1
|
Ashokkumar M, Hafer TL, Felton A, Archin NM, Margolis DM, Emerman M, Browne EP. A targeted CRISPR screen identifies ETS1 as a regulator of HIV latency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606477. [PMID: 39211204 PMCID: PMC11360895 DOI: 10.1101/2024.08.03.606477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Human Immunodeficiency virus (HIV) infection is regulated by a wide array of host cell factors that combine to influence viral transcription and latency. To understand the complex relationship between the host cell and HIV latency, we performed a lentiviral CRISPR screen that targeted a set of host cell genes whose expression or activity correlates with HIV expression. We further investigated one of the identified factors - the transcription factor ETS1 and found that it is required for maintenance of HIV latency in a primary CD4 T cell model. Interestingly, ETS1 played divergent roles in actively infected and latently infected CD4 T cells, with knockout of ETS1 leading to reduced HIV expression in actively infected cells, but increased HIV expression in latently infected cells, indicating that ETS1 can play both a positive and negative role in HIV expression. CRISPR/Cas9 knockout of ETS1 in CD4 T cells from ART-suppressed people with HIV (PWH) confirmed that ETS1 maintains transcriptional repression of the clinical HIV reservoir. Transcriptomic profiling of ETS1-depleted cells from PWH identified a set of host cell pathways involved in viral transcription that are controlled by ETS1 in resting CD4 T cells. In particular, we observed that ETS1 knockout increased expression of the long non-coding RNA MALAT1 that has been previously identified as a positive regulator of HIV expression. Furthermore, the impact of ETS1 depletion on HIV expression in latently infected cells was partially dependent on MALAT1. Overall, these data demonstrate that ETS1 is an important regulator of HIV latency and influences expression of several cellular genes, including MALAT1, that could have a direct or indirect impact on HIV expression. Author Summary HIV latency is a major obstacle for the eradication of HIV. However, molecular mechanisms that restrict proviral expression during therapy are not well understood. Identification of host cell factors that silence HIV would create opportunities for targeting these factors to reverse latency and eliminate infected cells. Our study aimed to explore mechanisms of latency in infected cells by employing a lentiviral CRISPR screen and CRISPR/Cas9 knockout in primary CD4 T cells. These experiments revealed that ETS1 is essential for maintaining HIV latency in primary CD4 T cells and we further confirmed ETS1's role in maintaining HIV latency through CRISPR/Cas9 knockout in CD4 T cells from antiretroviral therapy (ART)-suppressed individuals with HIV. Transcriptomic profiling of ETS1-depleted cells from these individuals identified several host cell pathways involved in viral transcription regulated by ETS1, including the long non-coding RNA MALAT1. Overall, our study demonstrates that ETS1 is a critical regulator of HIV latency, affecting the expression of several cellular genes that directly or indirectly influence HIV expression.
Collapse
|
2
|
Ashokkumar M, Mei W, Peterson JJ, Harigaya Y, Murdoch DM, Margolis DM, Kornfein C, Oesterling A, Guo Z, Rudin CD, Jiang Y, Browne EP. Integrated Single-cell Multiomic Analysis of HIV Latency Reversal Reveals Novel Regulators of Viral Reactivation. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae003. [PMID: 38902848 PMCID: PMC11189801 DOI: 10.1093/gpbjnl/qzae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 06/22/2024]
Abstract
Despite the success of antiretroviral therapy, human immunodeficiency virus (HIV) cannot be cured because of a reservoir of latently infected cells that evades therapy. To understand the mechanisms of HIV latency, we employed an integrated single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq) approach to simultaneously profile the transcriptomic and epigenomic characteristics of ∼ 125,000 latently infected primary CD4+ T cells after reactivation using three different latency reversing agents. Differentially expressed genes and differentially accessible motifs were used to examine transcriptional pathways and transcription factor (TF) activities across the cell population. We identified cellular transcripts and TFs whose expression/activity was correlated with viral reactivation and demonstrated that a machine learning model trained on these data was 75%-79% accurate at predicting viral reactivation. Finally, we validated the role of two candidate HIV-regulating factors, FOXP1 and GATA3, in viral transcription. These data demonstrate the power of integrated multimodal single-cell analysis to uncover novel relationships between host cell factors and HIV latency.
Collapse
Affiliation(s)
- Manickam Ashokkumar
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenwen Mei
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jackson J Peterson
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuriko Harigaya
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Murdoch
- Department of Medicine, Duke University, Durham, NC 27708, USA
| | - David M Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caleb Kornfein
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Alex Oesterling
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Zhicheng Guo
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Cynthia D Rudin
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Yuchao Jiang
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Edward P Browne
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Abdalla AL, Guajardo-Contreras G, Mouland AJ. A Canadian Survey of Research on HIV-1 Latency-Where Are We Now and Where Are We Heading? Viruses 2024; 16:229. [PMID: 38400005 PMCID: PMC10891605 DOI: 10.3390/v16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Worldwide, almost 40 million people are currently living with HIV-1. The implementation of cART inhibits HIV-1 replication and reduces viremia but fails to eliminate HIV-1 from latently infected cells. These cells are considered viral reservoirs from which HIV-1 rebounds if cART is interrupted. Several efforts have been made to identify these cells and their niches. There has been little success in diminishing the pool of latently infected cells, underscoring the urgency to continue efforts to fully understand how HIV-1 establishes and maintains a latent state. Reactivating HIV-1 expression in these cells using latency-reversing agents (LRAs) has been successful, but only in vitro. This review aims to provide a broad view of HIV-1 latency, highlighting Canadian contributions toward these aims. We will summarize the research efforts conducted in Canadian labs to understand the establishment of latently infected cells and how this informs curative strategies, by reviewing how HIV latency is established, which cells are latently infected, what methodologies have been developed to characterize them, how new compounds are discovered and evaluated as potential LRAs, and what clinical trials aim to reverse latency in people living with HIV (PLWH).
Collapse
Affiliation(s)
- Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
4
|
Martin V, Zhuang F, Zhang Y, Pinheiro K, Gordân R. High-throughput data and modeling reveal insights into the mechanisms of cooperative DNA-binding by transcription factor proteins. Nucleic Acids Res 2023; 51:11600-11612. [PMID: 37889068 PMCID: PMC10681739 DOI: 10.1093/nar/gkad872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Cooperative DNA-binding by transcription factor (TF) proteins is critical for eukaryotic gene regulation. In the human genome, many regulatory regions contain TF-binding sites in close proximity to each other, which can facilitate cooperative interactions. However, binding site proximity does not necessarily imply cooperative binding, as TFs can also bind independently to each of their neighboring target sites. Currently, the rules that drive cooperative TF binding are not well understood. In addition, it is oftentimes difficult to infer direct TF-TF cooperativity from existing DNA-binding data. Here, we show that in vitro binding assays using DNA libraries of a few thousand genomic sequences with putative cooperative TF-binding events can be used to develop accurate models of cooperativity and to gain insights into cooperative binding mechanisms. Using factors ETS1 and RUNX1 as our case study, we show that the distance and orientation between ETS1 sites are critical determinants of cooperative ETS1-ETS1 binding, while cooperative ETS1-RUNX1 interactions show more flexibility in distance and orientation and can be accurately predicted based on the affinity and sequence/shape features of the binding sites. The approach described here, combining custom experimental design with machine-learning modeling, can be easily applied to study the cooperative DNA-binding patterns of any TFs.
Collapse
Affiliation(s)
- Vincentius Martin
- Department of Computer Science, Durham, NC 27708, USA
- Center for Genomic & Computational Biology, Durham, NC 27708, USA
| | - Farica Zhuang
- Department of Computer Science, Durham, NC 27708, USA
- Center for Genomic & Computational Biology, Durham, NC 27708, USA
| | - Yuning Zhang
- Center for Genomic & Computational Biology, Durham, NC 27708, USA
- Program in Computational Biology & Bioinformatics, Durham, NC 27708, USA
| | - Kyle Pinheiro
- Department of Computer Science, Durham, NC 27708, USA
- Center for Genomic & Computational Biology, Durham, NC 27708, USA
| | - Raluca Gordân
- Department of Computer Science, Durham, NC 27708, USA
- Center for Genomic & Computational Biology, Durham, NC 27708, USA
- Department of Biostatistics & Bioinformatics, Department of Molecular Genetics and Microbiology, Department of Cell Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Horvath RM, Sadowski I. Upstream Stimulatory Factors Regulate HIV-1 Latency and Are Required for Robust T Cell Activation. Viruses 2023; 15:1470. [PMID: 37515158 PMCID: PMC10384547 DOI: 10.3390/v15071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
HIV-1 provirus expression is controlled by signaling pathways that are responsive to T cell receptor engagement, including those involving Ras and downstream protein kinases. The induction of transcription from the HIV-1 LTR in response to Ras signaling requires binding of the Ras-responsive element binding factor (RBF-2) to conserved cis elements flanking the enhancer region, designated RBE3 and RBE1. RBF-2 is composed minimally of the USF1, USF2, and TFII-I transcription factors. We recently determined that TFII-I regulates transcriptional elongation from the LTR through recruitment of the co-activator TRIM24. However, the function of USF1 and USF2 for this effect are uncharacterized. Here, we find that genetic deletion of USF2 but not USF1 in T cells inhibits HIV-1 expression. The loss of USF2 caused a reduction in expression of the USF1 protein, an effect that was not associated with decreased USF1 mRNA abundance. USF1 and USF2 were previously shown to exist predominately as heterodimers and to cooperatively regulate target genes. To examine cooperativity between these factors, we performed RNA-seq analysis of T cell lines bearing knockouts of the genes encoding these factors. In untreated cells, we found limited evidence of coordinated global gene regulation between USF1 and USF2. In contrast, we observed a high degree of genome-wide cooperative regulation of RNA expression between these factors in cells stimulated with the combination of PMA and ionomycin. In particular, we found that the deletion of USF1 or USF2 restricted T cell activation response. These observations indicate that USF2, but not USF1, is crucial for HIV-1 expression, while the combined function of these factors is required for a robust T cell inflammatory response.
