1
|
Liu Y, Gu X, Xuan M, Lou N, Fu L, Li J, Xue C. Notch signaling in digestive system cancers: Roles and therapeutic prospects. Cell Signal 2024; 124:111476. [PMID: 39428027 DOI: 10.1016/j.cellsig.2024.111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Digestive system cancers rank among the most prevalent malignant tumors, maintaining persistently high incidence and mortality rates. Notch signaling activity, often aberrant in esophageal, gastric, hepatic, pancreatic, and colorectal cancers, plays a pivotal role in the initiation, progression, and therapy resistance of these malignancies. As a highly conserved pathway, Notch signaling is integral to cell differentiation, survival, proliferation, stem cell renewal, development, and morphogenesis. Its dysregulation has been increasingly linked to various diseases, particularly digestive system cancers. In these malignancies, altered Notch signaling influences multiple biological processes, including cell proliferation, invasion, cell cycle progression, immune evasion, drug resistance, and stemness maintenance. Understanding the mechanisms of Notch signaling in digestive system cancers is essential for the development of novel targeted therapies. Numerous Notch pathway-targeting drugs are currently in preclinical studies, demonstrating promising efficacy both as monotherapies and in combination with conventional anti-cancer treatments. This review summarizes recent high-quality findings on the involvement of Notch signaling in digestive system cancers, focusing on the expression changes and pathological mechanisms of its dysregulated components. Special emphasis is placed on the potential of translating Notch-targeted approaches into therapeutic strategies, which hold promise for overcoming the limitations of existing treatments and improving the poor prognosis associated with these cancers.
Collapse
Affiliation(s)
- Yingru Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Mengjuan Xuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Na Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Leiya Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
2
|
Burban A, Sharanek A, Hernandez-Corchado A, Najafabadi HS, Soleimani VD, Jahani-Asl A. Targeting glioblastoma with a brain-penetrant drug that impairs brain tumor stem cells via NLE1-Notch1 complex. Stem Cell Reports 2024:S2213-6711(24)00269-8. [PMID: 39423824 DOI: 10.1016/j.stemcr.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
Brain tumor stem cells (BTSCs) are a population of self-renewing malignant stem cells that play an important role in glioblastoma tumor hierarchy and contribute to tumor growth, therapeutic resistance, and tumor relapse. Thus, targeting of BTSCs within the bulk of tumors represents a crucial therapeutic strategy. Here, we report that edaravone is a potent drug that impairs BTSCs in glioblastoma. We show that edaravone inhibits the self-renewal and growth of BTSCs harboring a diverse range of oncogenic mutations without affecting non-oncogenic neural stem cells. Global gene expression analysis revealed that edaravone significantly alters BTSC transcriptome and attenuates the expression of a large panel of genes involved in cell cycle progression, stemness, and DNA repair mechanisms. Mechanistically, we discovered that edaravone directly targets Notchless homolog 1 (NLE1) and impairs Notch signaling pathway, alters the expression of stem cell markers, and sensitizes BTSC response to ionizing radiation (IR)-induced cell death. Importantly, we show that edaravone treatment in preclinical models delays glioblastoma tumorigenesis, sensitizes their response to IR, and prolongs the lifespan of animals. Our data suggest that repurposing of edaravone is a promising therapeutic strategy for patients with glioblastoma.
Collapse
Affiliation(s)
- Audrey Burban
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Boulevard West, Montréal, QC H4A 3T2, Canada
| | - Ahmad Sharanek
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Boulevard West, Montréal, QC H4A 3T2, Canada
| | - Aldo Hernandez-Corchado
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC H4A 3J1, Canada; Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC H3A OC7, Canada
| | - Hamed S Najafabadi
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC H4A 3J1, Canada; Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC H3A OC7, Canada
| | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC H3A OC7, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Boulevard West, Montréal, QC H4A 3T2, Canada; Cancer Therapeutic and Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Yin L, Li L, Gao M, Qi Y, Xu L, Peng J. circMIRIAF aggravates myocardial ischemia-reperfusion injury via targeting miR-544/WDR12 axis. Redox Biol 2024; 73:103175. [PMID: 38795544 PMCID: PMC11140810 DOI: 10.1016/j.redox.2024.103175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/28/2024] Open
Abstract
Exploring and discovering novel circRNAs is one of the ways to develop innovative drugs for the diagnosis and treatment of myocardial ischemia-reperfusion injury (MI/RI). In the work, some dysregulated circRNAs were found by microarray screening analysis in AC16 cells, and hsa_circRNA_104852 named circMIRIAF was screened, which was up-regulated in AC16 cells damaged by hypoxia-reoxygenation injury (H/RI). The comprehensive analysis of ceRNA network revealed the potential relationship of circMIRIAF/miR-544/WDR12. Then, the results of interaction research confirmed that circMIRIAF acted as sponge of miR-544 to positively regulate WDR12 protein expression. Further, the validation results indicate that miR-544 silencing increased the expression of WDR12, and WDR12 activated Notch1 signal to aggravate H/RI of AC16 cells and MI/RI of mice via regulating oxidative stress and inflammation. Furthermore, silencing circMIRIAF caused the decreased circMIRIAF levels and the increased miR-544 levels in cardiomyocytes, while excessive miR-544 inhibited WDR12 expression to alleviate the disorder. On the contrary, excessive circMIRIAF increased WDR12 expression by adsorbing miR-544 to exacerbate H/RI in AC16 cells. In addition, circMIRIAF siRNA reversed the aggravation of H/RI in cells caused by WDR12 overexpression. Overall, circMIRIAF can serve as a drug target or treating MI/RI, and circMIRIAF could sponge miR-544 and enhance WDR12 expression to aggravate MI/RI, which may provide a novel therapeutic strategy for MI/RI treatment.
Collapse
Affiliation(s)
- Lianhong Yin
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lili Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Meng Gao
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Yan Qi
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lina Xu
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China.
| | - Jinyong Peng
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China; College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| |
Collapse
|
4
|
Albarano L, Zupo V, Guida M, Libralato G, Caramiello D, Ruocco N, Costantini M. PAHs and PCBs Affect Functionally Intercorrelated Genes in the Sea Urchin Paracentrotus lividus Embryos. Int J Mol Sci 2021; 22:ijms222212498. [PMID: 34830379 PMCID: PMC8619768 DOI: 10.3390/ijms222212498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) represent the most common pollutants in the marine sediments. Previous investigations demonstrated short-term sublethal effects of sediments polluted with both contaminants on the sea urchin Paracentrotus lividus after 2 months of exposure in mesocosms. In particular, morphological malformations observed in P. lividus embryos deriving from adults exposed to PAHs and PCBs were explained at molecular levels by de novo transcriptome assembly and real-time qPCR, leading to the identification of several differentially expressed genes involved in key physiological processes. Here, we extensively explored the genes involved in the response of the sea urchin P. lividus to PAHs and PCBs. Firstly, 25 new genes were identified and interactomic analysis revealed that they were functionally connected among them and to several genes previously defined as molecular targets of response to the two pollutants under analysis. The expression levels of these 25 genes were followed by Real Time qPCR, showing that almost all genes analyzed were affected by PAHs and PCBs. These findings represent an important further step in defining the impacts of slight concentrations of such contaminants on sea urchins and, more in general, on marine biota, increasing our knowledge of molecular targets involved in responses to environmental stressors.
Collapse
Affiliation(s)
- Luisa Albarano
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy;
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giovanni Libralato
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Davide Caramiello
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Marine Organisms Core Facility, Villa Comunale, 80121 Naples, Italy;
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, C. da Torre Spaccata, 87071 Amendolara, Italy
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Correspondence:
| |
Collapse
|
5
|
Ren Z, Ni F, Zhang T, Yuan X, Li J, Xiao W. Knockdown of NLE1 inhibits development of malignant melanoma in vitro and in vivo NLE1 promotes development of malignant melanoma. Exp Cell Res 2021; 404:112636. [PMID: 34019907 DOI: 10.1016/j.yexcr.2021.112636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/28/2022]
Abstract
Melanoma, which originates from neural crest derived melanocytes, causes severe pain and even death to numerous patients. Previous studies reported that Notchless Homolog 1 (NLE1) plays an important role in cell proliferation, transcription and signal transduction. However, the clinical significance and biological behavior of NLE1 in melanoma remain a mystery. Thus, the role of NLE1 in melanoma was investigated in vitro and in vivo. The expression of NLE1 in melanoma was elevated and the expression level was positively correlated with lymphatic metastasis and tumor stage. In addition, NLE1 knockdown by shRNA specifically inhibited proliferation, enhanced the apoptotic sensitivity and hindered migration of melanoma cells in vitro. Mice xenograft model further showed that NLE1 knockdown could inhibit the tumor formation of melanoma in vivo. Additionally, the induction of apoptosis of melanoma cells by NLE1 knockdown required the participation of a series of apoptosis-related proteins. Besides, NLE1 can activate the PI3K/AKT signaling pathway. In summary, NLE1 was involved in the development and progression of melanoma, which may be a novel potential target for molecular therapy of melanoma.
Collapse
Affiliation(s)
- Zhaozhou Ren
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Feifei Ni
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Tao Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Xiangnan Yuan
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Jianjun Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Wan'an Xiao
- Department of Rehabiliation, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
6
|
Nivedita, Rawoof A, Ramchiary N, Abdin MZ. A high-throughput RNA-Seq approach to elucidate the transcriptional response of Piriformospora indica to high salt stress. Sci Rep 2021; 11:4129. [PMID: 33602957 PMCID: PMC7893156 DOI: 10.1038/s41598-021-82136-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/15/2020] [Indexed: 12/05/2022] Open
Abstract
Piriformospora indica, a root endophytic fungus, augments plant nutrition and productivity as well as protects plants against pathogens and abiotic stresses. High salinity is a major problem faced by plants as well as by microbes. Until now, the precise mechanism of salt stress tolerance in P. indica has remained elusive. In this study, the transcriptomes of control and salt-treated (0.5 M NaCl) P. indica were sequenced via the RNA-seq approach. A total of 30,567 transcripts and 15,410 unigenes for P. indica were obtained from 7.3 Gb clean reads. Overall 661 differentially expressed genes (DEGs) between control and treated samples were retrieved. Gene ontology (GO) and EuKaryotic Orthologous Groups (KOG) enrichments revealed that DEGs were specifically involved in metabolic and molecular processes, such as "response to salt stress", "oxidoreductase activity", "ADP binding", "translation, ribosomal structure and biogenesis", "cytoskeleton", and others. The unigenes involved in "cell wall integrity", "sterol biosynthesis", and "oxidative stress" such as Rho-type GTPase, hydroxymethylglutaryl-CoA synthase, and thioredoxin peroxidase were up-regulated in P. indica subjected to salt stress. The salt-responsive DEGs have shown that they might have a potential role in salt stress regulation. Our study on the salt-responsive DEGs established a foundation for the elucidation of molecular mechanisms related to P. indica stress adaptation and a future reference for comparative functional genomics studies of biotechnologically important fungal species.
