1
|
Xue J, Ye C. The role of lipoylation in mitochondrial adaptation to methionine restriction. Bioessays 2024; 46:e2300218. [PMID: 38616332 DOI: 10.1002/bies.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Dietary methionine restriction (MR) is associated with a spectrum of health-promoting benefits. Being conducive to prevention of chronic diseases and extension of life span, MR can activate integrated responses at metabolic, transcriptional, and physiological levels. However, how the mitochondria of MR influence metabolic phenotypes remains elusive. Here, we provide a summary of cellular functions of methionine metabolism and an overview of the current understanding of effector mechanisms of MR, with a focus on the aspect of mitochondria-mediated responses. We propose that mitochondria can sense and respond to MR through a modulatory role of lipoylation, a mitochondrial protein modification sensitized by MR.
Collapse
Affiliation(s)
- Jingyuan Xue
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
2
|
Zhou Y, Yu H, Tang Y, Chen R, Luo J, Shi C, Tang S, Li X, Shen X, Chen R, Zhang Y, Lu Y, Ye Z, Guo L, Ouyang B. Critical roles of mitochondrial fatty acid synthesis in tomato development and environmental response. PLANT PHYSIOLOGY 2022; 190:576-591. [PMID: 35640121 PMCID: PMC9434154 DOI: 10.1093/plphys/kiac255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 05/30/2023]
Abstract
Plant mitochondrial fatty acid synthesis (mtFAS) appears to be important in photorespiration based on the reverse genetics research from Arabidopsis (Arabidopsis thaliana) in recent years, but its roles in plant development have not been completely explored. Here, we identified a tomato (Solanum lycopersicum) mutant, fern-like, which displays pleiotropic phenotypes including dwarfism, yellowing, curly leaves, and increased axillary buds. Positional cloning and genetic and heterozygous complementation tests revealed that the underlying gene FERN encodes a 3-hydroxyl-ACP dehydratase enzyme involved in mtFAS. FERN was causally involved in tomato morphogenesis by affecting photorespiration, energy supply, and the homeostasis of reactive oxygen species. Based on lipidome data, FERN and the mtFAS pathway may modulate tomato development by influencing mitochondrial membrane lipid composition and other lipid metabolic pathways. These findings provide important insights into the roles and importance of mtFAS in tomato development.
Collapse
Affiliation(s)
- Yuhong Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Tang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinying Luo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyan Shen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Rongfeng Chen
- National Center for Occupational Safety and Health, NHC, Beijing 102308, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Guo
- Author for correspondence: (B.O.), (L.G.)
| | - Bo Ouyang
- Author for correspondence: (B.O.), (L.G.)
| |
Collapse
|
3
|
Aibara N, Ohyama K, Nakamura M, Nakamura H, Tamai M, Kishikawa N, Kawakami A, Tsukamoto K, Nakashima M, Kuroda N. Investigation of immune complexes formed by mitochondrial antigens containing a new lipoylated site in sera of primary biliary cholangitis patients. Clin Exp Immunol 2021; 204:335-343. [PMID: 33605437 DOI: 10.1111/cei.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
Primary biliary cholangitis (PBC) is characterized by the presence of serum anti-mitochondrial autoantibodies (AMAs). To date, four antigens among the 2-oxo-acid dehydrogenase complex family, which commonly have lipoyl domains as an epitope, have been identified as AMA-corresponding antigens (AMA-antigens). It has recently been reported that AMAs react more strongly with certain chemically modified mimics than with the native lipoyl domains in AMA-antigens. Moreover, high concentrations of circulating immune complexes (ICs) in PBC patients have been reported. However, the existence of ICs formed by AMAs and their antigens has not been reported to date. We hypothesized that AMAs and their antigens formed ICs in PBC sera, and analyzed sera of PBC and four autoimmune diseases (Sjögren's syndrome, systemic lupus erythematosus, systemic scleroderma, and rheumatoid arthritis) using immune complexome analysis, in which ICs are separated from serum and are identified by nano-liquid chromatography-tandem mass spectrometry. To correctly assign MS/MS spectra to peptide sequences, we used a protein-search algorithm that including lipoylation and certain xenobiotic modifications. We found three AMA-antigens, the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), the E2 subunit of the 2-oxo-glutarate dehydrogenase complex (OGDC-E2) and dihydrolipoamide dehydrogenase binding protein (E3BP), by detecting peptides containing lipoylation and xenobiotic modifications from PBC sera. Although the lipoylated sites of these peptides were different from the well-known sites, abnormal lipoylation and xenobiotic modification may lead to production of AMAs and the formation ICs. Further investigation of the lipoylated sites, xenobiotic modifications, and IC formation will lead to deepen our understanding of PBC pathogenesis.
Collapse
Affiliation(s)
- N Aibara
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - K Ohyama
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - M Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - H Nakamura
- Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - M Tamai
- Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - N Kishikawa
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - A Kawakami
- Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - K Tsukamoto
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - M Nakashima
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - N Kuroda
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
4
|
Zhu K, Chen H, Jin J, Wang N, Ma G, Huang J, Feng Y, Xin J, Zhang H, Liu H. Functional Identification and Structural Analysis of a New Lipoate Protein Ligase in Mycoplasma hyopneumoniae. Front Cell Infect Microbiol 2020; 10:156. [PMID: 32373550 PMCID: PMC7186572 DOI: 10.3389/fcimb.2020.00156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the causative agent of pandemic pneumonia among pigs, namely, swine enzootic pneumonia. Although M. hyopneumoniae was first identified in 1965, little is known regarding its metabolic pathways, which might play a pivotal role during disease pathogenesis. Lipoate is an essential cofactor for enzymes important for central metabolism. However, the lipoate metabolism pathway in M. hyopneumoniae is definitely unclear. Here, we identified a novel gene, lpl, encoding a lipoate protein ligase in the genome of M. hyopneumoniae (Mhp-Lpl). This gene contains 1,032 base pairs and encodes a protein of 343 amino acids, which is between 7.5 and 36.09% identical to lipoate protein ligases (Lpls) of other species. Similar to its homologs in other species, Mhp-Lpl catalyzes the ATP-dependent activation of lipoate to lipoyl-AMP and the transfer of the activated lipoyl onto the lipoyl domains of M. hyopneumoniae GcvH (Mhp H) in vitro. Enzymatic and mutagenesis analysis indicate that residue K56 within the SKT sequence of Mhp H protein is the lipoyl moiety acceptor site. The three-dimensional structure showed typical lipoate protein ligase folding, with a large N-terminal domain and a small C-terminal domain. The large N-terminal domain is responsible for the full enzymatic activity of Mhp-Lpl. The identification and characterization of Mhp-Lpl will be beneficial to our understanding of M. hyopneumoniae metabolism. Summary Lipoic acid is an essential cofactor for the activation of some enzyme complexes involved in key metabolic processes. Lipoate protein ligases (Lpls) are responsible for the metabolism of lipoic acid. To date, little is known regarding the Lpls in M. hyopneumoniae. In this study, we identified a lipoate protein ligase of M. hyopneumoniae. We further analyzed the function, overall structure and ligand-binding site of this protein. The lipoate acceptor site on M. hyopneumoniae GcvH was also identified. Together, these findings reveal that Lpl exists in M. hyopneumoniae and will provide a basis for further exploration of the pathway of lipoic acid metabolism in M. hyopneumoniae.
Collapse
Affiliation(s)
- Kemeng Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huan Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and SUSTech-HKU Joint Laboratories for Matrix Biology and Diseases, Southern University of Science and Technology, Shenzhen, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jin Jin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ning Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guixing Ma
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and SUSTech-HKU Joint Laboratories for Matrix Biology and Diseases, Southern University of Science and Technology, Shenzhen, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Youjun Feng
- Department of Pathogen Biology and Microbiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiuqing Xin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongmin Zhang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and SUSTech-HKU Joint Laboratories for Matrix Biology and Diseases, Southern University of Science and Technology, Shenzhen, China
| | - Henggui Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Lipoic acid. CHEMTEXTS 2019. [DOI: 10.1007/s40828-019-0091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Cronan JE. Advances in synthesis of biotin and assembly of lipoic acid. Curr Opin Chem Biol 2018; 47:60-66. [PMID: 30236800 PMCID: PMC6289770 DOI: 10.1016/j.cbpa.2018.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/07/2018] [Indexed: 11/27/2022]
Abstract
Although biotin and lipoic acid are two universally conserved cofactors essential for intermediary metabolism, their synthetic pathways have become known only in recent years. Both pathways have unusual features. Biotin synthesis in Escherichia coli requires a methylation that is later removed whereas lipoic acid is assembled on the enzymes where it is required for activity by two different pathways.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
7
|
Rowland EA, Snowden CK, Cristea IM. Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease. Curr Opin Chem Biol 2017; 42:76-85. [PMID: 29169048 DOI: 10.1016/j.cbpa.2017.11.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
Abstract
Lipoylation is a rare, but highly conserved lysine posttranslational modification. To date, it is known to occur on only four multimeric metabolic enzymes in mammals, yet these proteins are staples in the core metabolic landscape. The dysregulation of these mitochondrial proteins is linked to a range of human metabolic disorders. Perhaps most striking is that lipoylation itself, the proteins that add or remove the modification, as well as the proteins it decorates are all evolutionarily conserved from bacteria to humans, highlighting the importance of this essential cofactor. Here, we discuss the biological significance of protein lipoylation, the importance of understanding its regulation in health and disease states, and the advances in mass spectrometry-based proteomic technologies that can aid these studies.