Collapse
Affiliation(s)
- Riley M Horvath
- Molecular Epigenetics Group, Department of Biochemistry and Molecular Biology, LSI, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ivan Sadowski
- Molecular Epigenetics Group, Department of Biochemistry and Molecular Biology, LSI, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
6
|
Collora JA, Ho YC. Integration site-dependent HIV-1 promoter activity shapes host chromatin conformation. Genome Res 2023; 33:891-906. [PMID: 37295842 PMCID: PMC10519397 DOI: 10.1101/gr.277698.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
HIV-1 integration introduces ectopic transcription factor binding sites into host chromatin. We postulate that the integrated provirus serves as an ectopic enhancer that recruits additional transcription factors to the integration locus, increases chromatin accessibility, changes 3D chromatin interactions, and enhances both retroviral and host gene expression. We used four well-characterized HIV-1-infected cell line clones having unique integration sites and low to high levels of HIV-1 expression. Using single-cell DOGMA-seq, which captured the heterogeneity of HIV-1 expression and host chromatin accessibility, we found that HIV-1 transcription correlated with HIV-1 accessibility and host chromatin accessibility. HIV-1 integration increased local host chromatin accessibility within an ∼5- to 30-kb distance. CRISPRa- and CRISPRi-mediated HIV-1 promoter activation and inhibition confirmed integration site-dependent HIV-1-driven changes of host chromatin accessibility. HIV-1 did not drive chromatin confirmation changes at the genomic level (by Hi-C) or the enhancer connectome (by H3K27ac HiChIP). Using 4C-seq to interrogate HIV-1-chromatin interactions, we found that HIV-1 interacted with host chromatin ∼100-300 kb from the integration site. By identifying chromatin regions having both increased transcription factor activity (by ATAC-seq) and HIV-1-chromatin interaction (by 4C-seq), we identified enrichment of ETS, RUNT, and ZNF-family transcription factor binding that may mediate HIV-1-host chromatin interactions. Our study has found that HIV-1 promoter activity increases host chromatin accessibility, and HIV-1 interacted with host chromatin within the existing chromatin boundaries in an integration site-dependent manner.
Collapse
Affiliation(s)
- Jack A Collora
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| |
Collapse
|
7
|
Mechanisms of Binding Specificity among bHLH Transcription Factors. Int J Mol Sci 2021; 22:ijms22179150. [PMID: 34502060 PMCID: PMC8431614 DOI: 10.3390/ijms22179150] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptome of every cell is orchestrated by the complex network of interaction between transcription factors (TFs) and their binding sites on DNA. Disruption of this network can result in many forms of organism malfunction but also can be the substrate of positive natural selection. However, understanding the specific determinants of each of these individual TF-DNA interactions is a challenging task as it requires integrating the multiple possible mechanisms by which a given TF ends up interacting with a specific genomic region. These mechanisms include DNA motif preferences, which can be determined by nucleotide sequence but also by DNA’s shape; post-translational modifications of the TF, such as phosphorylation; and dimerization partners and co-factors, which can mediate multiple forms of direct or indirect cooperative binding. Binding can also be affected by epigenetic modifications of putative target regions, including DNA methylation and nucleosome occupancy. In this review, we describe how all these mechanisms have a role and crosstalk in one specific family of TFs, the basic helix-loop-helix (bHLH), with a very conserved DNA binding domain and a similar DNA preferred motif, the E-box. Here, we compile and discuss a rich catalog of strategies used by bHLH to acquire TF-specific genome-wide landscapes of binding sites.
Collapse
|
8
|
A functional screen identifies transcriptional networks that regulate HIV-1 and HIV-2. Proc Natl Acad Sci U S A 2021; 118:2012835118. [PMID: 33836568 DOI: 10.1073/pnas.2012835118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The molecular networks involved in the regulation of HIV replication, transcription, and latency remain incompletely defined. To expand our understanding of these networks, we performed an unbiased high-throughput yeast one-hybrid screen, which identified 42 human transcription factors and 85 total protein-DNA interactions with HIV-1 and HIV-2 long terminal repeats. We investigated a subset of these transcription factors for transcriptional activity in cell-based models of infection. KLF2 and KLF3 repressed HIV-1 and HIV-2 transcription in CD4+ T cells, whereas PLAGL1 activated transcription of HIV-2 through direct protein-DNA interactions. Using computational modeling with interacting proteins, we leveraged the results from our screen to identify putative pathways that define intrinsic transcriptional networks. Overall, we used a high-throughput functional screen, computational modeling, and biochemical assays to identify and confirm several candidate transcription factors and biochemical processes that influence HIV-1 and HIV-2 transcription and latency.
Collapse
|
9
|
Balance between Retroviral Latency and Transcription: Based on HIV Model. Pathogens 2020; 10:pathogens10010016. [PMID: 33383617 PMCID: PMC7824405 DOI: 10.3390/pathogens10010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
The representative of the Lentivirus genus is the human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome (AIDS). To date, there is no cure for AIDS because of the existence of the HIV-1 reservoir. HIV-1 infection can persist for decades despite effective antiretroviral therapy (ART), due to the persistence of infectious latent viruses in long-lived resting memory CD4+ T cells, macrophages, monocytes, microglial cells, and other cell types. However, the biology of HIV-1 latency remains incompletely understood. Retroviral long terminal repeat region (LTR) plays an indispensable role in controlling viral gene expression. Regulation of the transcription initiation plays a crucial role in establishing and maintaining a retrovirus latency. Whether and how retroviruses establish latency and reactivate remains unclear. In this article, we describe what is known about the regulation of LTR-driven transcription in HIV-1, that is, the cis-elements present in the LTR, the role of LTR transcription factor binding sites in LTR-driven transcription, the role of HIV-1-encoded transactivator protein, hormonal effects on virus transcription, impact of LTR variability on transcription, and epigenetic control of retrovirus LTR. Finally, we focus on a novel clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/dCas9)-based strategy for HIV-1 reservoir purging.
Collapse
|
10
|
Zhang C, Xiong Y, Zeng L, Peng Z, Liu Z, Zhan H, Yang Z. The Role of Non-coding RNAs in Viral Myocarditis. Front Cell Infect Microbiol 2020; 10:312. [PMID: 32754448 PMCID: PMC7343704 DOI: 10.3389/fcimb.2020.00312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Viral myocarditis (VMC) is a disease characterized as myocardial parenchyma or interstitium inflammation caused by virus infection, especially Coxsackievirus B3 (CVB3) infection, which has no accurate non-invasive examination for diagnosis and specific drugs for treatment. The mechanism of CVB3-induced VMC may be related to direct myocardial damage of virus infection and extensive damage of abnormal immune response after infection. Non-coding RNA (ncRNA) refers to RNA that is not translated into protein and plays a vital role in many biological processes. There is expanding evidence to reveal that ncRNAs regulate the occurrence and development of VMC, which may provide new treatment or diagnosis targets. In this review, we mainly demonstrate an overview of the potential role of ncRNAs in the pathogenesis, diagnosis and treatment of CVB3-induced VMC.
Collapse
Affiliation(s)
- Cong Zhang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yan Xiong
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijin Zeng
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Zhihua Peng
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Zhihao Liu
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Zhan
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen Yang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
11
|
Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV Cure: The Latent Reservoir. AIDS Res Hum Retroviruses 2018; 34:739-759. [PMID: 30056745 PMCID: PMC6152859 DOI: 10.1089/aid.2018.0118] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thirty-five years after the identification of HIV-1 as the causative agent of AIDS, we are still in search of vaccines and treatments to eradicate this devastating infectious disease. Progress has been made in understanding the molecular pathogenesis of this infection, which has been crucial for the development of the current therapy regimens. However, despite their efficacy at limiting active viral replication, these drugs are unable to purge the latent reservoir: a pool of cells that harbor transcriptionally inactive, but replication-competent HIV-1 proviruses, and that represent the main barrier to eradicate HIV-1 from affected individuals. In this review, we discuss advances in the field that have allowed a better understanding of HIV-1 latency, including the diverse cell types that constitute the latent reservoir, factors influencing latency, tools to study HIV-1 latency, as well as current and prospective therapeutic approaches to target these latently infected cells, so a functional cure for HIV/AIDS can become a reality.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|
12
|
Boumart I, Figueroa T, Dambrine G, Muylkens B, Pejakovic S, Rasschaert D, Dupuy C. GaHV-2 ICP22 protein is expressed from a bicistronic transcript regulated by three GaHV-2 microRNAs. J Gen Virol 2018; 99:1286-1300. [PMID: 30067174 DOI: 10.1099/jgv.0.001124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Herpesviruses have a lifecycle consisting of successive lytic, latent and reactivation phases. Only three infected cell proteins (ICPs) have been described for the oncogenic Marek's disease virus (or Gallid herpes virus 2, GaHV-2): ICP4, ICP22 and ICP27. We focus here on ICP22, confirming its cytoplasmic location and showing that ICP22 is expressed during productive phases of the lifecycle, via a bicistronic transcript encompassing the US10 gene. We also identified the unique promoter controlling ICP22 expression, and its core promoter, containing functional responsive elements including E-box, ETS-1 and GATA elements involved in ICP22 transactivation. ICP22 gene expression was weakly regulated by DNA methylation and activated by ICP4 or ICP27 proteins. We also investigated the function of GaHV-2 ICP22. We found that this protein repressed transcription from its own promoter and from those of IE ICP4 and ICP27, and the late gK promoter. Finally, we investigated posttranscriptional ICP22 regulation by GaHV-2 microRNAs. We found that mdv1-miR-M5-3p and -M1-5p downregulated ICP22 mRNA expression during latency, whereas, unexpectedly, mdv1-miR-M4-5p upregulated the expression of the protein ICP22, indicating a tight regulation of ICP22 expression by microRNAs.
Collapse
Affiliation(s)
- Imane Boumart
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Thomas Figueroa
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France.,†Present address: Interactions Hôtes Agents Pathogènes, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Ginette Dambrine
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Benoit Muylkens
- 2Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Srdan Pejakovic
- 2Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Denis Rasschaert
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Catherine Dupuy
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| |
Collapse
|
13
|
Transcription Factor ETS-1 and Reactive Oxygen Species: Role in Vascular and Renal Injury. Antioxidants (Basel) 2018; 7:antiox7070084. [PMID: 29970819 PMCID: PMC6071050 DOI: 10.3390/antiox7070084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 12/24/2022] Open
Abstract
The E26 avian erythroblastosis virus transcription factor-1 (ETS-1) is a member of the ETS family and regulates the expression of a variety of genes including growth factors, chemokines and adhesion molecules. Although ETS-1 was discovered as an oncogene, several lines of research show that it is up-regulated by angiotensin II (Ang II) both in the vasculature and the glomerulus. While reactive oxygen species (ROS) are required for Ang II-induced ETS-1 expression, ETS-1 also regulates the expression of p47phox, which is one of the subunits of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and a major source of ROS in the kidney and vasculature. Thus, there appears to be a positive feedback between ETS-1 and ROS. ETS-1 is also upregulated in the kidneys of rats with salt-sensitive hypertension and plays a major role in the development of end-organ injury in this animal model. Activation of the renin angiotensin system is required for the increased ETS-1 expression in these rats, and blockade of ETS-1 or haplodeficiency reduces the severity of kidney injury in these rats. In summary, ETS-1 plays a major role in the development of vascular and renal injury and is a potential target for the development of novel therapeutic strategies to ameliorate end-organ injury in hypertension.