Collapse
Affiliation(s)
- Nivedita
- Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Malik Z Abdin
- Department of Biotechnology, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
7
|
DeAngelis MW, Coolon JD, Johnson RI. Comparative transcriptome analyses of the Drosophila pupal eye. G3-GENES GENOMES GENETICS 2021; 11:5995320. [PMID: 33561221 PMCID: PMC8043229 DOI: 10.1093/g3journal/jkaa003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/04/2022]
Abstract
Tissue function is dependent on correct cellular organization and behavior. As a result, the identification and study of genes that contribute to tissue morphogenesis is of paramount importance to the fields of cell and developmental biology. Many of the genes required for tissue patterning and organization are highly conserved between phyla. This has led to the emergence of several model organisms and developmental systems that are used to study tissue morphogenesis. One such model is the Drosophila melanogaster pupal eye that has a highly stereotyped arrangement of cells. In addition, the pupal eye is postmitotic that allows for the study of tissue morphogenesis independent from any effects of proliferation. While the changes in cell morphology and organization that occur throughout pupal eye development are well documented, less is known about the corresponding transcriptional changes that choreograph these processes. To identify these transcriptional changes, we dissected wild-type Canton S pupal eyes and performed RNA-sequencing. Our analyses identified differential expression of many loci that are documented regulators of pupal eye morphogenesis and contribute to multiple biological processes including signaling, axon projection, adhesion, and cell survival. We also identified differential expression of genes not previously implicated in pupal eye morphogenesis such as components of the Toll pathway, several non-classical cadherins, and components of the muscle sarcomere, which could suggest these loci function as novel patterning factors.
Collapse
Affiliation(s)
- Miles W DeAngelis
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Joseph D Coolon
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Ruth I Johnson
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| |
Collapse
|
8
|
Compensation between Wnt-driven tumorigenesis and cellular responses to ribosome biogenesis inhibition in the murine intestinal epithelium. Cell Death Differ 2020; 27:2872-2887. [PMID: 32355182 DOI: 10.1038/s41418-020-0548-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Ribosome biogenesis inhibition causes cell cycle arrest and apoptosis through the activation of tumor suppressor-dependent surveillance pathways. These responses are exacerbated in cancer cells, suggesting that targeting ribosome synthesis may be beneficial to patients. Here, we characterize the effect of the loss-of-function of Notchless (Nle), an essential actor of ribosome biogenesis, on the intestinal epithelium undergoing tumor initiation due to acute Apc loss-of-function. We show that ribosome biogenesis dysfunction strongly alleviates Wnt-driven tumor initiation by restoring cell cycle exit and differentiation in Apc-deficient progenitors. Conversely Wnt hyperactivation attenuates the cellular responses to surveillance pathways activation induced by ribosome biogenesis dysfunction, as proliferation was maintained at control-like levels in the stem cells and progenitors of double mutants. Thus, our data indicate that, while ribosome biogenesis inhibition efficiently reduces cancer cell proliferation in the intestinal epithelium, enhanced resistance of Apc-deficient stem and progenitor cells to ribosome biogenesis defects may be an important concern when using a therapeutic strategy targeting ribosome production for the treatment of Wnt-dependent tumorigenesis.
Collapse
|
9
|
Shimizu K, Kimura K, Isowa Y, Oshima K, Ishikawa M, Kagi H, Kito K, Hattori M, Chiba S, Endo K. Insights into the Evolution of Shells and Love Darts of Land Snails Revealed from Their Matrix Proteins. Genome Biol Evol 2019; 11:380-397. [PMID: 30388206 PMCID: PMC6368272 DOI: 10.1093/gbe/evy242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, many skeletal matrix proteins that are possibly related to calcification have been reported in various calcifying animals. Molluscs are among the most diverse calcifying animals and some gastropods have adapted to terrestrial ecological niches. Although many shell matrix proteins (SMPs) have already been reported in molluscs, most reports have focused on marine molluscs, and the SMPs of terrestrial snails remain unclear. In addition, some terrestrial stylommatophoran snails have evolved an additional unique calcified character, called a "love dart," used for mating behavior. We identified 54 SMPs in the terrestrial snail Euhadra quaesita, and found that they contain specific domains that are widely conserved in molluscan SMPs. However, our results also suggest that some of them possibly have evolved independently by domain shuffling, domain recruitment, or gene co-option. We then identified four dart matrix proteins, and found that two of them are the same proteins as those identified as SMPs. Our results suggest that some dart matrix proteins possibly have evolved by independent gene co-option from SMPs during dart evolution events. These results provide a new perspective on the evolution of SMPs and "love darts" in land snails.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Earth and Planetary Science, The University of Tokyo, Hongo, Japan
- College of Life and Environmental Sciences, University of Exeter, United Kingdom
| | - Kazuki Kimura
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Research Institute for Ulleungdo and Dokdo Islands, Kyungpook National University, Bukgu, Daegu, Korea
| | - Yukinobu Isowa
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki, Kanagawa, Japan
| | - Kenshiro Oshima
- Center for Omics and Bioinformatics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Makiko Ishikawa
- Department of Earth and Planetary Science, The University of Tokyo, Hongo, Japan
- Faculty of Animal Health Technology, Yamazaki University of Animal Health Technology, Hachioji, Tokyo, Japan
| | - Hiroyuki Kagi
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo, Japan
| | - Keiji Kito
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Masahira Hattori
- Center for Omics and Bioinformatics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- Cooperative Major of Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Japan
| | - Satoshi Chiba
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, The University of Tokyo, Hongo, Japan
| |
Collapse
|
10
|
Ohki K, Kiyokawa N, Saito Y, Hirabayashi S, Nakabayashi K, Ichikawa H, Momozawa Y, Okamura K, Yoshimi A, Ogata-Kawata H, Sakamoto H, Kato M, Fukushima K, Hasegawa D, Fukushima H, Imai M, Kajiwara R, Koike T, Komori I, Matsui A, Mori M, Moriwaki K, Noguchi Y, Park MJ, Ueda T, Yamamoto S, Matsuda K, Yoshida T, Matsumoto K, Hata K, Kubo M, Matsubara Y, Takahashi H, Fukushima T, Hayashi Y, Koh K, Manabe A, Ohara A. Clinical and molecular characteristics of MEF2D fusion-positive B-cell precursor acute lymphoblastic leukemia in childhood, including a novel translocation resulting in MEF2D-HNRNPH1 gene fusion. Haematologica 2019; 104:128-137. [PMID: 30171027 PMCID: PMC6312004 DOI: 10.3324/haematol.2017.186320] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/29/2018] [Indexed: 11/10/2022] Open
Abstract
Fusion genes involving MEF2D have recently been identified in precursor B-cell acute lymphoblastic leukemia, mutually exclusive of the common risk stratifying genetic abnormalities, although their true incidence and associated clinical characteristics remain unknown. We identified 16 cases of acute lymphoblastic leukemia and 1 of lymphoma harboring MEF2D fusions, including MEF2D-BCL9 (n=10), MEF2D-HNRNPUL1 (n=6), and one novel MEF2D-HNRNPH1 fusion. The incidence of MEF2D fusions overall was 2.4% among consecutive precursor B-cell acute lymphoblastic leukemia patients enrolled onto a single clinical trial. They frequently showed a cytoplasmic μ chain-positive pre-B immunophenotype, and often expressed an aberrant CD5 antigen. Besides up- and down-regulation of HDAC9 and MEF2C, elevated GATA3 expression was also a characteristic feature of MEF2D fusion-positive patients. Mutations of PHF6, recurrent in T-cell acute lymphoblastic leukemia, also showed an unexpectedly high frequency (50%) in these patients. MEF2D fusion-positive patients were older (median age 9 years) with elevated WBC counts (median: 27,300/ml) at presentation and, as a result, were mostly classified as NCI high risk. Although they responded well to steroid treatment, MEF2D fusion-positive patients showed a significantly worse outcome, with 53.3% relapse and subsequent death. Stem cell transplantation was ineffective as salvage therapy. Interestingly, relapse was frequently associated with the presence of CDKN2A/CDKN2B gene deletions. Our observations indicate that MEF2D fusions comprise a distinct subgroup of precursor B-cell acute lymphoblastic leukemia with a characteristic immunophenotype and gene expression signature, associated with distinct clinical features.
Collapse
Affiliation(s)
- Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo
| | - Yuya Saito
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo
- Department of Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, Fuchu-shi
| | - Shinsuke Hirabayashi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo
- Department of Pediatrics, St. Luke's International Hospital, Chuo-ku, Tokyo
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo
| | - Hitoshi Ichikawa
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Chuo-ku, Tokyo
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama-shi, Kanagawa
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo
| | - Ai Yoshimi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo
- Division of Pediatric Hematology and Oncology, Ibaraki Children's Hospital, Mito-shi
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo
| | - Hiromi Sakamoto
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Chuo-ku, Tokyo
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo
| | | | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Chuo-ku, Tokyo
| | - Hiroko Fukushima
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki
| | - Masako Imai
- Department of Pediatrics, Japanese Red Cross Musashino Hospital, Tokyo
| | - Ryosuke Kajiwara
- Department of Pediatrics, Yokohama City University Hospital, Kanagawa
| | - Takashi Koike
- Department of Pediatrics, Tokai University School of Medicine, Kanagawa
| | - Isao Komori
- Department of Pediatrics, Matsudo City Hospital, Chiba
| | - Atsushi Matsui
- Department of Pediatrics, Japanese Red Cross Maebashi Hospital, Gunma
| | - Makiko Mori
- Department of Hematology/Oncology, Saitama Children's Medical Center
| | - Koichi Moriwaki
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University
| | - Yasushi Noguchi
- Department of Pediatrics, Japanese Red Cross Narita Hospital, Chiba
| | - Myoung-Ja Park
- Department of Hematology/Oncology, Gunma Children's Medical Center, Shibukawa-shi
| | - Takahiro Ueda
- Department of Pediatrics, Nippon Medical School, Bunkyo-ku, Tokyo
| | - Shohei Yamamoto
- Department of Pediatrics, Showa University Fujigaoka Hospital, Yokohama-shi, Kanagawa
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing Department of Computational Biology and Medical Sciences Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Chuo-ku, Tokyo
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama-shi, Kanagawa
| | - Yoichi Matsubara
- Director, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo
| | | | - Takashi Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki
| | - Yasuhide Hayashi
- Institute of Physiology and Medicine, Jobu University, Takasaki-shi, Gunma, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center
| | - Atsushi Manabe
- Department of Pediatrics, St. Luke's International Hospital, Chuo-ku, Tokyo
| | - Akira Ohara
- Department of Pediatrics, Toho University Omori Medical Center, Tokyo
| |
Collapse
|
11
|
Abstract
The WD40 domain is one of the most abundant and interacting domains in the eukaryotic genome. In proteins the WD domain folds into a β-propeller structure, providing a platform for the interaction and assembly of several proteins into a signalosome. WD40 repeats containing proteins, in lower eukaryotes, are mainly involved in growth, cell cycle, development and virulence, while in higher organisms, they play an important role in diverse cellular functions like signal transduction, cell cycle control, intracellular transport, chromatin remodelling, cytoskeletal organization, apoptosis, development, transcriptional regulation, immune responses. To play the regulatory role in various processes, they act as a scaffold for protein-protein or protein-DNA interaction. So far, no WD40 domain has been identified with intrinsic enzymatic activity. Several WD40 domain-containing proteins have been recently characterized in prokaryotes as well. The review summarizes the vast array of functions performed by different WD40 domain containing proteins, their domain organization and functional conservation during the course of evolution.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Shweta Pandey
- APSGMNS Govt P G College, Kawardha, Chhattisgarh, 491995, India
| |
Collapse
|
12
|
Salazar JL, Yamamoto S. Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:141-185. [PMID: 30030826 PMCID: PMC6233323 DOI: 10.1007/978-3-319-89512-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.
