chromatin that is distinct from euchromatin. Nevertheless, some satellite DNAs are transcribed into non-coding RNAs that may play important roles in satellite DNA function. Intriguingly, satellite DNAs are among the most rapidly evolving genomic elements, such that a large fraction is species-specific in most organisms. Here we describe the different classes of satellite DNA sequences, their satellite-specific chromatin features, and how these features may contribute to satellite DNA biology and evolution. We also discuss how the evolution of functional satellite DNA classes may contribute to speciation in plants and animals.
Collapse
Affiliation(s)
- Jitendra Thakur
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
- Correspondence:
| | - Jenika Packiaraj
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
8
|
Harl J, Haring E, Páll‐Gergely B. Hybridization and recurrent evolution of left-right reversal in the land snail genus Schileykula (Orculidae, Pulmonata). J ZOOL SYST EVOL RES 2020; 58:633-647. [PMID: 33041524 PMCID: PMC7540069 DOI: 10.1111/jzs.12353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 12/03/2022]
Abstract
The land snail genus Schileykula Gittenberger, 1983 is distributed in arid limestone areas from western Turkey to north-western Iran. It comprises eight species, which display high variation in shell size and morphology. The cylindrical shells are 5-12 mm in height and the last shell whorls bear several inner lamellae and plicae. Two taxa differ in their chirality having sinistral shells, while all the others are dextrals such as the vast majority of orculids. The aim of this study was to establish a molecular genetic phylogeny of Schileykula and to test whether it conforms to the current morphology-based classification. Furthermore, we were interested in the phylogenetic position of the two sinistral forms in order to assess whether one or two reversals happened in the evolution of the genus. Nine out of ten species, including all four subspecies of Schileykula trapezensis and three of six subspecies of Schileykula scyphus, were investigated. A section of the mitochondrial cytochrome c oxidase subunit I gene was analyzed in 54 specimens of Schileykula and from a subsample, partial sequences of the mitochondrial genes for the 12S rRNA and the 16S rRNA, and a section of the nuclear H4/H3 histone gene cluster were obtained. The phylogenetic trees based on the mitochondrial sequences feature high support values for most nodes, and the species appear well differentiated from each other. The two chiral forms evolved independently and are not sister lineages. However, some groupings disagree with the present morphology-based classification and taxonomical conclusions are drawn. Schileykula trapezensis is polyphyletic in the molecular genetic trees; therefore, three of its subspecies are elevated to species level: Schileykula acampsis Hausdorf, 1996 comb. nov., Schileykula neuberti Hausdorf, 1996 comb. nov., and Schileykula contraria Neubert, 1993 comb. nov. Furthermore, Schileykula sigma is grouped within S. scyphus in the mitochondrial and nuclear trees and consequently treated as a subspecies of the latter (Schileykula scyphus sigma Hausdorf, 1996 comb. nov.). Schileykula nordsiecki, whose shell morphology is indistinguishable from that of the neighboring Schileykula scyphus lycaonica, but who differs in its genital anatomy, was confirmed to represent a distinct lineage. The phylogenies produced by the mitochondrial and nuclear data sets are to some extent conflicting. The patterns differ concerning the grouping of some specimens, suggesting at least two independent hybridization events involving S. contraria, S. scyphus and S. trapezensis. The results exemplify the importance of integrating both mitochondrial and nuclear sequence data in order to complement morphology-based taxonomy, and they provide further evidence for hybridization across distantly related lineages in land snails.
Collapse
Affiliation(s)
- Josef Harl
- Institute of PathologyUniversity of Veterinary MedicineViennaAustria
- Central Research LaboratoriesMuseum of Natural HistoryViennaAustria
| | - Elisabeth Haring
- Central Research LaboratoriesMuseum of Natural HistoryViennaAustria
- Department of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Barna Páll‐Gergely
- Plant Protection InstituteCentre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary
| |
Collapse
|
9
|
Isobe M, Nunome M, Katakura K, Suzuki H. Evolutionary Dynamics of Copy Number and Meiotic Recombination in Murine 5S rDNA: Possible Involvement of Natural Selection. J Mol Evol 2018; 86:312-323. [PMID: 29947946 DOI: 10.1007/s00239-018-9848-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/06/2018] [Indexed: 11/26/2022]
Abstract
We investigated evolutionary trends of the 5S ribosomal RNA gene in the house mouse, Mus musculus. First, we assessed the 5S cluster and copy numbers in eight laboratory strains by pulsed-field gel electrophoresis. The copy numbers in seven lines were estimated to be around 130-170 copies per cluster, with 63 copies in the remaining strain, implying that the copy number can change drastically and has been maintained under certain evolutionary constraints at ~ 140 copies. Second, we addressed the frequency of meiotic recombination mediated by the 5S cluster by performing a mating experiment with laboratory strains, and found that the 5S cluster did not accelerate recombination events. Third, we surveyed recombination events of the 5S-containing chromosome region in wild mice from the Japanese Islands, where the two subspecies lineages, M. m. castaneus and M. m. musculus, are historically mingled, and found that the influence of the 5S cluster on meiotic recombination was limited. Finally, we examined the nucleotide diversity of six genes in the neighboring regions of the 5S cluster and found reduced genetic diversity in the regions on both sides of the cluster, suggesting the involvement of either positive or background selection in the population-level sequence similarity of the 5S clusters. Therefore, the mouse 5S genes are considered to be evolving toward sequence similarity within a given cluster by certain intrachromosomal mechanisms and toward sharing of a specific 5S cluster within a population by certain selective processes.
Collapse
Affiliation(s)
- Miyu Isobe
- Graduate School of Earth Science, Hokkaido University, North 10, West 5, Sapporo, 060-0810, Japan
| | - Mitsuo Nunome
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Ken Katakura
- Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Sapporo, 060-0818, Japan
| | - Hitoshi Suzuki
- Graduate School of Earth Science, Hokkaido University, North 10, West 5, Sapporo, 060-0810, Japan.
| |
Collapse
|
10
|
SMORE: Synteny Modulator of Repetitive Elements. Life (Basel) 2017; 7:life7040042. [PMID: 29088079 PMCID: PMC5745555 DOI: 10.3390/life7040042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 12/19/2022] Open
Abstract
Several families of multicopy genes, such as transfer ribonucleic acids (tRNAs) and ribosomal RNAs (rRNAs), are subject to concerted evolution, an effect that keeps sequences of paralogous genes effectively identical. Under these circumstances, it is impossible to distinguish orthologs from paralogs on the basis of sequence similarity alone. Synteny, the preservation of relative genomic locations, however, also remains informative for the disambiguation of evolutionary relationships in this situation. In this contribution, we describe an automatic pipeline for the evolutionary analysis of such cases that use genome-wide alignments as a starting point to assign orthology relationships determined by synteny. The evolution of tRNAs in primates as well as the history of the Y RNA family in vertebrates and nematodes are used to showcase the method. The pipeline is freely available.
Collapse
|
11
|
Dumbovic G, Forcales SV, Perucho M. Emerging roles of macrosatellite repeats in genome organization and disease development. Epigenetics 2017; 12:515-526. [PMID: 28426282 PMCID: PMC5687341 DOI: 10.1080/15592294.2017.1318235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/01/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022] Open
Abstract
Abundant repetitive DNA sequences are an enigmatic part of the human genome. Despite increasing evidence on the functionality of DNA repeats, their biologic role is still elusive and under frequent debate. Macrosatellites are the largest of the tandem DNA repeats, located on one or multiple chromosomes. The contribution of macrosatellites to genome regulation and human health was demonstrated for the D4Z4 macrosatellite repeat array on chromosome 4q35. Reduced copy number of D4Z4 repeats is associated with local euchromatinization and the onset of facioscapulohumeral muscular dystrophy. Although the role other macrosatellite families may play remains rather obscure, their diverse functionalities within the genome are being gradually revealed. In this review, we will outline structural and functional features of coding and noncoding macrosatellite repeats, and highlight recent findings that bring these sequences into the spotlight of genome organization and disease development.