Collapse
|
14
|
Surles-Zeigler MC, Li Y, Distel TJ, Omotayo H, Ge S, Ford BD. Transcriptomic analysis of neuregulin-1 regulated genes following ischemic stroke by computational identification of promoter binding sites: A role for the ETS-1 transcription factor. PLoS One 2018; 13:e0197092. [PMID: 29856744 PMCID: PMC5983438 DOI: 10.1371/journal.pone.0197092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 04/26/2018] [Indexed: 11/19/2022] Open
Abstract
Ischemic stroke is a major cause of mortality in the United States. We previously showed that neuregulin-1 (NRG1) was neuroprotective in rat models of ischemic stroke. We used gene expression profiling to understand the early cellular and molecular mechanisms of NRG1's effects after the induction of ischemia. Ischemic stroke was induced by middle cerebral artery occlusion (MCAO). Rats were allocated to 3 groups: (1) control, (2) MCAO and (3) MCAO + NRG1. Cortical brain tissues were collected three hours following MCAO and NRG1 treatment and subjected to microarray analysis. Data and statistical analyses were performed using R/Bioconductor platform alongside Genesis, Ingenuity Pathway Analysis and Enrichr software packages. There were 2693 genes differentially regulated following ischemia and NRG1 treatment. These genes were organized by expression patterns into clusters using a K-means clustering algorithm. We further analyzed genes in clusters where ischemia altered gene expression, which was reversed by NRG1 (clusters 4 and 10). NRG1, IRS1, OPA3, and POU6F1 were central linking (node) genes in cluster 4. Conserved Transcription Factor Binding Site Finder (CONFAC) identified ETS-1 as a potential transcriptional regulator of NRG1 suppressed genes following ischemia. A transcription factor activity array showed that ETS-1 activity was increased 2-fold, 3 hours following ischemia and this activity was attenuated by NRG1. These findings reveal key early transcriptional mechanisms associated with neuroprotection by NRG1 in the ischemic penumbra.
Collapse
Affiliation(s)
- Monique C. Surles-Zeigler
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Yonggang Li
- Department of Biomedical Sciences, University of California–Riverside School of Medicine, Riverside, California, United States of America
- ICF, Atlanta, GA, United States of America
| | - Timothy J. Distel
- Department of Biomedical Sciences, University of California–Riverside School of Medicine, Riverside, California, United States of America
| | - Hakeem Omotayo
- Department of Biomedical Sciences, University of California–Riverside School of Medicine, Riverside, California, United States of America
| | - Shaokui Ge
- Department of Biomedical Sciences, University of California–Riverside School of Medicine, Riverside, California, United States of America
| | - Byron D. Ford
- Department of Biomedical Sciences, University of California–Riverside School of Medicine, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
He DD, Lu Y, Gittelman R, Jin Y, Ling F, Joshua A. Positive selection of the TRIM family regulatory region in primate genomes. Proc Biol Sci 2017; 283:rspb.2016.1602. [PMID: 27733547 DOI: 10.1098/rspb.2016.1602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
Viral selection pressure has acted on restriction factors that play an important role in the innate immune system by inhibiting the replication of viruses during primate evolution. Tripartite motif-containing (TRIM) family members are some of these restriction factors. It is becoming increasingly clear that gene expression differences, rather than protein-coding regions changes, could play a vital role in the anti-retroviral immune mechanism. Increasingly, recent studies have created genome-scale catalogues of DNase I hypersensitive sites (DHSs), which demark potentially functional regulatory DNA. To improve our understanding of the molecular evolution mechanism of antiviral differences between species, we leveraged 14 130 DHSs derived from 145 cell types to characterize the regulatory landscape of the TRIM region. Subsequently, we compared the alignments of the DHSs across six primates and found 375 DHSs that are conserved in non-human primates but exhibit significantly accelerated rates of evolution in the human lineage (haDHSs). Furthermore, we discovered 31 human-specific potential transcription factor motifs within haDHSs, including the KROX and SP1, that both interact with HIV-1 Importantly, the corresponding haDHS was correlated with antiviral factor TRIM23 Thus, our results suggested that some viruses may contribute, through regulatory DNA differences, to organismal evolution by mediating TRIM gene expression to escape immune surveillance.
Collapse
Affiliation(s)
- Dan-Dan He
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Yueer Lu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Rachel Gittelman
- Department of Genome Sciences, University of Washington, Seattle, WA 98125, USA
| | - Yabin Jin
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Fei Ling
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Akey Joshua
- Department of Genome Sciences, University of Washington, Seattle, WA 98125, USA
| |
Collapse
|
17
|
Vemula SV, Maxwell JW, Nefedov A, Wan BL, Steve J, Newhard W, Sanchez RI, Tellers D, Barnard RJ, Blair W, Hazuda D, Webber AL, Howell BJ. Identification of proximal biomarkers of PKC agonism and evaluation of their role in HIV reactivation. Antiviral Res 2016; 139:161-170. [PMID: 27889530 DOI: 10.1016/j.antiviral.2016.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/18/2022]
Abstract
DESIGN The HIV latent CD4+ T cell reservoir is broadly recognized as a barrier to HIV cure. Induction of HIV expression using protein kinase C (PKC) agonists is one approach under investigation for reactivation of latently infected CD4+ T cells (Beans et al., 2013; Abreu et al., 2014; Jiang et al., 2014; Jiang and Dandekar, 2015). We proposed that an increased understanding of the molecular mechanisms of action of PKC agonists was necessary to inform on biological signaling and pharmacodynamic biomarkers. RNA sequencing (RNA Seq) was applied to identify genes and pathways modulated by PKC agonists. METHODS Human CD4+ T cells were treated ex vivo with Phorbol 12-myristate 13-acetate, prostatin or ingenol-3-angelate. At 3 h and 24 h post-treatment, cells were harvested and RNA-Seq was performed on RNA isolated from cell lysates. The genes differentially expressed across the PKC agonists were validated by quantitative RT-PCR (qPCR). A subset of genes was evaluated for their role in HIV reactivation using siRNA and CRISPR approaches in the Jurkat latency cell model. RESULTS Treatment of primary human CD4+ T cells with PKC agonists resulted in alterations in gene expression. qPCR of RNA Seq data confirmed upregulation of 24 genes, including CD69, Egr1, Egr2, Egr3, CSF2, DUSP5, and NR4A1. Gene knockdown of Egr1 and Egr3 resulted in reduced expression and decreased HIV reactivation in response to PKC agonist treatment, indicating a potential role for Egr family members in latency reversal. CONCLUSION Overall, our results offer new insights into the mechanism of action of PKC agonists, biomarkers of pathway engagement, and the potential role of EGR family in HIV reactivation.
Collapse
Affiliation(s)
| | - Jill W Maxwell
- Infectious Diseases and Vaccines, Merck & Co., West Point, PA, USA
| | - Alexey Nefedov
- Discovery Pharmacogenomics, Merck & Co., West Point, PA, USA
| | - Bang-Lin Wan
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., West Point, PA, USA
| | - Justin Steve
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., West Point, PA, USA
| | - William Newhard
- Infectious Diseases and Vaccines, Merck & Co., West Point, PA, USA
| | - Rosa I Sanchez
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., West Point, PA, USA
| | - David Tellers
- Medicinal Chemistry, Merck & Co., West Point, PA, USA
| | | | - Wade Blair
- Infectious Diseases and Vaccines, Merck & Co., West Point, PA, USA
| | - Daria Hazuda
- Infectious Diseases and Vaccines, Merck & Co., West Point, PA, USA
| | - Andrea L Webber
- Discovery Pharmacogenomics, Merck & Co., West Point, PA, USA
| | - Bonnie J Howell
- Infectious Diseases and Vaccines, Merck & Co., West Point, PA, USA.
| |
Collapse
|
18
|
E2A Antagonizes PU.1 Activity through Inhibition of DNA Binding. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3983686. [PMID: 26942192 PMCID: PMC4749766 DOI: 10.1155/2016/3983686] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/06/2016] [Indexed: 11/18/2022]
Abstract
Antagonistic interactions between transcription factors contribute to cell fate decisions made by multipotent hematopoietic progenitor cells. Concentration of the transcription factor PU.1 affects myeloid/lymphoid development with high levels of PU.1 directing myeloid cell fate acquisition at the expense of B cell differentiation. High levels of PU.1 may be required for myelopoiesis in order to overcome inhibition of its activity by transcription factors that promote B cell development. The B cell transcription factors, E2A and EBF, are necessary for commitment of multipotential progenitors and lymphoid primed multipotential progenitors to lymphocytes. In this report we hypothesized that factors required for early B cell commitment would bind to PU.1 and antagonize its ability to induce myeloid differentiation. We investigated whether E2A and/or EBF associate with PU.1. We observed that the E2A component, E47, but not EBF, directly binds to PU.1. Additionally E47 represses PU.1-dependent transactivation of the MCSFR promoter through antagonizing PU.1's ability to bind to DNA. Exogenous E47 expression in hematopoietic cells inhibits myeloid differentiation. Our data suggest that E2A antagonism of PU.1 activity contributes to its ability to commit multipotential hematopoietic progenitors to the lymphoid lineages.
Collapse
|
19
|
Abstract
A virus protein called Tat plays a dual role in HIV infection by regulating the expression of genes belonging to the virus and genes belonging to the host cells.
Collapse
Affiliation(s)
- Matjaz Barboric
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Koh Fujinaga
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
20
|
Zeng Y, Li H, Zhang X, Shang J, Kang Y. Basal transcription of APOBEC3G is regulated by USF1 gene in hepatocyte. Biochem Biophys Res Commun 2016; 470:54-60. [PMID: 26772882 DOI: 10.1016/j.bbrc.2015.12.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/23/2015] [Indexed: 11/13/2022]
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) exert antiviral defense as an important factor of innate immunity. A variety of cytokines such as IFN-γ、IL2、IL15、IL7 could induce the transcription of A3G. However, the regulation of other nuclear factor on the transcription of A3G have not been reported at the present. To gain new insights into the transcriptional regulation of this restriction factor, we cloned and characterized the promoter region of A3G and investigate the modulation of USF1 gene on the transcription of A3G. We identified a 232 bp region that was sufficient to regulate the activity of full promoter. Transcriptional start sites (TSS) were identified by the luciferase reporter assays of plasmids containing full or shorter fragments of the A3G promoter. The results demonstrated that the core promoter of A3G is located within the region -159/-84 relative to the TSS. Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position -91/-86 relative to the major TSS) and was abolished after mutation of this DNA element. USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte, and the identified E-box represented a binding site for the USF1.