Collapse
Affiliation(s)
- Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.
- Program in Developmental Biology, BCM, Houston, TX, USA.
- Department of Neuroscience, BCM, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
13
|
Karimzadeh F, Modarres Mousavi SM, Alipour F, Hosseini Ravandi H, Kovac S, Gorji A. Developmental changes in Notch1 and NLE1 expression in a genetic model of absence epilepsy. Brain Struct Funct 2017; 222:2773-2785. [PMID: 28210849 DOI: 10.1007/s00429-017-1371-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/16/2017] [Indexed: 01/08/2023]
Abstract
Childhood absence epilepsy (CAE) is an epilepsy syndrome with seizures occurring in the early childhood, highlighting that seizures susceptibility in CAE is dependent on brain development. The Notch 1 signalling pathway is important in brain development, yet the role of the Notch1 signalling pathway in CAE remains elusive. We here explored Notch1 and its modulator notchless homologue 1 (NLE1) expression in WAG/Rij and control rats using immunohistochemistry. Functional Notch 1 effects were assessed in WAG/Rij rats in vivo. WAG/Rij rats lack the developmental increase in cortical Notch1 and NLE 1 mRNA expression seen in controls, and Notch 1 and NLE1 mRNA and protein expression were lower in somatosensory cortices of WAG/Rij rats when compared to controls. This coincided with an overall decreased cortical GFAP expression in the early development in WAG/Rij rats. These effects were region-specific as they were not observed in thalamic tissues. Neuron-to-glia ratio as a marker of the impact of Notch signalling on differentiation was higher in layer 4 of somatosensory cortex of WAG/Rij rats. Acute application of Notch 1 agonist Jagged 1 suppressed, whereas DAPT, a Notch antagonist, facilitated spike and wave discharges (SWDs) in WAG/Rij rats. These findings point to Notch1 as an important signalling pathway in CAE which likely shapes architectural organization of the somatosensory cortex, a region critically involved in developmental epileptogenesis in CAE. More immediate effects of Notch 1 signalling are seen on in vivo SWDs in CAE, pointing to the Notch 1 pathway as a possible treatment target in CAE.
Collapse
MESH Headings
- Age Factors
- Animals
- Antigens, Nuclear/metabolism
- Brain Waves
- Disease Models, Animal
- Electrocorticography
- Epilepsy, Absence/genetics
- Epilepsy, Absence/metabolism
- Epilepsy, Absence/physiopathology
- Gene Expression Regulation, Developmental
- Genetic Predisposition to Disease
- Glial Fibrillary Acidic Protein/metabolism
- Immunohistochemistry
- Jagged-1 Protein/administration & dosage
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Nerve Tissue Proteins/metabolism
- Phenotype
- Rats, Wistar
- Real-Time Polymerase Chain Reaction
- Receptor, Notch1/drug effects
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Somatosensory Cortex/drug effects
- Somatosensory Cortex/growth & development
- Somatosensory Cortex/metabolism
- Somatosensory Cortex/physiopathology
- Thalamus/metabolism
- Thalamus/physiopathology
Collapse
Affiliation(s)
- Fariba Karimzadeh
- Shefa Neuroscience Research Centre, Khatam Alanbia Hospital, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Alipour
- Shefa Neuroscience Research Centre, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Stjepana Kovac
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Ali Gorji
- Shefa Neuroscience Research Centre, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Robert-Koch-Straße 45, 48149, Münster, Germany.
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Kong Q, Tong Q, Lou D, Ding J, Zheng B, Chen R, Zhu X, Chen X, Dong K, Lu S. Quantitative proteomic analyses of Schistosoma japonicum in response to artesunate. MOLECULAR BIOSYSTEMS 2016; 11:1400-9. [PMID: 25820832 DOI: 10.1039/c5mb00074b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artesunate (ART) has high prophylactic efficacy against Schistosoma japonicum infections and has been used to treat and prevent schistosomiasis in China since 1995. However, the molecular mechanism of ART's effects on S. japonicum remains unclear. Herein, we applied isobaric tagging reagents for relative and absolute quantification analyses coupled with two-dimensional liquid chromatography and tandem mass spectrometry to investigate the effect of ART on the proteome of S. japonicum in susceptible mice. 4529 proteins were quantified on the basis of 21,825 unique peptides. Comparative proteomic analyses revealed that 145, 228 and 185 proteins were significantly differentially expressed after ART treatment in schistosomula, juvenile and adult worms, respectively. Ninety proteins were differentially expressed between each two treatment groups in response to ART treatment: 67 proteins were associated with S. japonicum development/aging and 23 were specifically associated with ART treatment. Quantitative real-time PCR of selected genes verified the proteomic data. Gene ontology annotation and Kyoto encyclopedia of genes and genomes pathway mapping analysis showed that the majority of differentially expressed proteins were involved in stress/defense/detoxification, signal transduction, carbohydrate metabolism, amino acid metabolism, transcription/translation, and protein synthesis/assembly/degradation. Thirty-four of the proteins differentially expressed under ART treatment encoded hypothetical, uncharacterized proteins with unknown functions. This study obtained the first comprehensive protein expression profile of S. japonicum in response to ART, and provides a basis for a better understanding of the molecular mechanisms of ART effects on S. japonicum.
Collapse
Affiliation(s)
- QingMing Kong
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences, Hangzhou, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Romes EM, Sobhany M, Stanley RE. The Crystal Structure of the Ubiquitin-like Domain of Ribosome Assembly Factor Ytm1 and Characterization of Its Interaction with the AAA-ATPase Midasin. J Biol Chem 2015; 291:882-93. [PMID: 26601951 DOI: 10.1074/jbc.m115.693259] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 01/28/2023] Open
Abstract
The synthesis of eukaryotic ribosomes is a complex, energetically demanding process requiring the aid of numerous non-ribosomal factors, such as the PeBoW complex. The mammalian PeBoW complex, composed of Pes1, Bop1, and WDR12, is essential for the processing of the 32S preribosomal RNA. Previous work in Saccharomyces cerevisiae has shown that release of the homologous proteins in this complex (Nop7, Erb1, and Ytm1, respectively) from preribosomal particles requires Rea1 (midasin or MDN1 in humans), a large dynein-like protein. Midasin contains a C-terminal metal ion-dependent adhesion site (MIDAS) domain that interacts with the N-terminal ubiquitin-like (UBL) domain of Ytm1/WDR12 as well as the UBL domain of Rsa4/Nle1 in a later step in the ribosome maturation pathway. Here we present the crystal structure of the UBL domain of the WDR12 homologue from S. cerevisiae at 1.7 Å resolution and demonstrate that human midasin binds to WDR12 as well as Nle1 through their respective UBL domains. Midasin contains a well conserved extension region upstream of the MIDAS domain required for binding WDR12 and Nle1, and the interaction is dependent upon metal ion coordination because removal of the metal or mutation of residues that coordinate the metal ion diminishes the interaction. Mammalian WDR12 displays prominent nucleolar localization that is dependent upon active ribosomal RNA transcription. Based upon these results, we propose that release of the PeBoW complex and subsequent release of Nle1 by midasin is a well conserved step in the ribosome maturation pathway in both yeast and mammalian cells.
Collapse
Affiliation(s)
- Erin M Romes
- From the Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Mack Sobhany
- From the Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Robin E Stanley
- From the Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| |
Collapse
|
16
|
Walkowiak S, Bonner CT, Wang L, Blackwell B, Rowland O, Subramaniam R. Intraspecies Interaction of Fusarium graminearum Contributes to Reduced Toxin Production and Virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1256-67. [PMID: 26125491 DOI: 10.1094/mpmi-06-15-0120-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fusarium graminearum is a pathogenic fungus that causes Fusarium head blight in wheat and lowers the yield and quality of grains by contamination with the trichothecene mycotoxin deoxynivalenol. The fungi coexist and interact with several different fusaria as well as other plant pathogenic fungi and bacteria in the field. In Canada, F. graminearum exists as two main trichothecene chemotypes: 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol. To understand the potential interactions between two isolates of these chemotypes, we conducted coinoculation studies both in culture and in planta. The studies showed that intraspecies interaction reduces trichothecene yield in culture and disease symptoms in wheat. To elucidate the genes involved in the intraspecies interaction, expression profiling was performed on RNA samples isolated from coinoculated cultures, and potential genes were identified by using the genome sequences of the respective isolates.
Collapse
Affiliation(s)
- Sean Walkowiak
- 1 Eastern Cereal and Oilseed Research Centre, 960 Carling, Agriculture and Agri-Food Canada, Ottawa K1A 0C6, Canada
- 2 Department of Biology, 1125 Colonel By, Carleton University, Ottawa K1S 5B6, Canada
| | - Christopher T Bonner
- 1 Eastern Cereal and Oilseed Research Centre, 960 Carling, Agriculture and Agri-Food Canada, Ottawa K1A 0C6, Canada
- 2 Department of Biology, 1125 Colonel By, Carleton University, Ottawa K1S 5B6, Canada
| | - Li Wang
- 1 Eastern Cereal and Oilseed Research Centre, 960 Carling, Agriculture and Agri-Food Canada, Ottawa K1A 0C6, Canada
| | - Barbara Blackwell
- 1 Eastern Cereal and Oilseed Research Centre, 960 Carling, Agriculture and Agri-Food Canada, Ottawa K1A 0C6, Canada
| | - Owen Rowland
- 2 Department of Biology, 1125 Colonel By, Carleton University, Ottawa K1S 5B6, Canada
| | - Rajagopal Subramaniam
- 1 Eastern Cereal and Oilseed Research Centre, 960 Carling, Agriculture and Agri-Food Canada, Ottawa K1A 0C6, Canada
| |
Collapse
|
17
|
Ribosome biogenesis dysfunction leads to p53-mediated apoptosis and goblet cell differentiation of mouse intestinal stem/progenitor cells. Cell Death Differ 2015; 22:1865-76. [PMID: 26068591 DOI: 10.1038/cdd.2015.57] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 03/31/2015] [Accepted: 04/13/2015] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis is an essential cellular process. Its impairment is associated with developmental defects and increased risk of cancer. The in vivo cellular responses to defective ribosome biogenesis and the underlying molecular mechanisms are still incompletely understood. In particular, the consequences of impaired ribosome biogenesis within the intestinal epithelium in mammals have not been investigated so far. Here we adopted a genetic approach to investigate the role of Notchless (NLE), an essential actor of ribosome biogenesis, in the adult mouse intestinal lineage. Nle deficiency led to defects in the synthesis of large ribosomal subunit in crypts cells and resulted in the rapid elimination of intestinal stem cells and progenitors through distinct types of cellular responses, including apoptosis, cell cycle arrest and biased differentiation toward the goblet cell lineage. Similar observations were made using the rRNA transcription inhibitor CX-5461 on intestinal organoids culture. Importantly, we found that p53 activation was responsible for most of the cellular responses observed, including differentiation toward the goblet cell lineage. Moreover, we identify the goblet cell-specific marker Muc2 as a direct transcriptional target of p53. Nle-deficient ISCs and progenitors disappearance persisted in the absence of p53, underlying the existence of p53-independent cellular responses following defective ribosome biogenesis. Our data indicate that NLE is a crucial factor for intestinal homeostasis and provide new insights into how perturbations of ribosome biogenesis impact on cell fate decisions within the intestinal epithelium.