Collapse
Affiliation(s)
- Gabrijela Dumbovic
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain
| | - Sonia-V. Forcales
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain
| | - Manuel Perucho
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain
- Sanford-Burnham-Prebys Medical Discovery Institute (SBP), La Jolla, CA, USA
| |
Collapse
|
12
|
Morgan AP, Holt JM, McMullan RC, Bell TA, Clayshulte AMF, Didion JP, Yadgary L, Thybert D, Odom DT, Flicek P, McMillan L, de Villena FPM. The Evolutionary Fates of a Large Segmental Duplication in Mouse. Genetics 2016; 204:267-85. [PMID: 27371833 PMCID: PMC5012392 DOI: 10.1534/genetics.116.191007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/27/2016] [Indexed: 01/21/2023] Open
Abstract
Gene duplication and loss are major sources of genetic polymorphism in populations, and are important forces shaping the evolution of genome content and organization. We have reconstructed the origin and history of a 127-kbp segmental duplication, R2d, in the house mouse (Mus musculus). R2d contains a single protein-coding gene, Cwc22 De novo assembly of both the ancestral (R2d1) and the derived (R2d2) copies reveals that they have been subject to nonallelic gene conversion events spanning tens of kilobases. R2d2 is also a hotspot for structural variation: its diploid copy number ranges from zero in the mouse reference genome to >80 in wild mice sampled from around the globe. Hemizygosity for high copy-number alleles of R2d2 is associated in cis with meiotic drive; suppression of meiotic crossovers; and copy-number instability, with a mutation rate in excess of 1 per 100 transmissions in some laboratory populations. Our results provide a striking example of allelic diversity generated by duplication and demonstrate the value of de novo assembly in a phylogenetic context for understanding the mutational processes affecting duplicate genes.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - J Matthew Holt
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rachel C McMullan
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Timothy A Bell
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Amelia M-F Clayshulte
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - John P Didion
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Liran Yadgary
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David Thybert
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge, CB10 1SD, United Kingdom
| | - Duncan T Odom
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, United Kingdom
| | - Paul Flicek
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge, CB10 1SD, United Kingdom Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, United Kingdom
| | - Leonard McMillan
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
13
|
Jackson AP. Gene family phylogeny and the evolution of parasite cell surfaces. Mol Biochem Parasitol 2016; 209:64-75. [DOI: 10.1016/j.molbiopara.2016.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 11/30/2022]
|
14
|
Castro SI, Hleap JS, Cárdenas H, Blouin C. Molecular organization of the 5S rDNA gene type II in elasmobranchs. RNA Biol 2015; 13:391-9. [PMID: 26488198 PMCID: PMC4841605 DOI: 10.1080/15476286.2015.1100796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/21/2015] [Indexed: 10/22/2022] Open
Abstract
The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS.
Collapse
Affiliation(s)
- Sergio I. Castro
- Grupo de Estudios en Genética Ecología Molecular y Fisiología Animal, Universidad del Valle, Cali, Colombia
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas, SQUALUS. Cali, Colombia
| | - Jose S. Hleap
- Grupo de Estudios en Genética Ecología Molecular y Fisiología Animal, Universidad del Valle, Cali, Colombia
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas, SQUALUS. Cali, Colombia
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Heiber Cárdenas
- Grupo de Estudios en Genética Ecología Molecular y Fisiología Animal, Universidad del Valle, Cali, Colombia
| | - Christian Blouin
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Computer Science, Dalhousie University, Halifax, Canada
| |
Collapse
|
15
|
Chairi H, Gonzalez LR. Structure and Organization of the Engraulidae Family U2 snRNA: An Evolutionary Model Gene? J Mol Evol 2015; 80:209-18. [PMID: 25838107 DOI: 10.1007/s00239-015-9674-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/27/2015] [Indexed: 01/01/2023]
Abstract
The U2 snRNA multigene family has been analyzed in four species of the Engraulidae family--Engraulis encrasicolus, Engraulis mordax, Engraulis ringens, and Engraulis japonicas--with the object of understanding more about the structure of this multigene family in these pelagic species and studying their phylogenetic relationships. The results showed that the cluster of this gene family in the Engraulis genus is formed by the U2-U5 snRNA with highly conserved sequences of mini- and micro-satellites, such as (CTGT)n, embedded downstream of the transcription unit; findings indicate that this gene family evolved following the concerted model. The phylogenetic analysis of the non-transcribed spacer of cluster U2-U5 snDNA in the 4 species showed that the sequences of the species E. encrasicolus and E. japonicus are closely related; these two are genetically close to E. mordax and slightly more distant from E. ringens. The data obtained by molecular analysis of U2-U5 snDNA and their secondary structure, with the presence of the micro-satellite (CTGT)n and mini-satellites, show clearly that the species E. encrasicolus and E. japonicus are closely related and would be older than E. mordax and E. ringens.
Collapse
Affiliation(s)
- Hicham Chairi
- Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, CACYTMAR, Universidad de Cádiz, Polígono Río San Pedro, s/n, 11510, Puerto Real, Cádiz, Spain
| | | |
Collapse
|
16
|
Tessereau C, Lesecque Y, Monnet N, Buisson M, Barjhoux L, Léoné M, Feng B, Goldgar DE, Sinilnikova OM, Mousset S, Duret L, Mazoyer S. Estimation of the RNU2 macrosatellite mutation rate by BRCA1 mutation tracing. Nucleic Acids Res 2014; 42:9121-30. [PMID: 25034697 PMCID: PMC4132748 DOI: 10.1093/nar/gku639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Large tandem repeat sequences have been poorly investigated as severe technical limitations and their frequent absence from the genome reference hinder their analysis. Extensive allelotyping of this class of variation has not been possible until now and their mutational dynamics are still poorly known. In order to estimate the mutation rate of a macrosatellite, we analysed in detail the RNU2 locus, which displays at least 50 different alleles containing 5-82 copies of a 6.1 kb repeat unit. Mining data from the 1000 Genomes Project allowed us to precisely estimate copy numbers of the RNU2 repeat unit using read depth of coverage. This further revealed significantly different mean values in various recent modern human populations, favoring a scenario of fast evolution of this locus. Its proximity to a disease gene with numerous founder mutations, BRCA1, within the same linkage disequilibrium block, offered the unique opportunity to trace RNU2 arrays over a large timescale. Analysis of the transmission of RNU2 arrays associated with one ‘private’ mutation in an extended kindred and four founder mutations in multiple kindreds gave an estimation by maximum likelihood of 5 × 10−3 mutations per generation, which is close to that of microsatellites.
Collapse
Affiliation(s)
- Chloé Tessereau
- Genetics of Breast Cancer Team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Lyon 1, Centre Léon Bérard, Lyon, France Genomic Vision, Bagneux, Paris, France
| | - Yann Lesecque
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Lyon 1, France
| | - Nastasia Monnet
- Genetics of Breast Cancer Team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Monique Buisson
- Genetics of Breast Cancer Team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Laure Barjhoux
- Genetics of Breast Cancer Team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Mélanie Léoné
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | - Bingjian Feng
- Department of Dermatology and Huntsman Cancer Institute University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - David E Goldgar
- Department of Dermatology and Huntsman Cancer Institute University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Olga M Sinilnikova
- Genetics of Breast Cancer Team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Lyon 1, Centre Léon Bérard, Lyon, France Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | - Sylvain Mousset
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Lyon 1, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Lyon 1, France
| | - Sylvie Mazoyer
- Genetics of Breast Cancer Team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Lyon 1, Centre Léon Bérard, Lyon, France
| |
Collapse
|
17
|
Cordon-Obras C, Cano J, Knapp J, Nebreda P, Ndong-Mabale N, Ncogo-Ada PR, Ndongo-Asumu P, Navarro M, Pinto J, Benito A, Bart JM. Glossina palpalis palpalis populations from Equatorial Guinea belong to distinct allopatric clades. Parasit Vectors 2014; 7:31. [PMID: 24438585 PMCID: PMC3898820 DOI: 10.1186/1756-3305-7-31] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/14/2014] [Indexed: 11/18/2022] Open
Abstract
Background Luba is one of the four historical foci of Human African Trypanosomiasis (HAT) on Bioko Island, in Equatorial Guinea. Although no human cases have been detected since 1995, T. b. gambiense was recently observed in the vector Glossina palpalis palpalis. The existence of cryptic species within this vector taxon has been previously suggested, although no data are available regarding the evolutionary history of tsetse flies populations in Bioko. Methods A phylogenetic analysis of 60 G. p. palpalis from Luba was performed sequencing three mitochondrial (COI, ND2 and 16S) and one nuclear (rDNA-ITS1) DNA markers. Phylogeny reconstruction was performed by Distance Based, Maximum Likelihood and Bayesian Inference methods. Results The COI and ND2 mitochondrial genes were concatenated and revealed 10 closely related haplotypes with a dominant one found in 61.1% of the flies. The sequence homology of the other 9 haplotypes compared to the former ranged from 99.6 to 99.9%. Phylogenetic analysis clearly clustered all island samples with flies coming from the Western African Clade (WAC), and separated from the flies belonging to the Central Africa Clade (CAC), including samples from Mbini and Kogo, two foci of mainland Equatorial Guinea. Consistent with mitochondrial data, analysis of the microsatellite motif present in the ITS1 sequence exhibited two closely related genotypes, clearly divergent from the genotypes previously identified in Mbini and Kogo. Conclusions We report herein that tsetse flies populations circulating in Equatorial Guinea are composed of two allopatric subspecies, one insular and the other continental. The presence of these two G. p. palpalis cryptic taxa in Equatorial Guinea should be taken into account to accurately manage vector control strategy, in a country where trypanosomiasis transmission is controlled but not definitively eliminated yet.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jean-Mathieu Bart
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Sinesio Delgado, 4, pabellón 13, Madrid 28029, Spain.