Collapse
Affiliation(s)
- Yanli Zeng
- Department of Infectious Diseases, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China
| | - Hui Li
- The Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science Technology, Wuhan, 430000, China
| | - Xiaoju Zhang
- Department of Respiratory Medicine, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China
| | - Jia Shang
- Department of Infectious Diseases, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China
| | - Yi Kang
- Department of Infectious Diseases, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China.
| |
Collapse
|
21
|
White CH, Johnston HE, Moesker B, Manousopoulou A, Margolis DM, Richman DD, Spina CA, Garbis SD, Woelk CH, Beliakova-Bethell N. Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency. Antiviral Res 2015; 123:78-85. [PMID: 26343910 PMCID: PMC5606336 DOI: 10.1016/j.antiviral.2015.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/22/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a "shock and kill" strategy to cure HIV-infected patients. While it was effective at inducing expression of HIV RNA ("shock"), treatment with SAHA did not result in a reduction of reservoir size ("kill"). We therefore utilized a combined analysis of effects of SAHA on the host transcriptome and proteome to dissect its mechanisms of action that may explain its limited success in "shock and kill" strategies. CD4+ T cells from HIV seronegative donors were treated with 1μM SAHA or its solvent dimethyl sulfoxide (DMSO) for 24h. Protein expression and post-translational modifications were measured with iTRAQ proteomics using ultra high-precision two-dimensional liquid chromatography-tandem mass spectrometry. Gene expression was assessed by Illumina microarrays. Using limma package in the R computing environment, we identified 185 proteins, 18 phosphorylated forms, 4 acetylated forms and 2982 genes, whose expression was modulated by SAHA. A protein interaction network integrating these 4 data types identified the HIV transcriptional repressor HMGA1 to be upregulated by SAHA at the transcript, protein and acetylated protein levels. Further functional category assessment of proteins and genes modulated by SAHA identified gene ontology terms related to NFκB signaling, protein folding and autophagy, which are all relevant to HIV reactivation. In summary, SAHA modulated numerous host cell transcripts, proteins and post-translational modifications of proteins, which would be expected to have very mixed effects on the induction of HIV-specific transcription and protein function. Proteome profiling highlighted a number of potential counter-regulatory effects of SAHA with respect to viral induction, which transcriptome profiling alone would not have identified. These observations could lead to a more informed selection and design of other HDACi with a more refined targeting profile, and prioritization of latency reversing agents of other classes to be used in combination with SAHA to achieve more potent induction of HIV expression.
Collapse
Affiliation(s)
- Cory H White
- Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA; San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA
| | - Harvey E Johnston
- Cancer Sciences Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK; Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Bastiaan Moesker
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK
| | - Antigoni Manousopoulou
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK
| | - David M Margolis
- Departments of Medicine, Microbiology and Immunology, Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Douglas D Richman
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Celsa A Spina
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Spiros D Garbis
- Cancer Sciences Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK; Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK.
| | - Christopher H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK.
| | | |
Collapse
|
22
|
Corsten MF, Heggermont W, Papageorgiou AP, Deckx S, Tijsma A, Verhesen W, van Leeuwen R, Carai P, Thibaut HJ, Custers K, Summer G, Hazebroek M, Verheyen F, Neyts J, Schroen B, Heymans S. The microRNA-221/-222 cluster balances the antiviral and inflammatory response in viral myocarditis. Eur Heart J 2015. [DOI: 10.1093/eurheartj/ehv321] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Aims
Viral myocarditis (VM) is an important cause of heart failure and sudden cardiac death in young healthy adults; it is also an aetiological precursor of dilated cardiomyopathy. We explored the role of the miR-221/-222 family that is up-regulated in VM.
Methods and results
Here, we show that microRNA-221 (miR-221) and miR-222 levels are significantly elevated during acute VM caused by Coxsackievirus B3 (CVB3). Both miRs are expressed by different cardiac cells and by infiltrating inflammatory cells, but their up-regulation upon myocarditis is mostly exclusive for the cardiomyocyte. Systemic inhibition of miR-221/-222 in mice increased cardiac viral load, prolonged the viraemic state, and strongly aggravated cardiac injury and inflammation. Similarly, in vitro, overexpression of miR-221 and miR-222 inhibited enteroviral replication, whereas knockdown of this miR-cluster augmented viral replication. We identified and confirmed a number of miR-221/-222 targets that co-orchestrate the increased viral replication and inflammation, including ETS1/2, IRF2, BCL2L11, TOX, BMF, and CXCL12. In vitro inhibition of IRF2, TOX, or CXCL12 in cardiomyocytes significantly dampened their inflammatory response to CVB3 infection, confirming the functionality of these targets in VM and highlighting the importance of miR-221/-222 as regulators of the cardiac response to VM.
Conclusions
The miR-221/-222 cluster orchestrates the antiviral and inflammatory immune response to viral infection of the heart. Its inhibition increases viral load, inflammation, and overall cardiac injury upon VM.
Collapse
Affiliation(s)
- Maarten F Corsten
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Ward Heggermont
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
- Center for Molecular and Vascular Research, University of Leuven, Leuven B-3000, Belgium
- Department of Internal Medicine, Service of Cardiology, University Hospitals Leuven, Leuven B-3000, Belgium
| | - Anna-Pia Papageorgiou
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
- Center for Molecular and Vascular Research, University of Leuven, Leuven B-3000, Belgium
| | - Sophie Deckx
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Aloys Tijsma
- Rega Institute for Medical Research, University of Leuven, Leuven B-3000, Belgium
| | - Wouter Verhesen
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Rick van Leeuwen
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Paolo Carai
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
- Center for Molecular and Vascular Research, University of Leuven, Leuven B-3000, Belgium
| | - Hendrik-Jan Thibaut
- Rega Institute for Medical Research, University of Leuven, Leuven B-3000, Belgium
| | - Kevin Custers
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Georg Summer
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Mark Hazebroek
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Fons Verheyen
- Electron Microscopy Unit, Maastricht University, Maastricht AZ-6202, The Netherlands
| | - Johan Neyts
- Rega Institute for Medical Research, University of Leuven, Leuven B-3000, Belgium
| | - Blanche Schroen
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
- Center for Molecular and Vascular Research, University of Leuven, Leuven B-3000, Belgium
| |
Collapse
|
23
|
Horbach T, Götz C, Kietzmann T, Dimova EY. Protein kinases as switches for the function of upstream stimulatory factors: implications for tissue injury and cancer. Front Pharmacol 2015; 6:3. [PMID: 25741280 PMCID: PMC4332324 DOI: 10.3389/fphar.2015.00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/07/2015] [Indexed: 01/30/2023] Open
Abstract
The upstream stimulatory factors (USFs) are regulators of important cellular processes. Both USF1 and USF2 are supposed to have major roles in metabolism, tissue protection and tumor development. However, the knowledge about the mechanisms that control the function of USFs, in particular in tissue protection and cancer, is limited. Phosphorylation is a versatile tool to regulate protein functions. Thereby, phosphorylation can positively or negatively affect different aspects of transcription factor function including protein stability, protein-protein interaction, cellular localization, or DNA binding. The present review aims to summarize the current knowledge about the regulation of USFs by direct phosphorylation and the consequences for USF functions in tissue protection and cancer.
Collapse
Affiliation(s)
- Tina Horbach
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland ; Department of Chemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University , Homburg, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| |
Collapse
|
24
|
Wojcechowskyj JA, Didigu CA, Lee JY, Parrish NF, Sinha R, Hahn BH, Bushman FD, Jensen ST, Seeholzer SH, Doms RW. Quantitative phosphoproteomics reveals extensive cellular reprogramming during HIV-1 entry. Cell Host Microbe 2013; 13:613-623. [PMID: 23684312 PMCID: PMC4104530 DOI: 10.1016/j.chom.2013.04.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/11/2013] [Accepted: 04/22/2013] [Indexed: 12/30/2022]
Abstract
Receptor engagement by HIV-1 during host cell entry activates signaling pathways that can reprogram the cell for optimal viral replication. To obtain a global view of the signaling events induced during HIV-1 entry, we conducted a quantitative phosphoproteomics screen of primary human CD4(+) T cells after infection with an HIV-1 strain that engages the receptors CD4 and CXCR4. We quantified 1,757 phosphorylation sites with high stringency. The abundance of 239 phosphorylation sites from 175 genes, including several proteins in pathways known to be impacted by HIV-receptor binding, changed significantly within a minute after HIV-1 exposure. Several previously uncharacterized HIV-1 host factors were also identified and confirmed through RNAi depletion studies. Surprisingly, five serine/arginine-rich (SR) proteins involved in messenger RNA splicing, including the splicing factor SRm300 (SRRM2), were differentially phosophorylated. Mechanistic studies with SRRM2 suggest that HIV-1 modulates host cell alternative splicing machinery during entry in order to facilitate virus replication and release.
Collapse
Affiliation(s)
- Jason A Wojcechowskyj
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Chuka A Didigu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Jessica Y Lee
- Protein and Proteomics Core, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Nicholas F Parrish
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rohini Sinha
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shane T Jensen
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven H Seeholzer
- Protein and Proteomics Core, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Robert W Doms
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Wang Z, Zhang Q. Genome-wide identification and evolutionary analysis of the animal specific ETS transcription factor family. Evol Bioinform Online 2009; 5:119-31. [PMID: 20011068 PMCID: PMC2789578 DOI: 10.4137/ebo.s2948] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ETS proteins are a family of transcription factors (TFs) that regulate a variety of biological processes. We made genome-wide analyses to explore the classification of the ETS gene family. We identified 207 ETS genes which encode 321 ETS TFs from ten animal species. Of the 321 ETS TFs, 155 contain only an ETS domain, about 50% contain a ETS_PEA3_N or a SAM_PNT domain in addition to an ETS domain, the rest (only four) contain a second ETS domain or a second ETS_PEA3_N domain or an another domain (AT_hook or DNA_pol_B). A Neighbor-Joining phylogenetic tree was constructed using the amino acid sequences of the ETS domain of the ETS TFs. The results revealed that the ETS genes of the ten species can be divided into two distinct groups. Group I contains one nematode ETS gene and 18 vertebrate animal ETS genes. Group II contains the majority of the ETS TFs and can be further divided into eleven subgroups. The sequence motifs outside the DNA-binding domain and the conservation of the exon-intron structural patterns of the ETS TFs in human, cattle, and chicken further support the phylogenetic classification among these ETS TFs. Extensive duplication of the ETS genes was found in the genome of each species. The duplicated ETS genes account for ~69% of the total of ETS genes. Furthermore, we also found there are ETS gene clusters in all of the ten animal species. Statistical analysis of the Gene Ontology annotations of the ETS genes showed that the ETS proteins tend to be related to RNA biosynthetic process, biopolymer metabolic process and macromolecule metabolic process expected from the common GO categories of transcriptional factors. We also discussed the functional conservation and diversification of ETS TFs.