Collapse
Affiliation(s)
- Elizabeth A Rowland
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States
| | - Caroline K Snowden
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States.
| |
Collapse
|
8
|
Mechanisms Governing Precise Protein Biotinylation. Trends Biochem Sci 2017; 42:383-394. [DOI: 10.1016/j.tibs.2017.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/25/2017] [Accepted: 02/03/2017] [Indexed: 12/26/2022]
|
9
|
New Insights into the Formation of Viable but Nonculturable Escherichia coli O157:H7 Induced by High-Pressure CO2. mBio 2016; 7:mBio.00961-16. [PMID: 27578754 PMCID: PMC4999544 DOI: 10.1128/mbio.00961-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The formation of viable but nonculturable (VBNC) Escherichia coli O157:H7 induced by high-pressure CO2 (HPCD) was investigated using RNA sequencing (RNA-Seq) transcriptomics and isobaric tag for relative and absolute quantitation (iTRAQ) proteomic methods. The analyses revealed that 97 genes and 56 proteins were significantly changed upon VBNC state entry. Genes and proteins related to membrane transport, central metabolisms, DNA replication, and cell division were mainly downregulated in the VBNC cells. This caused low metabolic activity concurrently with a division arrest in cells, which may be related to VBNC state formation. Cell division repression and outer membrane overexpression were confirmed to be involved in VBNC state formation by homologous expression of z2046 coding for transcriptional repressor and ompF encoding outer membrane protein F. Upon VBNC state entry, pyruvate catabolism in the cells shifted from the tricarboxylic acid (TCA) cycle toward the fermentative route; this led to a low level of ATP. Combating the low energy supply, ATP production in the VBNC cells was compensated by the degradation of l-serine and l-threonine, the increased AMP generation, and the enhanced electron transfer. Furthermore, tolerance of the cells with respect to HPCD-induced acid, oxidation, and high CO2 stresses was enhanced by promoting the production of ammonia and NADPH and by reducing CO2 production during VBNC state formation. Most genes and proteins related to pathogenicity were downregulated in the VBNC cells. This would decrease the cell pathogenicity, which was confirmed by adhesion assays. In conclusion, the decreased metabolic activity, repressed cell division, and enhanced survival ability in E. coli O157:H7 might cause HPCD-induced VBNC state formation. Escherichia coli O157:H7 has been implicated in large foodborne outbreaks worldwide. It has been reported that the presence of as few as 10 cells in food could cause illness. However, the presence of only 0.73 to 1.5 culturable E. coli O157:H7 cells in salted salmon roe caused infection in Japan. Investigators found that E. coli O157:H7 in the viable but nonculturable (VBNC) state was the source of the outbreak. So far, formation mechanisms of VBNC state are not well known. In a previous study, we demonstrated that high-pressure CO2 (HPCD) could induce the transition of E. coli O157:H7 into the VBNC state. In this study, we used RNA-Seq transcriptomic analysis combined with the iTRAQ proteomic method to investigate the formation of VBNC E. coli O157:H7 induced by HPCD treatment. Finally, we proposed a putative formation mechanism of the VBNC cells induced by HPCD, which may provide a theoretical foundation for controlling the VBNC state entry induced by HPCD treatment.
Collapse
|
10
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise, and the BioH esterase is responsible for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl acyl carrier protein of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyltransferase followed by sulfur insertion at carbons C-6 and C-8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and, thus, there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system, exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate proteins.
Collapse
|
11
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid was discovered 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway, in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin, were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise and the BioH esterase for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl-ACP of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyl transferase, followed by sulfur insertion at carbons C6 and C8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and thus there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate protein.
Collapse
|
12
|
Cao X, Cronan JE. The Streptomyces coelicolor lipoate-protein ligase is a circularly permuted version of the Escherichia coli enzyme composed of discrete interacting domains. J Biol Chem 2015; 290:7280-90. [PMID: 25631049 DOI: 10.1074/jbc.m114.626879] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lipoate-protein ligases are used to scavenge lipoic acid from the environment and attach the coenzyme to its cognate proteins, which are generally the E2 components of the 2-oxoacid dehydrogenases. The enzymes use ATP to activate lipoate to its adenylate, lipoyl-AMP, which remains tightly bound in the active site. This mixed anhydride is attacked by the ϵ-amino group of a specific lysine present on a highly conserved acceptor protein domain, resulting in the amide-linked coenzyme. The Streptomyces coelicolor genome encodes only a single putative lipoate ligase. However, this protein had only low sequence identity (<25%) to the lipoate ligases of demonstrated activity and appears to be a circularly permuted version of the known lipoate ligase proteins in that the canonical C-terminal domain seems to have been transposed to the N terminus. We tested the activity of this protein both by in vivo complementation of an Escherichia coli ligase-deficient strain and by in vitro assays. Moreover, when the domains were rearranged into a protein that mimicked the arrangement found in the canonical lipoate ligases, the enzyme retained complementation activity. Finally, when the two domains were separated into two proteins, both domain-containing proteins were required for complementation and catalysis of the overall ligase reaction in vitro. However, only the large domain-containing protein was required for transfer of lipoate from the lipoyl-AMP intermediate to the acceptor proteins, whereas both domain-containing proteins were required to form lipoyl-AMP.
Collapse
Affiliation(s)
- Xinyun Cao
- From the Departments of Biochemistry and
| | - John E Cronan
- From the Departments of Biochemistry and Microbiology, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
13
|
Broz AK, Tovar-Méndez A, Mooney BP, Johnston ML, Miernyk JA, Randall DD. A novel regulatory mechanism based upon a dynamic core structure for the mitochondrial pyruvate dehydrogenase complex? Mitochondrion 2014; 19 Pt B:144-53. [DOI: 10.1016/j.mito.2014.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/06/2014] [Accepted: 05/12/2014] [Indexed: 12/11/2022]
|
14
|
Afanador GA, Matthews KA, Bartee D, Gisselberg JE, Walters MS, Freel Meyers CL, Prigge ST. Redox-dependent lipoylation of mitochondrial proteins in Plasmodium falciparum. Mol Microbiol 2014; 94:156-71. [PMID: 25116855 PMCID: PMC4177315 DOI: 10.1111/mmi.12753] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 11/26/2022]
Abstract
Lipoate scavenging from the human host is essential for malaria parasite survival. Scavenged lipoate is covalently attached to three parasite proteins: the H-protein and the E2 subunits of branched chain amino acid dehydrogenase (BCDH) and α-ketoglutarate dehydrogenase (KDH). We show mitochondrial localization for the E2 subunits of BCDH and KDH, similar to previously localized H-protein, demonstrating that all three lipoylated proteins reside in the parasite mitochondrion. The lipoate ligase 1, LipL1, has been shown to reside in the mitochondrion and it catalyses the lipoylation of the H-protein; however, we show that LipL1 alone cannot lipoylate BCDH or KDH. A second mitochondrial protein with homology to lipoate ligases, LipL2, does not show ligase activity and is not capable of lipoylating any of the mitochondrial substrates. Instead, BCDH and KDH are lipoylated through a novel mechanism requiring both LipL1 and LipL2. This mechanism is sensitive to redox conditions where BCDH and KDH are exclusively lipoylated under strong reducing conditions in contrast to the H-protein which is preferentially lipoylated under less reducing conditions. Thus, malaria parasites contain two different routes of mitochondrial lipoylation, an arrangement that has not been described for any other organism.
Collapse
Affiliation(s)
- Gustavo A Afanador
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
YILMAZ O, ERSAN Y, Dilek OZSAHIN A, Ihsan OZTURK A, OZKAN Y. Consequences of the Combined α-tocopherol, Ascorbic Acid and α-lipoic Acid on the Glutathione, Cholesterol and Fatty Acid Composition in Muscle and Liver of Diabetic Rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2013; 16:165-72. [PMID: 24298385 PMCID: PMC3843860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 08/04/2012] [Indexed: 10/24/2022]
Abstract
OBJECTIVE(S) Our objective was to evaluate the effects of a triple antioxidant combination [α-tocopherol (AT), ascorbic acid (AA) and α-lipoic acid (LA); AT+AA+LA] on the cholesterol and glutathione levels, and the fatty acid composition of liver and muscle tissues in diabetic rats. MATERIALS AND METHODS Forty-three Wistar rats were randomly divided into five groups. The first group was used as a control. The second, third and fourth groups received STZ (45 mg/kg) in citrate buffer. The fourth and fifth groups were injected with intraperitoneal (IP) 50 mg/kg DL-AT and 50 mg /kg DL-LA four times per week and received water-soluble vitamin C (50 mg/kg) in their drinking water for a period of six weeks. RESULTS Liver cholesterol levels in the AT+AA+LA group were lower than the control (P<0.05). Glutathione level was lower in D-2 (P<0.05) and were higher in D+AT+AA+LA and AT+AA+LA groups than the control groups (P≤ 0.05). The muscle cholesterol levels in the D-1 and D+AT+AA+LA groups were higher than the control group (P≤ 0.05). The levels of oleic acid were higher in the D-1 group and lower in the D-2 group (P<0.001). The arachidonic acid level in the D-1 and D-2 groups were lower (P<0.05), and higher in the D+AT+AA+LA group. CONCLUSION Our results revealed that glutathione levels and the Stearoyl CoA Desaturase enzyme products in liver tissues of diabetic and non-diabetic rats were increased by triple antioxidant mixture.
