1
|
Tycko J, Van MV, Aradhana, DelRosso N, Ye H, Yao D, Valbuena R, Vaughan-Jackson A, Xu X, Ludwig C, Spees K, Liu K, Gu M, Khare V, Mukund AX, Suzuki PH, Arana S, Zhang C, Du PP, Ornstein TS, Hess GT, Kamber RA, Qi LS, Khalil AS, Bintu L, Bassik MC. Development of compact transcriptional effectors using high-throughput measurements in diverse contexts. Nat Biotechnol 2024:10.1038/s41587-024-02442-6. [PMID: 39487265 DOI: 10.1038/s41587-024-02442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2024] [Indexed: 11/04/2024]
Abstract
Transcriptional effectors are protein domains known to activate or repress gene expression; however, a systematic understanding of which effector domains regulate transcription across genomic, cell type and DNA-binding domain (DBD) contexts is lacking. Here we develop dCas9-mediated high-throughput recruitment (HT-recruit), a pooled screening method for quantifying effector function at endogenous target genes and test effector function for a library containing 5,092 nuclear protein Pfam domains across varied contexts. We also map context dependencies of effectors drawn from unannotated protein regions using a larger library tiling chromatin regulators and transcription factors. We find that many effectors depend on target and DBD contexts, such as HLH domains that can act as either activators or repressors. To enable efficient perturbations, we select context-robust domains, including ZNF705 KRAB, that improve CRISPRi tools to silence promoters and enhancers. We engineer a compact human activator called NFZ, by combining NCOA3, FOXO3 and ZNF473 domains, which enables efficient CRISPRa with better viral delivery and inducible control of chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mike V Van
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Aradhana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Hanrong Ye
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - David Yao
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Alun Vaughan-Jackson
- Department of Genetics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
| | - Xiaoshu Xu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Connor Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Katherine Liu
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Mingxin Gu
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Venya Khare
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | | | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sophia Arana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Catherine Zhang
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
| | - Peter P Du
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
| | - Thea S Ornstein
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Gaelen T Hess
- Department of Biomolecular Chemistry and Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Roarke A Kamber
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Martínez-Lumbreras S, Träger LK, Mulorz MM, Payr M, Dikaya V, Hipp C, König J, Sattler M. Intramolecular autoinhibition regulates the selectivity of PRPF40A tandem WW domains for proline-rich motifs. Nat Commun 2024; 15:3888. [PMID: 38719828 PMCID: PMC11079029 DOI: 10.1038/s41467-024-48004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
PRPF40A plays an important role in the regulation of pre-mRNA splicing by mediating protein-protein interactions in the early steps of spliceosome assembly. By binding to proteins at the 5´ and 3´ splice sites, PRPF40A promotes spliceosome assembly by bridging the recognition of the splices. The PRPF40A WW domains are expected to recognize proline-rich sequences in SF1 and SF3A1 in the early spliceosome complexes E and A, respectively. Here, we combine NMR, SAXS and ITC to determine the structure of the PRPF40A tandem WW domains in solution and characterize the binding specificity and mechanism for proline-rich motifs recognition. Our structure of the PRPF40A WW tandem in complex with a high-affinity SF1 peptide reveals contributions of both WW domains, which also enables tryptophan sandwiching by two proline residues in the ligand. Unexpectedly, a proline-rich motif in the N-terminal region of PRPF40A mediates intramolecular interactions with the WW tandem. Using NMR, ITC, mutational analysis in vitro, and immunoprecipitation experiments in cells, we show that the intramolecular interaction acts as an autoinhibitory filter for proof-reading of high-affinity proline-rich motifs in bona fide PRPF40A binding partners. We propose that similar autoinhibitory mechanisms are present in most WW tandem-containing proteins to enhance binding selectivity and regulation of WW/proline-rich peptide interaction networks.
Collapse
Affiliation(s)
- Santiago Martínez-Lumbreras
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| | - Lena K Träger
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Miriam M Mulorz
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128, Mainz, Germany
| | - Marco Payr
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Varvara Dikaya
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Clara Hipp
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Julian König
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128, Mainz, Germany
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
3
|
PQBP1: The Key to Intellectual Disability, Neurodegenerative Diseases, and Innate Immunity. Int J Mol Sci 2022; 23:ijms23116227. [PMID: 35682906 PMCID: PMC9180999 DOI: 10.3390/ijms23116227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The idea that a common pathology underlies various neurodegenerative diseases and dementias has attracted considerable attention in the basic and medical sciences. Polyglutamine binding protein-1 (PQBP1) was identified in 1998 after a molecule was predicted to bind to polyglutamine tract amino acid sequences, which are associated with a family of neurodegenerative disorders called polyglutamine diseases. Hereditary gene mutations of PQBP1 cause intellectual disability, whereas acquired loss of function of PQBP1 contributes to dementia pathology. PQBP1 functions in innate immune cells as an intracellular receptor that recognizes pathogens and neurodegenerative proteins. It is an intrinsically disordered protein that generates intracellular foci, similar to other neurodegenerative disease proteins such as TDP43, FUS, and hnRNPs. The knowledge accumulated over more than 20 years has given rise to a new concept that shifts in the equilibrium between physiological and pathological processes have their basis in the dysregulation of common protein structure-linked molecular mechanisms.
Collapse
|
4
|
Cheng Y, Mao M, Lu Y. The biology of YAP in programmed cell death. Biomark Res 2022; 10:34. [PMID: 35606801 PMCID: PMC9128211 DOI: 10.1186/s40364-022-00365-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
In the last few decades, YAP has been shown to be critical in regulating tumor progression. YAP activity can be regulated by many kinase cascade pathways and proteins through phosphorylation and promotion of cytoplasmic localization. Other factors can also affect YAP activity by modulating its binding to different transcription factors (TFs). Programmed cell death (PCD) is a genetically controlled suicide process present with the scope of eliminating cells unnecessary or detrimental for the proper development of the organism. In some specific states, PCD is activated and facilitates the selective elimination of certain types of tumor cells. As a candidate oncogene correlates with many regulatory factors, YAP can inhibit or induce different forms of PCD, including apoptosis, autophagy, ferroptosis and pyroptosis. Furthermore, YAP may act as a bridge between different forms of PCD, eventually leading to different outcomes regarding tumor development. Researches on YAP and PCD may benefit the future development of novel treatment strategies for some diseases. Therefore, in this review, we provide a general overview of the cellular functions of YAP and the relationship between YAP and PCD.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yong Lu
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China.
| |
Collapse
|
5
|
Bacon K, Blain A, Bowen J, Burroughs M, McArthur N, Menegatti S, Rao BM. Quantitative Yeast-Yeast Two Hybrid for the Discovery and Binding Affinity Estimation of Protein-Protein Interactions. ACS Synth Biol 2021; 10:505-514. [PMID: 33587591 DOI: 10.1021/acssynbio.0c00472] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Quantifying the binding affinity of protein-protein interactions is important for elucidating connections within biochemical signaling pathways, as well as characterization of binding proteins isolated from combinatorial libraries. We describe a quantitative yeast-yeast two-hybrid (qYY2H) system that not only enables the discovery of specific protein-protein interactions but also efficient, quantitative estimation of their binding affinities (KD). In qYY2H, the bait and prey proteins are expressed as yeast cell surface fusions using yeast surface display. We developed a semiempirical framework for estimating the KD of monovalent bait-prey interactions, using measurements of bait-prey yeast-yeast binding, which is mediated by multivalent interactions between yeast-displayed bait and prey. Using qYY2H, we identified interaction partners of SMAD3 and the tandem WW domains of YAP from a cDNA library and characterized their binding affinities. Finally, we showed that qYY2H could also quantitatively evaluate binding interactions mediated by post-translational modifications on the bait protein.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Abigail Blain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - John Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Matthew Burroughs
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nikki McArthur
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Golden LEAF Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Balaji M. Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Golden LEAF Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
6
|
Zhang Y, Qian H, Wu B, You S, Wu S, Lu S, Wang P, Cao L, Zhang N, Sun Y. E3 Ubiquitin ligase NEDD4 family‑regulatory network in cardiovascular disease. Int J Biol Sci 2020; 16:2727-2740. [PMID: 33110392 PMCID: PMC7586430 DOI: 10.7150/ijbs.48437] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
Protein ubiquitination represents a critical modification occurring after translation. E3 ligase catalyzes the covalent binding of ubiquitin to the protein substrate, which could be degraded. Ubiquitination as an important protein post-translational modification is closely related to cardiovascular disease. The NEDD4 family, belonging to HECT class of E3 ubiquitin ligases can recognize different substrate proteins, including PTEN, ENaC, Nav1.5, SMAD2, PARP1, Septin4, ALK1, SERCA2a, TGFβR3 and so on, via the WW domain to catalyze ubiquitination, thus participating in multiple cardiovascular-related disease such as hypertension, arrhythmia, myocardial infarction, heart failure, cardiotoxicity, cardiac hypertrophy, myocardial fibrosis, cardiac remodeling, atherosclerosis, pulmonary hypertension and heart valve disease. However, there is currently no review comprehensively clarifying the important role of NEDD4 family proteins in the cardiovascular system. Therefore, the present review summarized recent studies about NEDD4 family members in cardiovascular disease, providing novel insights into the prevention and treatment of cardiovascular disease. In addition, assessing transgenic animals and performing gene silencing would further identify the ubiquitination targets of NEDD4. NEDD4 quantification in clinical samples would also constitute an important method for determining NEDD4 significance in cardiovascular disease.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Hao Qian
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Boquan Wu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shilong You
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shaojun Wu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Saien Lu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Pingyuan Wang
- Staff scientist, Center for Molecular Medicine National Heart Lung and Blood Institute, National Institutes of Health, the United States
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning, China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
7
|
Uman S, Dhand A, Burdick JA. Recent advances in shear‐thinning and self‐healing hydrogels for biomedical applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.48668] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Selen Uman
- Department of BioengineeringUniversity of Pennsylvania Philadelphia Pennsylvania 19104
| | - Abhishek Dhand
- Department of Chemical and Biomolecular EngineeringUniversity of Pennsylvania Philadelphia Pennsylvania 19104
| | - Jason A. Burdick
- Department of BioengineeringUniversity of Pennsylvania Philadelphia Pennsylvania 19104
| |
Collapse
|
8
|
Liang S, Hu L, Wu Z, Chen Z, Liu S, Xu X, Qian A. CDK12: A Potent Target and Biomarker for Human Cancer Therapy. Cells 2020; 9:E1483. [PMID: 32570740 PMCID: PMC7349380 DOI: 10.3390/cells9061483] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are a group of serine/threonine protein kinases and play crucial roles in various cellular processes by regulating cell cycle and gene transcription. Cyclin-dependent kinase 12 (CDK12) is an important transcription-associated CDK. It shows versatile roles in regulating gene transcription, RNA splicing, translation, DNA damage response (DDR), cell cycle progression and cell proliferation. Recently, increasing evidence demonstrates the important role of CDK12 in various human cancers, illustrating it as both a biomarker of cancer and a potential target for cancer therapy. Here, we summarize the current knowledge of CDK12, and review the research advances of CDK12's biological functions, especially its role in human cancers and as a potential target and biomarker for cancer therapy.