| |
Collapse
|
18
|
Tessereau C, Buisson M, Monnet N, Imbert M, Barjhoux L, Schluth-Bolard C, Sanlaville D, Conseiller E, Ceppi M, Sinilnikova OM, Mazoyer S. Direct visualization of the highly polymorphic RNU2 locus in proximity to the BRCA1 gene. PLoS One 2013; 8:e76054. [PMID: 24146815 PMCID: PMC3795722 DOI: 10.1371/journal.pone.0076054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/17/2013] [Indexed: 01/15/2023] Open
Abstract
Although the breast cancer susceptibility gene BRCA1 is one of the most extensively characterized genetic loci, much less is known about its upstream variable number tandem repeat element, the RNU2 locus. RNU2 encodes the U2 small nuclear RNA, an essential splicing element, but this locus is missing from the human genome assembly due to the inherent difficulty in the assembly of repetitive sequences. To fill the gap between RNU2 and BRCA1, we have reconstructed the physical map of this region by re-examining genomic clone sequences of public databases, which allowed us to precisely localize the RNU2 array 124 kb telomeric to BRCA1. We measured by performing FISH analyses on combed DNA for the first time the exact number of repeats carried by each of the two alleles in 41 individuals and found a range of 6-82 copies and a level of heterozygosity of 98%. The precise localisation of the RNU2 locus in the genome reference assembly and the implementation of a new technical tool to study it will make the detailed exploration of this locus possible. This recently neglected macrosatellite could be valuable for evaluating the potential role of structural variations in disease due to its location next to a major cancer susceptibility gene.
Collapse
Affiliation(s)
- Chloé Tessereau
- «Genetics of Breast Cancer» team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
- Genomic Vision, Bagneux, Paris, France
| | - Monique Buisson
- «Genetics of Breast Cancer» team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Nastasia Monnet
- «Genetics of Breast Cancer» team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Marine Imbert
- «Genetics of Breast Cancer» team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Laure Barjhoux
- «Genetics of Breast Cancer» team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Caroline Schluth-Bolard
- Service de Génétique, Laboratoire de Cytogénétique Constitutionnelle, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon and CNRS UMR5292, Inserm U1028, Université Claude Bernard Lyon 1, Equipe TIGER, Lyon, France
| | - Damien Sanlaville
- Service de Génétique, Laboratoire de Cytogénétique Constitutionnelle, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon and CNRS UMR5292, Inserm U1028, Université Claude Bernard Lyon 1, Equipe TIGER, Lyon, France
| | | | | | - Olga M. Sinilnikova
- «Genetics of Breast Cancer» team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | - Sylvie Mazoyer
- «Genetics of Breast Cancer» team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
- * E-mail:
| |
Collapse
|
19
|
Haag KL, Traunecker E, Ebert D. Single-nucleotide polymorphisms of two closely related microsporidian parasites suggest a clonal population expansion after the last glaciation. Mol Ecol 2012; 22:314-26. [PMID: 23163569 DOI: 10.1111/mec.12126] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 10/03/2012] [Accepted: 10/07/2012] [Indexed: 11/27/2022]
Abstract
The mode of reproduction of microsporidian parasites has remained puzzling since many decades. It is generally accepted that microsporidia are capable of sexual reproduction, and that some species have switched to obligate asexuality, but such process had never been supported with population genetic evidence. We examine the mode of reproduction of Hamiltosporidium tvaerminnensis and Hamiltosporidium magnivora, two closely related microsporidian parasites of the widespread freshwater crustacean Daphnia magna, based on a set of 129 single-nucleotide polymorphisms distributed across 16 genes. We analyse 20 H. tvaerminnensis isolates from localities representative of the entire species' geographic distribution along the Skerry Island belt of the Baltic Sea. Five isolates of the sister species H. magnivora were used for comparison. We estimate the recombination rates in H. tvaerminnensis to be at least eight orders of magnitude lower than in H. magnivora and not significantly different from zero. This is corroborated by the higher divergence between H. tvaerminnensis alleles (including fixed heterozygosity), as compared to H. magnivora. Our study confirms that sexual recombination is present in microsporidia, that it can be lost, and that asexuals may become epidemic.
Collapse
Affiliation(s)
- Karen L Haag
- Zoological Institute, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.
| | | | | |
Collapse
|
20
|
Merlo MA, Cross I, Palazón JL, Ubeda-Manzanaro M, Sarasquete C, Rebordinos L. Evidence for 5S rDNA horizontal transfer in the toadfish Halobatrachus didactylus (Schneider, 1801) based on the analysis of three multigene families. BMC Evol Biol 2012; 12:201. [PMID: 23039906 PMCID: PMC3544641 DOI: 10.1186/1471-2148-12-201] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 10/03/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Batrachoididae family is a group of marine teleosts that includes several species with more complicated physiological characteristics, such as their excretory, reproductive, cardiovascular and respiratory systems. Previous studies of the 5S rDNA gene family carried out in four species from the Western Atlantic showed two types of this gene in two species but only one in the other two, under processes of concerted evolution and birth-and-death evolution with purifying selection. Here we present results of the 5S rDNA and another two gene families in Halobatrachus didactylus, an Eastern Atlantic species, and draw evolutionary inferences regarding the gene families. In addition we have also mapped the genes on the chromosomes by two-colour fluorescence in situ hybridization (FISH). RESULTS Two types of 5S rDNA were observed, named type α and type β. Molecular analysis of the 5S rDNA indicates that H. didactylus does not share the non-transcribed spacer (NTS) sequences with four other species of the family; therefore, it must have evolved in isolation. Amplification with the type β specific primers amplified a specific band in 9 specimens of H. didactylus and two of Sparus aurata. Both types showed regulatory regions and a secondary structure which mark them as functional genes. However, the U2 snRNA gene and the ITS-1 sequence showed one electrophoretic band and with one type of sequence. The U2 snRNA sequence was the most variable of the three multigene families studied. Results from two-colour FISH showed no co-localization of the gene coding from three multigene families and provided the first map of the chromosomes of the species. CONCLUSIONS A highly significant finding was observed in the analysis of the 5S rDNA, since two such distant species as H. didactylus and Sparus aurata share a 5S rDNA type. This 5S rDNA type has been detected in other species belonging to the Batrachoidiformes and Perciformes orders, but not in the Pleuronectiformes and Clupeiformes orders. Two hypotheses have been outlined: one is the possible vertical permanence of the shared type in some fish lineages, and the other is the possibility of a horizontal transference event between ancient species of the Perciformes and Batrachoidiformes orders. This finding opens a new perspective in fish evolution and in the knowledge of the dynamism of the 5S rDNA. Cytogenetic analysis allowed some evolutionary trends to be roughed out, such as the progressive change in the U2 snDNA and the organization of (GATA)n repeats, from dispersed to localized in one locus. The accumulation of (GATA)n repeats in one chromosome pair could be implicated in the evolution of a pair of proto-sex chromosomes. This possibility could situate H. didactylus as the most highly evolved of the Batrachoididae family in terms of sex chromosome biology.
Collapse
Affiliation(s)
- Manuel A Merlo
- Laboratorio Genética, Facultad de Ciencias del Mar y Ambientales, CACYTMAR, Universidad de Cádiz, Puerto Real (Cádiz), 11510, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C. Evolutionary patterns of non-coding RNAs. Theory Biosci 2012; 123:301-69. [PMID: 18202870 DOI: 10.1016/j.thbio.2005.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/24/2005] [Indexed: 01/04/2023]
Abstract
A plethora of new functions of non-coding RNAs (ncRNAs) have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this "Modern RNA World" and its components. In this contribution, we attempt to provide at least a cursory overview of the diversity of ncRNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of Y RNA genes in vertebrates and study the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA (miRNA) family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of miRNAs in metazoans, which suggests an explosive increase in the miRNA repertoire in vertebrates. The analysis of the transcription of ncRNAs suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA.