Collapse
|
18
|
Freischmidt A, Müller K, Zondler L, Weydt P, Mayer B, von Arnim CAF, Hübers A, Dorst J, Otto M, Holzmann K, Ludolph AC, Danzer KM, Weishaupt JH. Serum microRNAs in sporadic amyotrophic lateral sclerosis. Neurobiol Aging 2015; 36:2660.e15-20. [PMID: 26142125 DOI: 10.1016/j.neurobiolaging.2015.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/27/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and specific mircoRNA "fingerprints" are thought to contribute to and/or reflect certain disease conditions. Recently, we identified surprisingly homogeneous signatures of circulating miRNAs in the serum of familial amyotrophic lateral sclerosis (ALS) patients, which were already present in presymptomatic carriers of ALS gene mutations. Here, we characterize circulating miRNAs in the serum of sporadic ALS patients. We show that, in contrast to familial ALS, miRNA signatures of sporadic ALS are highly heterogeneous suggesting a number of different etiologies. Nevertheless, 2 miRNAs, miR-1234-3p and miR-1825, could be identified to be consistently downregulated in sporadic ALS. Bioinformatic analysis revealed miRNA fingerprints resembling those of familial ALS patients and mutation carriers in 61% of sporadic ALS patients, while the remaining subgroup had clearly different miRNA signatures. These data support a higher than expected contribution of genetic factors also to sporadic ALS. Moreover, our results indicate a more heterogeneous molecular etiology of sporadic ALS compared with (mono)genic cases, which should be considered for the development of disease modifying treatments.
Collapse
Affiliation(s)
| | | | - Lisa Zondler
- Department of Neurology, Ulm University, Ulm, Germany
| | - Patrick Weydt
- Department of Neurology, Ulm University, Ulm, Germany
| | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | | | | | | | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
| | - Karlheinz Holzmann
- Genomics-Core Facility, University Hospital Ulm, Center for Biomedical Research, Ulm, Germany
| | | | | | | |
Collapse
|
19
|
Beck-Cormier S, Escande M, Souilhol C, Vandormael-Pournin S, Sourice S, Pilet P, Babinet C, Cohen-Tannoudji M. Notchless is required for axial skeleton formation in mice. PLoS One 2014; 9:e98507. [PMID: 24875805 PMCID: PMC4038589 DOI: 10.1371/journal.pone.0098507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/03/2014] [Indexed: 01/19/2023] Open
Abstract
Maintenance of cell survival is essential for proper embryonic development. In the mouse, Notchless homolog 1 (Drosophila) (Nle1) is instrumental for survival of cells of the inner cell mass upon implantation. Here, we analyze the function of Nle1 after implantation using the Meox2tm1(cre)Sor mouse that expresses the Cre recombinase specifically in the epiblast at E5.5. First, we find that NLE1 function is required in epiblast cells, as Nle1-deficient cells are rapidly eliminated. In this report, we also show that the Meox2Cre transgene is active in specific tissues during organogenesis. In particular, we detect high Cre expression in the vertebral column, ribs, limbs and tailbud. We took advantage of this dynamic expression profile to analyze the effects of inducing mosaic deletion of Nle1 in the embryo. We show that Nle1 deletion in this context, results in severe developmental anomalies leading to lethality at birth. Mutant embryos display multiple developmental defects in particular during axial skeletal formation. We also provide evidence that axial defects are due to an increase in apoptotic cell death in the somite at E9.5. These data demonstrate an essential role for Nle1 during organogenesis and in particular during axial development.
Collapse
Affiliation(s)
- Sarah Beck-Cormier
- Mouse Functional Genetics, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, URA 2578, Institut Pasteur, Paris, France
- * E-mail:
| | - Marie Escande
- Mouse Functional Genetics, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Céline Souilhol
- Mouse Functional Genetics, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Sandrine Vandormael-Pournin
- Mouse Functional Genetics, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, URA 2578, Institut Pasteur, Paris, France
| | - Sophie Sourice
- Institut National de la Santé et de la recherche Médicale, U791, LIOAD, STEP group “Skeletal Tissue Engineering and Physiopathology”, Nantes, France
| | - Paul Pilet
- Institut National de la Santé et de la recherche Médicale, U791, LIOAD, STEP group “Skeletal Tissue Engineering and Physiopathology”, Nantes, France
| | - Charles Babinet
- Mouse Functional Genetics, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, URA 2578, Institut Pasteur, Paris, France
| | - Michel Cohen-Tannoudji
- Mouse Functional Genetics, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, URA 2578, Institut Pasteur, Paris, France
| |
Collapse
|
20
|
Le Bouteiller M, Souilhol C, Beck-Cormier S, Stedman A, Burlen-Defranoux O, Vandormael-Pournin S, Bernex F, Cumano A, Cohen-Tannoudji M. Notchless-dependent ribosome synthesis is required for the maintenance of adult hematopoietic stem cells. ACTA ACUST UNITED AC 2013; 210:2351-69. [PMID: 24062412 PMCID: PMC3804936 DOI: 10.1084/jem.20122019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conditional deletion of Notchless leads to rapid deletion and exhaustion of HSCs and early progenitor cells, whereas committed progenitor cells survive as a result of differences in ribosomal biogenesis. Blood cell production relies on the coordinated activities of hematopoietic stem cells (HSCs) and multipotent and lineage-restricted progenitors. Here, we identify Notchless (Nle) as a critical factor for HSC maintenance under both homeostatic and cytopenic conditions. Nle deficiency leads to a rapid and drastic exhaustion of HSCs and immature progenitors and failure to maintain quiescence in HSCs. In contrast, Nle is dispensable for cycling-restricted progenitors and differentiated cells. In yeast, Nle/Rsa4 is essential for ribosome biogenesis, and we show that its role in pre-60S subunit maturation has been conserved in the mouse. Despite its implication in this basal cellular process, Nle deletion affects ribosome biogenesis only in HSCs and immature progenitors. Ribosome biogenesis defects are accompanied by p53 activation, which causes their rapid exhaustion. Collectively, our findings establish an essential role for Nle in HSC and immature progenitor functions and uncover previously unsuspected differences in ribosome biogenesis that distinguish stem cells from restricted progenitor populations.
Collapse
Affiliation(s)
- Marie Le Bouteiller
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, F-75015 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee TV, Sethi MK, Leonardi J, Rana NA, Buettner FFR, Haltiwanger RS, Bakker H, Jafar-Nejad H. Negative regulation of notch signaling by xylose. PLoS Genet 2013; 9:e1003547. [PMID: 23754965 PMCID: PMC3675014 DOI: 10.1371/journal.pgen.1003547] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/23/2013] [Indexed: 11/29/2022] Open
Abstract
The Notch signaling pathway controls a large number of processes during animal development and adult homeostasis. One of the conserved post-translational modifications of the Notch receptors is the addition of an O-linked glucose to epidermal growth factor-like (EGF) repeats with a C-X-S-X-(P/A)-C motif by Protein O-glucosyltransferase 1 (POGLUT1; Rumi in Drosophila). Genetic experiments in flies and mice, and in vivo structure-function analysis in flies indicate that O-glucose residues promote Notch signaling. The O-glucose residues on mammalian Notch1 and Notch2 proteins are efficiently extended by the addition of one or two xylose residues through the function of specific mammalian xylosyltransferases. However, the contribution of xylosylation to Notch signaling is not known. Here, we identify the Drosophila enzyme Shams responsible for the addition of xylose to O-glucose on EGF repeats. Surprisingly, loss- and gain-of-function experiments strongly suggest that xylose negatively regulates Notch signaling, opposite to the role played by glucose residues. Mass spectrometric analysis of Drosophila Notch indicates that addition of xylose to O-glucosylated Notch EGF repeats is limited to EGF14-20. A Notch transgene with mutations in the O-glucosylation sites of Notch EGF16-20 recapitulates the shams loss-of-function phenotypes, and suppresses the phenotypes caused by the overexpression of human xylosyltransferases. Antibody staining in animals with decreased Notch xylosylation indicates that xylose residues on EGF16-20 negatively regulate the surface expression of the Notch receptor. Our studies uncover a specific role for xylose in the regulation of the Drosophila Notch signaling, and suggest a previously unrecognized regulatory role for EGF16-20 of Notch.
Collapse
Affiliation(s)
- Tom V. Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maya K. Sethi
- Department of Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Jessica Leonardi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nadia A. Rana
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Falk F. R. Buettner
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Robert S. Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Hans Bakker
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
22
|
Lossie AC, Lo CL, Baumgarner KM, Cramer MJ, Garner JP, Justice MJ. ENU mutagenesis reveals that Notchless homolog 1 (Drosophila) affects Cdkn1a and several members of the Wnt pathway during murine pre-implantation development. BMC Genet 2012; 13:106. [PMID: 23231322 PMCID: PMC3558363 DOI: 10.1186/1471-2156-13-106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/24/2012] [Indexed: 01/20/2023] Open
Abstract
Background Our interests lie in determining the genes and genetic pathways that are important for establishing and maintaining maternal-fetal interactions during pregnancy. Mutation analysis targeted to a 34 Mb domain flanked by Trp53 and Wnt3 demonstrates that this region of mouse chromosome 11 contains a large number of essential genes. Two mutant alleles (l11Jus1 and l11Jus4), which fall into the same complementation group, survive through implantation but fail prior to gastrulation. Results Through a positional cloning strategy, we discovered that these homozygous mutant alleles contain non-conservative missense mutations in the Notchless homolog 1 (Drosophila) (Nle1) gene. NLE1 is a member of the large WD40-repeat protein family, and is thought to signal via the canonical NOTCH pathway in vertebrates. However, the phenotype of the Nle1 mutant mice is much more severe than single Notch receptor mutations or even in animals in which NOTCH signaling is blocked. To test the hypothesis that NLE1 functions in multiple signaling pathways during pre-implantation development, we examined expression of multiple Notch downstream target genes, as well as select members of the Wnt pathway in wild-type and mutant embryos. We did not detect altered expression of any primary members of the Notch pathway or in Notch downstream target genes. However, our data reveal that Cdkn1a, a NOTCH target, was upregulated in Nle1 mutants, while several members of the Wnt pathway are downregulated. In addition, we found that Nle1 mutant embryos undergo caspase-mediated apoptosis as hatched blastocysts, but not as morulae or blastocysts. Conclusions Taken together, these results uncover potential novel functions for NLE1 in the WNT and CDKN1A pathways during embryonic development in mammals.