Collapse
Affiliation(s)
- Shujing Liang
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (S.L.); (L.H.); (Z.W.); (Z.C.); (S.L.); (X.X.)
- Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Lifang Hu
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (S.L.); (L.H.); (Z.W.); (Z.C.); (S.L.); (X.X.)
- Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zixiang Wu
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (S.L.); (L.H.); (Z.W.); (Z.C.); (S.L.); (X.X.)
- Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhihao Chen
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (S.L.); (L.H.); (Z.W.); (Z.C.); (S.L.); (X.X.)
- Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shuyu Liu
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (S.L.); (L.H.); (Z.W.); (Z.C.); (S.L.); (X.X.)
- Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xia Xu
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (S.L.); (L.H.); (Z.W.); (Z.C.); (S.L.); (X.X.)
- Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (S.L.); (L.H.); (Z.W.); (Z.C.); (S.L.); (X.X.)
- Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
9
|
Chen P, Kuang P, Wang L, Li W, Chen B, Liu Y, Wang H, Zhao S, Ye L, Yu F, He Y, Zhou C. Mechanisms of drugs-resistance in small cell lung cancer: DNA-related, RNA-related, apoptosis-related, drug accumulation and metabolism procedure. Transl Lung Cancer Res 2020; 9:768-786. [PMID: 32676338 PMCID: PMC7354133 DOI: 10.21037/tlcr-19-547] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small-cell lung cancer (SCLC), the highest malignant cancer amongst different types of lung cancer, has the feature of lower differentiation, rapid growth, and poor survival rate. Despite the dramatically initial sensitivity of SCLC to various types of treatment methods, including chemotherapy, radiotherapy and immunotherapy, the emergence of drugs-resistance is still a grandly clinical challenge. Therefore, in order to improve the prognosis and develop new therapeutic approaches, having a better understanding of the complex mechanisms of resistance in SCLC is of great clinical significance. This review summarized recent advances in understanding of multiple mechanisms which are involved in the resistance during SCLC treatment, including DNA-related process, RNA-related process, apoptosis-related mechanism, and the process of drug accumulation and metabolism.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical School, Tongji University, Shanghai, China
| | - Peng Kuang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical Oncology, The First Affiliated Hospital Of Nanchang University, Nanchang, China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical School, Tongji University, Shanghai, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical School, Tongji University, Shanghai, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Lingyun Ye
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Feng Yu
- Department of Medical Oncology, The First Affiliated Hospital Of Nanchang University, Nanchang, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
MeCP2 and Chromatin Compartmentalization. Cells 2020; 9:cells9040878. [PMID: 32260176 PMCID: PMC7226738 DOI: 10.3390/cells9040878] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a multifunctional epigenetic reader playing a role in transcriptional regulation and chromatin structure, which was linked to Rett syndrome in humans. Here, we focus on its isoforms and functional domains, interactions, modifications and mutations found in Rett patients. Finally, we address how these properties regulate and mediate the ability of MeCP2 to orchestrate chromatin compartmentalization and higher order genome architecture.
Collapse
|
11
|
Clinicopathological and Prognostic Significance of WW Domain Binding Protein 5 Expression in Papillary Thyroid Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1791065. [PMID: 31828091 PMCID: PMC6885795 DOI: 10.1155/2019/1791065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 11/17/2022]
Abstract
Objectives Many patients with papillary thyroid cancer (PTC) have a high recurrence risk and poor prognosis, and the main obstacle to the clinical diagnosis and treatment of PTC is lack of effective predictive molecular markers. The purpose of this study was to investigate the clinicopathological and prognostic implications of WW domain binding protein 5 (WBP5) expression in PTC. Materials and Methods Immunohistochemistry of WBP5 was performed using tissue microarrays of 131 patients with PTC who underwent surgery during January 2006 and January 2010 in the Zhejiang Cancer Hospital. Statistical analyses were conducted to evaluate the association between WBP5 expression and the clinicopathological features and to analyze the disease-free survival (DFS) and prognostic factors. Results and Conclusion The positive expression rate of WBP5 in PTC and the adjacent normal tissues was 42.75% (56/131) and 45.45% (10/22), respectively. WBP5 expression was significantly correlated with bilaterality, capsule invasion, and N-stage, and it was a favorable factor of DFS. Moreover, patients with a high WBP5 expression exhibited reduced risk of disease recurrence compared with that in patients with low WBP5 expression in the univariate analysis, whereas the multivariate analysis suggested that WBP5 was not an independent prognostic factor. Our results indicate that WBP5 might be a favorable prognosis indicator of PTC.
Collapse
|
12
|
Casini S, Albesa M, Wang Z, Portero V, Ross-Kaschitza D, Rougier JS, Marchal GA, Chung WK, Bezzina CR, Abriel H, Remme CA. Functional Consequences of the SCN5A-p.Y1977N Mutation within the PY Ubiquitylation Motif: Discrepancy between HEK293 Cells and Transgenic Mice. Int J Mol Sci 2019; 20:ijms20205033. [PMID: 31614475 PMCID: PMC6829230 DOI: 10.3390/ijms20205033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 01/25/2023] Open
Abstract
Dysfunction of the cardiac sodium channel Nav1.5 (encoded by the SCN5A gene) is associated with arrhythmias and sudden cardiac death. SCN5A mutations associated with long QT syndrome type 3 (LQT3) lead to enhanced late sodium current and consequent action potential (AP) prolongation. Internalization and degradation of Nav1.5 is regulated by ubiquitylation, a post-translational mechanism that involves binding of the ubiquitin ligase Nedd4-2 to a proline-proline-serine-tyrosine sequence of Nav1.5, designated the PY-motif. We investigated the biophysical properties of the LQT3-associated SCN5A-p.Y1977N mutation located in the Nav1.5 PY-motif, both in HEK293 cells as well as in newly generated mice harboring the mouse homolog mutation Scn5a-p.Y1981N. We found that in HEK293 cells, the SCN5A-p.Y1977N mutation abolished the interaction between Nav1.5 and Nedd4-2, suppressed PY-motif-dependent ubiquitylation of Nav1.5, and consequently abrogated Nedd4-2 induced sodium current (INa) decrease. Nevertheless, homozygous mice harboring the Scn5a-p.Y1981N mutation showed no electrophysiological alterations nor changes in AP or (late) INa properties, questioning the in vivo relevance of the PY-motif. Our findings suggest the presence of compensatory mechanisms, with additional, as yet unknown, factors likely required to reduce the “ubiquitylation reserve” of Nav1.5. Future identification of such modulatory factors may identify potential triggers for arrhythmias and sudden cardiac death in the setting of LQT3 mutations.
Collapse
Affiliation(s)
- Simona Casini
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
| | - Maxime Albesa
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Zizun Wang
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Vincent Portero
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
| | - Daniela Ross-Kaschitza
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Jean-Sébastien Rougier
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Gerard A Marchal
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
| | - Wendy K Chung
- Departments of Pediatrics & Medicine, Columbia University Medical Center, 1150 St Nicholas Avenue, New York, NY 10032, USA.
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
| | - Hugues Abriel
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Chen J, Sagum C, Bedford MT. Protein domain microarrays as a platform to decipher signaling pathways and the histone code. Methods 2019; 184:4-12. [PMID: 31449908 DOI: 10.1016/j.ymeth.2019.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023] Open
Abstract
Signal transduction is driven by protein interactions that are controlled by posttranslational modifications (PTM). Usually, protein domains are responsible for "reading" the PTM signal deposited on the interacting partners. Protein domain microarrays have been developed as a high throughput platform to facilitate the rapid identification of protein-protein interactions, and this approach has become broadly used in biomedical research. In this review, we will summarize the history, development and applications of this technique, including the use of protein domain microarrays in identifying both novel protein-protein interactions and small molecules that block these interactions. We will focus on the approaches we use in the Protein Array and Analysis Core - the PAAC - at MD Anderson Cancer Center. We will also address the technical limitations and discuss future directions.
Collapse
Affiliation(s)
- Jianji Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.
| |
Collapse
|
14
|
The Ambivalent Function of YAP in Apoptosis and Cancer. Int J Mol Sci 2018; 19:ijms19123770. [PMID: 30486435 PMCID: PMC6321280 DOI: 10.3390/ijms19123770] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Yes-associated protein, a core regulator of the Hippo-YAP signaling pathway, plays a vital role in inhibiting apoptosis. Thus, several studies and reviews suggest that yes-associated protein is a good target for treating cancer. Unfortunately, more and more evidence demonstrates that this protein is also an essential contributor of p73-mediated apoptosis. This questions the concept that yes-associated protein is always a good target for developing novel anti-cancer drugs. Thus, the aim of this review was to evaluate the clinical relevance of yes-associated protein for cancer pathophysiology. This review also summarized the molecules, processes and drugs, which regulate Hippo-YAP signaling and discusses their effect on apoptosis. In addition, issues are defined, which should be addressed in the future in order to provide a solid basis for targeting the Hippo-YAP signaling pathway in clinical trials.