Collapse
Affiliation(s)
- Okkes YILMAZ
- Department of Biology, Faculty of Science, Firat University, 23119-Elazig, Turkey
| | - Yasemin ERSAN
- Department of Biology, Faculty of Science, Firat University, 23119-Elazig, Turkey
| | - Ayse Dilek OZSAHIN
- Department of Biology, Faculty of Science, Bitlis Eren University, 13000-Bitlis, Turkey,Corresponding author: Ayse Dilek Ozsahin, Bitlis Eren University Faculty of Science Biology dept., 13000/Turkey; E-mail:
| | - Ali Ihsan OZTURK
- Department of Chemistry, Faculty of Science, Harran University, 63100-S.Urfa, Turkey
| | - Yusuf OZKAN
- Department of Internal Medicine, School of Medicine, Firat University, 23119-Elazig, Turkey
| |
Collapse
|
16
|
Storm J, Müller S. Lipoic acid metabolism of Plasmodium--a suitable drug target. Curr Pharm Des 2012; 18:3480-9. [PMID: 22607141 PMCID: PMC3426790 DOI: 10.2174/138161212801327266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/12/2012] [Indexed: 11/22/2022]
Abstract
α-Lipoic acid (6,8-thioctic acid; LA) is a vital co-factor of α-ketoacid dehydrogenase complexes and the glycine cleavage system. In recent years it was shown that biosynthesis and salvage of LA in Plasmodium are necessary for the parasites to complete their complex life cycle. LA salvage requires two lipoic acid protein ligases (LplA1 and LplA2). LplA1 is confined to the mitochondrion while LplA2 is located in both the mitochondrion and the apicoplast. LplA1 exclusively uses salvaged LA and lipoylates α-ketoglutarate dehydrogenase, branched chain α-ketoacid dehydrogenase and the H-protein of the glycine cleavage system. LplA2 cannot compensate for the loss of LplA1 function during blood stage development suggesting a specific function for LplA2 that has yet to be elucidated. LA salvage is essential for the intra-erythrocytic and liver stage development of Plasmodium and thus offers great potential for future drug or vaccine development. LA biosynthesis, comprising octanoyl-acyl carrier protein (ACP) : protein N-octanoyltransferase (LipB) and lipoate synthase (LipA), is exclusively found in the apicoplast of Plasmodium where it generates LA de novo from octanoyl-ACP, provided by the type II fatty acid biosynthesis (FAS II) pathway also present in the organelle. LA is the co-factor of the acetyltransferase subunit of the apicoplast located pyruvate dehydrogenase (PDH), which generates acetyl-CoA, feeding into FAS II. LA biosynthesis is not vital for intra-erythrocytic development of Plasmodium, but the deletion of several genes encoding components of FAS II or PDH was detrimental for liver stage development of the parasites indirectly suggesting that the same applies to LA biosynthesis. These data provide strong evidence that LA salvage and biosynthesis are vital for different stages of Plasmodium development and offer potential for drug and vaccine design against malaria.
Collapse
Affiliation(s)
- Janet Storm
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | | |
Collapse
|
17
|
|
18
|
Sahoo H, Schwille P. FRET and FCS--friends or foes? Chemphyschem 2011; 12:532-41. [PMID: 21308943 DOI: 10.1002/cphc.201000776] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/07/2011] [Indexed: 11/05/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) and Förster resonance energy transfer (FRET) are both scientific concepts that are frequently discussed in the context of single-molecule fluorescence techniques. In contrast to FCS, FRET is strictly not a technique but a photophysical phenomenon, which can be employed in combination with any method that probes fluorescence intensity or lifetime. Thus, the combination of FCS with FRET is possible and—although these concepts are quite often treated as alternative approaches, particularly for the analysis of biological systems—also quite attractive. However, under certain circumstances, for example, for applications of fluorescence cross-correlation spectroscopy, FRET effects can cause significant complications for quantitative data analysis, and careful calibration has to be carried out to avoid FRET-induced artifacts. This can be most elegantly done if alternating excitation schemes such as PIE (pulsed interleaved excitation) are employed. In this minireview, we discuss the potential and the caveats of FCS combined with FRET and give a short record on successful and promising applications.
Collapse
Affiliation(s)
- Harekrushna Sahoo
- Department of Biophysics, Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | | |
Collapse
|
19
|
Fang X, Wallqvist A, Reifman J. Development and analysis of an in vivo-compatible metabolic network of Mycobacterium tuberculosis. BMC SYSTEMS BIOLOGY 2010; 4:160. [PMID: 21092312 PMCID: PMC3225870 DOI: 10.1186/1752-0509-4-160] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 11/23/2010] [Indexed: 11/16/2022]
Abstract
Background During infection, Mycobacterium tuberculosis confronts a generally hostile and nutrient-poor in vivo host environment. Existing models and analyses of M. tuberculosis metabolic networks are able to reproduce experimentally measured cellular growth rates and identify genes required for growth in a range of different in vitro media. However, these models, under in vitro conditions, do not provide an adequate description of the metabolic processes required by the pathogen to infect and persist in a host. Results To better account for the metabolic activity of M. tuberculosis in the host environment, we developed a set of procedures to systematically modify an existing in vitro metabolic network by enhancing the agreement between calculated and in vivo-measured gene essentiality data. After our modifications, the new in vivo network contained 663 genes, 838 metabolites, and 1,049 reactions and had a significantly increased sensitivity (0.81) in predicted gene essentiality than the in vitro network (0.31). We verified the modifications generated from the purely computational analysis through a review of the literature and found, for example, that, as the analysis suggested, lipids are used as the main source for carbon metabolism and oxygen must be available for the pathogen under in vivo conditions. Moreover, we used the developed in vivo network to predict the effects of double-gene deletions on M. tuberculosis growth in the host environment, explore metabolic adaptations to life in an acidic environment, highlight the importance of different enzymes in the tricarboxylic acid-cycle under different limiting nutrient conditions, investigate the effects of inhibiting multiple reactions, and look at the importance of both aerobic and anaerobic cellular respiration during infection. Conclusions The network modifications we implemented suggest a distinctive set of metabolic conditions and requirements faced by M. tuberculosis during host infection compared with in vitro growth. Likewise, the double-gene deletion calculations highlight the importance of specific metabolic pathways used by the pathogen in the host environment. The newly constructed network provides a quantitative model to study the metabolism and associated drug targets of M. tuberculosis under in vivo conditions.
Collapse
Affiliation(s)
- Xin Fang
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Ft, Detrick, MD 21702, USA
| | | | | |
Collapse
|
20
|
Chlamydia trachomatis serovar L2 can utilize exogenous lipoic acid through the action of the lipoic acid ligase LplA1. J Bacteriol 2010; 192:6172-81. [PMID: 20870766 DOI: 10.1128/jb.00717-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipoic acid is an essential protein bound cofactor that is vital for the functioning of several important enzymes involved in central metabolism. Genomes of all sequenced chlamydiae show the presence of two genes encoding lipoic acid ligases and one gene encoding a lipoate synthase. However, the roles of these proteins in lipoic acid utilization or biosynthesis have not yet been characterized. The two distinct lipoic acid ligases in Chlamydia trachomatis serovar L2, LplA1(Ct) and LplA2(Ct) (encoded by the open reading frames ctl0537 and ctl0761) display moderate identity with Escherichia coli LplA (30 and 27%, respectively) but possess amino acid sequence motifs that are well conserved among all lipoyl protein ligases. The putative lipoic acid synthase LipA(Ct), encoded by ctl0815, is ca. 43% identical to the E. coli LipA homolog. We demonstrate here the presence of lipoylated proteins in C. trachomatis serovar L2 and show that the lipoic acid ligase LplA1(Ct) is capable of utilizing exogenous lipoic acid for the lipoylation Therefore, host-derived lipoic acid may be important for intracellular growth and development. Based on genetic complementation in a surrogate host, our study also suggests that the C. trachomatis serovar L2 LipA homolog may not be functional in vivo.