Collapse
|
22
|
Shen PP, Zhou H, Gu JG. Novel polymorphism of internal transcribed spacers (ITS) and their utilization in phylogenetic analysis of Neanthes glandicincta (Annelida: Polychaeta: Nereididae). ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1717-1725. [PMID: 22711549 DOI: 10.1007/s10646-012-0959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 06/01/2023]
Abstract
Sequences of internal transcribed spacers (ITS1 and ITS2) are increasingly being used to infer phylogenetic relationships at or below species levels. Here we report a novel case of ITS polymorphism within Neanthes glandicincta (Annelida: Polychaeta: Nereididae). Two types of ITS sequence (Type I and Type II) were cloned and sequenced, which showed significant differences both in nucleotide composition and length. Variations of these two types sequences also differed from each other with Type I was highly divergent while Type II was highly conserved. Phylogenetic trees inferred from ITS1 and ITS2 sequences showed striking discrepancy in N. glandicincta. Non-concerted evolution of multi-gene is suggested to be responsible for the high degree of polymorphism in ITS regions. Due to the two divergent types of ITS presented within a single N. glandicincta individual, the utilization of ITS regions for delineation of population or closely related species cannot be substantiated. The finding of different types of ITS in a single individual also stresses the need for analyzing a large number of clones whenever ITS sequences obtained by PCR amplification and cloning are being used in phylogenetic reconstruction.
Collapse
Affiliation(s)
- Ping-Ping Shen
- Key Laboratory of Marine-Bioresources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | | | | |
Collapse
|
23
|
Merlo MA, Pacchiarini T, Portela-Bens S, Cross I, Manchado M, Rebordinos L. Genetic characterization of Plectorhinchus mediterraneus yields important clues about genome organization and evolution of multigene families. BMC Genet 2012; 13:33. [PMID: 22545758 PMCID: PMC3464664 DOI: 10.1186/1471-2156-13-33] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/30/2012] [Indexed: 12/17/2022] Open
Abstract
Background Molecular and cytogenetic markers are of great use for to fish characterization, identification, phylogenetics and evolution. Multigene families have proven to be good markers for a better understanding of the variability, organization and evolution of fish species. Three different tandemly-repeated gene families (45S rDNA, 5S rDNA and U2 snDNA) have been studied in Plectorhinchus mediterraneus (Teleostei: Haemulidae), at both molecular and cytogenetic level, to elucidate the taxonomy and evolution of these multigene families, as well as for comparative purposes with other species of the family. Results Four different types of 5S rDNA were obtained; two of them showed a high homology with that of Raja asterias, and the putative implication of a horizontal transfer event and its consequences for the organization and evolution of the 5S rDNA have been discussed. The other two types do not resemble any other species, but in one of them a putative tRNA-derived SINE was observed for the first time, which could have implications in the evolution of the 5S rDNA. The ITS-1 sequence was more related to a species of another different genus than to that of the same genus, therefore a revision of the Hamulidae family systematic has been proposed. In the analysis of the U2 snDNA, we were able to corroborate that U2 snDNA and U5 snDNA were linked in the same tandem array, and this has interest for tracing evolutionary lines. The karyotype of the species was composed of 2n = 48 acrocentric chromosomes, and each of the three multigene families were located in different chromosome pairs, thus providing three different chromosomal markers. Conclusions Novel data can be extracted from the results: a putative event of horizontal transfer, a possible tRNA-derived SINE linked to one of the four 5S rDNA types characterized, and a linkage between U2 and U5 snDNA. In addition, a revision of the taxonomy of the Haemulidae family has been suggested, and three cytogenetic markers have been obtained. Some of these results have not been described before in any other fish species. New clues about the genome organization and evolution of the multigene families are offered in this study.
Collapse
Affiliation(s)
- Manuel A Merlo
- Laboratorio de Genética, Universidad de Cádiz, Polígono Río San Pedro 11510, Puerto Real, Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Epigenetic regulation of the X-chromosomal macrosatellite repeat encoding for the cancer/testis gene CT47. Eur J Hum Genet 2011; 20:185-91. [PMID: 21811308 DOI: 10.1038/ejhg.2011.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macrosatellite repeats (MSRs) present an extreme example of copy number variation, yet their epigenetic regulation in normal and malignant cells is largely understudied. The CT47 cancer/testis antigen located on human Xq24 is organized as an array of 4.8 kb large units. CT47 is expressed in the testis and in certain types of cancer, but not in non-malignant somatic tissue. We used CT47 as a model to study a possible correlation between copy number variation, epigenetic regulation and transcription originating from MSRs in normal and malignant cells. In lymphoblastoid cell lines and primary fibroblasts, CT47 expression was absent, consistent with the observed heterochromatic structure and DNA hypermethylation of the CT47 promoter. Heterochromatinization of CT47 occurs early during development as human embryonic stem cells show high levels of DNA methylation and repressive chromatin modifications in the absence of CT47 expression. In small-cell lung carcinoma cell lines with low levels of CT47 transcripts, we observed reduced levels of histone 3 lysine 9 trimethylation (H3K9me3) and trimethylated lysine 27 of histone H3 (H3K27me3) without concomitant increase in euchromatic histone modifications. DNA methylation levels in the promoter region of CT47 are also significantly reduced in these cells. This supports a model in which during oncogenic transformation, there is a relative loss of repressive chromatin markers resulting in leaky expression of CT47. We conclude that some MSRs, like CT47 and the autosomal MSRs TAF11-Like, PRR20, ZAV and D4Z4, the latter being involved in facioscapulohumeral muscular dystrophy, seem to be governed by common regulatory mechanisms with their abundant expression mostly being restricted to the germ line.
Collapse
|
25
|
Control of vitellogenin genes expression by sequences derived from transposable elements in rainbow trout. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:546-54. [DOI: 10.1016/j.bbagrm.2010.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 07/05/2010] [Accepted: 07/09/2010] [Indexed: 01/24/2023]
|
26
|
Chinali A, Vater W, Rudakoff B, Sponner A, Unger E, Grosse F, Guehrs KH, Weisshart K. Containment of extended length polymorphisms in silk proteins. J Mol Evol 2010; 70:325-38. [PMID: 20349054 DOI: 10.1007/s00239-010-9326-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 02/10/2010] [Indexed: 11/24/2022]
Abstract
The spider silk gene family to the current date has been developed by gene duplication and homogenization events as well as conservation of crucial sequence parts. These evolutionary processes have created an amazing diversity of silk types each associated with specific properties and functions. In addition, they have led to allelic and gene variants within a species as exemplified by the major ampullate spidroin 1 gene of Nephila clavipes. Due to limited numbers of individuals screened to date little is known about the extent of these heterogeneities and how they are finally manifested in the proteins. Using expanded sample sizes, we show that sequence variations expressed as deletions or insertions of tri-nucleotides lead to different sized and structured repetitive units throughout a silk protein. Moreover, major ampullate spidroins 1 can quite dramatically differ in their overall lengths; however, extreme variants do not spread widely in a spider population. This suggests that a certain size range stabilized by purifying selection is important for spidroin 1 gene integrity and protein function. More than one locus for spidroin 1 genes possibly exist within one individual genome, which are homogenized in size, are differentially expressed and give a spider a certain degree of adaptation on silk's composition and properties. Such mechanisms are shared to a lesser extent by the second major ampullate spidroin gene.
Collapse
Affiliation(s)
- Alberto Chinali
- Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang S, Zhang L, Hu J, Bao Z, Liu Z. Molecular and cellular evidence for biased mitotic gene conversion in hybrid scallop. BMC Evol Biol 2010; 10:6. [PMID: 20064268 PMCID: PMC2818637 DOI: 10.1186/1471-2148-10-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 01/11/2010] [Indexed: 11/10/2022] Open
Abstract
Background Concerted evolution has been believed to account for homogenization of genes within multigene families. However, the exact mechanisms involved in the homogenization have been under debate. Use of interspecific hybrid system allows detection of greater level of sequence variation, and therefore, provide advantage for tracing the sequence changes. In this work, we have used an interspecific hybrid system of scallop to study the sequence homogenization processes of rRNA genes. Results Through the use of a hybrid scallop system (Chlamys farreri ♀ × Argopecten irradians ♂), here we provide solid molecular and cellular evidence for homogenization of the rDNA sequences into maternal genotypes. The ITS regions of the rDNA of the two scallop species exhibit distinct sequences and thereby restriction fragment length polymorphism (RFLP) patterns, and such a difference was exploited to follow the parental ITS contributions in the F1 hybrid during early development using PCR-RFLP. The representation of the paternal ITS decreased gradually in the hybrid during the development of the hybrid, and almost diminished at the 14th day after fertilization while the representation of the maternal ITS gradually increased. Chromosomal-specific fluorescence in situ hybridization (FISH) analysis in the hybrid revealed the presence of maternal ITS sequences on the paternal ITS-bearing chromosomes, but not vice versa. Sequence analysis of the ITS region in the hybrid not only confirmed the maternally biased conversion, but also allowed the detection of six recombinant variants in the hybrid involving short recombination regions, suggesting that site-specific recombination may be involved in the maternally biased gene conversion. Conclusion Taken together, these molecular and cellular evidences support rapid concerted gene evolution via maternally biased gene conversion. As such a process would lead to the expression of only one parental genotype, and have the opportunities to generate recombinant intermediates; this work may also have implications in novel hybrid zone alleles and genetic imprinting, as well as in concerted gene evolution. In the course of evolution, many species may have evolved involving some levels of hybridization, intra- or interspecific, the sex-biased sequence homogenization could have led to a greater role of one sex than the other in some species.