Collapse
Affiliation(s)
- Zhipeng Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
26
|
Fitzsimmons D, Lukin K, Lutz R, Garvie CW, Wolberger C, Hagman J. Highly cooperative recruitment of Ets-1 and release of autoinhibition by Pax5. J Mol Biol 2009; 392:452-64. [PMID: 19616560 DOI: 10.1016/j.jmb.2009.07.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 01/21/2023]
Abstract
Pax5 (paired box binding factor 5) is a critical regulator of transcription and lineage commitment in B lymphocytes. In B cells, mb-1 (Ig-alpha/immunoglobulin-associated alpha) promoter transcription is activated by Pax5 through its recruitment of E74-like transforming sequence (Ets) family proteins to a composite site, the P5-EBS (Pax5-Ets binding site). Previously, X-ray crystallographic analysis revealed a network of contacts between the DNA-binding domains of Pax5 and Ets-1 while bound to the P5-EBS. Here, we report that Pax5 assembles these ternary complexes via highly cooperative interactions that overcome the autoinhibition of Ets-1. Using recombinant proteins, we calculated K(d(app)) values for the binding of Pax5, Ets-1, and GA-binding proteins, separately or together, to the P5-EBS. By itself, Pax5 binds the P5-EBS with high affinity (K(d) approximately equal 2 nM). Ets-1(331-440) bound the P5-EBS by itself with low affinity (K(d)=136 nM). However, autoinhibited Ets-1(280-440) alone does not bind detectably to the suboptimal sequences of the P5-EBS. Recruitment of Ets-1(331-440) or Ets-1(280-440) resulted in highly efficient ternary complex assembly with Pax5. Pax5 counteracts autoinhibition and increases binding of Ets-1 of the mb-1 promoter by >1000-fold. Mutation of Pax5 Gln22 to alanine (Q22A) enhances promoter binding by Pax5; however, Q22A greatly reduces recruitment of Ets-1(331-440) and Ets-1(280-440) by Pax5 (8.9- or >300-fold, respectively). Thus, Gln22 of Pax5 is essential for overcoming Ets-1 autoinhibition. Pax5 wild type and Q22A each recruited GA-binding protein alpha/beta1 to the mb-1 promoter with similar affinities, but recruitment was less efficient than that of Ets-1 (reduced by approximately 8-fold). Our results suggest a mechanism that allows Pax5 to overcome autoinhibition of Ets-1 DNA binding. In summary, these data illustrate requirements for partnerships between Ets proteins and Pax5.
Collapse
Affiliation(s)
- Daniel Fitzsimmons
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
27
|
Isolation of a cellular factor that can reactivate latent HIV-1 without T cell activation. Proc Natl Acad Sci U S A 2009; 106:6321-6. [PMID: 19336585 DOI: 10.1073/pnas.0809536106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 latency in resting CD4(+) T cells represents a major barrier to virus eradication in patients on highly active antiretroviral therapy (HAART). Eliminating the latent HIV-1 reservoir may require the reactivation of viral gene expression in latently infected cells. Most approaches for reactivating latent HIV-1 require nonspecific T cell activation, which has potential toxicity. To identify factors for reactivating latent HIV-1 without inducing global T cell activation, we performed a previously undescribed unbiased screen for genes that could activate transcription from the HIV-1 LTR in an NF-kappaB-independent manner, and isolated an alternatively spliced form of the transcription factor Ets-1, DeltaVII-Ets-1. DeltaVII-Ets-1 activated HIV-1 transcription through 2 conserved regions in the LTR, and reactivated latent HIV-1 in cells from patients on HAART without causing significant T cell activation. Our results highlight the therapeutic potential of cellular factors for the reactivation of latent HIV-1 and provide an efficient approach for their identification.
Collapse
|
28
|
YY1 and FoxD3 regulate antiretroviral zinc finger protein OTK18 promoter activation induced by HIV-1 infection. J Neuroimmune Pharmacol 2008; 4:103-15. [PMID: 19034670 DOI: 10.1007/s11481-008-9139-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
Abstract
OTK18 is a C2H2 type zinc finger protein involved in the regulation of HIV-1 replication in human mononuclear phagocytes. Previously, we reported OTK18 expression in brain perivascular macrophages but not in microglia in HIV encephalitis brain. We have cloned the OTK18 promoter region proximal to the transcriptional start site and determined the region responsible (-884/+1) for the basal transcriptional activity in a microglia cell line. Sequential deletion mutation analyses reveal three important response elements: Yingyang-1 (YY1; -805/-777), an HIV-1 response element for promoter activation; FoxD3 (-743/-725), a negative regulatory element; and Ets response element (-725/-707), a basal transcriptional activity response element. HIV-1 infection-induced upregulation of YY1 and c-Ets-1 protein, binding to the promoter region as determined by immunoblotting and chromatin immunoprecipitation and polymerase chain reaction (PCR) assays, and induction of YY1 was also observed in virus-infected monocyte-derived macrophages. Silencing of FoxD3 and YY1 in the cell line by small interfering RNA duplexes specific to these molecules significantly up- and downregulated basal OTK18 promoter activity in FoxD3 and YY1 response element-dependent manners, respectively. On the other hand, infection of primary cultured human microglia significantly reduced YY1 expression and induced FoxD3 as determined by immunoblotting and reverse transcription real-time PCR. These data suggest that HIV-1 induces OTK18 expression through a YY1-mediated manner in human macrophages, although its gene expression is suppressed by FoxD3 upregulation and YY1 downregulation in human microglia. This mechanism may explain the perivascular macrophage-specific expression of OTK18 in HIV encephalitis brains.
Collapse
|
29
|
Lamber EP, Vanhille L, Textor LC, Kachalova GS, Sieweke MH, Wilmanns M. Regulation of the transcription factor Ets-1 by DNA-mediated homo-dimerization. EMBO J 2008; 27:2006-17. [PMID: 18566588 PMCID: PMC2486274 DOI: 10.1038/emboj.2008.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 05/23/2008] [Indexed: 01/07/2023] Open
Abstract
The function of the Ets-1 transcription factor is regulated by two regions that flank its DNA-binding domain. A previously established mechanism for auto-inhibition of monomeric Ets-1 on DNA response elements with a single ETS-binding site, however, has not been observed for the stromelysin-1 promoter containing two palindromic ETS-binding sites. We present the structure of Ets-1 on this promoter element, revealing a ternary complex in which protein homo-dimerization is mediated by the specific arrangement of the two ETS-binding sites. In this complex, the N-terminal-flanking region is required for ternary protein-DNA assembly. Ets-1 variants, in which residues from this region are mutated, loose the ability for DNA-mediated dimerization and stromelysin-1 promoter transactivation. Thus, our data unravel the molecular basis for relief of auto-inhibition and the ability of Ets-1 to function as a facultative dimeric transcription factor on this site. Our findings may also explain previous data of Ets-1 function in the context of heterologous transcription factors, thus providing a molecular model that could also be valid for Ets-1 regulation by hetero-oligomeric assembly.
Collapse
Affiliation(s)
| | - Laurent Vanhille
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France,Institut National de la Santé et de la Recherche Médicale, Marseille, France,Centre National de la Recherche Scientifique, Parc scientifique de Luminy, Marseille, France
| | | | - Galina S Kachalova
- Max-Planck Unit for Structural Molecular Biology, c/o DESY, Hamburg, Germany
| | - Michael H Sieweke
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France,Institut National de la Santé et de la Recherche Médicale, Marseille, France,Centre National de la Recherche Scientifique, Parc scientifique de Luminy, Marseille, France
| | - Matthias Wilmanns
- EMBL-Hamburg, c/o DESY, Hamburg, Germany,EMBL Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, Building 25A, Hamburg D-22603, Germany. Tel.: +49 40 899 021 26; Fax: +49 40 899 021 49; E-mail:
| |
Collapse
|
30
|
Zhao J, Lu B, Xu H, Tong X, Wu G, Zhang X, Liang A, Cong W, Dai J, Wang H, Wu M, Guo Y. Thirty-kilodalton Tat-interacting protein suppresses tumor metastasis by inhibition of osteopontin transcription in human hepatocellular carcinoma. Hepatology 2008; 48:265-75. [PMID: 18537194 DOI: 10.1002/hep.22280] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED It has been previously demonstrated that the 30-kDa Tat-interacting protein (TIP30) plays an important role in the suppression of hepatocarcinogenesis by acting as a tumor suppressor. Here we report that TIP30 suppresses metastasis of hepatocellular carcinoma (HCC) through inhibiting the transcription of osteopontin (OPN), a key molecule in the development of tumor metastasis. The expression of TIP30 messenger RNA was reverse to that of OPN messenger RNA in HCC cell lines. Ectopic expression of TIP30 greatly suppressed OPN expression, inhibited invasion of HCC cells through extracellular matrix (ECM) and adhesion with fibronectin in vitro, whereas down-regulation of TIP30 by RNA-mediated interference enhanced OPN expression and promoted metastatic abilities of HCC cells in vitro. Moreover, overexpression of TIP30 significantly inhibited the growth and lung metastases of HCC cells in nude mice. In contrast, down-regulation of TIP30 greatly promoted tumor cell growth and metastases in vivo. TIP30 repressed OPN transcription through interaction with Ets-1 and suppressed the transcriptional activity of Ets-1 and synergistic actions of Ets-1 and alkaline phosphatase-1. Thus, TIP30 may act as an Ets-1 modulator and inhibit tumor metastasis through abrogating Ets-1-dependent transcription. Moreover, expression of TIP30 was inversely associated with OPN expression in HCC tissue samples as detected by immunohistochemistry assay. CONCLUSION Our results reveal a novel pathway by which OPN and possibly other Ets-1 target genes involved in tumor metastasis are regulated by TIP30 and elucidate a mechanism for metastasis promoted by TIP30 deficiency.