Collapse
|
21
|
Yanagisawa T, Sumida T, Ishii R, Takemoto C, Yokoyama S. A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nat Struct Mol Biol 2010; 17:1136-43. [DOI: 10.1038/nsmb.1889] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/09/2010] [Indexed: 11/10/2022]
|
22
|
Healy S, McDonald MK, Wu X, Yue WW, Kochan G, Oppermann U, Gravel RA. Structural impact of human and Escherichia coli biotin carboxyl carrier proteins on biotin attachment. Biochemistry 2010; 49:4687-94. [PMID: 20443544 DOI: 10.1021/bi901612y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Holocarboxylase synthetase (HCS, human) and BirA (Escherichia coli) are biotin protein ligases that catalyze the ATP-dependent attachment of biotin to apocarboxylases. Biotin attachment occurs on a highly conserved lysine residue within a consensus sequence (Ala/Val-Met-Lys-Met) that is found in carboxylases in most organisms. Numerous studies have indicated that HCS and BirA, as well as biotin protein ligases from other organisms, can attach biotin to apocarboxylases from different organisms, indicating that the mechanism of biotin attachment is well conserved. In this study, we examined the cross-reactivity of biotin attachment between human and bacterial biotin ligases by comparing biotinylation of p-67 and BCCP87, the biotin-attachment domain fragments from human propionyl-CoA carboxylase and E. coli acetyl-CoA carboxylase, respectively. While BirA has similar biotinylation activity toward the two substrates, HCS has reduced activity toward bacterial BCCP87 relative to its native substrate, p-67. The crystal structure of a digested form of p-67, spanning a sequence that contains a seven-residue protruding thumb loop in BCCP87, revealed the absence of a similar structure in the human peptide. Significantly, an engineered "thumbless" bacterial BCCP87 could be biotinylated by HCS, with substrate affinity restored to near normal. This study suggests that the thumb loop found in bacterial carboxylases interferes with optimal interaction with the mammalian biotin protein ligase. While the function of the thumb loop remains unknown, these results indicate a constraint on specificity of the bacterial substrate for biotin attachment that is not itself a feature of BirA.
Collapse
Affiliation(s)
- Shannon Healy
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | | | | | | | | | | | |
Collapse
|
23
|
The switch regulating transcription of the Escherichia coli biotin operon does not require extensive protein-protein interactions. ACTA ACUST UNITED AC 2010; 17:11-7. [PMID: 20142036 DOI: 10.1016/j.chembiol.2009.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 11/22/2009] [Accepted: 12/01/2009] [Indexed: 11/22/2022]
Abstract
Transcription of the Escherichia coli biotin (bio) operon is regulated by BirA, a protein that is not only the repressor that regulates bio operon expression by DNA binding but also the enzyme that covalently attaches biotin to its cognate acceptor proteins. Binding of BirA to the bio operator requires dimerization of the protein that is triggered by BirA-catalyzed synthesis of biotinoyl-adenylate (bio-AMP), the obligatory intermediate of the attachment reaction. The current model postulates that the unmodified acceptor protein binds the monomeric BirA:bio-AMP complex and thereby blocks assembly (dimerization) of the form of BirA that binds DNA. We report that expression of fusion proteins that carry synthetic biotin-accepting peptide sequences was as effective as the natural acceptor protein in derepression of bio operon transcription. These peptide sequences have sequences that are remarkably dissimilar to that of the natural acceptor protein, and our data thus argue that the regulatory switch does not require the extensive protein-protein interactions postulated in the current model.
Collapse
|
24
|
Puthenveetil S, Liu DS, White KA, Thompson S, Ting AY. Yeast display evolution of a kinetically efficient 13-amino acid substrate for lipoic acid ligase. J Am Chem Soc 2010; 131:16430-8. [PMID: 19863063 DOI: 10.1021/ja904596f] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Escherichia coli lipoic acid ligase (LplA) catalyzes ATP-dependent covalent ligation of lipoic acid onto specific lysine side chains of three acceptor proteins involved in oxidative metabolism. Our lab has shown that LplA and engineered mutants can ligate useful small-molecule probes such as alkyl azides ( Nat. Biotechnol. 2007 , 25 , 1483 - 1487 ) and photo-cross-linkers ( Angew. Chem., Int. Ed. 2008 , 47 , 7018 - 7021 ) in place of lipoic acid, facilitating imaging and proteomic studies. Both to further our understanding of lipoic acid metabolism, and to improve LplA's utility as a biotechnological platform, we have engineered a novel 13-amino acid peptide substrate for LplA. LplA's natural protein substrates have a conserved beta-hairpin structure, a conformation that is difficult to recapitulate in a peptide, and thus we performed in vitro evolution to engineer the LplA peptide substrate, called "LplA Acceptor Peptide" (LAP). A approximately 10(7) library of LAP variants was displayed on the surface of yeast cells, labeled by LplA with either lipoic acid or bromoalkanoic acid, and the most efficiently labeled LAP clones were isolated by fluorescence activated cell sorting. Four rounds of evolution followed by additional rational mutagenesis produced a "LAP2" sequence with a k(cat)/K(m) of 0.99 muM(-1) min(-1), >70-fold better than our previous rationally designed 22-amino acid LAP1 sequence (Nat. Biotechnol. 2007, 25, 1483-1487), and only 8-fold worse than the k(cat)/K(m) values of natural lipoate and biotin acceptor proteins. The kinetic improvement over LAP1 allowed us to rapidly label cell surface peptide-fused receptors with quantum dots.
Collapse
Affiliation(s)
- Sujiet Puthenveetil
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
25
|
A lipA (yutB) mutant, encoding lipoic acid synthase, provides insight into the interplay between branched-chain and unsaturated fatty acid biosynthesis in Bacillus subtilis. J Bacteriol 2009; 191:7447-55. [PMID: 19820084 DOI: 10.1128/jb.01160-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoic acid is an essential cofactor required for the function of key metabolic pathways in most organisms. We report the characterization of a Bacillus subtilis mutant obtained by disruption of the lipA (yutB) gene, which encodes lipoyl synthase (LipA), the enzyme that catalyzes the final step in the de novo biosynthesis of this cofactor. The function of lipA was inferred from the results of genetic and physiological experiments, and this study investigated its role in B. subtilis fatty acid metabolism. Interrupting lipoate-dependent reactions strongly inhibits growth in minimal medium, impairing the generation of branched-chain fatty acids and leading to accumulation of copious amounts of straight-chain saturated fatty acids in B. subtilis membranes. Although depletion of LipA induces the expression of the Delta5 desaturase, controlled by a two-component system that senses changes in membrane properties, the synthesis of unsaturated fatty acids is insufficient to support growth in the absence of precursors for branched-chain fatty acids. However, unsaturated fatty acids generated by deregulated overexpression of the Delta5 desaturase functionally replaces lipoic acid-dependent synthesis of branched-chain fatty acids. Furthermore, we show that the cold-sensitive phenotype of a B. subtilis strain deficient in Delta5 desaturase is suppressed by isoleucine only if LipA is present.
Collapse
|
26
|
Christensen QH, Cronan JE. The Thermoplasma acidophilum LplA-LplB complex defines a new class of bipartite lipoate-protein ligases. J Biol Chem 2009; 284:21317-26. [PMID: 19520844 DOI: 10.1074/jbc.m109.015016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoic acid is a covalently bound cofactor found throughout the domains of life that is required for aerobic metabolism of 2-oxoacids and for C(1) metabolism. Utilization of exogenous lipoate is catalyzed by a ligation reaction that proceeds via a lipoyl-adenylate intermediate to attach the cofactor to the epsilon-amino group of a conserved lysine residue of protein lipoyl domains. The lipoyl ligases of demonstrated function have a large N-terminal catalytic domain and a small C-terminal accessory domain. Half of the members of the LplA family detected in silico have only the large catalytic domain. Two x-ray structures of the Thermoplasma acidophilum LplA structure have been reported, although the protein was reported to lack ligase activity. McManus et al. (McManus, E., Luisi, B. F., and Perham, R. N. (2006) J. Mol. Biol. 356, 625-637) hypothesized that the product of an adjacent gene was also required for ligase activity. We have shown this to be the case and have named the second protein, LplB. We found that complementation of Escherichia coli strains lacking lipoate ligase with T. acidophilum LplA was possible only when LplB was also present. LplA had no detectable ligase activity in vitro in the absence of LplB. Moreover LplA and LplB were shown to interact and were purified as a heterodimer. LplB was required for lipoyl-adenylate formation but was not required for transfer of the lipoyl moiety of lipoyl-adenylate to acceptor proteins. Surveys of sequenced genomes show that most lipoyl ligases of the kingdom Archaea are heterodimeric. We propose that the presence of an accessory domain provides a diagnostic to distinguish lipoyl ligase homologues from other members of the lipoate/biotin attachment enzyme family.