Collapse
Affiliation(s)
- Shi Wang
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao 266003, China
| | | | | | | | | |
Collapse
|
28
|
de Greef JC, Lemmers RJLF, van Engelen BGM, Sacconi S, Venance SL, Frants RR, Tawil R, van der Maarel SM. Common epigenetic changes of D4Z4 in contraction-dependent and contraction-independent FSHD. Hum Mutat 2009; 30:1449-59. [PMID: 19728363 DOI: 10.1002/humu.21091] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), caused by partial deletion of the D4Z4 macrosatellite repeat on chromosome 4q, has a complex genetic and epigenetic etiology. To develop FSHD, D4Z4 contraction needs to occur on a specific genetic background. Only contractions associated with the 4qA161 haplotype cause FSHD. In addition, contraction of the D4Z4 repeat in FSHD patients is associated with significant D4Z4 hypomethylation. To date, however, the methylation status of contracted repeats on nonpathogenic haplotypes has not been studied. We have performed a detailed methylation study of the D4Z4 repeat on chromosome 4q and on a highly homologous repeat on chromosome 10q. We show that patients with a D4Z4 deletion (FSHD1) have D4Z4-restricted hypomethylation. Importantly, controls with a D4Z4 contraction on a nonpathogenic chromosome 4q haplotype or on chromosome 10q also demonstrate hypomethylation. In 15 FSHD families without D4Z4 contractions but with at least one 4qA161 haplotype (FSHD2), we observed D4Z4-restricted hypomethylation on chromosomes 4q and 10q. This finding implies that a genetic defect resulting in D4Z4 hypomethylation underlies FSHD2. In conclusion, we describe two ways to develop FSHD: (1) contraction-dependent or (2) contraction-independent D4Z4 hypomethylation on the 4qA161 subtelomere.
Collapse
Affiliation(s)
- Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Marz M, Kirsten T, Stadler PF. Evolution of spliceosomal snRNA genes in metazoan animals. J Mol Evol 2009; 67:594-607. [PMID: 19030770 DOI: 10.1007/s00239-008-9149-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 07/14/2008] [Indexed: 11/28/2022]
Abstract
While studies of the evolutionary histories of protein families are commonplace, little is known on noncoding RNAs beyond microRNAs and some snoRNAs. Here we investigate in detail the evolutionary history of the nine spliceosomal snRNA families (U1, U2, U4, U5, U6, U11, U12, U4atac, and U6atac) across the completely or partially sequenced genomes of metazoan animals. Representatives of the five major spliceosomal snRNAs were found in all genomes. None of the minor splicesomal snRNAs were detected in nematodes or in the shotgun traces of Oikopleura dioica, while in all other animal genomes at most one of them is missing. Although snRNAs are present in multiple copies in most genomes, distinguishable paralogue groups are not stable over long evolutionary times, although they appear independently in several clades. In general, animal snRNA secondary structures are highly conserved, albeit, in particular, U11 and U12 in insects exhibit dramatic variations. An analysis of genomic context of snRNAs reveals that they behave like mobile elements, exhibiting very little syntenic conservation.
Collapse
Affiliation(s)
- Manuela Marz
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany.
| | | | | |
Collapse
|
30
|
Patel SB, Bellini M. The assembly of a spliceosomal small nuclear ribonucleoprotein particle. Nucleic Acids Res 2008; 36:6482-93. [PMID: 18854356 PMCID: PMC2582628 DOI: 10.1093/nar/gkn658] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The U1, U2, U4, U5 and U6 small nuclear ribonucleoprotein particles (snRNPs) are essential elements of the spliceosome, the enzyme that catalyzes the excision of introns and the ligation of exons to form a mature mRNA. Since their discovery over a quarter century ago, the structure, assembly and function of spliceosomal snRNPs have been extensively studied. Accordingly, the functions of splicing snRNPs and the role of various nuclear organelles, such as Cajal bodies (CBs), in their nuclear maturation phase have already been excellently reviewed elsewhere. The aim of this review is, then, to briefly outline the structure of snRNPs and to synthesize new and exciting developments in the snRNP biogenesis pathways.
Collapse
Affiliation(s)
- Snehal Bhikhu Patel
- Biochemistry and College of Medicine and Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
31
|
Human U2 snRNA genes exhibit a persistently open transcriptional state and promoter disassembly at metaphase. Mol Cell Biol 2008; 28:3573-88. [PMID: 18378697 DOI: 10.1128/mcb.00087-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In mammals, small multigene families generate spliceosomal U snRNAs that are nearly as abundant as rRNA. Using the tandemly repeated human U2 genes as a model, we show by footprinting with DNase I and permanganate that nearly all sequences between the enhancer-like distal sequence element and the initiation site are protected during interphase whereas the upstream half of the U2 snRNA coding region is exposed. We also show by chromatin immunoprecipitation that the SNAPc complex, which binds the TATA-like proximal sequence element, is removed at metaphase but remains bound under conditions that induce locus-specific metaphase fragility of the U2 genes, such as loss of CSB, BRCA1, or BRCA2 function, treatment with actinomycin D, or overexpression of the tetrameric p53 C terminus. We propose that the U2 snRNA promoter establishes a persistently open state to facilitate rapid reinitiation and perhaps also to bypass TFIIH-dependent promoter melting; this open state would then be disassembled to allow metaphase chromatin condensation.
Collapse
|
32
|
Wang S, Zhang L, Zhan A, Wang X, Liu Z, Hu J, Bao Z. Patterns of Concerted Evolution of the rDNA Family in a Natural Population of Zhikong Scallop, Chlamys farreri. J Mol Evol 2007; 65:660-7. [DOI: 10.1007/s00239-007-9039-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Revised: 06/24/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
|
33
|
Ganley ARD, Kobayashi T. Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res 2007; 17:184-91. [PMID: 17200233 PMCID: PMC1781350 DOI: 10.1101/gr.5457707] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Repeat families within genomes are often maintained with similar sequences. Traditionally, this has been explained by concerted evolution, where repeats in an array evolve "in concert" with the same sequence via continual turnover of repeats by recombination. Another form of evolution, birth-and-death evolution, can also explain this pattern, although in this case selection is the critical force maintaining the repeats. The level of intragenomic variation is the key difference between these two forms of evolution. The prohibitive size and repetitive nature of large repeat arrays have made determination of the absolute level of intragenomic repeat variability difficult, thus there is little evidence to support concerted evolution over birth-and-death evolution for many large repeat arrays. Here we use whole-genome shotgun sequence data from the genome projects of five fungal species to reveal absolute levels of sequence variation within the ribosomal RNA gene repeats (rDNA). The level of sequence variation is remarkably low. Furthermore, the polymorphisms that are detected are not functionally constrained and seem to exist beneath the level of selection. These results suggest the rDNA is evolving via concerted evolution. Comparisons with a repeat array undergoing birth-and-death evolution provide a clear contrast in the level of repeat array variation between these two forms of evolution, confirming that the rDNA indeed does evolve via concerted evolution. These low levels of intra-genomic variation are consistent with a model of concerted evolution in which homogenization is very rapid and efficiently maintains highly similar repeat arrays.