Collapse
Affiliation(s)
- Amy C Lossie
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Le Bras S, Rondanino C, Kriegel-Taki G, Dussert A, Le Borgne R. Genetic identification of intracellular trafficking regulators involved in notch dependent binary cell fate acquisition following asymmetric cell division. J Cell Sci 2012; 125:4886-901. [DOI: 10.1242/jcs.110171] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Notch signaling is involved in numerous cellular processes during development and throughout adult life. Although ligands and receptors are largely expressed in the whole organism, activation of Notch receptors only takes place in a subset of cells and/or tissues and is accurately regulated in time and space. Previous studies have demonstrated that endocytosis and recycling of both ligands and/or receptors are essential for this regulation. However, the precise endocytic routes, compartments and regulators involved in the spatio temporal regulation are largely unknown.
In order to identify Notch signaling intracellular trafficking regulators, we have undertaken a tissue-specific dsRNA genetic screen against candidates potentially involved in endocytosis and recycling within the endolysosomal pathway. dsRNA against 418 genes was induced in Drosophila melanogaster sensory organ lineage in which Notch signaling regulates binary cell fate acquisition. Gain- or loss-of Notch signaling phenotypes were observed in adult sensory organs for 113 of them. Furthermore, 26 genes presented a change in the steady state localization of Notch, Sanpodo, a Notch co-factor, and/or Delta in the pupal lineage. In particular, we identified 20 genes with previously unknown function in Drosophila melanogaster intracellular trafficking. Among them, we identified CG2747 and show that it regulates the localization of clathrin adaptor AP-1 complex, a negative regulator of Notch signaling. All together, our results further demonstrate the essential function of intracellular trafficking in regulating Notch signaling-dependent binary cell fate acquisition and constitute an additional step toward the elucidation of the routes followed by Notch receptor and ligands to signal.
Collapse
|
24
|
The CD59 family member Leaky/Coiled is required for the establishment of the blood-brain barrier in Drosophila. J Neurosci 2011; 31:7876-85. [PMID: 21613501 DOI: 10.1523/jneurosci.0766-11.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The blood-brain barrier of Drosophila is established by the subperineurial glial cells that encase the CNS and PNS. The subperineurial glial cells are thin, highly interdigitated cells with epithelial character. The establishment of extensive septate junctions between these cells is crucial for the prevention of uncontrolled paracellular leakage of ions and solutes from the hemolymph into the nervous system. In the absence of septate junctions, macromolecules such as fluorescently labeled dextran can easily cross the blood-brain barrier. To identify additional components of the blood-brain barrier, we followed a genetic approach and injected Texas-Red-conjugated dextran into the hemolymph of embryos homozygous for chromosomal deficiencies. In this way, we identified the 153-aa-large protein Coiled, a new member of the Ly6 (leukocyte antigen 6) family, as being crucially required for septate junction formation and blood-brain barrier integrity. In coiled mutants, the normal distribution of septate junction markers such as NeurexinIV, Coracle, or Discs large is disturbed. EM analyses demonstrated that Coiled is required for the formation of septate junctions. We further show that Coiled is expressed by the subsperineurial glial cells in which it is anchored to the cell membrane via a glycosylphosphatidylinositol anchor and mediates adhesive properties. Clonal rescue studies indicate that the presence of Coiled is required symmetrically on both cells engaged in septate junction formation.
Collapse
|
25
|
Shepherd A, Wesley U, Wesley C. Notch and delta mRNAs in early-stage and mid-stage drosophila embryos exhibit complementary patterns of protein-producing potentials. Dev Dyn 2010; 239:1220-33. [PMID: 20201103 DOI: 10.1002/dvdy.22262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Notch and Delta proteins generate Notch signaling that specifies cell fates during animal development. There is an intriguing phenomenon in Drosophila embryogenesis that has not received much attention and whose significance to embryogenesis is unknown. Notch and Delta mRNAs expressed in early-stage embryos are shorter than their counterparts in mid-stage embryos. We show here that the difference in sizes is due to mRNA 3' processing at alternate polyadenylation sites. While the early-stage Notch mRNA has a lower protein-producing potential than the mid-stage Notch mRNA, the early-stage Delta mRNA has a higher protein-producing potential than the mid-stage Delta mRNA. Our data can explain the complementary patterns of Notch and Delta protein levels in early- and mid-stage embryos. Our data also raise the possibility that the manner and regulation of Notch signaling change in the course of embryogenesis and that this change is effected by 3' UTR and mRNA 3' processing factors.
Collapse
Affiliation(s)
- Andrew Shepherd
- Department of Biology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
26
|
Chantha SC, Gray-Mitsumune M, Houde J, Matton DP. The MIDASIN and NOTCHLESS genes are essential for female gametophyte development in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2010; 16:3-18. [PMID: 23572950 PMCID: PMC3550630 DOI: 10.1007/s12298-010-0005-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Female gametophyte development in Arabidopsis thaliana follows a well-defined program that involves many fundamental cellular processes. In this study, we report the involvement of the Arabidopsis thaliana MIDASIN1 (AtMDN1) gene during female gametogenesis through the phenotypic characterization of plants heterozygous for an insertional mdn1 mutant allele. The MDN1 yeast ortholog has previously been shown to encode a non-ribosomal protein involved in the maturation and assembly of the 60S ribosomal subunit. Heterozygous MDN1/mdn1 plants were semisterile and mdn1 allele transmission through the female gametophyte was severely affected. Development of mdn1 female gametophyte was considerably delayed compared to their wild-type siblings. However, delayed mdn1 female gametophytes were able to reach maturity and a delayed pollination experiment showed that a small proportion of the female gametophytes were functional. We also report that the Arabidopsis NOTCHLESS (AtNLE) gene is also required for female gametogenesis. The NLE protein has been previously shown to interact with MDN1 and to be also involved in 60S subunit biogenesis. The introduction of an AtNLE-RNA interference construct in Arabidopsis led to semisterility defects. Defective female gametophytes were mostly arrested at the one-nucleate (FG1) developmental stage. These data suggest that the activity of both AtMDN1 and AtNLE is essential for female gametogenesis progression.
Collapse
Affiliation(s)
- Sier-Ching Chantha
- />Institut de Recherche en Biologie Végétale (IRBV), Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC Canada H1X 2B2
| | - Madoka Gray-Mitsumune
- />Institut de Recherche en Biologie Végétale (IRBV), Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC Canada H1X 2B2
| | - Josée Houde
- />Institut de Recherche en Biologie Végétale (IRBV), Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC Canada H1X 2B2
| | - Daniel P. Matton
- />Institut de Recherche en Biologie Végétale (IRBV), Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC Canada H1X 2B2
| |
Collapse
|
27
|
Gazave E, Lapébie P, Richards GS, Brunet F, Ereskovsky AV, Degnan BM, Borchiellini C, Vervoort M, Renard E. Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes. BMC Evol Biol 2009; 9:249. [PMID: 19825158 PMCID: PMC2770060 DOI: 10.1186/1471-2148-9-249] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/13/2009] [Indexed: 12/20/2022] Open
Abstract
Background Of the 20 or so signal transduction pathways that orchestrate cell-cell interactions in metazoans, seven are involved during development. One of these is the Notch signalling pathway which regulates cellular identity, proliferation, differentiation and apoptosis via the developmental processes of lateral inhibition and boundary induction. In light of this essential role played in metazoan development, we surveyed a wide range of eukaryotic genomes to determine the origin and evolution of the components and auxiliary factors that compose and modulate this pathway. Results We searched for 22 components of the Notch pathway in 35 different species that represent 8 major clades of eukaryotes, performed phylogenetic analyses and compared the domain compositions of the two fundamental molecules: the receptor Notch and its ligands Delta/Jagged. We confirm that a Notch pathway, with true receptors and ligands is specific to the Metazoa. This study also sheds light on the deep ancestry of a number of genes involved in this pathway, while other members are revealed to have a more recent origin. The origin of several components can be accounted for by the shuffling of pre-existing protein domains, or via lateral gene transfer. In addition, certain domains have appeared de novo more recently, and can be considered metazoan synapomorphies. Conclusion The Notch signalling pathway emerged in Metazoa via a diversity of molecular mechanisms, incorporating both novel and ancient protein domains during eukaryote evolution. Thus, a functional Notch signalling pathway was probably present in Urmetazoa.
Collapse
Affiliation(s)
- Eve Gazave
- Aix-Marseille Universités, Centre d'Océanologie de Marseille, Station marine d'Endoume - CNRS UMR 6540-DIMAR, rue de Batterie des Lions, 13007 Marseille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
van de Hoef DL, Hughes J, Livne-Bar I, Garza D, Konsolaki M, Boulianne GL. Identifying genes that interact with Drosophila presenilin and amyloid precursor protein. Genesis 2009; 47:246-60. [PMID: 19241393 DOI: 10.1002/dvg.20485] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gamma-secretase complex is involved in cleaving transmembrane proteins such as Notch and one of the genes targeted in Alzheimer's disease known as amyloid precursor protein (APP). Presenilins function within the catalytic core of gamma-secretase, and mutated forms of presenilins were identified as causative factors in familial Alzheimer's disease. Recent studies show that in addition to Notch and APP, numerous signal transduction pathways are modulated by presenilins, including intracellular calcium signaling. Thus, presenilins appear to have diverse roles. To further understand presenilin function, we searched for Presenilin-interacting genes in Drosophila by performing a genetic modifier screen for enhancers and suppressors of Presenilin-dependent Notch-related phenotypes. We identified 177 modifiers, including known members of the Notch pathway and genes involved in intracellular calcium homeostasis. We further demonstrate that 53 of these modifiers genetically interacted with APP. Characterization of these genes may provide valuable insights into Presenilin function in development and disease.
Collapse
Affiliation(s)
- Diana L van de Hoef
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Olswang-Kutz Y, Gertel Y, Benjamin S, Sela O, Pekar O, Arama E, Steller H, Horowitz M, Segal D. Drosophila Past1 is involved in endocytosis and is required for germline development and survival of the adult fly. J Cell Sci 2009; 122:471-80. [PMID: 19174465 DOI: 10.1242/jcs.038521] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Endocytosis, which is a key process in eukaryotic cells, has a central role in maintaining cellular homeostasis, nutrient uptake, development and downregulation of signal transduction. This complex process depends on several protein-protein interactions mediated by specific modules. One such module is the EH domain. The EH-domain-containing proteins comprise a family that includes four vertebrate members (EHD1-EHD4) and one Drosophila ortholog, Past1. We used Drosophila as a model to understand the physiological role of this family of proteins. We observed that the two predicted Past1 transcripts are differentially expressed both temporally and spatially during the life cycle of the fly. Endogenous Past1 as well as Past1A and Past1B, expressed from plasmids, were localized mainly to the membrane of Drosophila-derived cells. We generated mutants in the Past1 gene by excising a P-element inserted in it. The Past1 mutants reached adulthood but died precociously. They were temperature sensitive and infertile because of lesions in the reproductive system. Garland cells that originated from Past1 mutants exhibited a marked decrease in their ability to endocytose fluorescently labeled avidin. Genetic interaction was found between Past1 and members of the Notch signaling pathway, suggesting a role for Past1 in this developmentally crucial signaling pathway.