Collapse
|
27
|
Heuts DPHM, Scrutton NS, McIntire WS, Fraaije MW. What's in a covalent bond? On the role and formation of covalently bound flavin cofactors. FEBS J 2009; 276:3405-27. [PMID: 19438712 DOI: 10.1111/j.1742-4658.2009.07053.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many enzymes use one or more cofactors, such as biotin, heme, or flavin. These cofactors may be bound to the enzyme in a noncovalent or covalent manner. Although most flavoproteins contain a noncovalently bound flavin cofactor (FMN or FAD), a large number have these cofactors covalently linked to the polypeptide chain. Most covalent flavin-protein linkages involve a single cofactor attachment via a histidyl, tyrosyl, cysteinyl or threonyl linkage. However, some flavoproteins contain a flavin that is tethered to two amino acids. In the last decade, many studies have focused on elucidating the mechanism(s) of covalent flavin incorporation (flavinylation) and the possible role(s) of covalent protein-flavin bonds. These endeavors have revealed that covalent flavinylation is a post-translational and self-catalytic process. This review presents an overview of the known types of covalent flavin bonds and the proposed mechanisms and roles of covalent flavinylation.
Collapse
Affiliation(s)
- Dominic P H M Heuts
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
28
|
Sunbul M, Yin J. Site specific protein labeling by enzymatic posttranslational modification. Org Biomol Chem 2009; 7:3361-71. [DOI: 10.1039/b908687k] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Pendini NR, Bailey LM, Booker GW, Wilce MC, Wallace JC, Polyak SW. Microbial biotin protein ligases aid in understanding holocarboxylase synthetase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:973-82. [DOI: 10.1016/j.bbapap.2008.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/16/2008] [Accepted: 03/26/2008] [Indexed: 11/16/2022]
|
30
|
Purushothaman S, Gupta G, Srivastava R, Ramu VG, Surolia A. Ligand specificity of group I biotin protein ligase of Mycobacterium tuberculosis. PLoS One 2008; 3:e2320. [PMID: 18509457 PMCID: PMC2384007 DOI: 10.1371/journal.pone.0002320] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 03/25/2008] [Indexed: 11/19/2022] Open
Abstract
Background Fatty acids are indispensable constituents of mycolic acids that impart toughness & permeability barrier to the cell envelope of M. tuberculosis. Biotin is an essential co-factor for acetyl-CoA carboxylase (ACC) the enzyme involved in the synthesis of malonyl-CoA, a committed precursor, needed for fatty acid synthesis. Biotin carboxyl carrier protein (BCCP) provides the co-factor for catalytic activity of ACC. Methodology/Principal Findings BPL/BirA (Biotin Protein Ligase), and its substrate, biotin carboxyl carrier protein (BCCP) of Mycobacterium tuberculosis (Mt) were cloned and expressed in E. coli BL21. In contrast to EcBirA and PhBPL, the ∼29.5 kDa MtBPL exists as a monomer in native, biotin and bio-5′AMP liganded forms. This was confirmed by molecular weight profiling by gel filtration on Superdex S-200 and Dynamic Light Scattering (DLS). Computational docking of biotin and bio-5′AMP to MtBPL show that adenylation alters the contact residues for biotin. MtBPL forms 11 H-bonds with biotin, relative to 35 with bio-5′AMP. Docking simulations also suggest that bio-5′AMP hydrogen bonds to the conserved ‘GRGRRG’ sequence but not biotin. The enzyme catalyzed transfer of biotin to BCCP was confirmed by incorporation of radioactive biotin and by Avidin blot. The Km for BCCP was ∼5.2 µM and ∼420 nM for biotin. MtBPL has low affinity (Kb = 1.06×10−6 M) for biotin relative to EcBirA but their Km are almost comparable suggesting that while the major function of MtBPL is biotinylation of BCCP, tight binding of biotin/bio-5′AMP by EcBirA is channeled for its repressor activity. Conclusions/Significance These studies thus open up avenues for understanding the unique features of MtBPL and the role it plays in biotin utilization in M. tuberculosis.
Collapse
Affiliation(s)
| | - Garima Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Richa Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
31
|
Bagautdinov B, Matsuura Y, Bagautdinova S, Kunishima N. Protein biotinylation visualized by a complex structure of biotin protein ligase with a substrate. J Biol Chem 2008; 283:14739-50. [PMID: 18372281 DOI: 10.1074/jbc.m709116200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biotin protein ligase (BPL) catalyzes the biotinylation of the biotin carboxyl carrier protein (BCCP) only at a special lysine residue. Here we report the first structure of BPL.BCCP complex crystals, which are prepared using two BPL mutants: R48A and R48A/K111A. From a detailed structural characterization, it is likely that the mutants retain functionality as enzymes but have a reduced activity to produce the reaction intermediate biotinyl-5'-AMP. The observed biotin and partly disordered ATP in the mutant structures may act as a non-reactive analog of the substrates or biotinyl-5'-AMP, thereby providing the complex crystals. The four crystallographically independent BPL.BCCP complexes obtained can be classified structurally into three groups: the formation stages 1 and 2 with apo-BCCP and the product stage with biotinylated holo-BCCP. Residues responsible for the complex formation as well as for the biotinylation reaction have been identified. The C-terminal domain of BPL shows especially large conformational changes to accommodate BCCP, suggesting its functional importance. The formation stage 1 complex shows the closest distance between the carboxyl carbon of biotin and the special lysine of BCCP, suggesting its relevance to the unobserved reaction stage. Interestingly, bound ATP and biotin are also seen in the product stage, indicating that the substrates may be recruited into the product stage complex before the release of holo-BCCP, probably for the next reaction cycle. The existence of formation and product stages before and after the reaction stage would be favorable to ensure both the reaction efficiency and the extreme substrate specificity of the biotinylation reaction.
Collapse
|
32
|
Fernández-Suárez M, Baruah H, Martínez-Hernández L, Xie KT, Baskin JM, Bertozzi CR, Ting AY. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat Biotechnol 2007; 25:1483-7. [PMID: 18059260 PMCID: PMC2654346 DOI: 10.1038/nbt1355] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 10/23/2007] [Indexed: 11/09/2022]
Abstract
Live cell imaging is a powerful method to study protein dynamics at the cell surface, but conventional imaging probes are bulky, or interfere with protein function, or dissociate from proteins after internalization. Here, we report technology for covalent, specific tagging of cellular proteins with chemical probes. Through rational design, we redirected a microbial lipoic acid ligase (LplA) to specifically attach an alkyl azide onto an engineered LplA acceptor peptide (LAP). The alkyl azide was then selectively derivatized with cyclo-octyne conjugates to various probes. We labeled LAP fusion proteins expressed in living mammalian cells with Cy3, Alexa Fluor 568 and biotin. We also combined LplA labeling with our previous biotin ligase labeling, to simultaneously image the dynamics of two different receptors, coexpressed in the same cell. Our methodology should provide general access to biochemical and imaging studies of cell surface proteins, using small fluorophores introduced via a short peptide tag.
Collapse
Affiliation(s)
- Marta Fernández-Suárez
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Hemanta Baruah
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Laura Martínez-Hernández
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Kathleen T. Xie
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Jeremy M. Baskin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- The Molecular Foundry, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Alice Y. Ting
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| |
Collapse
|
33
|
Allary M, Lu JZ, Zhu L, Prigge ST. Scavenging of the cofactor lipoate is essential for the survival of the malaria parasite Plasmodium falciparum. Mol Microbiol 2007; 63:1331-44. [PMID: 17244193 PMCID: PMC2796473 DOI: 10.1111/j.1365-2958.2007.05592.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Plasmodium falciparum possesses genes for lipoate biosynthesis and scavenging, but it is not known if these pathways are functional, nor what their relative contribution to the survival of intraerythrocytic parasites might be. We detected in parasite extracts four lipoylated proteins, one of which cross-reacted with antibodies against the E2 subunit of apicoplast-localized pyruvate dehydrogenase (PDH). Two highly divergent parasite lipoate ligase A homologues (LplA), LipL1 (previously identified as LplA) and LipL2, restored lipoate scavenging in lipoylation-deficient bacteria, indicating that Plasmodium has functional lipoate-scavenging enzymes. Accordingly, intraerythrocytic parasites scavenged radiolabelled lipoate and incorporated it into three proteins likely to be mitochondrial. Scavenged lipoate was not attached to the PDH E2 subunit, implying that lipoate scavenging drives mitochondrial lipoylation, while apicoplast lipoylation relies on biosynthesis. The lipoate analogue 8-bromo-octanoate inhibited LipL1 activity and arrested P. falciparum in vitro growth, decreasing the incorporation of radiolabelled lipoate into parasite proteins. Furthermore, growth inhibition was prevented by lipoate addition in the medium. These results are consistent with 8-bromo-octanoate specifically interfering with lipoate scavenging. Our study suggests that lipoate metabolic pathways are not redundant, and that lipoate scavenging is critical for Plasmodium intraerythrocytic survival.