Collapse
|
34
|
McTaggart SJ, Dudycha JL, Omilian A, Crease TJ. Rates of recombination in the ribosomal DNA of apomictically propagated Daphnia obtusa lines. Genetics 2006; 175:311-20. [PMID: 17110499 PMCID: PMC1775004 DOI: 10.1534/genetics.105.050229] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribosomal (r)DNA undergoes concerted evolution, the mechanisms of which are unequal crossing over and gene conversion. Despite the fundamental importance of these mechanisms to the evolution of rDNA, their rates have been estimated only in a few model species. We estimated recombination rate in rDNA by quantifying the relative frequency of intraindividual length variants in an expansion segment of the 18S rRNA gene of the cladoceran crustacean, Daphnia obtusa, in four apomictically propagated lines. We also used quantitative PCR to estimate rDNA copy number. The apomictic lines were sampled every 5 generations for 90 generations, and we considered each significant change in the frequency distribution of length variants between time intervals to be the result of a recombination event. Using this method, we calculated the recombination rate for this region to be 0.02-0.06 events/generation on the basis of three different estimates of rDNA copy number. In addition, we observed substantial changes in rDNA copy number within and between lines. Estimates of haploid copy number varied from 53 to 233, with a mean of 150. We also measured the relative frequency of length variants in 30 lines at generations 5, 50, and 90. Although length variant frequencies changed significantly within and between lines, the overall average frequency of each length variant did not change significantly between the three generations sampled, suggesting that there is little or no bias in the direction of change due to recombination.
Collapse
Affiliation(s)
- Seanna J McTaggart
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
35
|
Manchado M, Rebordinos L, Infante C. U1 and U2 small nuclear RNA genetic linkage: a novel molecular tool for identification of six sole species (Soleidae, Pleuronectiformes). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:3765-7. [PMID: 16719493 DOI: 10.1021/jf0530594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We evaluated the usefulness of a genetic linkage between the U1 and U2 small nuclear RNAs for species identification. Six soles belonging to the genera Solea, Dicologlossa, and Microchirus were studied. A simple methodology based on two single PCRs is described. Reproducible band profiles were generated for all samples. This rapid and discriminatory molecular method is highly promising for determining the authenticity of sole fillets in the food industry.
Collapse
Affiliation(s)
- Manuel Manchado
- CIFPA "El Toruño", I.F.A.P.A. C.I.C.E. (Junta de Andalucía). Camino tiro de pichón s/n, 11500 El Puerto de Santa María, Cadiz, Spain.
| | | | | |
Collapse
|
36
|
Manchado M, Zuasti E, Cross I, Merlo A, Infante C, Rebordinos L. Molecular characterization and chromosomal mapping of the 5S rRNA gene in Solea senegalensis: a new linkage to the U1, U2, and U5 small nuclear RNA genes. Genome 2006; 49:79-86. [PMID: 16462904 DOI: 10.1139/g05-068] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Some units of the 5S rDNA of Solea senegalensis were amplified by PCR and sequenced. Three main PCR products (227, 441, and 2166 bp) were identified. The 227- and 441-bp fragments were characterized by highly divergent nontranscribed spacer sequences (referred to as NTS-I and NTS-II) that were 109 and 324 bp long, respectively, yet their coding sequences were nearly identical. The 2166-bp 5S rDNA unit was composed of two 5S rRNA genes separated by NTS-I and followed by a 1721-bp spacer containing the U2, U5, and U1 small nuclear RNA genes (snRNAs). They were inverted and arranged in the transcriptional direction opposite that of the 5S rRNA gene. This simultaneous linkage of 3 different snRNAs had never been observed before. The PCR products were used as probes in fluorescence in situ hybridization experiments to locate the corresponding loci on the chromosomes of S. senegalensis. A major 5S rDNA chromosomal site was located along most of the short arm of a submetacentric pair, while a minor site was detected near the centromeric region of an acrocentric pair.
Collapse
Affiliation(s)
- Manuel Manchado
- Laboratorio de Identificación de Especies Pesqueras y Acuícolas, CIFPA, El Toruño, IFAPA, Consejería de Innovación, Ciencia y Empresa, El Puerto de Santa María, Cádiz, Spain.
| | | | | | | | | | | |
Collapse
|
37
|
Vézina H, Durocher F, Dumont M, Houde L, Szabo C, Tranchant M, Chiquette J, Plante M, Laframboise R, Lépine J, Nevanlinna H, Stoppa-Lyonnet D, Goldgar D, Bridge P, Simard J. Molecular and genealogical characterization of the R1443X BRCA1 mutation in high-risk French-Canadian breast/ovarian cancer families. Hum Genet 2005; 117:119-32. [PMID: 15883839 DOI: 10.1007/s00439-005-1297-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 02/06/2005] [Indexed: 10/25/2022]
Abstract
The Quebec population contains about six-million French Canadians, descended from the French settlers who colonized "Nouvelle-France" between 1608 and 1765. Although the relative genetic contribution of each of these founders is highly variable, altogether they account for the major part of the contemporary French-Canadian gene pool. This study was designed to analyze the role of this founder effect in the introduction and diffusion of the BRCA1 recurrent R1443X mutant allele. A highly conserved haplotype, observed in 18 French-Canadian families and generated using 17 microsatellite markers surrounding the BRCA1 locus, supports the fact that the R1443X mutation is a founder mutation in the Quebec population. We also performed haplotyping analysis of R1443X carriers on 19 other families from seven different nationalities; although the same alleles are shared for three markers surrounding the BRCA1 gene, distinct haplotypes were obtained in four families, suggesting multiple origins for the R1443X mutation. Ascending genealogies of the 18 French Canadian families and of controls were reconstructed on an average depth of 10 generations. We identified the founder couple with the highest probability of having introduced the mutation in the population. Based on the descending genealogy of this couple, we detected the presence of geographical concentration in the diffusion pattern of the mutation. This study demonstrates how molecular genetics and demogenetic analyses can complement each other to provide findings that could have an impact on public health. Moreover, this approach is certainly not unique to breast cancer genetics and could be used to understand other complex traits.
Collapse
Affiliation(s)
- Hélène Vézina
- Interdisciplinary Research Group on Demography and Genetic Epidemiology (GRIG), University of Quebec at Chicoutimi, Chicoutimi, Canada, G7H 2B1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Christensen T. Association of human endogenous retroviruses with multiple sclerosis and possible interactions with herpes viruses. Rev Med Virol 2005; 15:179-211. [PMID: 15782388 DOI: 10.1002/rmv.465] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hypothesis that human endogenous retroviruses (HERVs) play a role in autoimmune diseases is subject to increasing attention. HERVs represent both putative susceptibility genes and putative pathogenic viruses in the immune-mediated neurological disease multiple sclerosis (MS). Gammaretroviral HERV sequences are found in reverse transcriptase-positive virions produced by cultured mononuclear cells from MS patients, and they have been isolated from MS samples of plasma, serum and CSF, and characterised to some extent at the nucleotide, protein/enzyme, virion and immunogenic level. Two types of sequences, HERV-H and HERV-W, have been reported. No known HERV-H or HERV-W copy contains complete ORFs in all prerequisite genes, although several copies have coding potential, and several such sequences are specifically activated in MS, apparently resulting in the production of complete, competent virions. Increased antibody reactivity to specific Gammaretroviral HERV epitopes is found in MS serum and CSF, and cell-mediated immune responses have also been reported. Further, HERV-encoded proteins can have neuropathogenic effects. The activating factor(s) in the process resulting in protein or virion production may be members of the Herpesviridae. Several herpes viruses, such as HSV-1, VZV, EBV and HHV-6, have been associated with MS pathogenesis, and retroviruses and herpes viruses have complex interactions. The current understanding of HERVs, and specifically the investigations of HERV activation and expression in MS are the major subjects of this review, which also proposes to synergise the herpes and HERV findings, and presents several possible pathogenic mechanisms for HERVs in MS.
Collapse
Affiliation(s)
- Tove Christensen
- Institute of Medical Microbiology and Immunology, Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
39
|
Wörheide G, Nichols SA, Goldberg J. Intragenomic variation of the rDNA internal transcribed spacers in sponges (Phylum Porifera): implications for phylogenetic studies. Mol Phylogenet Evol 2004; 33:816-30. [PMID: 15522806 DOI: 10.1016/j.ympev.2004.07.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 07/09/2004] [Indexed: 11/16/2022]
Abstract
The internal transcribed spacer regions (ITS1 and ITS2) of the tandemly repeated nuclear ribosomal DNA clusters are frequently used as markers for fine scale analyses in diverse animals. In certain taxa, ITS is nearly exclusively used for population level or inter-specific studies, despite the frequent presence of divergent paralogs within individual genomes that can be phylogenetically misleading. For the first time we survey diverse marine sponges to determine the extent and phylogenetic implications of intragenomic polymorphisms (IGPs) exhibited at their ITS loci. We discover that the extent of IGP varies greatly between taxa (with most taxa exhibiting very few) and cannot be predicted by taxonomy. Furthermore, we demonstrate that ITS can be phylogenetically informative between species when moderate levels of IGPs are detected, but that ITS paralogy can interfere with population level studies. We caution against the routine use of ITS in phylogenetic studies of sponges without (1) screening for IGPs in specimens from every population sampled; (2) including all divergent paralogs in phylogenetic analyses; (3) testing ITS data using other single-copy, unlinked loci (such as nuclear introns).