Collapse
Affiliation(s)
- Jian Zhao
- International Joint Cancer Institute and Eastern Hospital of Hepatobiliary Surgery, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Efficient system for biotinylated recombinant Ets-1 production in Escherichia coli: a useful tool for studying interactions between Ets-1 and its partners. Protein Expr Purif 2008; 62:53-63. [PMID: 18639639 DOI: 10.1016/j.pep.2008.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/19/2008] [Accepted: 06/19/2008] [Indexed: 11/24/2022]
Abstract
Identification of Ets-1 interaction partners is critical for understanding its properties. Ets-1 DNA-binding is governed by an intramolecular mechanism called autoinhibition. Ets-1 increases its DNA-binding affinity by counteracting autoinhibition through binding either to a particular organization of Ets binding sites (EBS) in palindrome, as in the Stromelysin-1 promoter, or to EBS adjacent to DNA-binding sites of its partners by combinatorial interactions, as in the Collagenase-1 promoter. Identification of new Ets-1 interaction partners should allow the identification of new functions for this transcription factor. To this end, we fused a biotin tag to Ets-1 protein in order to copurify it and its partners by affinity. For the first time, we cloned, produced in Escherichia coli and purified a biotinylated recombinant Ets-1 protein using the T7-Impact system (New England Biolabs), adapted to induce biotinylation. Nearly 100% biotinylation was attained without altering Ets-1 properties. Biotinylated Ets-1 bound to and transactivated the Stromelysin-1 promoter the same way as native Ets-1 did. It also conserved interactions with known Ets-1 partners such as c-Jun, Erk-2 and Runx-1. In addition, streptavidin pull-down and surface plasmon resonance assays demonstrated that biotinylated Ets-1 is a useful tool for qualitative and quantitative studies of Ets-1 interaction with its partners.
Collapse
|
32
|
Mehta R, Sundaravaradan V, Ahmad N. Mutations generated in human immunodeficiency virus type 1 long terminal repeat during vertical transmission correlate with viral gene expression. Virology 2008; 375:170-81. [PMID: 18313715 DOI: 10.1016/j.virol.2008.01.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/15/2007] [Accepted: 01/31/2008] [Indexed: 11/24/2022]
Abstract
We determined the effect of mutations generated in HIV-1 LTR on viral gene expression in six mother-infant pairs following vertical transmission. We show that the functional domains critical for LTR function, the promoter (TATAA), enhancers (three SpI and two NFkappaB sites), the modulatory region (two AP-I sites, two NFAT, one NF-IL6 site, one Ets-1, and one USF-1) and the TAR region were generally conserved among mother-infant pairs, although we observed several patient and pair specific mutations in these important domains. We then determined the promoter activity of our mother-infant LTR sequences by measuring CAT gene expression, which was driven by these LTRs and found that most of these HIV-1 LTRs derived from 6 mother-infant pairs were functional. However, mutations in the important transcription factor binding sites, including TATAA, SpI, NFkappaB, AP-I, NFAT, NF-IL6, Ets-1, USF-1 and TAR resulted in reduced LTR driven CAT gene expression. Taken together, conservation of functional domains in the LTR during vertical transmission supports the notion that a functional LTR is critical in viral replication and pathogenesis and mutations generated during the course of infection correlated with HIV-1 gene expression.
Collapse
Affiliation(s)
- Roshni Mehta
- Department of Immunobiology, College of Medicine, The University of Arizona, 1501 N. Campbell Avenue, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
33
|
Mehta R, Ramakrishnan R, Doktor K, Sundaravaradan V, Ahmad N. Genetic characterization of HIV type 1 long terminal repeat following vertical transmission. AIDS Res Hum Retroviruses 2008; 24:437-45. [PMID: 18327987 DOI: 10.1089/aid.2007.0234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) sequences were characterized from six mother-infant pairs following vertical transmission. The LTR sequences exhibited a low degree of heterogeneity within mothers, within infants, and between epidemiologically linked mother-infant pairs. However, LTR sequences were more heterogeneous between epidemiologically unlinked individuals compared with linked mother-infant pairs. These data were further supported by low estimates of genetic diversity and clustering of each mother-infant pair's sequences into a separate subtree as well as the presence of common signature sequences between mother-infant pairs. The functional domains essential for LTR (promoter) function, including the promoter (TATAA), enhancers (three Sp-I and two NF-kappaB), the modulatory regions (two AP-I sites, two NFAT, one NF-IL6 site, one Ets-1, and one USF-1), and the TAR region were generally conserved among mother-infant pairs. Taken together, limited heterogeneity and conservation of functional domains in the LTR following vertical transmission support the notion that a functional LTR is critical in viral replication and pathogenesis in HIV-1-infected mothers and their infected infants.
Collapse
Affiliation(s)
- Roshni Mehta
- Department of Immunobiology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724
| | - Rajesh Ramakrishnan
- Department of Immunobiology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724
| | - Katherine Doktor
- Department of Immunobiology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724
| | - Vasudha Sundaravaradan
- Department of Immunobiology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724
| | - Nafees Ahmad
- Department of Immunobiology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724
| |
Collapse
|
34
|
Sjøttem E, Rekdal C, Svineng G, Johnsen SS, Klenow H, Uglehus RD, Johansen T. The ePHD protein SPBP interacts with TopBP1 and together they co-operate to stimulate Ets1-mediated transcription. Nucleic Acids Res 2007; 35:6648-62. [PMID: 17913746 PMCID: PMC2095823 DOI: 10.1093/nar/gkm739] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
SPBP (Stromelysin-1 PDGF responsive element binding protein) is a ubiquitously expressed 220 kDa nuclear protein shown to enhance or repress the transcriptional activity of various transcription factors. A yeast two-hybrid screen, with the extended plant homeodomain (ePHD) of SPBP as bait, identified TopBP1 (topoisomerase II β-binding protein 1) as a candidate interaction partner of SPBP. TopBP1 has eight BRCA1 carboxy-terminal (BRCT) domains and is involved in DNA replication, DNA damage responses and in the regulation of gene expression. The interaction between SPBP and TopBP1 was confirmed in vitro and in vivo, and was found to be mediated by the ePHD domain of SPBP and the BRCT6 domain of TopBP1. Both SPBP and TopBP1 enhanced the transcriptional activity of Ets1 on the c-myc P1P2- and matrix metalloproteinase-3 (MMP3) promoters. Together they displayed a more than additive effect. Both proteins were associated with these promoters. The involvement of TopBP1 was dependent on the serine 1159 phosphorylation site, known to be important for transcriptional activation. Depletion of endogenous SPBP by siRNA treatment reduced MMP3 secretion by 50% in phorbol ester-stimulated human fibroblasts. Taken together, our results show that TopBP1 and SPBP interact physically and functionally to co-operate as co-activators of Ets1.
Collapse
Affiliation(s)
- Eva Sjøttem
- Biochemistry Department and Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Cecilie Rekdal
- Biochemistry Department and Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Gunbjørg Svineng
- Biochemistry Department and Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Sylvia Sagen Johnsen
- Biochemistry Department and Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Helle Klenow
- Biochemistry Department and Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Rebecca Dale Uglehus
- Biochemistry Department and Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Terje Johansen
- Biochemistry Department and Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
- *To whom correspondence should be addressed. +47 776 44720+47 776 45350
| |
Collapse
|
35
|
Williams SA, Greene WC. Regulation of HIV-1 latency by T-cell activation. Cytokine 2007; 39:63-74. [PMID: 17643313 PMCID: PMC2063506 DOI: 10.1016/j.cyto.2007.05.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 05/23/2007] [Accepted: 05/30/2007] [Indexed: 01/06/2023]
Abstract
HIV-infected patients harbor approximately 10(5)-10(6) memory CD4 T-cells that contain fully integrated but transcriptionally silent HIV proviruses. While small in number, these latently infected cells form a drug-insensitive reservoir that importantly contributes to the life-long persistence of HIV despite highly effective antiviral therapy. In tissue culture, latent HIV proviruses can be activated when their cellular hosts are exposed to select proinflammatory cytokines or their T-cell receptors are ligated. However, due to a lack of potency and/or dose-limiting toxicity, attempts to purge virus from this latent reservoir in vivo with immune-activating agents, such as anti-CD3 antibodies and IL-2, have failed. A deeper understanding of the molecular underpinnings of HIV latency is clearly required, including determining whether viral latency is actively reinforced by transcriptional repressors, defining which inducible host transcription factors most effectively antagonize latency, and elucidating the role of chromatin in viral latency. Only through such an improved understanding will it be possible to identify combination therapies that might allow complete purging of the latent reservoir and to realize the difficult and elusive goal of complete eradication of HIV in infected patients.
Collapse
Affiliation(s)
- Samuel A. Williams
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, 94141-1230
- Department of Physiology, University of California, San Francisco, CA, 94141-1230
- Department of Medicine, University of California, San Francisco, CA, 94141-1230
| | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, 94141-1230
- Department of Medicine, University of California, San Francisco, CA, 94141-1230
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94141-1230
- *Corresponding author. Mailing address: Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA, 94158, Phone: (415) 734-2000, Fax: (415) 355-0153,
| |
Collapse
|
36
|
Malcolm T, Chen J, Chang C, Sadowski I. Induction of chromosomally integrated HIV-1 LTR requires RBF-2 (USF/TFII-I) and Ras/MAPK signaling. Virus Genes 2007; 35:215-23. [PMID: 17546494 DOI: 10.1007/s11262-007-0109-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
The HIV-1 LTR is regulated by multiple signaling pathways responsive to T cell activation. In this study, we have examined the contribution of the MAPK, calcineurin-NFAT and TNFalpha-NF-kappaB pathways on induction of chromosomally integrated HIV-1 LTR reporter genes. We find that induction by T-cell receptor (CD3) cross-linking and PMA is completely dependent upon a binding site for RBF-2 (USF1/2-TFII-I), known as RBEIII at -120. The MAPK pathway is essential for induction of the wild type LTR by these treatments, as the MEK inhibitors PD98059 and U0126 block induction by both PMA treatment and CD3 cross-linking. Stimulation of cells with ionomycin on its own has no effect on the integrated LTR, indicating that calcineurin-NFAT is incapable of causing induction in the absence of additional signals, but stimulation with both PMA and ionomycin produces a synergistic response. In contrast, stimulation of NF-kappaB by treatment with TNFalpha causes induction of both the wild type and RBEIII mutant LTRs, an effect that is independent of MAPK signaling. USF1, USF2 and TFII-I from unstimulated cells are capable of binding RBEIII in vitro, and furthermore can be observed on the LTR in vivo by chromatin imunoprecipitation from untreated cells. DNA binding activity of USF1/2 is marginally stimulated by PMA/ ionomycin treatment, and all three factors appear to remain associated with the LTR throughout the course of induction. These results implicate major roles for the MAPK pathway and RBF-2 (USF1/2-TFII-I) in coordinating events necessary for transition of latent integrated HIV-1 to active transcription in response to T cell signaling.