Collapse
|
15
|
Lui GYL, Grandori C, Kemp CJ. CDK12: an emerging therapeutic target for cancer. J Clin Pathol 2018; 71:957-962. [PMID: 30104286 DOI: 10.1136/jclinpath-2018-205356] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Cyclin-dependent kinase 12 (CDK12) belongs to the cyclin-dependent kinase (CDK) family of serine/threonine protein kinases that regulate transcriptional and post-transcriptional processes, thereby modulating multiple cellular functions. Early studies characterised CDK12 as a transcriptional CDK that complexes with cyclin K to mediate gene transcription by phosphorylating RNA polymerase II. CDK12 has been demonstrated to specifically upregulate the expression of genes involved in response to DNA damage, stress and heat shock. More recent studies have implicated CDK12 in regulating mRNA splicing, 3' end processing, pre-replication complex assembly and genomic stability during embryonic development. Genomic alterations in CDK12 have been detected in oesophageal, stomach, breast, endometrial, uterine, ovarian, bladder, colorectal and pancreatic cancers, ranging from 5% to 15% of sequenced cases. An increasing number of studies point to CDK12 inhibition as an effective strategy to inhibit tumour growth, and synthetic lethal interactions have been described with MYC, EWS/FLI and PARP/CHK1 inhibition. Herein, we discuss the present literature on CDK12 in cell function and human cancer, highlighting important roles for CDK12 as a clinical biomarker for treatment response and potential as an effective therapeutic target.
Collapse
Affiliation(s)
- Goldie Y L Lui
- Fred Hutchinson Cancer Research Center, Human Biology Division, Seattle, Washington, USA
| | | | - Christopher J Kemp
- Fred Hutchinson Cancer Research Center, Human Biology Division, Seattle, Washington, USA
| |
Collapse
|
16
|
Aspenström P. BAR Domain Proteins Regulate Rho GTPase Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:33-53. [PMID: 30151649 DOI: 10.1007/5584_2018_259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Bin-Amphiphysin-Rvs (BAR) domain is a membrane lipid binding domain present in a wide variety of proteins, often proteins with a role in Rho-regulated signaling pathways. BAR domains do not only confer binding to lipid bilayers, they also possess a membrane sculpturing ability and thereby directly control the topology of biomembranes. BAR domain-containing proteins participate in a plethora of physiological processes but the common denominator is their capacity to link membrane dynamics to actin dynamics and thereby integrate processes such as endocytosis, exocytosis, vesicle trafficking, cell morphogenesis and cell migration. The Rho family of small GTPases constitutes an important bridging theme for many BAR domain-containing proteins. This review article will focus predominantly on the role of BAR proteins as regulators or effectors of Rho GTPases and it will only briefly discuss the structural and biophysical function of the BAR domains.
Collapse
Affiliation(s)
- Pontus Aspenström
- Department of Microbiology, and Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Bardwell AJ, Lagunes L, Zebarjedi R, Bardwell L. The WW domain of the scaffolding protein IQGAP1 is neither necessary nor sufficient for binding to the MAPKs ERK1 and ERK2. J Biol Chem 2017; 292:8750-8761. [PMID: 28396345 DOI: 10.1074/jbc.m116.767087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/07/2017] [Indexed: 01/09/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) scaffold proteins, such as IQ motif containing GTPase activating protein 1 (IQGAP1), are promising targets for novel therapies against cancer and other diseases. Such approaches require accurate information about which domains on the scaffold protein bind to the kinases in the MAPK cascade. Results from previous studies have suggested that the WW domain of IQGAP1 binds to the cancer-associated MAPKs ERK1 and ERK2, and that this domain might thus offer a new tool to selectively inhibit MAPK activation in cancer cells. The goal of this work was therefore to critically evaluate which IQGAP1 domains bind to ERK1/2. Here, using quantitative in vitro binding assays, we show that the IQ domain of IQGAP1 is both necessary and sufficient for binding to ERK1 and ERK2, as well as to the MAPK kinases MEK1 and MEK2. Furthermore, we show that the WW domain is not required for ERK-IQGAP1 binding, and contributes little or no binding energy to this interaction, challenging previous models of how WW-based peptides might inhibit tumorigenesis. Finally, we show that the ERK2-IQGAP1 interaction does not require ERK2 phosphorylation or catalytic activity and does not involve known docking recruitment sites on ERK2, and we obtain an estimate of the dissociation constant (Kd ) for this interaction of 8 μm These results prompt a re-evaluation of published findings and a refined model of IQGAP scaffolding.
Collapse
Affiliation(s)
- A Jane Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Leonila Lagunes
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Ronak Zebarjedi
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Lee Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| |
Collapse
|
18
|
Li L, Baxter SS, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci 2017; 130:1475-1485. [PMID: 28264927 DOI: 10.1242/jcs.198937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/27/2017] [Indexed: 01/09/2023] Open
Abstract
Surface expression of chemokine receptor CXCR4 is downregulated by missing-in-metastasis protein (MIM; also known as MTSS1), a member of the inverse BAR (I-BAR)-domain protein family that recognizes and generates membranes with negative curvature. Yet, the mechanism for the regulation is unknown. Here, we show that MIM forms a complex with CXCR4 by binding to E3 ubiquitin ligase AIP4 (also known as ITCH) in response to stromal cell-derived factor 1 (SDF-1; also known as CXCL12). Overexpression of MIM promoted CXCR4 ubiquitylation, inhibited cellular response to SDF-1, caused accumulation and aggregation of multivesicular bodies (MVBs) in the cytoplasm, and promoted CXCR4 sorting into MVBs in a manner depending on binding to AIP4. In response to SDF-1, MIM also bound transiently to the small GTPase Rab5 at 5 min and to Rab7 at 30 min. Binding to Rab7 requires an N-terminal coiled-coil motif, deletion of which abolished MIM-mediated MVB formation and CXCR4 internalization. Our results unveil a previously unknown property of MIM that establishes the linkage of protein ubiquitylation with Rab-guided trafficking of CXCR4 in endocytic vesicles.
Collapse
Affiliation(s)
- Lushen Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shaneen S Baxter
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ning Gu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xi Zhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA .,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
19
|
Claveria-Gimeno R, Abian O, Velazquez-Campoy A, Ausió J. MeCP2… Nature’s Wonder Protein or Medicine’s Most Feared One? CURRENT GENETIC MEDICINE REPORTS 2016. [DOI: 10.1007/s40142-016-0107-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Choi KS, Choi HJ, Lee JK, Im S, Zhang H, Jeong Y, Park JA, Lee IK, Kim YM, Kwon YG. The endothelial E3 ligase HECW2 promotes endothelial cell junctions by increasing AMOTL1 protein stability via K63-linked ubiquitination. Cell Signal 2016; 28:1642-51. [PMID: 27498087 DOI: 10.1016/j.cellsig.2016.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/26/2016] [Accepted: 07/30/2016] [Indexed: 01/07/2023]
Abstract
Cell-to-cell junctions are critical for the formation of endothelial barriers, and its disorganization is required for sprouting angiogenesis. Members of the angiomotin (AMOT) family have emerged as key regulators in the control of endothelial cell (EC) junction stability and permeability. However, the underlying mechanism by which the AMOT family is regulated in ECs remains unclear. Here we report that HECW2, a novel EC ubiquitin E3 ligase, plays a critical role in stabilizing endothelial cell-to-cell junctions by regulating AMOT-like 1 (AMOTL1) stability. HECW2 physically interacts with AMOTL1 and enhances its stability via lysine 63-linked ubiquitination. HECW2 depletion in human ECs decreases AMOTL1 stability, loosening the cell-to-cell junctions and altering subcellular localization of yes-associated protein (YAP) from cytoplasm into the nucleus. Knockdown of HECW2 also results in increased angiogenic sprouting, and this effect is blocked by depletion of ANG-2, a potential target of YAP. These results demonstrate that HECW2 is a novel regulator of angiogenesis and provide new insights into the mechanisms coordinating junction stability and angiogenic activation in ECs.
Collapse
Affiliation(s)
- Kyu-Sung Choi
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun-Jung Choi
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases (SIRIC), College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Jin-Kyu Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Suhjean Im
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Haiying Zhang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yoonjeong Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeong Ae Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu 700-721, Republic of Korea
| | - Young-Myeong Kim
- Vascular System Research Center, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
21
|
Tang R, Lei Y, Hu B, Yang J, Fang S, Wang Q, Li M, Guo L. WW domain binding protein 5 induces multidrug resistance of small cell lung cancer under the regulation of miR-335 through the Hippo pathway. Br J Cancer 2016; 115:243-51. [PMID: 27336605 PMCID: PMC4947702 DOI: 10.1038/bjc.2016.186] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Our previous study indicated that WW domain binding protein 5 (WBP5) expression was elevated significantly in a drug-resistant cell compared with its parental cell. Nevertheless, its functional role and underlying mechanisms remain unknown. METHODS In this study, WBP5 was examined in 62 small cell lung cancer (SCLC) patient samples by immunohistochemical technique. Stable WBP5-overexpressed and WBP5-underexpressed cells were further established to assess the role of WBP5 in drug resistance, apoptosis and tumour growth. We also conducted western blot to detect the expression of MST2 and YAP1 and their phosphorylated protein. RESULTS The results revealed that WBP5 expression was significantly associated with the shorter survival time in SCLC patients. Upregulation of WBP5 induced multidrug resistance (MDR) and decreased apoptosis, whereas downregulation of WBP5 enhanced drug sensitivity and increased apoptosis. We also found that miR-335 negatively regulated the MDR of WBP5 by targeting its 3'UTR. Furthermore, WBP5 can lower YAP1 phosphorylation at Serine 127 and induce nuclear accumulation of YAP1. Inhibition of YAP1 by Verteporfin could blunt the MDR phenotype of WBP5. CONCLUSIONS WW domain binding protein 5 can modulate MDR through the Hippo pathway under the regulation of miR-335. WW domain binding protein 5 may be a prognostic predictor and a potential target for interfering with MDR in SCLC.