Collapse
Affiliation(s)
- Yael Olswang-Kutz
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tang L, Sahasranaman A, Jakovljevic J, Schleifman E, Woolford JL. Interactions among Ytm1, Erb1, and Nop7 required for assembly of the Nop7-subcomplex in yeast preribosomes. Mol Biol Cell 2008; 19:2844-56. [PMID: 18448671 DOI: 10.1091/mbc.e07-12-1281] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In Saccharomyces cerevisiae, more than 180 assembly factors associate with preribosomes to enable folding of pre-rRNA, recruitment of ribosomal proteins, and processing of pre-rRNAs to produce mature ribosomes. To examine the molecular architecture of preribosomes and to connect this structure to functions of each assembly factor, assembly subcomplexes have been purified from preribosomal particles. The Nop7-subcomplex contains three assembly factors: Nop7, Erb1, and Ytm1, each of which is necessary for conversion of 27SA(3) pre-rRNA to 27SB(S) pre-rRNA. However, interactions among these three proteins and mechanisms of their recruitment and function in pre-rRNPs are poorly understood. Here we show that Ytm1, Erb1, and Nop7 assemble into preribosomes in an interdependent manner. We identified which domains within Ytm1, Erb1, and Nop7 are necessary for their interaction with each other and are sufficient for recruitment of each protein into preribosomes. Dominant negative effects on growth and ribosome biogenesis caused by overexpressing truncated Ytm1, Erb1, or Nop7 constructs, and recessive phenotypes of the truncated proteins revealed not only interaction domains but also other domains potentially important for each protein to function in ribosome biogenesis. Our data suggest a model for the architecture of the Nop7-subcomplex and provide potential functions of domains of each protein.
Collapse
Affiliation(s)
- Lan Tang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
31
|
Sääf AM, Halbleib JM, Chen X, Yuen ST, Leung SY, Nelson WJ, Brown PO. Parallels between global transcriptional programs of polarizing Caco-2 intestinal epithelial cells in vitro and gene expression programs in normal colon and colon cancer. Mol Biol Cell 2007; 18:4245-60. [PMID: 17699589 PMCID: PMC2043540 DOI: 10.1091/mbc.e07-04-0309] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Posttranslational mechanisms are implicated in the development of epithelial cell polarity, but little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized temporal patterns of gene expression during cell-cell adhesion-initiated polarization of cultured human Caco-2 cells, which develop structural and functional polarity resembling enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell-cell contacts. Comparison to gene expression patterns in normal human colon and colon tumors revealed that the pattern in proliferating, nonpolarized Caco-2 cells paralleled patterns seen in human colon cancer in vivo, including expression of genes involved in cell proliferation. The pattern switched in polarized Caco-2 cells to one more closely resembling that in normal colon tissue, indicating that regulation of transcription underlying Caco-2 cell polarization is similar to that during enterocyte differentiation in vivo. Surprisingly, the temporal program of gene expression in polarizing Caco-2 cells involved changes in signaling pathways (e.g., Wnt, Hh, BMP, FGF) in patterns similar to those during migration and differentiation of intestinal epithelial cells in vivo, despite the absence of morphogen gradients and interactions with stromal cells characteristic of enterocyte differentiation in situ. The full data set is available at http://microarray-pubs.stanford.edu/CACO2.
Collapse
Affiliation(s)
| | | | - Xin Chen
- University of California San Francisco, San Francisco, CA 94143; and
| | - Siu Tsan Yuen
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Suet Yi Leung
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - W. James Nelson
- Molecular and Cellular Physiology, and
- Biological Sciences and
| | - Patrick O. Brown
- Departments of *Biochemistry
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
32
|
Chantha SC, Tebbji F, Matton DP. From the notch signaling pathway to ribosome biogenesis. PLANT SIGNALING & BEHAVIOR 2007; 2:168-70. [PMID: 19704746 PMCID: PMC2634047 DOI: 10.4161/psb.2.3.3724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 12/18/2006] [Indexed: 05/24/2023]
Abstract
Nearly 240 WD repeat proteins have been identified from the Arabidopsis genome. Among these, some well characterized WDR proteins were shown to regulate various developmental processes in plants.1 We have recently isolated in Solanum chacoense a homolog of the Drosophila NOTCHLESS gene. In Drosophila, NOTCHLESS regulates the activity of the Notch signaling pathway through a direct interaction with the intracellular domain of the Notch receptor. Although the Notch signaling pathway does not exist in yease and plants, the NLE gene is conserved in animals, plants and yeast. Furthermore, functional conservation was suggested by expression of the plant NLE gene in Drosophila. In plants, underexpression of the plant NLE gene altered numerous developmental processes including seed development, and resulted in reduced aerial organ size and organ numbers, in delayed flowering, and in an increased stomatal index. Surprisingly, the link between these pleiotropic phenotypes is the recently discovered of the involvement of NLE in ribosome biogenesis, emphasizing its role in proper cellular growth and proliferation during plant development.
Collapse
Affiliation(s)
- Sier-Ching Chantha
- Institut de Recherche en Biologie Végétale (IRBV); Département de sciences biologiques; Université de Montréal; Montréal, Canada
| | | | | |
Collapse
|
33
|
Chantha SC, Matton DP. Underexpression of the plant NOTCHLESS gene, encoding a WD-repeat protein, causes pleitropic phenotype during plant development. PLANTA 2007; 225:1107-20. [PMID: 17086402 DOI: 10.1007/s00425-006-0420-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 09/29/2006] [Indexed: 05/12/2023]
Abstract
WD-repeat proteins are involved in a breadth of cellular processes. While the WD-repeat protein encoding gene NOTCHLESS has been involved in the regulation of the Notch signaling pathway in Drosophila, its yeast homolog Rsa4p was shown to participate in 60S ribosomal subunit biogenesis. The plant homolog ScNLE was previously characterized in Solanum chacoense (ScNLE) as being involved in seed development. However, expression data and reduced size of ScNLE underexpressing plants suggested in addition a role during shoot development. We here report the detailed phenotypic characterization of ScNLE underexpressing plants during shoot development. ScNLE was shown to be expressed in actively dividing cells of the shoot apex. Consistent with this, ScNLE underexpression caused pleiotropic defects such as a reduction in aerial organ size, a reduction in some organ numbers, delayed flowering, and an increase in stomatal index. Analysis of adaxial epidermal cells revealed that both cell number and cell size were reduced in mature leaves of ScNLE underexpressing lines. Two-hybrid screens with the Nle domain and the WD-repeat domain of ScNLE allowed the isolation of homologs of yeast MIDASIN and NSA2 genes, the products of which are involved in 60S ribosomal subunit biogenesis in yeast. A ScNLE-GFP chimeric protein was localized in both the cytoplasm and nucleus. These data altogether suggest that ScNLE likely plays a role in 60S ribosomal subunit biogenesis, which is essential for proper cellular growth and proliferation during plant development.
Collapse
Affiliation(s)
- Sier-Ching Chantha
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 rue Sherbrooke Est, Montréal, QC, Canada H1X 2B2
| | | |
Collapse
|
34
|
Cormier S, Souilhol C, Babinet C, Cohen-Tannoudji M. Voie de signalisation Notch et développement précoce des mammifères. Med Sci (Paris) 2007; 23:26-8. [PMID: 17212926 DOI: 10.1051/medsci/200723126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sarah Cormier
- Unité de Génétique fonctionnelle de la souris, CNRS URA 2578, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
35
|
Chantha SC, Emerald BS, Matton DP. Characterization of the plant Notchless homolog, a WD repeat protein involved in seed development. PLANT MOLECULAR BIOLOGY 2006; 62:897-912. [PMID: 17006595 DOI: 10.1007/s11103-006-9064-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 07/23/2006] [Indexed: 05/12/2023]
Abstract
We have isolated a plant NOTCHLESS (NLE) homolog from the wild potato species Solanum chacoense Bitt., encoding a WD-repeat containing protein initially characterized as a negative regulator of the Notch receptor in animals. Although no Notch signaling pathway exists in plants, the NLE gene is conserved in animals, plants, and yeast. Overexpression of the plant ScNLE gene in Drosophila similarly affected bristle formation when compared to the overexpression of the endogenous Drosophila NLE gene, suggesting functional conservation. Expression analyses showed that the ScNLE gene was fertilization-induced and primarily expressed in ovules after fertilization, mainly in the integumentary tapetum (endothelium). Significant expression was also detected in the shoot apex. Promoter deletion analysis revealed that the ScNLE promoter had a complex modulatory architecture with both positive, negative, and tissue specific regulatory elements. Transgenic plants with reduced levels of ScNLE transcripts displayed pleitotropic phenotypes including a severe reduction in seed set, consistent with ScNLE gene expression pattern.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Drosophila/genetics
- Drosophila/growth & development
- Drosophila/ultrastructure
- Fertility/genetics
- Fertility/physiology
- Flowers/genetics
- Flowers/growth & development
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Glucuronidase/genetics
- Glucuronidase/metabolism
- In Situ Hybridization
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Plant Proteins/genetics
- Plant Proteins/physiology
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Repetitive Sequences, Amino Acid/genetics
- Seeds/genetics
- Seeds/growth & development
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Solanum/genetics
- Solanum/growth & development
Collapse
Affiliation(s)
- Sier-Ching Chantha
- Institut de Recherche en Biologie Végétale (IRBV), Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, H1X 2B2, Montréal, QC, Canada
| | | | | |
Collapse
|
36
|
Souilhol C, Cormier S, Tanigaki K, Babinet C, Cohen-Tannoudji M. RBP-Jkappa-dependent notch signaling is dispensable for mouse early embryonic development. Mol Cell Biol 2006; 26:4769-74. [PMID: 16782866 PMCID: PMC1489163 DOI: 10.1128/mcb.00319-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jkappa-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion.
Collapse
Affiliation(s)
- Céline Souilhol
- Unité Biologie du Développement, CNRS URA 2578, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
37
|
Gause M, Eissenberg JC, Macrae AF, Dorsett M, Misulovin Z, Dorsett D. Nipped-A, the Tra1/TRRAP subunit of the Drosophila SAGA and Tip60 complexes, has multiple roles in Notch signaling during wing development. Mol Cell Biol 2006; 26:2347-59. [PMID: 16508010 PMCID: PMC1430305 DOI: 10.1128/mcb.26.6.2347-2359.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Notch receptor controls development by activating transcription of specific target genes in response to extracellular signals. The factors that control assembly of the Notch activator complex on target genes and its ability to activate transcription are not fully known. Here we show, through genetic and molecular analysis, that the Drosophila Nipped-A protein is required for activity of Notch and its coactivator protein, mastermind, during wing development. Nipped-A and mastermind also colocalize extensively on salivary gland polytene chromosomes, and reducing Nipped-A activity decreases mastermind binding. Nipped-A is the fly homologue of the yeast Tra1 and human TRRAP proteins and is a key component of both the SAGA and Tip60 (NuA4) chromatin-modifying complexes. We find that, like Nipped-A, the Ada2b component of SAGA and the domino subunit of Tip60 are also required for mastermind function during wing development. Based on these results, we propose that Nipped-A, through the action of the SAGA and Tip60 complexes, facilitates assembly of the Notch activator complex and target gene transcription.