Collapse
Affiliation(s)
- Tom Malcolm
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics, LSI, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
37
|
Li JCB, Lau ASY. A role for mitogen-activated protein kinase and Ets-1 in the induction of interleukin-10 transcription by human immunodeficiency virus-1 Tat. Immunology 2007; 121:337-48. [PMID: 17376198 PMCID: PMC2265950 DOI: 10.1111/j.1365-2567.2007.02580.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The human immunodeficiency virus (HIV) Tat protein has multiple regulatory roles, including trans-activation of the HIV genome and regulation of immune signalling processes, including kinase activation and cytokine expression. We recently demonstrated that HIV-1 Tat induces the expression of interleukin (IL)-10 via p38 mitogen-activated protein kinase (MAPK) activation. We further delineated that the Tat-responsive element of the IL-10 promoter was located within 625 to 595 bp upstream from the transcription start site. Using electrophoretic mobility shift assays, the transcription factors Ets-1 and Sp-1 were shown to bind to the IL-10 promoter to activate transcription of the gene. Furthermore, sequential deletional mutations of the Ets-1- and Sp-1-binding sites in the -625/-595 region reduced the DNA binding and transcription activity of the IL-10 promoter. Our results also showed that both the Tat-induced and Ets-1-regulated IL-10 promoter-driven luciferase activity can be abrogated by inhibitors of the p38 MAPK activity. In conclusion, the coordinated activities of p38 MAPK and the transcription factors, Ets-1 and Sp-1, may play an important role in the HIV-1 Tat-induced IL-10 transcription.
Collapse
Affiliation(s)
- James C B Li
- Department of Paediatrics and Adolescent Medicine and Bio-Screening Unit, Li Ka Shing Faculty of Medicine, Teh University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
38
|
Horiba M, Martinez LB, Buescher JL, Sato S, Limoges J, Jiang Y, Jones C, Ikezu T. OTK18, a zinc-finger protein, regulates human immunodeficiency virus type 1 long terminal repeat through two distinct regulatory regions. J Gen Virol 2007; 88:236-241. [PMID: 17170456 PMCID: PMC3229096 DOI: 10.1099/vir.0.82066-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has previously been shown by our laboratory that OTK18, a human immunodeficiency virus (HIV)-inducible zinc-finger protein, reduces progeny-virion production in infected human macrophages. OTK18 antiviral activity is mediated through suppression of Tat-induced HIV-1 long terminal repeat (LTR) promoter activity. Through the use of LTR-scanning mutant vectors, the specific regions responsible for OTK18-mediated LTR suppression have been defined. Two different LTR regions were identified as potential OTK18-binding sites by an enhanced DNA-transcription factor ELISA system; the negative-regulatory element (NRE) at -255/-238 and the Ets-binding site (EBS) at -150/-139 in the LTR. In addition, deletion of the EBS in the LTR blocked OTK18-mediated LTR suppression. These data indicate that OTK18 suppresses LTR activity through two distinct regulatory elements. Spontaneous mutations in these regions might enable HIV-1 to escape from OTK18 antiretroviral activity in human macrophages.
Collapse
Affiliation(s)
- Masahide Horiba
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| | - Lindsey B. Martinez
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| | - James L. Buescher
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| | - Shinji Sato
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| | - Jenae Limoges
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| | - Yunquan Jiang
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln NE 68583-0905
| | - Clinton Jones
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln NE 68583-0905
| | - Tsuneya Ikezu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| |
Collapse
|
39
|
Sanchez-Merino V, Muñoz L, Pérez-Pastrana ME, Herrera MI, Olivares I, Lopez-Galindez C. Genetic changes associated with distinct patterns of HIV type 1 persistence in chronically infected cell lines. AIDS Res Hum Retroviruses 2007; 23:251-60. [PMID: 17331031 DOI: 10.1089/aid.2006.0163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Three persistently infected cell lines (H61, M61, and U61) were established by infection with an HIV-1 isolate (s61) of two T cell lines, H9 and MT-4, and the promonocytic U937-2. In H61, 35% of cells expressed viral antigens yielding low virus titers and a majority of mature particles. M61 showed viral expression in every cell but with the frequent generation of immature particles. In U61, 1% of cells displayed viral expression, which increased after cell activation, indicating a latent infection. Nucleotide sequences of the complete provirus from the persistent cell lines revealed extremely high mutation rates in accessory genes and non-coding regions from 1.1 to 2.8 x 10(-2), whereas in structural genes they ranged from 3.2 to 9.8 x 10(-3). Ten nonsynonymous mutations were shared by all persistent proviruses including five strong amino acid changes in the env gene (related to the NSI phenotype) and in vpr and tat genes; other alterations were in accessory genes and two in the USF and c-Myb motifs in LTR. Truncated vpr and vpu proteins were found specifically in H61 and in vif in M61. This comprehensive study disclosed the role of the cell on the HIV-1 persistence pattern as well as common and specific mutations in the virus.
Collapse
Affiliation(s)
- Victor Sanchez-Merino
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Pozuelo Km. 2, Majadahonda, 28220 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Griffin MJ, Wong RHF, Pandya N, Sul HS. Direct interaction between USF and SREBP-1c mediates synergistic activation of the fatty-acid synthase promoter. J Biol Chem 2006; 282:5453-67. [PMID: 17197698 DOI: 10.1074/jbc.m610566200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To understand the molecular mechanisms underlying transcriptional activation of fatty-acid synthase (FAS), we examined the relationship between upstream stimulatory factor (USF) and SREBP-1c, two transcription factors that we have shown previously to be critical for FAS induction by feeding/insulin. Here, by using a combination of tandem affinity purification and coimmunoprecipitation, we demonstrate, for the first time, that USF and SREBP-1 interact in vitro and in vivo. Glutathione S-transferase pulldown experiments with various USF and sterol regulatory element-binding protein (SREBP) deletion constructs indicate that the basic helix-loop-helix domain of USF interacts directly with the basic helix-loop-helix and an N-terminal region of SREBP-1c. Furthermore, cotransfection of USF and SREBP-1c with an FAS promoter-luciferase reporter construct in Drosophila SL2 cells results in highly synergistic activation of the FAS promoter. We also show similar cooperative activation of the mitochondrial glycerol-3-phosphate acyltransferase promoter by USF and SREBP-1c. Chromatin immunoprecipitation analysis of mouse liver demonstrates that USF binds constitutively to the mitochondrial glycerol 3-phosphate acyltransferase promoter during fasting/refeeding in vivo, whereas binding of SREBP-1 is observed only during refeeding, in a manner identical to that of the FAS promoter. In addition, we show that the synergy we have observed depends on the activation domains of both proteins and that mutated USF or SREBP lacking the N-terminal activation domain could inhibit the transactivation of the other. Closely positioned E-boxes and sterol regulatory elements found in the promoters of several lipogenic genes suggest a common mechanism of induction by feeding/insulin.
Collapse
Affiliation(s)
- Michael J Griffin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
41
|
Kopp JL, Wilder PJ, Desler M, Kinarsky L, Rizzino A. Different domains of the transcription factor ELF3 are required in a promoter-specific manner and multiple domains control its binding to DNA. J Biol Chem 2006; 282:3027-41. [PMID: 17148437 DOI: 10.1074/jbc.m609907200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Elf3 is an epithelially restricted member of the ETS transcription factor family, which is involved in a wide range of normal cellular processes. Elf3 is also aberrantly expressed in several cancers, including breast cancer. To better understand the molecular mechanisms by which Elf3 regulates these processes, we created a large series of Elf3 mutant proteins with specific domains deleted or targeted by point mutations. The modified forms of Elf3 were used to analyze the contribution of each domain to DNA binding and the activation of gene expression. Our work demonstrates that three regions of Elf3, in addition to its DNA binding domain (ETS domain), influence Elf3 binding to DNA, including the transactivation domain that behaves as an autoinhibitory domain. Interestingly, disruption of the transactivation domain relieves the autoinhibition of Elf3 and enhances Elf3 binding to DNA. On the basis of these studies, we suggest a model for autoinhibition of Elf3 involving intramolecular interactions. Importantly, this model is consistent with our finding that the N-terminal region of Elf3, which contains the transactivation domain, interacts with its C terminus, which contains the ETS domain. In parallel studies, we demonstrate that residues flanking the N- and C-terminal sides of the ETS domain of Elf3 are crucial for its binding to DNA. Our studies also show that an AT-hook domain, as well as the serine- and aspartic acid-rich domain but not the pointed domain, is necessary for Elf3 activation of promoter activity. Unexpectedly, we determined that one of the AT-hook domains is required in a promoter-specific manner.
Collapse
Affiliation(s)
- Janel L Kopp
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska 68198-6805, USA
| | | | | | | | | |
Collapse
|
42
|
Corre S, Galibert MD. Upstream stimulating factors: highly versatile stress-responsive transcription factors. ACTA ACUST UNITED AC 2005; 18:337-48. [PMID: 16162174 DOI: 10.1111/j.1600-0749.2005.00262.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Upstream stimulating factors (USF), USF-1 and USF-2, are members of the eucaryotic evolutionary conserved basic-Helix-Loop-Helix-Leucine Zipper transcription factor family. They interact with high affinity to cognate E-box regulatory elements (CANNTG), which are largely represented across the whole genome in eucaryotes. The ubiquitously expressed USF-transcription factors participate in distinct transcriptional processes, mediating recruitment of chromatin remodelling enzymes and interacting with co-activators and members of the transcription pre-initiation complex. Results obtained from both cell lines and knock-out mice indicates that USF factors are key regulators of a wide number of gene regulation networks, including the stress and immune responses, cell cycle and proliferation, lipid and glucid metabolism, and in melanocytes USF-1 has been implicated as a key UV-activated regulator of genes associated with pigmentation. This review will focus on general characteristics of the USF-transcription factors and their place in some regulatory networks.
Collapse
Affiliation(s)
- Sébastien Corre
- CNRS UMR 6061 Laboratoire de Génétique et Développement, Faculté de Médecine, Université de Rennes-1, Rennes Cedex, France
| | | |
Collapse
|
43
|
Petit FG, Salas R, Tsai MJ, Tsai SY. The regulation of COUP-TFII gene expression by Ets-1 is enhanced by the steroid receptor co-activators. Mech Ageing Dev 2005; 125:719-32. [PMID: 15541767 DOI: 10.1016/j.mad.2004.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent phenotypic analysis of orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) [NR2F2] knockout mice shows that COUP-TFII is involved in the angiogenic process in the developing embryos. Since Ets-1 expression is also correlated with angiogenesis, and both Ets-1 and COUP-TFII mRNA are present in mesenchymal cells, we have sought to determine whether Ets-1 is a potential regulator of COUP-TFII gene expression. For this purpose, we performed transient transfection experiments using a luciferase reporter construct containing the mouse COUP-TFII promoter. We found that the COUP-TFII promoter activity is indeed regulated by Ets-1. We have identified two identical inverted potential ETS-binding sites located 47 nucleotides downstream of the start site. Mutation of both sites reduced the ability of Ets-1 to enhance the COUP-TFII promoter activity. Furthermore, other members of the ETS family such as Ets-2 or ETV1 are also potent regulators of the COUP-TFII promoter. Finally, the induction of the COUP-TFII gene is strongly enhanced by the expression of steroid receptor co-activator factors through a direct interaction with Ets-1. These results indicate that COUP-TFII is a potential downstream target of Ets-1 and it may partially mediate the Ets-1 function in angiogenesis.