Collapse
Affiliation(s)
- Ruixiang Tang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingying Lei
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Oncology, Panyu Maternal and Child Care Service Centre of Guangzhou & Hexian Memorial affiliated hospital of Southern Medical University, Guangzhou, China
| | - Bingshuang Hu
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Yang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shun Fang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiongyao Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Man Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Vélez P, Schwartz AB, Iyer SR, Warrington A, Fadool DA. Ubiquitin ligase Nedd4-2 modulates Kv1.3 current amplitude and ion channel protein targeting. J Neurophysiol 2016; 116:671-85. [PMID: 27146988 DOI: 10.1152/jn.00874.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 05/04/2016] [Indexed: 11/22/2022] Open
Abstract
Voltage-dependent potassium channels (Kv) go beyond the stabilization of the resting potential and regulate biochemical pathways, regulate intracellular signaling, and detect energy homeostasis. Because targeted deletion and pharmacological block of the Kv1.3 channel protein produce marked changes in metabolism, resistance to diet-induced obesity, and changes in olfactory structure and function, this investigation explored Nedd4-2-mediated ubiquitination and degradation to regulate Kv1.3 channel density. Heterologous coexpression of Nedd4-2 ligase and Kv1.3 in HEK 293 cells reduced Kv1.3 current density without modulation of kinetic properties as measured by patch-clamp electrophysiology. Modulation of current density was dependent on ligase activity and was lost through point mutation of cysteine 938 in the catalytic site of the ligase (Nedd4-2CS). Incorporation of adaptor protein Grb10 relieved Nedd4-2-induced current suppression as did application of the proteasome inhibitor Mg-132. SDS-PAGE and immunoprecipitation strategies demonstrated a channel/adaptor/ligase signalplex. Pixel immunodensity was reduced for Kv1.3 in the presence of Nedd4-2, which was eliminated upon additional incorporation of Grb10. We confirmed Nedd4-2/Grb10 coimmunoprecipitation and observed an increased immunodensity for Nedd4-2 in the presence of Kv1.3 plus Grb10, regardless of whether the catalytic site was active. Kv1.3/Nedd4-2 were reciprocally coimmunoprecipated, whereby mutation of the COOH-terminal, SH3-recognition (493-498), or ubiquitination sites on Kv1.3 (lysines 467, 476, 498) retained coimmunoprecipitation, while the latter prevented the reduction in channel density. A model is presented for which an atypical interaction outside the canonical PY motif may permit channel/ligase interaction to lead to protein degradation and reduced current density, which can involve Nedd4-2/Grb10 interactions to disrupt Kv1.3 loss of current density.
Collapse
Affiliation(s)
- Patricio Vélez
- Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Austin B Schwartz
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida; and
| | - Subashini R Iyer
- Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Anthony Warrington
- Department of Biological Sciences, Florida State University, Tallahassee, Florida
| | - Debra Ann Fadool
- Program in Neuroscience, Florida State University, Tallahassee, Florida; Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida; and Department of Biological Sciences, Florida State University, Tallahassee, Florida
| |
Collapse
|
23
|
O'Connor HF, Lyon N, Leung JW, Agarwal P, Swaim CD, Miller KM, Huibregtse JM. Ubiquitin-Activated Interaction Traps (UBAITs) identify E3 ligase binding partners. EMBO Rep 2015; 16:1699-712. [PMID: 26508657 DOI: 10.15252/embr.201540620] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/28/2015] [Indexed: 12/27/2022] Open
Abstract
We describe a new class of reagents for identifying substrates, adaptors, and regulators of HECT and RING E3s. UBAITs (Ubiquitin-Activated Interaction Traps) are E3-ubiquitin fusion proteins and, in an E1- and E2-dependent manner, the C-terminal ubiquitin moiety forms an amide linkage to proteins that interact with the E3, enabling covalent co-purification of the E3 with partner proteins. We designed UBAITs for both HECT (Rsp5, Itch) and RING (Psh1, RNF126, RNF168) E3s. For HECT E3s, trapping of interacting proteins occurred in vitro either through an E3 thioester-linked lariat intermediate or through an E2 thioester intermediate, and both WT and active-site mutant UBAITs trapped known interacting proteins in yeast and human cells. Yeast Psh1 and human RNF126 and RNF168 UBAITs also trapped known interacting proteins when expressed in cells. Human RNF168 is a key mediator of ubiquitin signaling that promotes DNA double-strand break repair. Using the RNF168 UBAIT, we identify H2AZ--a histone protein involved in DNA repair--as a new target of this E3 ligase. These results demonstrate that UBAITs represent powerful tools for profiling a wide range of ubiquitin ligases.
Collapse
Affiliation(s)
- Hazel F O'Connor
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Nancy Lyon
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Justin W Leung
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Poonam Agarwal
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Caleb D Swaim
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Kyle M Miller
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Jon M Huibregtse
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
24
|
Becerra S, Andrés-León E, Prieto-Sánchez S, Hernández-Munain C, Suñé C. Prp40 and early events in splice site definition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:17-32. [PMID: 26494226 DOI: 10.1002/wrna.1312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
The alternative splicing (AS) of precursor messenger RNA (pre-mRNA) is a tightly regulated process through which introns are removed to leave the resulting exons in the mRNA appropriately aligned and ligated. The AS of pre-mRNA is a key mechanism for increasing the complexity of proteins encoded in the genome. In humans, more than 90% of genes undergo AS, underscoring the importance of this process in RNA biogenesis. As such, AS misregulation underlies multiple human diseases. The splicing reaction is catalyzed by the spliceosome, a highly dynamic complex that assembles at or near the intron/exon boundaries and undergoes sequential conformational and compositional changes during splicing. The initial recognition of splice sites defines the exons that are going to be removed, which is a critical step in the highly regulated splicing process. Although the available lines of evidence are increasing, the molecular mechanisms governing AS, including the initial interactions occurring at intron/exon boundaries, and the factors that modulate these critical connections by functioning as a scaffold for active-site RNAs or proteins, remain poorly understood. In this review, we summarize the major hallmarks of the initial steps in the splicing process and the role of auxiliary factors that contribute to the assembly of the spliceosomal complex. We also discuss the role of the essential yeast Prp40 protein and its mammalian homologs in the specificity of this pre-mRNA processing event. In addition, we provide the first exhaustive phylogenetic analysis of the molecular evolution of Prp40 family members. WIREs RNA 2016, 7:17-32. doi: 10.1002/wrna.1312 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Soraya Becerra
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada 18016, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada 18016, Spain
| | - Silvia Prieto-Sánchez
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada 18016, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada 18016, Spain
| | - Carlos Suñé
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada 18016, Spain
| |
Collapse
|
25
|
Crisci A, Raleff F, Bagdiul I, Raabe M, Urlaub H, Rain JC, Krämer A. Mammalian splicing factor SF1 interacts with SURP domains of U2 snRNP-associated proteins. Nucleic Acids Res 2015; 43:10456-73. [PMID: 26420826 PMCID: PMC4666396 DOI: 10.1093/nar/gkv952] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/10/2015] [Indexed: 02/03/2023] Open
Abstract
Splicing factor 1 (SF1) recognizes the branch point sequence (BPS) at the 3′ splice site during the formation of early complex E, thereby pre-bulging the BPS adenosine, thought to facilitate subsequent base-pairing of the U2 snRNA with the BPS. The 65-kDa subunit of U2 snRNP auxiliary factor (U2AF65) interacts with SF1 and was shown to recruit the U2 snRNP to the spliceosome. Co-immunoprecipitation experiments of SF1-interacting proteins from HeLa cell extracts shown here are consistent with the presence of SF1 in early splicing complexes. Surprisingly almost all U2 snRNP proteins were found associated with SF1. Yeast two-hybrid screens identified two SURP domain-containing U2 snRNP proteins as partners of SF1. A short, evolutionarily conserved region of SF1 interacts with the SURP domains, stressing their role in protein–protein interactions. A reduction of A complex formation in SF1-depleted extracts could be rescued with recombinant SF1 containing the SURP-interaction domain, but only partial rescue was observed with SF1 lacking this sequence. Thus, SF1 can initially recruit the U2 snRNP to the spliceosome during E complex formation, whereas U2AF65 may stabilize the association of the U2 snRNP with the spliceosome at later times. In addition, these findings may have implications for alternative splicing decisions.
Collapse
Affiliation(s)
- Angela Crisci
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Flore Raleff
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Ivona Bagdiul
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Monika Raabe
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | | | - Angela Krämer
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
26
|
Abstract
BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.