Collapse
Affiliation(s)
- Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 South Grand Boulevard, Saint Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
38
|
Cormier S, Le Bras S, Souilhol C, Vandormael-Pournin S, Durand B, Babinet C, Baldacci P, Cohen-Tannoudji M. The murine ortholog of notchless, a direct regulator of the notch pathway in Drosophila melanogaster, is essential for survival of inner cell mass cells. Mol Cell Biol 2006; 26:3541-9. [PMID: 16611995 PMCID: PMC1447417 DOI: 10.1128/mcb.26.9.3541-3549.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway involved in intercellular communication and is essential for proper cell fate choices. Numerous genes participate in the modulation of the Notch signaling pathway activity. Among them, Notchless (Nle) is a direct regulator of the Notch activity identified in Drosophila melanogaster. Here, we characterized the murine ortholog of Nle and demonstrated that it has conserved the ability to modulate Notch signaling. We also generated mice deficient for mouse Nle (mNle) and showed that its disruption resulted in embryonic lethality shortly after implantation. In late mNle(-/-) blastocysts, inner cell mass (ICM) cells died through a caspase 3-dependent apoptotic process. Most deficient embryos exhibited a delay in the temporal down-regulation of Oct4 expression in the trophectoderm (TE). However, mNle-deficient TE was able to induce decidual swelling in vivo and properly differentiated in vitro. Hence, our results indicate that mNle is mainly required in ICM cells, being instrumental for their survival, and raise the possibility that the death of mNle-deficient embryos might result from abnormal Notch signaling during the first steps of development.
Collapse
Affiliation(s)
- Sarah Cormier
- Unité Biologie du Développement, CNRS URA 2578, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hölzel M, Rohrmoser M, Schlee M, Grimm T, Harasim T, Malamoussi A, Gruber-Eber A, Kremmer E, Hiddemann W, Bornkamm GW, Eick D. Mammalian WDR12 is a novel member of the Pes1-Bop1 complex and is required for ribosome biogenesis and cell proliferation. ACTA ACUST UNITED AC 2005; 170:367-78. [PMID: 16043514 PMCID: PMC2171466 DOI: 10.1083/jcb.200501141] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Target genes of the protooncogene c-myc are implicated in cell cycle and growth control, yet the linkage of both is still unexplored. Here, we show that the products of the nucleolar target genes Pes1 and Bop1 form a stable complex with a novel member, WDR12 (PeBoW complex). Endogenous WDR12, a WD40 repeat protein, is crucial for processing of the 32S precursor ribosomal RNA (rRNA) and cell proliferation. Further, a conditionally expressed dominant-negative mutant of WDR12 also blocks rRNA processing and induces a reversible cell cycle arrest. Mutant WDR12 triggers accumulation of p53 in a p19ARF-independent manner in proliferating cells but not in quiescent cells. Interestingly, a potential homologous complex of Pes1–Bop1–WDR12 in yeast (Nop7p–Erb1p–Ytm1p) is involved in the control of ribosome biogenesis and S phase entry. In conclusion, the integrity of the PeBoW complex is required for ribosome biogenesis and cell proliferation in mammalian cells.
Collapse
Affiliation(s)
- Michael Hölzel
- Institute of Clinical Molecular Biology and Tumour Genetics, National Research Center for Environment and Health (GSF), 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Seeds AM, Sandquist JC, Spana EP, York JD. A molecular basis for inositol polyphosphate synthesis in Drosophila melanogaster. J Biol Chem 2004; 279:47222-32. [PMID: 15322119 DOI: 10.1074/jbc.m408295200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabolism of inositol 1,4,5-trisphosphate (I(1,4,5)P3) results in the production of diverse arrays of inositol polyphosphates (IPs), such as IP4, IP5, IP6) and PP-IP5. Insights into their synthesis in metazoans are reported here through molecular studies in the fruit fly, Drosophila melanogaster. Two I(1,4,5)P3 kinase gene products are implicated in initiating catabolism of these important IP regulators. We find dmIpk2 is a nucleocytoplasmic 6-/3-kinase that converts I(1,4,5)P3 to I(1,3,4,5,6)P5, and harbors 5-kinase activity toward I(1,3,4,6)P4, and dmIP3K is a 3-kinase that converts I(1,4,5)P3 to I(1,3,4,5)P4. To assess their relative roles in the cellular production of IPs we utilized complementation analysis, RNA interference, and overexpression studies. Heterologous expression of dmIpk2, but not dmIP3K, in ipk2 mutant yeast recapitulates phospholipase C-dependent cellular synthesis of IP6. Knockdown of dmIpk2 in Drosophila S2 cells and transgenic flies results in a significant reduction of IP6 levels; whereas depletion of dmIP3K, either alpha or beta isoforms or both, does not decrease IP6 synthesis but instead increases its production, possibly by expanding I(1,4,5)P3 pools. Similarly, knockdown of an I(1,4,5)P3 5-phosphatase results in significant increase in dmIpk2/dmIpk1-dependent IP6 synthesis. IP6 production depends on the I(1,3,4,5,6)P5 2-kinase activity of dmIpk1 and is increased in transgenic flies overexpressing dmIpk2. Our studies reveal that phosphatase and kinase regulation of I(1,4,5)P3 metabolic pools directly impinge on higher IP synthesis, and that the major route of IP6 synthesis depends on the activities of dmIpk2 and dmIpk1, but not dmIP3K, thereby challenging the role of IP3K in the genesis of higher IP messengers.
Collapse
Affiliation(s)
- Andrew M Seeds
- Department of Pharmacology, Howard Hughes Medical Institute, Duke University Medical Center, DUMC 3813, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
41
|
van Nocker S, Ludwig P. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics 2003; 4:50. [PMID: 14672542 PMCID: PMC317288 DOI: 10.1186/1471-2164-4-50] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 12/12/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The WD motif (also known as the Trp-Asp or WD40 motif) is found in a multitude of eukaryotic proteins involved in a variety of cellular processes. Where studied, repeated WD motifs act as a site for protein-protein interaction, and proteins containing WD repeats (WDRs) are known to serve as platforms for the assembly of protein complexes or mediators of transient interplay among other proteins. In the model plant Arabidopsis thaliana, members of this superfamily are increasingly being recognized as key regulators of plant-specific developmental events. RESULTS We analyzed the predicted complement of WDR proteins from Arabidopsis, and compared this to those from budding yeast, fruit fly and human to illustrate both conservation and divergence in structure and function. This analysis identified 237 potential Arabidopsis proteins containing four or more recognizable copies of the motif. These were classified into 143 distinct families, 49 of which contained more than one Arabidopsis member. Approximately 113 of these families or individual proteins showed clear homology with WDR proteins from the other eukaryotes analyzed. Where conservation was found, it often extended across all of these organisms, suggesting that many of these proteins are linked to basic cellular mechanisms. The functional characterization of conserved WDR proteins in Arabidopsis reveals that these proteins help adapt basic mechanisms for plant-specific processes. CONCLUSIONS Our results show that most Arabidopsis WDR proteins are strongly conserved across eukaryotes, including those that have been found to play key roles in plant-specific processes, with diversity in function conferred at least in part by divergence in upstream signaling pathways, downstream regulatory targets and /or structure outside of the WDR regions.
Collapse
Affiliation(s)
- Steven van Nocker
- Cell and Molecular Biology Program and Department of Horticulture, 390 Plant and Soil Sciences Building, Michigan State University, East Lansing, MI, 48824, USA
| | - Philip Ludwig
- Cell and Molecular Biology Program and MSU-DOE Plant Research Laboratory, 2240 Biomedical Physical Sciences Building, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
42
|
Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 2003; 22:6598-608. [PMID: 14528285 DOI: 10.1038/sj.onc.1206758] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Notch signaling controls cell fate decisions including during development and stem cell renewal and differentiation in many postnatal tissues. Increasing evidence suggests that the Notch signaling network is frequently deregulated in human malignancies and that genetic or pharmacological manipulation of Notch signaling is a novel potential strategy for the treatment of human neoplasms. This review article summarizes the most recent preclinical and clinical evidence linking Notch signaling to cancer, delineates questions that remain unanswered and explores potential biopharmacological strategies to manipulate Notch signaling in vivo.
Collapse
|
43
|
Freimoser FM, Screen S, Hu G, St Leger R. EST analysis of genes expressed by the zygomycete pathogen Conidiobolus coronatus during growth on insect cuticle. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1893-1900. [PMID: 12855740 DOI: 10.1099/mic.0.26252-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Conidiobolus coronatus (Zygomycota) is a facultative saprobe that is a pathogen of many insect species. Almost 2000 expressed sequence tag (EST) cDNA clones were sequenced to analyse gene expression during growth on insect cuticle. Sixty percent of the ESTs that could be clustered into functional groups (E<or=10(-5)) had their best BLAST hits among fungal sequences. These included chitinases and multiple subtilisins, trypsin, metalloprotease and aspartyl protease activities with the potential to degrade host tissues and disable anti-microbial peptides. Otherwise, compared to the ascomycete entomopathogen Metarhizium anisopliae, Con. coronatus produced many fewer types of hydrolases (e.g. no phospholipases), antimicrobial agents, toxic secondary metabolites and no ESTs with putative roles in the generation of antibiotics. Instead, Con. coronatus produced a much higher proportion of ESTs encoding ribosomal proteins and enzymes of intermediate metabolism that facilitate its rapid growth. These results are consistent with Con. coronatus having adapted a modification of the saprophytic ruderal-selected strategy, using rapid growth to overwhelm the host and exploit the cadaver before competitors overrun it. This strategy does not preclude specialization to pathogenicity, as Con. coronatus produces the greatest complexity of proteases on insect cuticle, indicating an ability to respond to conditions in the cuticle.
Collapse
Affiliation(s)
- Florian M Freimoser
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA
| | - Steven Screen
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA
| | - Gang Hu
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA
| | - Raymond St Leger
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA
| |
Collapse
|
44
|
Pacquelet A, Lin L, Rorth P. Binding site for p120/delta-catenin is not required for Drosophila E-cadherin function in vivo. J Cell Biol 2003; 160:313-9. [PMID: 12551956 PMCID: PMC2172659 DOI: 10.1083/jcb.200207160] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Homophilic cell adhesion mediated by classical cadherins is important for many developmental processes. Proteins that interact with the cytoplasmic domain of cadherin, in particular the catenins, are thought to regulate the strength and possibly the dynamics of adhesion. beta-catenin links cadherin to the actin cytoskeleton via alpha-catenin. The role of p120/delta-catenin proteins in regulating cadherin function is less clear. Both beta-catenin and p120/delta-catenin are conserved in Drosophila. Here, we address the importance of cadherin-catenin interactions in vivo, using mutant variants of Drosophila epithelial cadherin (DE-cadherin) that are selectively defective in p120ctn (DE-cadherin-AAA) or beta-catenin-armadillo (DE-cadherin-Delta beta) interactions. We have analyzed the ability of these proteins to substitute for endogenous DE-cadherin activity in multiple cadherin-dependent processes during Drosophila development and oogenesis; epithelial integrity, follicle cell sorting, oocyte positioning, as well as the dynamic adhesion required for border cell migration. As expected, DE-cadherin-Delta beta did not substitute for DE-cadherin in these processes, although it retained some residual activity. Surprisingly, DE-cadherin-AAA was able to substitute for the wild-type protein in all contexts with no detectable perturbations. Thus, interaction with p120/delta-catenin does not appear to be required for DE-cadherin function in vivo.