Collapse
Affiliation(s)
| | | | | | - Sean T. Prigge
- For correspondence. ; Tel. (+1) 443 287 4822; Fax (+1) 410 955 0105
| |
Collapse
|
34
|
Cui G, Nan B, Hu J, Wang Y, Jin C, Xia B. Identification and solution structures of a single domain biotin/lipoyl attachment protein from Bacillus subtilis. J Biol Chem 2006; 281:20598-607. [PMID: 16699181 DOI: 10.1074/jbc.m602660200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein biotinylation and lipoylation are post-translational modifications, in which biotin or lipoic acid is covalently attached to specific proteins containing biotin/lipoyl attachment domains. All the currently reported natural proteins containing biotin/lipoyl attachment domains are multidomain proteins and can only be modified by either biotin or lipoic acid in vivo. We have identified a single domain protein with 73 amino acid residues from Bacillus subtilis strain 168, and it can be both biotinylated and lipoylated in Escherichia coli. The protein is therefore named as biotin/lipoyl attachment protein (BLAP). This is the first report that a natural single domain protein exists as both a biotin and lipoic acid receptor. The solution structure of apo-BLAP showed that it adopts a typical fold of biotin/lipoyl attachment domain. The structure of biotinylated BLAP revealed that the biotin moiety is covalently attached to the side chain of Lys(35), and the bicyclic ring of biotin is folded back and immobilized on the protein surface. The biotin moiety immobilization is mainly due to an interaction between the biotin ureido ring and the indole ring of Trp(12). NMR study also indicated that the lipoyl group of the lipoylated BLAP is also immobilized on the protein surface in a similar fashion as the biotin moiety in the biotinylated protein.
Collapse
Affiliation(s)
- Gaofeng Cui
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
A series of genetic, biochemical, and physiological studies in Escherichia coli have elucidated the unusual pathway whereby lipoic acid is synthesized. Here we describe the results of these investigations as well as the functions of enzyme proteins that are modified by covalent attachment of lipoic acid and the enzymes that catalyze the modification reactions. Some aspects of the synthesis and attachment mechanisms have strong parallels in the pathways used in synthesis and attachment of biotin and these are compared and contrasted. Homologues of the lipoic acid metabolism proteins are found in all branches of life, save the Archea, and thus these findings seem to have wide biological relevance.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
36
|
McManus E, Luisi BF, Perham RN. Structure of a putative lipoate protein ligase from Thermoplasma acidophilum and the mechanism of target selection for post-translational modification. J Mol Biol 2005; 356:625-37. [PMID: 16384580 PMCID: PMC7610907 DOI: 10.1016/j.jmb.2005.11.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 11/03/2005] [Accepted: 11/15/2005] [Indexed: 11/30/2022]
Abstract
Lipoyl-lysine swinging arms are crucial to the reactions catalysed by the 2-oxo acid dehydrogenase multienzyme complexes. A gene encoding a putative lipoate protein ligase (LplA) of Thermoplasma acidophilum was cloned and expressed in Escherichia coli. The recombinant protein, a monomer of molecular mass 29 kDa, was catalytically inactive. Crystal structures in the absence and presence of bound lipoic acid were solved at 2.1 A resolution. The protein was found to fall into the alpha/beta class and to be structurally homologous to the catalytic domains of class II aminoacyl-tRNA synthases and biotin protein ligase, BirA. Lipoic acid in LplA was bound in the same position as biotin in BirA. The structure of the T.acidophilum LplA and limited proteolysis of E.coli LplA together highlighted some key features of the post-translational modification. A loop comprising residues 71-79 in the T.acidophilum ligase is proposed as interacting with the dithiolane ring of lipoic acid and discriminating against the entry of biotin. A second loop comprising residues 179-193 was disordered in the T.acidophilum structure; tryptic cleavage of the corresponding loop in the E.coli LplA under non-denaturing conditions rendered the enzyme catalytically inactive, emphasizing its importance. The putative LplA of T.acidophilum lacks a C-terminal domain found in its counterparts in E.coli (Gram-negative) or Streptococcus pneumoniae (Gram-positive). A gene encoding a protein that appears to have structural homology to the additional domain in the E.coli and S.pneumoniae enzymes was detected alongside the structural gene encoding the putative LplA in the T.acidophilum genome. It is likely that this protein is required to confer activity on the LplA as currently purified, one protein perhaps catalysing the formation of the obligatory lipoyl-AMP intermediate, and the other transferring the lipoyl group from it to the specific lysine residue in the target protein.
Collapse
|
37
|
Plasmodium falciparum possesses organelle-specific α-keto acid dehydrogenase complexes and lipoylation pathways. Biochem Soc Trans 2005. [DOI: 10.1042/bst0330977] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human malaria parasite Plasmodium falciparum possesses a single mitochondrion and a plastid-like organelle called the apicoplast. Both organelles contain members of the KADH (α-keto acid dehydrogenase) complexes – multienzyme complexes that are involved in intermediate metabolism. In the asexual blood stage forms of the parasites, the α-ketoglutarate dehydrogenase and branched chain KADH complexes are both located in the mitochondrion, whereas the pyruvate dehydrogenase is exclusively found in the apicoplast. In agreement with this distribution, Plasmodium parasites have two separate and organelle-specific pathways that guarantee lipoylation of the KADH complexes in both organelles. A biosynthetic pathway comprised of lipoic acid synthase and lipoyl (octanoyl)-ACP:protein Nε-lipoyltransferase B is present in the apicoplast, whereas the mitochondrion is supplied with exogenous lipoic acid, and ligation of the metabolite to the KADH complexes is accomplished by a lipoate protein ligase A similar to that of bacteria and plants. Both pathways are excellent potential targets for the design of new antimalarial drugs.
Collapse
|
38
|
Kim DJ, Kim KH, Lee HH, Lee SJ, Ha JY, Yoon HJ, Suh SW. Crystal structure of lipoate-protein ligase A bound with the activated intermediate: insights into interaction with lipoyl domains. J Biol Chem 2005; 280:38081-9. [PMID: 16141198 DOI: 10.1074/jbc.m507284200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoic acid is the covalently attached cofactor of several multi-component enzyme complexes that catalyze key metabolic reactions. Attachment of lipoic acid to the lipoyl-dependent enzymes is catalyzed by lipoate-protein ligases (LPLs). In Escherichia coli, two distinct enzymes lipoate-protein ligase A (LplA) and lipB-encoded lipoyltransferase (LipB) catalyze independent pathways for lipoylation of the target proteins. The reaction catalyzed by LplA occurs in two steps. First, LplA activates exogenously supplied lipoic acid at the expense of ATP to lipoyl-AMP. Next, it transfers the enzyme-bound lipoyl-AMP to the epsilon-amino group of a specific lysine residue of the lipoyl domain to give an amide linkage. To gain insight into the mechanism of action by LplA, we have determined the crystal structure of Thermoplasma acidophilum LplA in three forms: (i) the apo form; (ii) the ATP complex; and (iii) the lipoyl-AMP complex. The overall fold of LplA bears some resemblance to that of the biotinyl protein ligase module of the E. coli biotin holoenzyme synthetase/bio repressor (BirA). Lipoyl-AMP is bound deeply in the bifurcated pocket of LplA and adopts a U-shaped conformation. Only the phosphate group and part of the ribose sugar of lipoyl-AMP are accessible from the bulk solvent through a tunnel-like passage, whereas the rest of the activated intermediate is completely buried inside the active site pocket. This first view of the activated intermediate bound to LplA allowed us to propose a model of the complexes between Ta LplA and lipoyl domains, thus shedding light on the target protein/lysine residue specificity of LplA.
Collapse
Affiliation(s)
- Do Jin Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Choi-Rhee E, Cronan JE. Biotin synthase is catalytic in vivo, but catalysis engenders destruction of the protein. ACTA ACUST UNITED AC 2005; 12:461-8. [PMID: 15850983 DOI: 10.1016/j.chembiol.2005.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/11/2005] [Accepted: 02/15/2005] [Indexed: 11/26/2022]
Abstract
Biotin synthase is responsible for the synthesis of biotin from dethiobiotin and sulfur. Although the name of the protein implies that it functions as an enzyme, it has been consistently reported that biotin synthase produces <1 molecule of biotin per molecule of protein in vitro. Moreover, the source of the biotin sulfur atom has been reported to be the [2Fe-2S] center of the protein. Biotin synthase has therefore been designated as a substrate or reactant rather than an enzyme. We report in vivo experiments demonstrating that biotin synthase is catalytic but that catalysis puts the protein at risk of proteolytic destruction.