Collapse
Affiliation(s)
- Pontus Aspenström
- a Department of Microbiology and Tumor and Cell Biology; Karolinska Institutet ; Stockholm , Sweden
| |
Collapse
|
27
|
HECT E3 Ubiquitin Ligase Itch Functions as a Novel Negative Regulator of Gli-Similar 3 (Glis3) Transcriptional Activity. PLoS One 2015; 10:e0131303. [PMID: 26147758 PMCID: PMC4493090 DOI: 10.1371/journal.pone.0131303] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 06/01/2015] [Indexed: 12/30/2022] Open
Abstract
The transcription factor Gli-similar 3 (Glis3) plays a critical role in the generation of pancreatic ß cells and the regulation insulin gene transcription and has been implicated in the development of several pathologies, including type 1 and 2 diabetes and polycystic kidney disease. However, little is known about the proteins and posttranslational modifications that regulate or mediate Glis3 transcriptional activity. In this study, we identify by mass-spectrometry and yeast 2-hybrid analyses several proteins that interact with the N-terminal region of Glis3. These include the WW-domain-containing HECT E3 ubiquitin ligases, Itch, Smurf2, and Nedd4. The interaction between Glis3 and the HECT E3 ubiquitin ligases was verified by co-immunoprecipitation assays and mutation analysis. All three proteins interact through their WW-domains with a PPxY motif located in the Glis3 N-terminus. However, only Itch significantly contributed to Glis3 polyubiquitination and reduced Glis3 stability by enhancing its proteasomal degradation. Itch-mediated degradation of Glis3 required the PPxY motif-dependent interaction between Glis3 and the WW-domains of Itch as well as the presence of the Glis3 zinc finger domains. Transcription analyses demonstrated that Itch dramatically inhibited Glis3-mediated transactivation and endogenous Ins2 expression by increasing Glis3 protein turnover. Taken together, our study identifies Itch as a critical negative regulator of Glis3-mediated transcriptional activity. This regulation provides a novel mechanism to modulate Glis3-driven gene expression and suggests that it may play a role in a number of physiological processes controlled by Glis3, such as insulin transcription, as well as in Glis3-associated diseases.
Collapse
|
28
|
Jiang J, Wang N, Jiang Y, Tan H, Zheng J, Chen G, Jia Z. Characterization of substrate binding of the WW domains in human WWP2 protein. FEBS Lett 2015; 589:1935-42. [PMID: 25999310 DOI: 10.1016/j.febslet.2015.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/26/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
WW domains harbor substrates containing proline-rich motifs, but the substrate specificity and binding mechanism remain elusive for those WW domains less amenable for structural studies, such as human WWP2 (hWWP2). Herein we have employed multiple techniques to investigate the second WW domain (WW2) in hWWP2. Our results show that hWWP2 is a specialized E3 for PPxY motif-containing substrates only and does not recognize other amino acids and phospho-residues. The strongest binding affinity of WW2, and the incompatibility between each WW domain, imply a novel relationship, and our SPR experiment reveals a dynamic binding mode in Class-I WW domains for the first time. The results from alanine-scanning mutagenesis and modeling further point to functionally conserved residues in WW2.
Collapse
Affiliation(s)
- Jiahong Jiang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Nan Wang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Yafei Jiang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Hongwei Tan
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing, China.
| | - Guangju Chen
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zongchao Jia
- Department of Biochemical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
29
|
Puca L, Brou C. Α-arrestins - new players in Notch and GPCR signaling pathways in mammals. J Cell Sci 2015; 127:1359-67. [PMID: 24687185 DOI: 10.1242/jcs.142539] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For many years, β-arrestins have been known to be involved in G-protein-coupled receptor (GPCR) desensitization. However, β-arrestins belong to a family of proteins that act as multifunctional scaffolding proteins, in particular during trafficking of transmembrane receptors. The arrestin family comprises visual arrestins, β-arrestins and α-arrestins. In mammals, the functions of the α-arrestins are beginning to be elucidated, and they are described as versatile adaptors that link GPCRs or the Notch receptor to E3 ubiquitin ligases and endocytic factors. These α-arrestins can act in sequence, complementarily or cooperatively with β-arrestins in trafficking and ubiquitylation events. This Commentary will summarize the recent advances in our understanding of the functions and properties of these α-arrestin proteins in comparison to β-arrestins, and will highlight a new hypothesis linking their functional complementarity to their physical interactions. α- and β-arrestins could form transient and versatile heterodimers that form a bridge between cargo and E3 ubiquitin ligases, thus allowing trafficking to proceed.
Collapse
Affiliation(s)
- Loredana Puca
- Institut Pasteur and CNRS URA 2582, Signalisation Moléculaire et Activation Cellulaire, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
30
|
Kralovicova J, Knut M, Cross NCP, Vorechovsky I. Identification of U2AF(35)-dependent exons by RNA-Seq reveals a link between 3' splice-site organization and activity of U2AF-related proteins. Nucleic Acids Res 2015; 43:3747-63. [PMID: 25779042 PMCID: PMC4402522 DOI: 10.1093/nar/gkv194] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/24/2015] [Indexed: 01/05/2023] Open
Abstract
The auxiliary factor of U2 small nuclear RNA (U2AF) is a heterodimer consisting of 65- and 35-kD proteins that bind the polypyrimidine tract (PPT) and AG dinucleotides at the 3′ splice site (3′ss). The gene encoding U2AF35 (U2AF1) is alternatively spliced, giving rise to two isoforms U2AF35a and U2AF35b. Here, we knocked down U2AF35 and each isoform and characterized transcriptomes of HEK293 cells with varying U2AF35/U2AF65 and U2AF35a/b ratios. Depletion of both isoforms preferentially modified alternative RNA processing events without widespread failure to recognize 3′ss or constitutive exons. Over a third of differentially used exons were terminal, resulting largely from the use of known alternative polyadenylation (APA) sites. Intronic APA sites activated in depleted cultures were mostly proximal whereas tandem 3′UTR APA was biased toward distal sites. Exons upregulated in depleted cells were preceded by longer AG exclusion zones and PPTs than downregulated or control exons and were largely activated by PUF60 and repressed by CAPERα. The U2AF(35) repression and activation was associated with a significant interchange in the average probabilities to form single-stranded RNA in the optimal PPT and branch site locations and sequences further upstream. Although most differentially used exons were responsive to both U2AF subunits and their inclusion correlated with U2AF levels, a small number of transcripts exhibited distinct responses to U2AF35a and U2AF35b, supporting the existence of isoform-specific interactions. These results provide new insights into function of U2AF and U2AF35 in alternative RNA processing.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Marcin Knut
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Nicholas C P Cross
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
31
|
Jali SS, Rosloski SM, Janakirama P, Steffen JG, Zhurov V, Berleth T, Clark RM, Grbic V. A plant-specific HUA2-LIKE (HULK) gene family in Arabidopsis thaliana is essential for development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:242-54. [PMID: 25070081 PMCID: PMC4283595 DOI: 10.1111/tpj.12629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 05/23/2023]
Abstract
In Arabidopsis thaliana, the HUA2 gene is required for proper expression of FLOWERING LOCUS C (FLC) and AGAMOUS, key regulators of flowering time and reproductive development, respectively. Although HUA2 is broadly expressed, plants lacking HUA2 function have only moderately reduced plant stature, leaf initiation rate and flowering time. To better understand HUA2 activity, and to test whether redundancy with similar genes underlies the absence of strong phenotypes in HUA2 mutant plants, we identified and subsequently characterized three additional HUA2-LIKE (HULK) genes in Arabidopsis. These genes form two clades (HUA2/HULK1 and HULK2/HULK3), with members broadly conserved in both vascular and non-vascular plants, but not present outside the plant kingdom. Plants with progressively reduced HULK activity had increasingly severe developmental defects, and plants homozygous for loss-of-function mutations in all four HULK genes were not recovered. Multiple mutants displayed reproductive, embryonic and post-embryonic abnormalities, and provide detailed insights into the overlapping and unique functions of individual HULK genes. With regard to flowering time, opposing influences were apparent: hua2 hulk1 plants were early-flowering, while hulk2 hulk3 mutants were late-flowering, and hua2 acted epistatically to cause early flowering in all combinations. Genome-wide expression profiling of mutant combinations using RNA-Seq revealed complex transcriptional changes in seedlings, with FLC, a known target of HUA2, among the most affected. Our studies, which include characterization of HULK expression patterns and subcellular localization, suggest that the HULK genes encode conserved nuclear factors with partially redundant but essential functions associated with diverse genetic pathways in plants.
Collapse
Affiliation(s)
- Sathya S Jali
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| | - Sarah M Rosloski
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| | | | - Joshua G Steffen
- Department of Biology, University of UtahSalt Lake City, UT, 84112, USA
- Center for Cell and Genome Science, University of UtahSalt Lake City, UT, 84112, USA
| | - Vladimir Zhurov
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| | - Thomas Berleth
- Department of Cell and Systems Biology, University of TorontoToronto, ON, M5S 3B2, Canada
| | - Richard M Clark
- Department of Biology, University of UtahSalt Lake City, UT, 84112, USA
- Center for Cell and Genome Science, University of UtahSalt Lake City, UT, 84112, USA
| | - Vojislava Grbic
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| |
Collapse
|
32
|
Przybycien-Szymanska MM, Rao YS, Prins SA, Pak TR. Parental binge alcohol abuse alters F1 generation hypothalamic gene expression in the absence of direct fetal alcohol exposure. PLoS One 2014; 9:e89320. [PMID: 24586686 PMCID: PMC3930730 DOI: 10.1371/journal.pone.0089320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/17/2014] [Indexed: 11/26/2022] Open
Abstract
Adolescent binge alcohol exposure has long-lasting effects on the expression of hypothalamic genes that regulate the stress response, even in the absence of subsequent adult alcohol exposure. This suggests that alcohol can induce permanent gene expression changes, potentially through epigenetic modifications to specific genes. Epigenetic modifications can be transmitted to future generations therefore, and in these studies we investigated the effects of adolescent binge alcohol exposure on hypothalamic gene expression patterns in the F1 generation offspring. It has been well documented that maternal alcohol exposure during fetal development can have devastating neurological consequences. However, less is known about the consequences of maternal and/or paternal alcohol exposure outside of the gestational time frame. Here, we exposed adolescent male and female rats to a repeated binge EtOH exposure paradigm and then mated them in adulthood. Hypothalamic samples were taken from the offspring of these animals at postnatal day (PND) 7 and subjected to a genome-wide microarray analysis followed by qRT-PCR for selected genes. Importantly, the parents were not intoxicated at the time of mating and were not exposed to EtOH at any time during gestation therefore the offspring were never directly exposed to EtOH. Our results showed that the offspring of alcohol-exposed parents had significant differences compared to offspring from alcohol-naïve parents. Specifically, major differences were observed in the expression of genes that mediate neurogenesis and synaptic plasticity during neurodevelopment, genes important for directing chromatin remodeling, posttranslational modifications or transcription regulation, as well as genes involved in regulation of obesity and reproductive function. These data demonstrate that repeated binge alcohol exposure during pubertal development can potentially have detrimental effects on future offspring even in the absence of direct fetal alcohol exposure.