Collapse
Affiliation(s)
- Gert Wörheide
- Geowissenschaftliches Zentrum, Abt. Geobiologie, Universität Göttingen, Goldschmidtstr. 3, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
40
|
Abstract
The advent of advanced cell culture and cytogenetics techniques in the 1950s opened a new avenue for research on the pathogenic interactions between animal viruses and their hosts. Studies of many viruses revealed their ability to nonspecifically induce cytogenetic damage to their host cell's chromosomes. However, only three viruses, the oncogenic adenoviruses, herpes simplex virus (HSV) and human cytomegalovirus (HCMV), have been found to cause non-random, site-specific chromosomal damage. Adenovirus (Ad) type 12 induces fragility at four distinct loci (RNU1, RNU2, RN5S and PSU1) in many different types of human cells. A common feature of these loci is that they contain a repeated array of transcriptionally active genes encoding small structural RNAs. Site-specific induction of breaks also requires the virally encoded E1B protein of M(r) 55000 and the C-terminus of the cellular p53 protein. Analysis of the induction of damage by HSV and HCMV necessitates consideration of several factors, including the strain of virus used, the timing of infection, the type of cell used, and the multiplicity of infection. Both HSV strains 1 and 2 are cytotoxic, although the former seems to be more proficient at inducing damage. At early times post infection, HSV induces breaks and specific uncoiling of the centromeres of chromosomes 1, 9 and 16. This is followed at later times by a more complete severing of all of the chromosomes, termed pulverisation. Damage by HSV requires viral entry and de novo viral protein synthesis, with immediate early viral proteins responsible for the induction of breaks and uncoiling and early gene products (most likely nucleases) involved in the extensive pulverisation seen later. HCMV has been studied primarily in permissive human fibroblasts. Its ability to induce specific damage in chromosome 1 at two loci, 1q21 and 1q42, was only recently revealed as the cells must be in S-phase when they are infected for the breaks to be observed. In contrast to adenovirus and HSV, HCMV induction of specific breakage requires only viral entry into the cell and not de novo viral protein expression. This latter point may be a factor in its ability to cause damage in the developing fetal brain, where the most severe clinical manifestations of congenital infection are observed.
Collapse
Affiliation(s)
- Elizabeth A Fortunato
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | |
Collapse
|
41
|
Wang X, Li J, Leung FC. Partially inverted tandem repeat isolated from pericentric region of chicken chromosome 8. Chromosome Res 2002; 10:73-82. [PMID: 11863074 DOI: 10.1023/a:1014226412339] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The majority of chicken repetitive sequence is nuclear-membrane-associated sequence (CNM), which resides in a large number of microchromosomes (chromosomes 11-39) and is absent from macrochromosomes 1-5, ZW, and some of the intermediate chromosomes 6-10. Two repetitive families, EcoRI/XhoI, are confined to the female-specific W chromosome. The core repeat units of the three families are 21 bp, containing (A)3-5 and (T)3-5 clusters separated by 5-7-bp sequences. In this article, we describe the isolation and initial characterization of a novel repeat family that is related to CNM/EcoRI/XhoI families. The novel family, designated as PIR, consists of multiple types of partially inverted repeat units of about 1.2, 1.4 and 1.6 kb. The PIR sequence is restricted to chicken chromosome 8, and accounts for about 3.8 mb, or 2500 copies of the 1.4-kb units, of the chicken genome. The evolution of PIR and related sequences is discussed.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Zoology, The University of Hong Kong, SAR, China
| | | | | |
Collapse
|
42
|
Ganley ARD, Scott B. Concerted evolution in the ribosomal RNA genes of an Epichloë endophyte hybrid: comparison between tandemly arranged rDNA and dispersed 5S rrn genes. Fungal Genet Biol 2002; 35:39-51. [PMID: 11860264 DOI: 10.1006/fgbi.2001.1309] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined ribosomal RNA concerted evolution in an Epichloë endophyte interspecific hybrid (Lp1) and its progenitors (Lp5 and E8). We show that the 5S rrn genes are organized as dispersed copies. Cloned 5S gene sequences revealed two subfamilies exhibiting 12% sequence divergence, with substitutions forming coevolving pairs that maintain secondary structure and presumably function. Observed sequence patterns are not fully consistent with either concerted or classical evolution. The 5S rrn genes are syntenic with the tandemly arranged rDNA genes, despite residing outside the rDNA arrays. We also examined rDNA concerted evolution. Lp1 has rDNA sequence from only one progenitor and contains multiple rDNA arrays. Using 5S rrn genes as chromosomal markers, we propose that interlocus homogenization has replaced all Lp5 rDNA sequence with E8 sequence in the hybrid. This interlocus homogenization appears to have been rapid and efficient and is the first demonstration of hybrid interlocus homogenization in the Fungi.
Collapse
Affiliation(s)
- Austen R D Ganley
- Institute of Molecular BioSciences, Massey University, Palmerston North, Aotearoa, New Zealand.
| | | |
Collapse
|
43
|
Gonzalez IL, Sylvester JE. Human rDNA: Evolutionary Patterns within the Genes and Tandem Arrays Derived from Multiple Chromosomes. Genomics 2001; 73:255-63. [PMID: 11350117 DOI: 10.1006/geno.2001.6540] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human rDNA forms arrays on five chromosome pairs and is homogenized by concerted evolution through recombination and gene conversion (loci RNR1, RNR2, RNR3, RNR4, RNR5, OMIM: 180450). Homogenization is not perfect, however, so that it becomes possible to study its efficiency within genes, within arrays, and between arrays by measuring and comparing DNA sequence variation. Previous studies with randomly cloned genomic DNA fragments showed that different parts of the gene evolve at different rates but did not allow comparison of rDNA sequences derived from specific chromosomes. We have now cloned and sequenced rDNA fragments from specific acrocentric chromosomes to (1) study homogenization along the rDNA and (2) compare homogenization within chromosomes and between homologous and nonhomologous chromosomes. Our results show high homogeneity among regulatory and coding regions of rDNA on all chromosomes, a surprising homogeneity among adjacent distal non-rDNA sequences, and the existence of one to three very divergent intergenic spacer classes within each array.
Collapse
Affiliation(s)
- I L Gonzalez
- A. I. DuPont Hospital for Children, Wilmington, Delaware 19899, USA.
| | | |
Collapse
|
44
|
de los Santos T, Schweizer J, Rees CA, Francke U. Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader-Willi deletion region, which Is highly expressed in brain. Am J Hum Genet 2000; 67:1067-82. [PMID: 11007541 PMCID: PMC1288549 DOI: 10.1086/303106] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2000] [Accepted: 09/14/2000] [Indexed: 11/03/2022] Open
Abstract
Prader-Willi syndrome is a complex neurodevelopmental disorder caused by the inactivation or deletion of imprinted, paternally expressed genes in chromosome band 15q11.2. We report the identification and characterization of PWCR1, a novel imprinted gene within that region, and its mouse orthologue, Pwcr1, which was mapped to the conserved syntenic region on mouse chromosome 7. Expressed only from the paternal allele, both genes require the imprinting-center regulatory element for expression and are transcribed from the same strand. They are intronless and do not appear to encode a protein product. High human/mouse sequence similarity (87% identity) is limited to a 99-bp region called "HMCR" (for "human-mouse conserved region"). The HMCR sequence has features of a C/D box small nucleolar RNA (snoRNA) and is represented in an abundant small transcript in both species. Located in nucleoli, snoRNAs serve as methylation guidance RNAs in the modification of ribosomal RNA and other small nuclear RNAs. In addition to the nonpolyadenylated small RNAs, larger polyadenylated PWCR1 transcripts are found in most human tissues, whereas expression of any Pwcr1 RNAs is limited to mouse brain. Genomic sequence analysis reveals the presence of multiple copies of PWCR1 and Pwcr1 that are organized within local tandem-repeat clusters. On a multispecies Southern blot, hybridization to an HMCR probe encoding the putative snoRNA is limited to mammals.