Collapse
Affiliation(s)
- Anne Pacquelet
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
45
|
Weijzen S, Velders MP, Elmishad AG, Bacon PE, Panella JR, Nickoloff BJ, Miele L, Kast WM. The Notch ligand Jagged-1 is able to induce maturation of monocyte-derived human dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4273-8. [PMID: 12370358 DOI: 10.4049/jimmunol.169.8.4273] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Notch receptors play a key role in several cellular processes including differentiation, proliferation, and apoptosis. This study investigated whether the activation of Notch signaling would affect the maturation of dendritic cells (DCs). Direct stimulation of Notch signaling in DCs with a peptide ligand induced DC maturation, similar to LPS: DCs up-regulated maturation markers, produced IL-12, lost endocytosis capacity, and became able to activate allogeneic T cells. Furthermore, coculture of DCs with cells expressing Notch ligand Jagged-1 induced up-regulation of maturation markers, IL-12 production, T cell proliferative responses, and IFN-gamma production. Our data suggest that activation of Notch by Jagged-1 plays an important role in maturation of human DCs. Additionally, they reveal a novel role for Notch signaling in cell maturation events distal to the cell fate decision fork. These data may have important medical implications, since they provide new reagents to induce DC activity, which may be beneficial as adjuvants in situations where an immune response needs to be elicited, such as tumor immunotherapy.
Collapse
Affiliation(s)
- Sanne Weijzen
- Cancer Immunology and Skin Cancer Programs, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Le Bras S, Cohen-Tannoudji M, Guyot V, Vandormael-Pournin S, Coumailleau F, Babinet C, Baldacci P. Transcript map of the Ovum mutant (Om) locus: isolation by exon trapping of new candidate genes for the DDK syndrome. Gene 2002; 296:75-86. [PMID: 12383505 DOI: 10.1016/s0378-1119(02)00832-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The DDK syndrome is defined as the embryonic lethality of F1 mouse embryos from crosses between DDK females and males from other strains (named hereafter as non-DDK strains). Genetically controlled by the Ovum mutant (Om) locus, it is due to a deleterious interaction between a maternal factor present in DDK oocytes and the non-DDK paternal pronucleus. Therefore, the DDK syndrome constitutes a unique genetic tool to study the crucial interactions that take place between the parental genomes and the egg cytoplasm during mammalian development. In this paper, we present an extensive analysis performed by exon trapping on the Om region. Twenty-seven trapped sequences were from genes in the databases: beta-adaptin, CCT zeta2, DNA LigaseIII, Notchless, Rad51l3 and Scya1. Twenty-eight other sequences presented similarities with expressed sequence tags and genomic sequences whereas 57 did not. The pattern of expression of 37 of these markers was established. Importantly, five of them are expressed in DDK oocytes and are candidate genes for the maternal factor, and 20 are candidate genes for the paternal factor since they are expressed in testis. This data is an important step towards identifying the genes responsible for the DDK syndrome.
Collapse
Affiliation(s)
- Stéphanie Le Bras
- Unité Biologie du Développement, CNRS URA 1960, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Izon DJ, Aster JC, He Y, Weng A, Karnell FG, Patriub V, Xu L, Bakkour S, Rodriguez C, Allman D, Pear WS. Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. Immunity 2002; 16:231-43. [PMID: 11869684 DOI: 10.1016/s1074-7613(02)00271-6] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Notch1 signaling drives T cell development at the expense of B cell development from a common precursor, an effect that is dependent on a C-terminal Notch1 transcriptional activation domain. The function of Deltex1, initially identified as a positive modulator of Notch function in a genetic screen in Drosophila, is poorly understood. We now demonstrate that, in contrast to Notch1, enforced expression of Deltex1 in hematopoietic progenitors results in B cell development at the expense of T cell development in fetal thymic organ culture and in vivo. Consistent with these effects, Deltex1 antagonizes Notch1 signaling in transcriptional reporter assays by inhibiting coactivator recruitment. These data suggest that a balance of inductive Notch1 signals and inhibitory signals mediated through Deltex1 and other modulators regulate T-B lineage commitment.
Collapse
Affiliation(s)
- David J Izon
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nal B, Mohr E, Silva MID, Tagett R, Navarro C, Carroll P, Depetris D, Verthuy C, Jordan BR, Ferrier P. Wdr12, a mouse gene encoding a novel WD-Repeat Protein with a notchless-like amino-terminal domain. Genomics 2002; 79:77-86. [PMID: 11827460 DOI: 10.1006/geno.2001.6682] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The WD-repeat protein family consists of a large group of structurally related yet functionally diverse proteins found predominantly in eukaryotic cells. These factors contain several (4-16) copies of a recognizable amino-acid sequence motif (the WD unit) thought to be organized into a "propeller-like" structure involved in protein-protein regulatory interactions. Here, we report the cloning of a mouse cDNA, referred to as Wdr12, which encodes a novel WD-repeat protein of 423 amino acids. The WDR12 protein was predicted to contain seven WD units and a nuclear localization signal located within a protruding peptide between the third and fourth WD domains. The amino-terminal region shows similarity to that of the Notchless WD repeat protein. Sequence comparisons revealed WDR12 orthologs in various eukaryotic species. Wdr12 seems to correspond to a single-copy gene in the mouse genome, located within the C1-C2 bands of chromosome 1. These data, together with the results of Wdr12 gene expression studies and evidence of in vitro binding of WDR12 to the cytoplasmic domain of Notch1, led us to postulate a function for the WDR12 protein in the modulation of Notch signaling activity.
Collapse
Affiliation(s)
- Béatrice Nal
- Centre d'Immunologie de Marseille-Luminy (CIML), INSERM-CNRS-Université de la Méditerranée, 13288 Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wu G, Lyapina S, Das I, Li J, Gurney M, Pauley A, Chui I, Deshaies RJ, Kitajewski J. SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Mol Cell Biol 2001; 21:7403-15. [PMID: 11585921 PMCID: PMC99913 DOI: 10.1128/mcb.21.21.7403-7415.2001] [Citation(s) in RCA: 275] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Notch receptors and their ligands play important roles in both normal animal development and pathogenesis. We show here that the F-box/WD40 repeat protein SEL-10 negatively regulates Notch receptor activity by targeting the intracellular domain of Notch receptors for ubiquitin-mediated protein degradation. Blocking of endogenous SEL-10 activity was done by expression of a dominant-negative form containing only the WD40 repeats. In the case of Notch1, this block leads to an increase in Notch signaling stimulated by either an activated form of the Notch1 receptor or Jagged1-induced signaling through Notch1. Expression of dominant-negative SEL-10 leads to stabilization of the intracellular domain of Notch1. The Notch4 intracellular domain bound to SEL-10, but its activity was not increased as a result of dominant-negative SEL-10 expression. SEL-10 bound Notch4 via the WD40 repeats and bound preferentially to a phosphorylated form of Notch4 in cells. We mapped the region of Notch4 essential for SEL-10 binding to the C-terminal region downstream of the ankyrin repeats. When this C-terminal fragment of Notch4 was expressed in cells, it was highly labile but could be stabilized by the expression of dominant-negative SEL-10. Ubiquitination of Notch1 and Notch4 intracellular domains in vitro was dependent on SEL-10. Although SEL-10 interacts with the intracellular domains of both Notch1 and Notch4, these proteins respond differently to interference with SEL-10 function. Thus, SEL-10 functions to promote the ubiquitination of Notch proteins; however, the fates of these proteins may differ.
Collapse
Affiliation(s)
- G Wu
- Department of Pathology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tabata S, Kaneko T, Nakamura Y, Kotani H, Kato T, Asamizu E, Miyajima N, Sasamoto S, Kimura T, Hosouchi T, Kawashima K, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakayama S, Nakazaki N, Naruo K, Okumura S, Shinpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Sato S, de la Bastide M, Huang E, Spiegel L, Gnoj L, O'Shaughnessy A, Preston R, Habermann K, Murray J, Johnson D, Rohlfing T, Nelson J, Stoneking T, Pepin K, Spieth J, Sekhon M, Armstrong J, Becker M, Belter E, Cordum H, Cordes M, Courtney L, Courtney W, Dante M, Du H, Edwards J, Fryman J, Haakensen B, Lamar E, Latreille P, Leonard S, Meyer R, Mulvaney E, Ozersky P, Riley A, Strowmatt C, Wagner-McPherson C, Wollam A, Yoakum M, Bell M, Dedhia N, Parnell L, Shah R, Rodriguez M, See LH, Vil D, Baker J, Kirchoff K, Toth K, King L, Bahret A, Miller B, Marra M, Martienssen R, McCombie WR, Wilson RK, Murphy G, Bancroft I, Volckaert G, Wambutt R, Düsterhöft A, Stiekema W, Pohl T, Entian KD, Terryn N, Hartley N, Bent E, Johnson S, Langham SA, McCullagh B, Robben J, Grymonprez B, Zimmermann W, Ramsperger U, Wedler H, Balke K, Wedler E, Peters S, van Staveren M, Dirkse W, Mooijman P, Lankhorst RK, Weitzenegger T, Bothe G, Rose M, Hauf J, Berneiser S, Hempel S, Feldpausch M, Lamberth S, Villarroel R, Gielen J, Ardiles W, Bents O, Lemcke K, Kolesov G, Mayer K, Rudd S, Schoof H, Schueller C, Zaccaria P, Mewes HW, Bevan M, Fransz P. Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature 2000; 408:823-6. [PMID: 11130714 DOI: 10.1038/35048507] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genome of the model plant Arabidopsis thaliana has been sequenced by an international collaboration, The Arabidopsis Genome Initiative. Here we report the complete sequence of chromosome 5. This chromosome is 26 megabases long; it is the second largest Arabidopsis chromosome and represents 21% of the sequenced regions of the genome. The sequence of chromosomes 2 and 4 have been reported previously and that of chromosomes 1 and 3, together with an analysis of the complete genome sequence, are reported in this issue. Analysis of the sequence of chromosome 5 yields further insights into centromere structure and the sequence determinants of heterochromatin condensation. The 5,874 genes encoded on chromosome 5 reveal several new functions in plants, and the patterns of gene organization provide insights into the mechanisms and extent of genome evolution in plants.
Collapse
Affiliation(s)
- S Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|