Collapse
Affiliation(s)
- Magdalena M. Przybycien-Szymanska
- Loyola University Chicago Health Science Division, Department of Cell and Molecular Physiology, Maywood, Illinois, United States of America
| | - Yathindar S. Rao
- Loyola University Chicago Health Science Division, Department of Cell and Molecular Physiology, Maywood, Illinois, United States of America
| | - Sarah A. Prins
- Loyola University Chicago Health Science Division, Department of Cell and Molecular Physiology, Maywood, Illinois, United States of America
| | - Toni R. Pak
- Loyola University Chicago Health Science Division, Department of Cell and Molecular Physiology, Maywood, Illinois, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
Ion channel proteins are regulated by different types of posttranslational modifications. The focus of this review is the regulation of voltage-gated sodium channels (Navs) upon their ubiquitylation. The amiloride-sensitive epithelial sodium channel (ENaC) was the first ion channel shown to be regulated upon ubiquitylation. This modification results from the binding of ubiquitin ligase from the Nedd4 family to a protein-protein interaction domain, known as the PY motif, in the ENaC subunits. Many of the Navs have similar PY motifs, which have been demonstrated to be targets of Nedd4-dependent ubiquitylation, tagging them for internalization from the cell surface. The role of Nedd4-dependent regulation of the Nav membrane density in physiology and disease remains poorly understood. Two recent studies have provided evidence that Nedd4-2 is downregulated in dorsal root ganglion (DRG) neurons in both rat and mouse models of nerve injury-induced neuropathic pain. Using two different mouse models, one with a specific knockout of Nedd4-2 in sensory neurons and another where Nedd4-2 was overexpressed with the use of viral vectors, it was demonstrated that the neuropathy-linked neuronal hyperexcitability was the result of Nav1.7 and Nav1.8 overexpression due to Nedd4-2 downregulation. These studies provided the first in vivo evidence of the role of Nedd4-2-dependent regulation of Nav channels in a disease state. This ubiquitylation pathway may be involved in the development of symptoms and diseases linked to Nav-dependent hyperexcitability, such as pain, cardiac arrhythmias, epilepsy, migraine, and myotonias.
Collapse
Affiliation(s)
- Cédric J Laedermann
- Department of Clinical Research, University of Bern, Murtenstrasse, 35, 3010, Bern, Switzerland,
| | | | | |
Collapse
|
34
|
The E3 ubiquitin ligase Itch regulates tumor suppressor protein RASSF5/NORE1 stability in an acetylation-dependent manner. Cell Death Dis 2013; 4:e565. [PMID: 23538446 PMCID: PMC3615736 DOI: 10.1038/cddis.2013.91] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ras association (RalGDS/AF-6) domain family member RASSF5 is a non-enzymatic RAS effector super family protein, known to be involved in cell growth regulation. Expression of RASSF5 is found to be extinguished by promoter hypermethylation in different human cancers, and its ectopic expression suppresses cell proliferation and tumorigenicity. Interestingly, this role in tumorigenesis has been confounded by the fact that regulation at molecular level remains unclear and many transformed cells actually display elevated RASSF5 expression. Here, we demonstrate that E3 ubiquitin ligase Itch is a unique binding partner of RASSF5. Itch can interact with PPxY motif in RASSF5 both in vivo and in vitro through its WW domains. Importantly, the overexpression of Itch induces RASSF5 degradation by poly-ubiquitination via 26S proteasome pathway. In addition, our results indicate that the elevated levels of RASSF5 found in tumor cells due to acetylation, which restricts its binding to Itch and results in a more stable inert protein. Inhibition of RASSF5 acetylation permits its interaction with Itch and provokes proteasomal degradation. These data suggest that apart from promoter methylation, hyperacetylation could also be downregulating RASSF5 function in different human cancer. Finally, results from functional assays suggest that the overexpression of wild type, not the ligase activity defective Itch negatively regulate RASSF5-mediated G1 phase transition of cell cycle as well as apoptosis, suggesting that Itch alone is sufficient to alter RASSF5 function. Collectively, the present investigation identifies a HECT class E3 ubiquitin ligase Itch as a unique negative regulator of RASSF5, and suggests the possibility that acetylation as a potential therapeutic target for human cancer.
Collapse
|
35
|
Lee KM, Tarn WY. Coupling pre-mRNA processing to transcription on the RNA factory assembly line. RNA Biol 2013; 10:380-90. [PMID: 23392244 DOI: 10.4161/rna.23697] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression.
Collapse
Affiliation(s)
- Kuo-Ming Lee
- Institute of Biomedical Sciences; Academia Sinica; Taipei, Taiwan
| | | |
Collapse
|
36
|
Abstract
Interactions between short peptides within proteins and peptide-binding domains can trigger many important cell signaling processes, and their interactions are typically of modest affinity. A study showed that this modest affinity appears to be favored by evolution. They used phage display selection to discover "superbinder" Src Homology 2 (SH2) domains, which bound peptides with much stronger affinity than naturally occurring SH2 domains. These superbinder domains had strong biological effects, such as blocking cell signaling. Although the superbinders had higher affinity, this did not appear to reduce their specificity. In contrast, SH2-binding peptides from bacterial pathogens have evolved to exhibit promiscuity of binding to multiple SH2 domains, carried within effector proteins that subvert signaling upon entry into the mammalian cell. Because there are many potential peptide binders of the SH2 domain found in numerous human proteins, modest affinity not only may optimize transient signaling mediated by reversible interactions but also may minimize off-target deleterious binding effects. The stage is set for a more thorough evaluation of the specificity and off-target impact of both naturally occurring and artificial domains and peptides. This may help define both targets and reagents for therapeutic intervention in key signaling processes mediated by short peptides.
Collapse
Affiliation(s)
- Niall J Haslam
- UCD Complex and Adaptive Systems Laboratory, UCD School of Medicine and Medical Sciences, and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
37
|
Hite KC, Kalashnikova AA, Hansen JC. Coil-to-helix transitions in intrinsically disordered methyl CpG binding protein 2 and its isolated domains. Protein Sci 2012; 21:531-8. [PMID: 22294343 DOI: 10.1002/pro.2037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/25/2011] [Accepted: 12/27/2011] [Indexed: 11/08/2022]
Abstract
Methyl CpG binding protein 2 (MeCP2) is a canonical intrinsically disordered protein (IDP), that is, it lacks stable secondary structure throughout its entire polypeptide chain. Because IDPs often have the propensity to become locally ordered, we tested whether full-length MeCP2 and its constituent domains would gain secondary structure in 2,2,2-trifluoroethanol (TFE), a cosolvent that stabilizes intramolecular hydrogen bonding in proteins. The α-helix, β-strand/turn, and unstructured content were determined as a function of TFE concentration by deconvolution of circular dichroism data. Results indicate that approximately two-thirds of the unstructured residues present in full-length MeCP2 were converted to α-helix in 70% TFE without a change in β-strand/turn. Thus, much of the MeCP2 polypeptide chain undergoes coil-to-helix transitions under conditions that favor intrachain hydrogen bond formation. The unstructured residues of the N-terminal (NTD) and C-terminal (CTD) domains were partially converted to α-helix in 70% TFE. In contrast, the central transcription regulation domain (TRD) became almost completely α-helical in 70% TFE. Unlike the NTD, CTD, and TRD, the unstructured content of the methyl DNA binding domain and the intervening domain did not change with increasing TFE concentration. These results indicate that the coil-to-helix transitions that occur in full-length MeCP2 are localized to the NTD, CTD, and TRD, with the TRD showing the greatest tendency for helix formation. The potential relationships between intrinsic disorder, coil-to-helix transitions, and MeCP2 structure and function are discussed.
Collapse
Affiliation(s)
- Kristopher C Hite
- Department of Biochemistry and Molecular Biology, Campus Delivery 1870, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | |
Collapse
|
38
|
Makarov EM, Owen N, Bottrill A, Makarova OV. Functional mammalian spliceosomal complex E contains SMN complex proteins in addition to U1 and U2 snRNPs. Nucleic Acids Res 2011; 40:2639-52. [PMID: 22110043 PMCID: PMC3315330 DOI: 10.1093/nar/gkr1056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spliceosomes remove introns from primary gene transcripts. They assemble de novo on each intron through a series of steps that involve the incorporation of five snRNP particles and multiple non-snRNP proteins. In mammals, all the intermediate complexes have been characterized on one transcript (MINX), with the exception of the very first, complex E. We have purified this complex by two independent procedures using antibodies to either U1-A or PRPF40A proteins, which are known to associate at an early stage of assembly. We demonstrate that the purified complexes are functional in splicing using commitment assays. These complexes contain components expected to be in the E complex and a number of previously unrecognized factors, including survival of motor neurons (SMN) and proteins of the SMN-associated complex. Depletion of the SMN complex proteins from nuclear extracts inhibits formation of the E complex and causes non-productive complexes to accumulate. This suggests that the SMN complex stabilizes the association of U1 and U2 snRNPs with pre-mRNA. In addition, the antibody to PRPF40A precipitated U2 snRNPs from nuclear extracts, indicating that PRPF40A associates with U2 snRNPs.