Collapse
Affiliation(s)
- Tala de los Santos
- Department of Genetics and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford
| | - Johannes Schweizer
- Department of Genetics and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford
| | - Christian A. Rees
- Department of Genetics and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford
| | - Uta Francke
- Department of Genetics and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford
| |
Collapse
|
45
|
Yu A, Fan HY, Liao D, Bailey AD, Weiner AM. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol Cell 2000; 5:801-10. [PMID: 10882116 DOI: 10.1016/s1097-2765(00)80320-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Infection by adenovirus 12, transfection with the Ad12 E1B 55 kDa gene, or activation of p53 cause metaphase fragility of four loci (RNU1, PSU1, RNU2, and RN5S) each containing tandemly repeated genes for an abundant small RNA (U1, U2, and 5S RNA). We now show that loss of the Cockayne syndrome group B protein (CSB) or overexpression of the p53 carboxy-terminal domain induces fragility of the same loci; moreover, p53 interacts with CSB in vivo and in vitro. We propose that CSB functions as an elongation factor for transcription of structured RNAs, including some mRNAs. Activation of p53 would inhibit CSB, stalling transcription complexes and locally blocking chromatin condensation. Impaired transcription elongation may also explain the diverse clinical features of Cockayne syndrome.
Collapse
Affiliation(s)
- A Yu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
46
|
Hutter H, Vogel BE, Plenefisch JD, Norris CR, Proenca RB, Spieth J, Guo C, Mastwal S, Zhu X, Scheel J, Hedgecock EM. Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science 2000; 287:989-94. [PMID: 10669422 DOI: 10.1126/science.287.5455.989] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
New proteins and modules have been invented throughout evolution. Gene "birth dates" in Caenorhabditis elegans range from the origins of cellular life through adaptation to a soil habitat. Possibly half are "metazoan" genes, having arisen sometime between the yeast-metazoan and nematode-chordate separations. These include basement membrane and cell adhesion molecules implicated in tissue organization. By contrast, epithelial surfaces facing the environment have specialized components invented within the nematode lineage. Moreover, interstitial matrices were likely elaborated within the vertebrate lineage. A strategy for concerted evolution of new gene families, as well as conservation of adaptive genes, may underlie the differences between heterochromatin and euchromatin.
Collapse
Affiliation(s)
- H Hutter
- Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
van der Maarel SM, Deidda G, Lemmers RJ, van Overveld PG, van der Wielen M, Hewitt JE, Sandkuijl L, Bakker B, van Ommen GJ, Padberg GW, Frants RR. De novo facioscapulohumeral muscular dystrophy: frequent somatic mosaicism, sex-dependent phenotype, and the role of mitotic transchromosomal repeat interaction between chromosomes 4 and 10. Am J Hum Genet 2000; 66:26-35. [PMID: 10631134 PMCID: PMC1288331 DOI: 10.1086/302730] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1999] [Accepted: 10/01/1999] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) is caused by deletion of most copies of the 3.3-kb subtelomeric D4Z4 repeat array on chromosome 4q. The molecular mechanisms behind the deletion and the high proportion of new mutations have remained elusive. We surveyed 35 de novo FSHD families and found somatic mosaicism in 40% of cases, in either the patient or an asymptomatic parent. Mosaic males were typically affected; mosaic females were more often the unaffected parent of a nonmosaic de novo patient. A genotypic-severity score, composed of the residual repeat size and the degree of somatic mosaicism, yields a consistent relationship with severity and age at onset of disease. Mosaic females had a higher proportion of somatic mosaicism than did mosaic males. The repeat deletion is significantly enhanced by supernumerary homologous repeat arrays. In 10% of normal chromosomes, 4-type repeat arrays are present on chromosome 10. In mosaic individuals, 4-type repeats on chromosome 10 are almost five times more frequent. The reverse configuration, also 10% in normal chromosomes, was not found, indicating that mutations may arise from transchromosomal interaction, to which the increase in 4-type repeat clusters is a predisposing factor. The somatic mosaicism suggests a mainly mitotic origin; mitotic interchromosomal gene conversion or translocation between fully homologous 4-type repeat arrays may be a major mechanism for FSHD mutations.
Collapse
Affiliation(s)
- S M van der Maarel
- Leiden University Medical Center, Medical Genetics Centre-Department of Human and Clinical Genetics, 2333 AL Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jiang C, Liao D. Striking bimodal methylation of the repeat unit of the tandem array encoding human U2 snRNA (the RNU2 locus). Genomics 1999; 62:508-18. [PMID: 10644450 DOI: 10.1006/geno.1999.6052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genes encoding human U2 small nuclear RNA are arrayed in tandem (the RNU2 locus) and have undergone concerted evolution for >35 Myr. Tandem organization of repetitive sequences may facilitate recombination that underlies concerted evolution, but could risk instability. Since DNA methylation plays a crucial role in genome stability, we investigated the methylation status of the RNU2 locus to understand the forces maintaining array stability and homogeneity. We found that a region of approximately 1.5 kb spanning the U2 promoter, U2 gene sequence, and CT microsatellite is completely unmethylated, whereas the rest of the repeat is heavily methylated. Since the U2 transcription enhancer DSE and CT microsatellite mark the boundaries between methylated and unmethylated domains, they might function as cis-acting elements for establishing and maintaining proper methylation at the RNU2 locus. Interestingly, the RNU2 locus in human fibrosarcoma line HT1080 is hypomethylated, and de novo methylation did not occur in an artificial U2 tandem array introduced by stable transfection. The observed bimodal methylation pattern may be important for both efficient transcription of U2 gene and maintenance of nearly perfect tandem arrays in somatic cells.
Collapse
Affiliation(s)
- C Jiang
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | | |
Collapse
|
49
|
Sharon D, Glusman G, Pilpel Y, Khen M, Gruetzner F, Haaf T, Lancet D. Primate evolution of an olfactory receptor cluster: diversification by gene conversion and recent emergence of pseudogenes. Genomics 1999; 61:24-36. [PMID: 10512677 DOI: 10.1006/geno.1999.5900] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The olfactory receptor (OR) subgenome harbors the largest known gene family in mammals, disposed in clusters on numerous chromosomes. We have carried out a comparative evolutionary analysis of the best characterized genomic OR gene cluster, on human chromosome 17p13. Fifteen orthologs from chimpanzee (localized to chromosome 19p15), as well as key OR counterparts from other primates, have been identified and sequenced. Comparison among orthologs and paralogs revealed a multiplicity of gene conversion events, which occurred exclusively within OR subfamilies. These appear to lead to segment shuffling in the odorant binding site, an evolutionary process reminiscent of somatic combinatorial diversification in the immune system. We also demonstrate that the functional mammalian OR repertoire has undergone a rapid decline in the past 10 million years: while for the common ancestor of all great apes an intact OR cluster is inferred, in present-day humans and great apes the cluster includes nearly 40% pseudogenes.
Collapse
Affiliation(s)
- D Sharon
- Department of Molecular Genetics and the Crown Human Genome Center, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
50
|
Liu X, Barker DF. Evidence for effective suppression of recombination in the chromosome 17q21 segment spanning RNU2-BRCA1. Am J Hum Genet 1999; 64:1427-39. [PMID: 10205276 PMCID: PMC1377881 DOI: 10.1086/302358] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Characterization of associations between polymorphic sites located throughout the approximately 200-400-kb variable-length region spanning RNU2-BRCA1 reveals nearly complete linkage disequilibrium. This segment spans the RNU2 array, which includes 6-30 tandem copies of the U2 snRNA gene, and an adjacent region containing NBR1, the LBRCA1 pseudogene, NBR2, and BRCA1 in a tandemly duplicated structure. A series of biallelic polymorphisms define two common haplotypes that do not vary significantly, in structure or frequency, between populations of primarily European (n=275) or Asian (n=34) ancestry. Lower-frequency variants occurring at distantly located sites within this region also show very strong associations. The rarer haplotype classes appear to be distinguished by mutational alteration and are not recombination products of the two major classes. The two major haplotypes also exhibit significantly different allele-length distributions for local simple tandem-repeat markers. The conservation of extensive distinct chromosomal haplotypes during a long period of human population expansion and divergence indicates that selective forces or specific chromosomal mechanisms result in effective recombination suppression. The extreme degree of long-range linkage disequilibrium at this locus may be exceeded only by that reported for the human MHC locus, where allele-specific functional interactions are believed to be significant. These findings have implications for the estimation of the time of origin of BRCA1 mutations having a founder effect, the interpretation of the significance of rare allelic variants, and the study of the origins of modern populations.
Collapse
Affiliation(s)
- X Liu
- Department of Physiology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | | |
Collapse
|