Collapse
Affiliation(s)
- Fabrice G Petit
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
44
|
Ramírez de Arellano E, Soriano V, Holguín A. [Regulation of transcription in different HIV-1 subtypes]. Enferm Infecc Microbiol Clin 2005; 23:156-62. [PMID: 15757588 DOI: 10.1157/13072166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transcriptional activation of HIV-1 gene expression is controlled in part by the interaction of viral and cellular transcription factors with the HIV-1 long terminal repeat (LTR) sequences. LTR variability among different HIV-1 subtypes could affect LTR binding of either cellular or viral elements, influencing the transcription level. This effect, in turn, may have consequences on the biology of the different HIV-1 clades and on disease progression. In some circumstances, a relationship between replication capacity in vitro and changes in binding sequences for transcription factors located at the LTR has been proven.
Collapse
Affiliation(s)
- Eva Ramírez de Arellano
- Laboratorio de Biología Molecular, Servicio de Enfermedades Infecciosas, Hospital Carlos III, Madrid, Spain
| | | | | |
Collapse
|
45
|
Furihata T, Hosokawa M, Satoh T, Chiba K. Synergistic role of specificity proteins and upstream stimulatory factor 1 in transactivation of the mouse carboxylesterase 2/microsomal acylcarnitine hydrolase gene promoter. Biochem J 2005; 384:101-10. [PMID: 15283701 PMCID: PMC1134093 DOI: 10.1042/bj20040765] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mouse carboxylesterase 2 (mCES2), a microsomal acylcarnitine hydrolase, is thought to play some important roles in fatty acid (ester) metabolism, and it is therefore thought that the level of transcription of the mCES2 gene is under tight control. Examination of the tissue expression profiles revealed that mCES2 is expressed in the liver, kidney, small intestine, brain, thymus, lung, adipose tissue and testis. When the mCES2 promoter was cloned and characterized, it was revealed that Sp1 (specificity protein 1) and Sp3 could bind to a GC box, that USF (upstream stimulatory factor) 1 could bind to an E (enhancer) box, and that Sp1 could bind to an NFkappaB (nuclear factor kappaB) element in the mCES2 promoter. Co-transfection assays showed that all of these transcription factors contributed synergistically to transactivation of the mCES2 promoter. Taken together, our results indicate that Sp1, Sp3 and USF1 are indispensable factors for transactivation of the mCES2 gene promoter. To our knowledge, this is the first study in which transcription factors that interact with a CES2 family gene have been identified. The results of the present study have provided some clues for understanding the molecular mechanisms regulating mCES2 gene expression, and should be useful for studies aimed at elucidation of physiological functions of mCES2.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Animals
- COS Cells/chemistry
- COS Cells/metabolism
- Carboxylesterase
- Carboxylic Ester Hydrolases/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line
- Cell Line, Tumor
- Chlorocebus aethiops
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Drosophila/cytology
- Drosophila/genetics
- E-Box Elements/genetics
- Enhancer Elements, Genetic/genetics
- GC Rich Sequence/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation, Enzymologic/genetics
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Microsomes/enzymology
- Molecular Sequence Data
- NF-kappa B/genetics
- Nuclear Proteins/metabolism
- Organ Specificity/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Sp1 Transcription Factor/genetics
- Sp3 Transcription Factor
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription Initiation Site
- Transcriptional Activation/genetics
- Upstream Stimulatory Factors
Collapse
Affiliation(s)
- Tomomi Furihata
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Masakiyo Hosokawa
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
- To whom correspondence should be addressed (email )
| | - Tetsuo Satoh
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kan Chiba
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|
46
|
Chen J, Malcolm T, Estable MC, Roeder RG, Sadowski I. TFII-I regulates induction of chromosomally integrated human immunodeficiency virus type 1 long terminal repeat in cooperation with USF. J Virol 2005; 79:4396-406. [PMID: 15767439 PMCID: PMC1061576 DOI: 10.1128/jvi.79.7.4396-4406.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication is coupled to T-cell activation through its dependence on host cell transcription factors. Despite the enormous sequence variability of these factors, several cis elements for host factors are highly conserved within the 5' long terminal repeats (LTRs) of viruses from AIDS patients; among these is the RBEIII upstream element for the Ras response element binding factor 2 (RBF-2). Here we show that RBF-2 is comprised of a USF1/USF2 heterodimer and TFII-I, which bind cooperatively to RBEIII. Recombinant USF1/USF2 binds to the RBEIII core sequence 160-fold less efficiently than it binds to an E box element, but the interaction with RBEIII is stimulated by TFII-I. Chromosomally integrated HIV-1 LTRs bearing an RBEIII mutation have slightly elevated basal transcription in unstimulated Jurkat cells but are unresponsive to cross-linking of the T-cell receptor or stimulation with phorbol myristate acetate (PMA) and ionomycin. Induction is inhibited by dominant interfering USF and TFII-I but not by the dominant negative I-kappaB protein. USF1, USF2, and TFII-I bind to the integrated wild-type LTR in unstimulated cells and become phosphorylated during the induction of transcription upon stimulation with PMA. These results demonstrate that USF1/USF2 and TFII-I interact cooperatively at the upstream RBEIII element and are necessary for the induction of latent HIV-1 in response to T-cell activation signals.
Collapse
Affiliation(s)
- Jiguo Chen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
47
|
Firlej V, Bocquet B, Desbiens X, de Launoit Y, Chotteau-Lelièvre A. Pea3 Transcription Factor Cooperates with USF-1 in Regulation of the Murine bax Transcription without Binding to an Ets-binding Site. J Biol Chem 2005; 280:887-98. [PMID: 15466854 DOI: 10.1074/jbc.m408017200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Pea3 transcription factor (which belongs to the PEA3 group) from the Ets family has been shown to be involved in mammary embryogenesis and oncogenesis. However, except for proteinases, only few of its target genes have been reported. In the present report, we identified bax as a Pea3 up-regulated gene. We provide evidence of this regulation by using Pea3 overexpression and Pea3 silencing in a mammary cell line. Both Pea3 and Erm, another member of the PEA3 group, are able to transactivate bax promoter fragments. Although the minimal Pea3-regulated bax promoter does not contain an Ets-binding site, two functional upstream stimulatory factor-regulated E boxes are present. We further demonstrate the ability of Pea3 and USF-1 to cooperate for the transactivation of the bax promoter, mutation of the E boxes dramatically reducing the Pea3 transactivation potential. Although Pea3 did not directly bind to the minimal bax promoter, we provide evidence that USF-1 could form a ternary complex with Pea3 and DNA. Taken together, our results suggest that Pea3 may regulate bax transcription via the interaction with USF-1 but without binding to DNA.
Collapse
Affiliation(s)
- Virginie Firlej
- Laboratoire de Biologie du Développement UPRES-EA1033, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
48
|
Abstract
Many cells maintain their state of determination long after the signals that induced it decay. In this issue of Developmental Cell, zur Lage and colleagues describe how certain cells sustain proneural gene expression through direct interactions between transcription factors.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 1046, USA
| |
Collapse
|
49
|
zur Lage PI, Powell LM, Prentice DRA, McLaughlin P, Jarman AP. EGF Receptor Signaling Triggers Recruitment of Drosophila Sense Organ Precursors by Stimulating Proneural Gene Autoregulation. Dev Cell 2004; 7:687-96. [PMID: 15525530 DOI: 10.1016/j.devcel.2004.09.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 08/04/2004] [Accepted: 09/14/2004] [Indexed: 11/27/2022]
Abstract
In Drosophila, commitment of a cell to a sense organ precursor (SOP) fate requires bHLH proneural transcription factor upregulation, a process that depends in most cases on the interplay of proneural gene autoregulation and inhibitory Notch signaling. A subset of SOPs are selected by a recruitment pathway involving EGFR signaling to ectodermal cells expressing the proneural gene atonal. We show that EGFR signaling drives recruitment by directly facilitating atonal autoregulation. Pointed, the transcription factor that mediates EGFR signaling, and Atonal protein itself bind cooperatively to adjacent conserved binding sites in an atonal enhancer. Recruitment is therefore contingent on the combined presence of Atonal protein (providing competence) and EGFR signaling (triggering recruitment). Thus, autoregulation is the nodal control point targeted by signaling. This exemplifies a simple and general mechanism for regulating the transition from competence to cell fate commitment whereby a cell signal directly targets the autoregulation of a selector gene.
Collapse
Affiliation(s)
- Petra I zur Lage
- Division of Biomedical Sciences, Centre for Neuroscience Research, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Lu J, Pazin MJ, Ravid K. Properties of ets-1 binding to chromatin and its effect on platelet factor 4 gene expression. Mol Cell Biol 2004; 24:428-41. [PMID: 14673175 PMCID: PMC303331 DOI: 10.1128/mcb.24.1.428-441.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ets-1 is important for transcriptional regulation in several hematopoietic lineages, including megakaryocytes. Some transcription factors bind to naked DNA and chromatin with different affinities, while others do not. In the present study we used the megakaryocyte-specific promoters platelet factor 4 (PF4), and glycoprotein IIb (GPIIb) as model systems to explore the properties of Ets-1 binding to chromatin. Chromatin immunoprecipitation assays indicated that Ets-1 binds to proximal regions in the PF4 and GPIIb promoters in vivo. In vitro and in vivo experiments showed that Ets-1 binding to chromatin on lineage-specific promoters does not require lineage-specific factors. Moreover, this binding shows the same order of affinity as the binding to naked DNA and does not require ATP-dependent or Sarkosyl-sensitive factors. The effect of Ets-1 binding on promoter activity was examined using the PF4 promoter as a model. We identified a novel Ets-1 site (at -50), and a novel Sarkosyl-sensitive DNase I-hypersensitive site generated by Ets-1 binding to chromatin, which significantly affect PF4 promoter activity. Taken together, our results suggest a model by which Ets-1 binds to chromatin without the need for lineage-specific accessory factors, and Ets-1 binding induces changes in chromatin and affects transactivation, which are essential for PF4 promoter activation.
Collapse
Affiliation(s)
- Jun Lu
- Department of Biochemistry, Cancer Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|