Collapse
Affiliation(s)
- Evgeny M Makarov
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | |
Collapse
|
39
|
Stewart AL, Park JH, Waters ML. Redesign of a WW domain peptide for selective recognition of single-stranded DNA. Biochemistry 2011; 50:2575-84. [PMID: 21332166 DOI: 10.1021/bi101116a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A β-sheet miniprotein based on the FBP11 WW1 domain sequence has been redesigned for the molecular recognition of ssDNA. A previous report showed that a β-hairpin peptide dimer, (WKWK)(2), binds ssDNA with low micromolar affinity but with little selectivity over duplex DNA. This report extends those studies to a three-stranded β-sheet miniprotein designed to mimic the OB-fold. The new peptide binds ssDNA with low micromolar affinity and shows about 10-fold selectivity for ssDNA over duplex DNA. The redesigned peptide no longer binds its native ligand, the polyproline helix, confirming that the peptide has been redesigned for the function of binding ssDNA. Structural studies provide evidence that this peptide consists of a well-structured β-hairpin made of strands 2 and 3 with a less structured first strand that provides affinity for ssDNA but does not improve the stability of the full peptide. These studies provide insight into protein-DNA interactions as well as a novel example of protein redesign.
Collapse
Affiliation(s)
- Amanda L Stewart
- Department of Chemistry, CB 3290, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | | | | |
Collapse
|
40
|
Woolard J, Vousden W, Moss SJ, Krishnakumar A, Gammons MVR, Nowak DG, Dixon N, Micklefield J, Spannhoff A, Bedford MT, Gregory MA, Martin CJ, Leadlay PF, Zhang MQ, Harper SJ, Bates DO, Wilkinson B. Borrelidin modulates the alternative splicing of VEGF in favour of anti-angiogenic isoforms. Chem Sci 2011; 2011:273-278. [PMID: 22822423 PMCID: PMC3399765 DOI: 10.1039/c0sc00297f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The polyketide natural product borrelidin 1 is a potent inhibitor of angiogenesis and spontaneous metastasis. Affinity biopanning of a phage display library of colon tumor cell cDNAs identified the tandem WW domains of spliceosome-associated protein formin binding protein 21 (FBP21) as a novel molecular target of borrelidin, suggesting that borrelidin may act as a modulator of alternative splicing. In support of this idea, 1, and its more selective analog 2, bound to purified recombinant WW domains of FBP21. They also altered the ratio of vascular endothelial growth factor (VEGF) isoforms in retinal pigmented endothelial (RPE) cells in favour of anti-angiogenic isoforms. Transfection of RPE cells with FBP21 altered the ratio in favour of pro-angiogenic VEGF isoforms, an effect inhibited by 2. These data implicate FBP21 in the regulation of alternative splicing and suggest the potential of borrelidin analogs as tools to deconvolute key steps of spliceosome function.
Collapse
Affiliation(s)
- Jeanette Woolard
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street Bristol, BS2 8EJ, UK. Fax: +44 (0)117 9288151; Tel: +44 (0)117 9289818;
| | - William Vousden
- Biotica, Chesterford Research Park, Cambridge, CB10 1XL, UK. Fax: +44 (0)1799 532921; Tel: +44 (0)1799 532925;
| | - Steven J. Moss
- Biotica, Chesterford Research Park, Cambridge, CB10 1XL, UK. Fax: +44 (0)1799 532921; Tel: +44 (0)1799 532925;
| | - Arjun Krishnakumar
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street Bristol, BS2 8EJ, UK. Fax: +44 (0)117 9288151; Tel: +44 (0)117 9289818;
| | - Melissa VR Gammons
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street Bristol, BS2 8EJ, UK. Fax: +44 (0)117 9288151; Tel: +44 (0)117 9289818;
| | - David G Nowak
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street Bristol, BS2 8EJ, UK. Fax: +44 (0)117 9288151; Tel: +44 (0)117 9289818;
| | - Neil Dixon
- School of Chemistry and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jason Micklefield
- School of Chemistry and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Astrid Spannhoff
- The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Mark T. Bedford
- The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Matthew A. Gregory
- Biotica, Chesterford Research Park, Cambridge, CB10 1XL, UK. Fax: +44 (0)1799 532921; Tel: +44 (0)1799 532925;
| | - Christine J. Martin
- Biotica, Chesterford Research Park, Cambridge, CB10 1XL, UK. Fax: +44 (0)1799 532921; Tel: +44 (0)1799 532925;
| | - Peter F. Leadlay
- Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA, UK
| | - Ming Q. Zhang
- Biotica, Chesterford Research Park, Cambridge, CB10 1XL, UK. Fax: +44 (0)1799 532921; Tel: +44 (0)1799 532925;
| | - Steven J. Harper
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street Bristol, BS2 8EJ, UK. Fax: +44 (0)117 9288151; Tel: +44 (0)117 9289818;
| | - David O. Bates
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street Bristol, BS2 8EJ, UK. Fax: +44 (0)117 9288151; Tel: +44 (0)117 9289818;
| | - Barrie Wilkinson
- Biotica, Chesterford Research Park, Cambridge, CB10 1XL, UK. Fax: +44 (0)1799 532921; Tel: +44 (0)1799 532925;
| |
Collapse
|
41
|
Matsunami M, Yoshioka T, Minoura T, Okano Y, Muto Y. Evolutionary features and intracellular behavior of the PRTB protein. Biochem Genet 2011; 49:458-73. [PMID: 21274613 DOI: 10.1007/s10528-011-9422-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 09/21/2010] [Indexed: 11/28/2022]
Abstract
Human PRTB encodes a proline-rich protein of 168 amino acids (PRTB). We analyzed the evolutionary patterns of PRTB from various vertebrate species. Maximum likelihood analyses indicated that while mammalian PRTB has been very well conserved and underwent a significantly slower rate of evolution, only the branch leading to fish PRTB has undergone adaptive evolution. We generated several mutant PRTBs fused to the GFP variant, Venus, and found that the degradation of PRTB was enhanced by the transfection of an E2, UbcH5. Since mutation of the K153 site in PRTB was refractory to its degradation, proteolysis was suggested to be mediated by ubiquitination of K153. The subcellular localization of PRTB was also investigated, which showed that mutation of the K4 site completely prevented the nuclear localization of this protein. Together, these results suggest that Lys residues might play important roles in regulating the intracellular dynamics of the PRTB protein.
Collapse
Affiliation(s)
- Miki Matsunami
- Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, Yanagido, Gifu, Japan
| | | | | | | | | |
Collapse
|
42
|
Salah Z, Aqeilan R, Huebner K. WWOX gene and gene product: tumor suppression through specific protein interactions. Future Oncol 2010; 6:249-59. [PMID: 20146584 DOI: 10.2217/fon.09.152] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The WWOX gene, an archetypal fragile gene, encompasses a chromosomal fragile site at 16q23.2, and encodes the approximately 46-kDa Wwox protein, with WW domains that interact with a growing list of interesting proteins. If the function of a protein is defined by the company it keeps, then Wwox is involved in numerous important signal pathways for bone and germ-cell development, cellular and animal growth and death, transcriptional control and suppression of cancer development. Because alterations to genes at fragile sites are exquisitely sensitive to replication stress-induced DNA damage, there has been an ongoing scientific discussion questioning whether such gene expression alterations provide a selective advantage for clonal expansion of neoplastic cells, and a parallel discussion on why important genes would be present at sites that are susceptible to inactivation. We offer some answers through a description of known WWOX functions.
Collapse
Affiliation(s)
- Zaidoun Salah
- The Lautenberg Center for Immunology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Pharmacy Building, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
43
|
Jeong H, Bae S, An SY, Byun MR, Hwang JH, Yaffe MB, Hong JH, Hwang ES. TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. FASEB J 2010; 24:3310-20. [PMID: 20466877 DOI: 10.1096/fj.09-151324] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myoblast differentiation is indispensable for skeletal muscle formation and is governed by the precisely coordinated regulation of a series of transcription factors, including MyoD and myogenin, and transcriptional coregulators. TAZ (transcriptional coactivator with PDZ-binding motif) has been characterized as a modulator of mesenchymal stem cell differentiation into osteoblasts and adipocytes through its regulation of lineage-specific master transcription factors. In this study, we investigated whether TAZ affects myoblast differentiation, which is one of the differentiated lineages of mesenchymal stem cells. Ectopic overexpression of TAZ in myoblasts increases myogenic gene expression in a MyoD-dependent manner and hastens myofiber formation, whereas TAZ knockdown delays myogenic differentiation. In addition, enforced coexpression of TAZ and MyoD in fibroblasts accelerates MyoD-induced myogenic differentiation. TAZ physically interacts with MyoD through the WW domain and activates MyoD-dependent gene transcription. TAZ additionally enhances the interaction of MyoD with the myogenin gene promoter. These results strongly suggest that TAZ functions as a novel transcriptional modulator of myogenic differentiation by promoting MyoD-mediated myogenic gene expression.
Collapse
Affiliation(s)
- Hana Jeong
- College of Pharmacy and Division of Life and Pharmaceutical Sciences, Ewha Woman's University, Science Bldg C206, 11-1 Daehyun-Dong, Sudaemun-Ku, Seoul 120-750, Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Phylogenetic analysis of the NEEP21/calcyon/P19 family of endocytic proteins: evidence for functional evolution in the vertebrate CNS. J Mol Evol 2009; 69:319-32. [PMID: 19760447 DOI: 10.1007/s00239-009-9273-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/29/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
Endocytosis and vesicle trafficking are required for optimal neural transmission. Yet, little is currently known about the evolution of neuronal proteins regulating these processes. Here, we report the first phylogenetic study of NEEP21, calcyon, and P19, a family of neuronal proteins implicated in synaptic receptor endocytosis and recycling, as well as in membrane protein trafficking in the somatodendritic and axonal compartments of differentiated neurons. Database searches identified orthologs for P19 and NEEP21 in bony fish, but not urochordate or invertebrate phyla. Calcyon orthologs were only retrieved from mammalian databases and distant relatives from teleost fish. In situ localization of the P19 zebrafish ortholog, and extant progenitor of the gene family, revealed a CNS specific expression pattern. Based on non-synonymous nucleotide substitution rates, the calcyon genes appear to be under less intense negative selective pressure. Indeed, a functional group II WW domain binding motif was detected in primate and human calcyon, but not in non-primate orthologs. Sequencing of the calcyon gene from 80 human subjects revealed a non-synonymous single nucleotide polymorphism that abrogated group II WW domain protein binding. Altogether, our data indicate the NEEP21/calcyon/P19 gene family emerged, and underwent two rounds of gene duplication relatively late in metazoan evolution (but early in vertebrate evolution at the latest). As functional studies suggest NEEP21 and calcyon play related, but distinct roles in regulating vesicle trafficking at synapses, and in neurons in general, we propose the family arose in chordates to support a more diverse range of synaptic and behavioral responses.