Collapse
Affiliation(s)
- Eunjoo Choi-Rhee
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
40
|
Jesudason EP, Masilamoni JG, Kirubagaran R, Davis GDJ, Jayakumar R. The protective role of dl-α-lipoic acid in biogenic amines catabolism triggered by Aβ amyloid vaccination in mice. Brain Res Bull 2005; 65:361-7. [PMID: 15811602 DOI: 10.1016/j.brainresbull.2005.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Accepted: 01/31/2005] [Indexed: 10/25/2022]
Abstract
The major pathological consequence of Alzheimer disease (AD) is accumulation of beta-amyloid (Abeta) peptide fibrillar plaque in the brain and subsequent inflammatory reaction associated with the surrounding cells due to the presence of these aggregates. Inflammation is the major complication associated with Abeta peptide vaccination. Abeta peptide activated T-helper cells are shown to enhance the existing-inflammatory conditions in the brain and other organs of AD patients. Hence systematic studies on potential approaches that will prevent inflammation during the vaccination are highly desired. DL-alpha-lipoic acid (LA), an antioxidant with known function as cofactor in mitochondrial dehydrogenase reactions, will be a good candidate to annul the oxidative damage due to vaccination triggered inflammation. For the first time, levels of principal neurotransmitters and their major metabolites in hippocampus and neocortex regions of brain are quantified to find out the level of inflammation. We have used high performance liquid chromatography with electro chemical detection (HPLC-EC) for monitoring neurotransmitter levels. We have shown a significant (p<0.05) reduction of 5-hydroxytryptamine (5-HT), dopamine (DA) and norepinephrine (NE) in the systemic inflammation induced (SI), vaccinated (VA) and inflammation induced vaccinated (IV) mice. Nevertheless their metabolites such as 5-hydroxyindole acetic acid (5-HIAA) and homovanillic acid (HVA) are significantly (p<0.05) increased when compared with control. Interestingly, antioxidant LA treated mice with systemic inflammation (IL), vaccinated (VL) and inflammation induced vaccinated (IVL) mice exhibited enhanced level of 5-HT, DA and NE and the concentration of 5-HIAA and HVA gradually returned to normal. These results suggest a possible new way for monitoring and modifying the inflammation and thereby preventing Abeta vaccination mediated tissue damage.
Collapse
Affiliation(s)
- E Philip Jesudason
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | | | | | | | |
Collapse
|
41
|
Wrenger C, Müller S. The human malaria parasite Plasmodium falciparum has distinct organelle-specific lipoylation pathways. Mol Microbiol 2004; 53:103-13. [PMID: 15225307 DOI: 10.1111/j.1365-2958.2004.04112.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipoic acid is an essential cofactor of alpha-keto acid dehydrogenase complexes (KADHCs). This study shows that Plasmodium falciparum possesses two distinct lipoylation pathways that are found in separate subcellular localizations. Lipoic acid synthesis comprising lipoic acid synthase and lipoyl-ACP:protein N-lipoyl transferase is present in the parasite's apicoplast, whereas the second pathway consisting of lipoic acid protein ligase is located in the parasite's mitochondrion. The two localizations were established by overexpressing green fluorescent protein fusions of the N-terminal sequences of lipoic acid synthase and lipoic acid protein ligase in intraerythrocytic stages of P. falciparum. Northern and Western blot analyses revealed that the genes/proteins encoding lipoic acid synthase, lipoyl-ACP:protein N-lipoyl transferase and lipoic acid protein ligase are expressed maximally in the early and late stages of P. falciparum erythrocytic development. The functionality of the three proteins was proven by complementation of bacteria deficient in lipA and lipB. Our results show that P. falciparum possesses two independent pathways, with different locations, responsible for the post-translational modification of KADHCs. Both pathways fundamentally differ from those in the human host. As KADHCs provide metabolites that are required for essential biosynthetic processes such as fatty acid biosynthesis and haem biosynthesis, the two lipoylation pathways of P. falciparum might be attractive therapeutic targets against malaria.
Collapse
Affiliation(s)
- Carsten Wrenger
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, WTB/MSI Complex, Dundee DD1 5EH, UK
| | | |
Collapse
|
42
|
Jiang Y, Cronan JE. Expression cloning and demonstration of Enterococcus faecalis lipoamidase (pyruvate dehydrogenase inactivase) as a Ser-Ser-Lys triad amidohydrolase. J Biol Chem 2004; 280:2244-56. [PMID: 15528186 DOI: 10.1074/jbc.m408612200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enterococcus faecalis lipoamidase was discovered almost 50 years ago (Reed, L. J., Koike, M., Levitch, M. E., and Leach, F. R. (1958) J. Biol. Chem. 232, 143-158) as an enzyme activity that cleaved lipoic acid from small lipoylated molecules and from pyruvate dehydrogenase thereby inactivating the enzyme. Although the partially purified enzyme was a key reagent in proving the crucial role of protein-bound lipoic acid in the reaction mechanism of the 2-oxoacid dehydrogenases, the identity of the lipoamidase protein and the encoding gene remained unknown. We report isolation of the lipoamidase gene by screening an expression library made in an unusual cosmid vector in which the copy number of the vector is readily varied from 1-2 to 40-80 in an appropriate Escherichia coli host. Although designed for manipulation of large genome segments, the vector was also ideally suited to isolation of the gene encoding the extremely toxic lipoamidase. The gene encoding lipoamidase was isolated by screening for expression in E. coli and proved to encode an unexpectedly large protein (80 kDa) that contained the sequence signature of the Ser-Ser-Lys triad amidohydrolase family. The hexa-histidine-tagged protein was expressed in E. coli and purified to near-homogeneity. The purified enzyme was found to cleave both small molecule lipoylated and biotinylated substrates as well as lipoic acid from two 2-oxoacid dehydrogenases and an isolated lipoylated lipoyl domain derived from the pyruvate dehydrogenase E2 subunit. Lipoamidase-mediated inactivation of the 2-oxoacid dehydrogenases was observed both in vivo and in vitro. Mutagenesis studies showed that the residues of the Ser-Ser-Lys triad were required for activity on both small molecule and protein substrates and confirmed that lipoamidase is a member of the Ser-Ser-Lys triad amidohydrolase family.
Collapse
Affiliation(s)
- Yanfang Jiang
- Department of Microbiology, the University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
43
|
Palmer JM, Robe AJ, Burt AD, Kirby JA, Jones DEJ. Covalent modification as a mechanism for the breakdown of immune tolerance to pyruvate dehydrogenase complex in the mouse. Hepatology 2004; 39:1583-92. [PMID: 15185299 DOI: 10.1002/hep.20248] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The autoimmune liver disease primary biliary cirrhosis (PBC) is characterized by the breakdown of normal immune self tolerance to pyruvate dehydrogenase complex (PDC). How tolerance is broken to such a central and highly conserved self antigen in the initiation of autoimmunity remains unclear. One postulated mechanism is that reactivity arises to an altered form of self antigen with subsequent cross-reactivity to native self. In this murine study, we set out to examine whether sensitization with a covalently modified form of self PDC can give rise to the pattern of breakdown of B-cell and T-cell tolerance to self PDC seen in PBC patients. The notion that altered self can lead to tolerance breakdown was studied by sensitizing SJL/J mice with a covalently modified (biotinylated) preparation of self murine PDC (mP/O-B). Subsequently, antibody and T-cell reactivities to unmodified self mP/O were studied. Sensitization with mP/O-B elicited high-titre, high-affinity antibody responses reactive with both the mP/O-B immunogen and, importantly, native mP/O. In addition, significant MHC class II restricted splenic T-cell responses to native mP/O (i.e., true autoimmune responses) were seen in mP/O-B sensitized animals. The breakdown of T-cell self tolerance to mP/O was not seen in animals sensitized with irrelevant biotinylated antigens. In conclusion, this study provides evidence to support the concept that exposure to covalently modified self PDC can, in the correct proimmune environment, replicate the full breakdown of B-cell and T-cell immune tolerance to PDC seen in PBC. One potential etiological pathway in PBC therefore could be the breakdown of tolerance to self PDC occurring after exposure to self antigen covalently modified in the metabolically active environment of the liver.
Collapse
Affiliation(s)
- Jeremy M Palmer
- Centre for Liver Research, School of Clinical Medical Sciences, University of Newcastle, Newcastle-upon-Tyne, UK.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Acetyl-CoA carboxylase (ACC) catalyses the first committed step of fatty acid synthesis, the carboxylation of acetyl-CoA to malonyl-CoA. Two physically distinct types of enzymes are found in nature. Bacterial and most plant chloroplasts contain a multi-subunit ACC (MS-ACC) enzyme that is readily dissociated into its component proteins. Mammals, fungi, and plant cytosols contain the second type of ACC, a single large multifunctional polypeptide. This review will focus on the structures, regulation, and enzymatic mechanisms of the bacterial and plant MS-ACCs.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, B103 Chemical and Life Sciences Laboratory, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
45
|
Cronan JE. Interchangeable enzyme modules. Functional replacement of the essential linker of the biotinylated subunit of acetyl-CoA carboxylase with a linker from the lipoylated subunit of pyruvate dehydrogenase. J Biol Chem 2002; 277:22520-7. [PMID: 11956202 DOI: 10.1074/jbc.m201249200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biotin carboxyl carrier protein (BCCP) is the small biotinylated subunit of Escherichia coli acetyl-CoA carboxylase, the enzyme that catalyzes the first committed step of fatty acid synthesis. E. coli BCCP is a member of a large family of protein domains modified by covalent attachment of biotin. In most biotinylated proteins, the biotin moiety is attached to a lysine residue located about 35 residues from the carboxyl terminus of the protein, which lies in the center of a strongly conserved sequence that forms a tightly folded anti-parallel beta-barrel structure. Located upstream of the conserved biotinoyl domain sequence are proline/alanine-rich sequences of varying lengths, which have been proposed to act as flexible linkers. In E. coli BCCP, this putative linker extends for about 42 residues with over half of the residues being proline or alanine. I report that deletion of the 30 linker residues located adjacent to the biotinoyl domain resulted in a BCCP species that was defective in function in vivo, although it was efficiently biotinylated. Expression of this BCCP species failed to restore normal growth and fatty acid synthesis to a temperature-sensitive E. coli strain that lacks BCCP when grown at nonpermissive temperatures. In contrast, replacement of the deleted BCCP linker with a linker derived from E. coli pyruvate dehydrogenase gave a chimeric BCCP species that had normal in vivo function. Expression of BCCPs having deletions of various segments of the linker region of the chimeric protein showed that some deletions of up to 24 residues had significant or full biological activity, whereas others had very weak or no activity. The inactive deletion proteins all lacked an APAAAAA sequence located adjacent to the tightly folded biotinyl domain, whereas deletions that removed only upstream linker sequences remained active. Deletions within the linker of the wild type BCCP protein also showed that the residues adjacent to the tightly folded domain play an essential role in protein function, although in this case some proteins with deletions within this region retained activity. Retention of activity was due to fusion of the domain to upstream sequences. These data provide new evidence for the functional and structural similarities of biotinylated and lipoylated proteins and strongly support a common evolutionary origin of these enzyme subunits.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA.