Collapse
|
45
|
Huang X, Beullens M, Zhang J, Zhou Y, Nicolaescu E, Lesage B, Hu Q, Wu J, Bollen M, Shi Y. Structure and function of the two tandem WW domains of the pre-mRNA splicing factor FBP21 (formin-binding protein 21). J Biol Chem 2009; 284:25375-87. [PMID: 19592703 DOI: 10.1074/jbc.m109.024828] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human FBP21 (formin-binding protein 21) contains a matrin-type zinc finger and two tandem WW domains. It is a component of the spliceosomes and interacts with several established splicing factors. Here we demonstrate for the first time that FBP21 is an activator of pre-mRNA splicing in vivo and that its splicing activation function and interaction with the splicing factor SIPP1 (splicing factor that interacts with PQBP1 and PP1) are both mediated by the two tandem WW domains of group III. We determined the solution structure of the tandem WW domains of FBP21 and found that the WW domains recognize peptide ligands containing either group II (PPLP) or group III (PPR) motifs. The binding interfaces involve both the XP and XP2 grooves of the two WW domains. Significantly, the tandem WW domains of FBP21 are connected by a highly flexible region, enabling their simultaneous interaction with two proline-rich motifs of SIPP1. The strong interaction between SIPP1 and FBP21 can be explained by the conjugation of two low affinity interactions with the tandem WW domains. Our study provides a structural basis for understanding the molecular mechanism underlying the functional implication of FBP21 and the biological specificity of tandem WW domains.
Collapse
Affiliation(s)
- Xiaojuan Huang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kofler M, Schuemann M, Merz C, Kosslick D, Schlundt A, Tannert A, Schaefer M, Lührmann R, Krause E, Freund C. Proline-rich sequence recognition: I. Marking GYF and WW domain assembly sites in early spliceosomal complexes. Mol Cell Proteomics 2009; 8:2461-73. [PMID: 19483244 DOI: 10.1074/mcp.m900191-mcp200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proline-rich sequences (PRS) and their recognition domains have emerged as transposable protein interaction modules during eukaryotic evolution. They are especially abundant in proteins associated with pre-mRNA splicing and likely assist in the formation of the spliceosome by binding to GYF and WW domains. Here we profile PRS-mediated interactions of the CD2BP2/52K GYF domain by a site-specific peptide inhibitor and stable isotope labeling/mass spectrometry analysis. Several PRS hubs with multiple proline-rich motifs exist that can recruit GYF and/or WW domains. Saturating the PRS sites by an isolated GYF domain inhibited splicing at the level of A complex formation. The interactions mediated by PRS are therefore important to the early phases of spliceosomal assembly.
Collapse
Affiliation(s)
- Michael Kofler
- Protein Engineering Group, Leibniz Institute for Molecular Pharmacology and Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lammers M, Meyer S, Kühlmann D, Wittinghofer A. Specificity of interactions between mDia isoforms and Rho proteins. J Biol Chem 2008; 283:35236-46. [PMID: 18829452 DOI: 10.1074/jbc.m805634200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Formins are key regulators of actin nucleation and polymerization. They contain formin homology 1 (FH1) and 2 (FH2) domains as the catalytic machinery for the formation of linear actin cables. A subclass of formins constitutes the Diaphanous-related formins, members of which are regulated by the binding of a small GTP-binding protein of the Rho subfamily. Binding of these molecular switch proteins to the regulatory N-terminal mDia(N), including the GTPase-binding domain, leads to the release of auto-inhibition. From the three mDia isoforms, mDia1 is activated only by Rho (RhoA, -B, and -C), in contrast to mDia2 and -3, which is also activated by Rac and Cdc42. Little is known about the determinants of specificity. Here we report on the interactions of RhoA, Rac1, and Cdc42 with mDia1 and an mDia1 mutant (mDia(N)-Thr-Ser-His (TSH)), which based on structural information should mimic mDia2 and -3. Specificity is analyzed by biochemical studies and a structural analysis of a complex between Cdc42.Gpp(NH)p and mDia(N)-TSH. A triple NNN motif in mDia1 (amino acids 164-166), corresponding to the TSH motif in mDia2/3 (amino acids 183-185 and 190-192), and the epitope interacting with the Rho insert helix are essential for high affinity binding. The triple N motif of mDia1 allows tight interaction with Rho because of the presence of Phe-106, whereas the corresponding His-104 in Rac and Cdc42 forms a complementary interface with the TSH motif in mDia2/3. We also show that the F106H and H104F mutations drastically alter the affinities and thermodynamics of mDia interactions.
Collapse
Affiliation(s)
- Michael Lammers
- Max-Planck-Institute for Molecular Physiology, Department of Structural Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | |
Collapse
|
48
|
Freund C, Schmalz HG, Sticht J, Kühne R. Proline-rich sequence recognition domains (PRD): ligands, function and inhibition. Handb Exp Pharmacol 2008:407-29. [PMID: 18491062 DOI: 10.1007/978-3-540-72843-6_17] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Low-affinity protein-protein interactions (PPI) between domains of modular proteins and short, solvent-exposed peptide sequences within their binding partners play an essential role in intracellular signaling. An important class of PPIs comprises proline-rich motifs (PRM) that are specifically recognized by PRM-binding domains (PRD). Aromatic side chains of the PRDs define the binding pockets that often recognize individual proline residues, while flanking sequences mediate specificity. Several of these PRM:PRD interactions are associated with cellular malfunction, cancer or infectious diseases. Thus, the design of PRM:PRD inhibitors by using structure-based molecular modeling as well as peptidomimetic approaches and high-throughput screening strategies is of great pharmacological interest. In this chapter we describe the molecular basis of PRM:PRD interactions, highlight their functional role in certain cellular processes and give an overview of recent strategies of inhibitor design.
Collapse
Affiliation(s)
- C Freund
- Protein Engineering, Molecular Modeling Group, FU and FMP Berlin, Robert-Rössle-Str. 10, Berlin, Germany.
| | | | | | | |
Collapse
|
49
|
Jennings MD, Blankley RT, Baron M, Golovanov AP, Avis JM. Specificity and autoregulation of Notch binding by tandem WW domains in suppressor of Deltex. J Biol Chem 2007; 282:29032-29042. [PMID: 17656366 PMCID: PMC4244684 DOI: 10.1074/jbc.m703453200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WW domains target proline-tyrosine (PY) motifs and frequently function as tandem pairs. When studied in isolation, single WW domains are notably promiscuous and regulatory mechanisms are undoubtedly required to ensure selective interactions. Here, we show that the fourth WW domain (WW4) of Suppressor of Deltex, a modular Nedd4-like protein that down-regulates the Notch receptor, is the primary mediator of a direct interaction with a Notch-PY motif. A natural Trp to Phe substitution in WW4 reduces its affinity for general PY sequences and enhances selective interaction with the Notch-PY motif via compensatory specificity-determining interactions with PY-flanking residues. When WW4 is paired with WW3, domain-domain association, impeding proper folding, competes with Notch-PY binding to WW4. This novel mode of autoinhibition is relieved by binding of another ligand to WW3. Such cooperativity may facilitate the transient regulatory interactions observed in vivo between Su(dx) and Notch in the endocytic pathway. The highly conserved tandem arrangement of WW domains in Nedd4 proteins, and similar arrangements in more diverse proteins, suggests domain-domain communication may be integral to regulation of their associated cellular activities.
Collapse
Affiliation(s)
- Martin D Jennings
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN
| | - Richard T Blankley
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN
| | - Martin Baron
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Alexander P Golovanov
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN.
| | - Johanna M Avis
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN.
| |
Collapse
|
50
|
Leykauf K, Salek M, Bomke J, Frech M, Lehmann WD, Dürst M, Alonso A. Ubiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation-modulated process. J Cell Sci 2007; 119:3634-42. [PMID: 16931598 DOI: 10.1242/jcs.03149] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Connexin43 is degraded by the proteasomal as well as the lysosomal pathway with ubiquitin playing a role in both degradation pathways. So far, no ubiquitin protein ligase has been identified for any of the connexins. By using pull-down assays, here we show binding of a ubiquitin protein ligase, Nedd4, to the C-terminus of connexin43. This observation was confirmed in vivo by coimmunoprecipitation and immunofluorescence, showing colocalization of Nedd4 and connexin43. Binding of Nedd4 to its interaction partners is generally carried out by its WW domains. Our results indicate that the interaction with connexin43 occurs through all three WW domains of Nedd4. Furthermore, whereas WW1 and WW2 domains mainly interact with the unphosphorylated form of connexin43, WW3 binds phosphorylated and unphosphorylated forms equally. In addition, using the surface plasmon resonance approach we show that only the WW2 domain binds to the PY motif located at the C-terminus of connexin43. Suppression of Nedd4 expression with siRNA resulted in an accumulation of gap junction plaques at the plasma membrane, suggesting an involvement of the ubiquitin protein ligase Nedd4 in gap junction internalization.
Collapse
Affiliation(s)
- Kerstin Leykauf
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld-242, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|