| |
Collapse
|
46
|
Solbiati J, Chapman-Smith A, Cronan JE. Stabilization of the biotinoyl domain of Escherichia coli acetyl-CoA carboxylase by interactions between the attached biotin and the protruding "thumb" structure. J Biol Chem 2002; 277:21604-9. [PMID: 11943781 DOI: 10.1074/jbc.m201928200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported (Chapman-Smith, A., Forbes, B. E., Wallace, J. C., and Cronan, J. E., Jr. (1997) J. Biol. Chem. 272, 26017-26022) that the biotinylated (holo) species of the biotin carboxyl carrier protein (BCCP) biotinoyl domain is much more resistant to chemical modification and proteolysis than the unbiotinylated (apo) form. We hypothesized that the increased stability was due to a conformational change engendered by interaction of the domain with biotin protein ligase, the enzyme that attaches the biotin moiety. We now report that a BCCP-87 species to which the biotin moiety was attached by chemical acylation rather than by biotin protein ligase showed the characteristically greater stability of the holo biotinoyl domain. This result demonstrates that our hypothesis was incorrect; the attached biotin is solely responsible for the increased stability. The bacterial and chloroplast multisubunit acetyl-CoA carboxylases are unusual in that the highly symmetrical and conserved structure of the biotinoyl domain of the BCCP subunit is disrupted by a structured loop called the "thumb" that protrudes from body of the domain. Prior structural work showed that the thumb interacts with uriedo ring of the attached biotin moiety. We have tested whether the thumb-biotin interactions are responsible for the greater holo form stability by examination of two BCCP-87 species that lack the thumb. These BCCP species were produced in both the apo and holo forms, and their sensitivities to trypsin digestion were compared. The holo forms of these proteins were found to be only marginally more stable than their apo forms and much more sensitive to trypsin digestion than the wild type holo-BCCP-87. Therefore, removal of the thumb has an effect similar to lack of biotinylation, indicating that thumb-biotin interactions are responsible for most (but not all) of the increased stability of the holo biotinoyl domain. In the course of these experiments we demonstrated that treatment of Escherichia coli with the peptide deformylase inhibitor, actinonin, results in the expected (but previously unreported) accumulation of an N-formylated protein species.
Collapse
Affiliation(s)
- José Solbiati
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
47
|
Weaver LH, Kwon K, Beckett D, Matthews BW. Competing protein:protein interactions are proposed to control the biological switch of the E coli biotin repressor. Protein Sci 2001; 10:2618-22. [PMID: 11714930 PMCID: PMC2374047 DOI: 10.1110/ps.32701] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A model is suggested for the complex between the biotin repressor of Escherichia coli, BirA, and BCCP, the biotin carboxyl carrier protein to which BirA transfers biotin. The model is consistent with prior physical and biochemical studies. Measurement of transfer rates for variants of BirA with single-site mutations in the proposed BirA:BCCP interface region also provides support. The unique feature of the proposed interaction between BirA and BCCP is that it uses the same beta-sheet region on the surface of BirA that the protein uses for homodimerization into a form competent to bind DNA. The resulting mutually exclusive protein:protein interfaces explain the novel feature of the BirA regulatory system, namely, that transcription of the genes involved in biotin synthesis is not determined by the level of biotin, per se, but by the level of unmodified BCCP. The model also provides a role for the C-terminal domain of BirA that is structurally similar to an SH3 domain.
Collapse
Affiliation(s)
- L H Weaver
- Institute of Molecular Biology, Howard Hughes Medical Institute, and Department of Physics, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | |
Collapse
|
48
|
Cronan JE. The biotinyl domain of Escherichia coli acetyl-CoA carboxylase. Evidence that the "thumb" structure id essential and that the domain functions as a dimer. J Biol Chem 2001; 276:37355-64. [PMID: 11495922 DOI: 10.1074/jbc.m106353200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biotin carboxyl carrier protein (BCCP) is the small biotinylated subunit of Escherichia coli acetyl-CoA carboxylase (ACC), the enzyme that catalyzes the first committed step of fatty acid synthesis. Similar proteins are found in other bacteria and in chloroplasts. E. coli BCCP is a member of a large family of protein domains modified by covalent attachment of biotin to a specific lysine residue. However, the BCCP biotinyl domain differs from many of these proteins in that an eight-amino acid residue insertion is present upstream of the biotinylated lysine. X-ray crystallographic and multidimensional NMR studies show that these residues constitute a structure that has the appearance of an extended thumb that protrudes from the otherwise highly symmetrical domain structure. I report that expression of two mutant BCCPs lacking the thumb residues fails to restore growth and fatty acid synthesis to a temperature-sensitive E. coli strain that lacks BCCP when grown at nonpermissive temperature. Alignment of BCCPs from various organisms shows that only two of the eight thumb residues are strictly conserved, and amino acid substitution of either residue results in proteins giving only weak growth of the temperature-sensitive E. coli strain. Therefore, the thumb structure is essential for the function of BCCP in the ACC reaction and provides a useful motif for distinguishing the biotinylated proteins of multisubunit ACCs from those of enzymes catalyzing other biotin-dependent reactions. An unexpected result was that expression of a mutant BCCP in which the biotinylated lysine residue was substituted with cysteine was able to partially restore growth and fatty acid synthesis to the temperature-sensitive E. coli strain. This complementation was shown to be specific to BCCPs having native structure (excepting the biotinylated lysine) and is interpreted in terms of dimerization of the BCCP biotinyl domain during the ACC reaction.
Collapse
Affiliation(s)
- J E Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
49
|
Tozawa K, Broadhurst RW, Raine AR, Fuller C, Alvarez A, Guillen G, Padron G, Perham RN. Solution structure of the lipoyl domain of the chimeric dihydrolipoyl dehydrogenase P64K from Neisseria meningitidis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4908-17. [PMID: 11559360 DOI: 10.1046/j.0014-2956.2001.02422.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The antigenic P64K protein from the pathogenic bacterium Neisseria meningitidis is found in the outer membrane of the cell, and consists of two parts: an 81-residue N-terminal region and a 482-residue C-terminal region. The amino-acid sequence of the N-terminal region is homologous with the lipoyl domains of the dihydrolipoyl acyltransferase (E2) components, and that of the C-terminal region with the dihydrolipoyl dehydrogenase (E3) components, of 2-oxo acid dehydrogenase multienzyme complexes. The two parts are separated by a long linker region, similar to the linker regions in the E2 chains of 2-oxo acid dehydrogenase complexes, and it is likely this region is conformationally flexible. A subgene encoding the P64K lipoyl domain was created and over-expressed in Escherichia coli. The product was capable of post-translational modification by the lipoate protein ligase but not aberrant modification by the biotin protein ligase of E. coli. The solution structure of the apo-domain was determined by means of heteronuclear NMR spectroscopy and found to be a flattened beta barrel composed of two four-stranded antiparallel beta sheets. The lysine residue that becomes lipoylated is in an exposed beta turn that, from a [1H]-15N heteronuclear Overhauser effect experiment, appears to enjoy substantial local motion. This structure of a lipoyl domain derived from a dihydrolipoyl dehydrogenase resembles that of lipoyl domains normally found as part of the dihydrolipoyl acyltransferase component of 2-oxo acid dehydrogenase complexes and will assist in furthering the understanding of its function in a multienzyme complex and in the membrane-bound P64K protein itself.
Collapse
Affiliation(s)
- K Tozawa
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cronan JE, Reed KE. Biotinylation of proteins in vivo: a useful posttranslational modification for protein analysis. Methods Enzymol 2001; 326:440-58. [PMID: 11036657 DOI: 10.1016/s0076-6879(00)26069-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- J E Cronan
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|